Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system

For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 28; no. 7; p. 70303
Main Authors Hu, Juju, Xue, Qin
Format Journal Article
LanguageEnglish
Published 01.07.2019
Online AccessGet full text
ISSN1674-1056
DOI10.1088/1674-1056/28/7/070303

Cover

Loading…
Abstract For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system. For the homodyne feedback control F = λ σ x (or F = λ σ y ) , due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients λ , the exchange of feedback coefficients will cause variations of the entropic uncertainty. When the feedback coefficient corresponding to the memory qubit B is larger ( λ B > λ A ) , the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system. However, for the feedback control F = λ σ z , the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty.
AbstractList For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system. For the homodyne feedback control F = λ σ x (or F = λ σ y ) , due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients λ , the exchange of feedback coefficients will cause variations of the entropic uncertainty. When the feedback coefficient corresponding to the memory qubit B is larger ( λ B > λ A ) , the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system. However, for the feedback control F = λ σ z , the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty.
Author Hu, Juju
Xue, Qin
Author_xml – sequence: 1
  givenname: Juju
  surname: Hu
  fullname: Hu, Juju
– sequence: 2
  givenname: Qin
  surname: Xue
  fullname: Xue, Qin
BookMark eNqFkMtOwzAQRb0oEi3wCUj-gRA_6tgVK1TxqFSJDawtZzxRA4ldYmeRv6dREQs2rEYz0hnde1ZkEWJAQm45u-PMmJJXel1wpqpSmFKXTDPJ5IIsf--XZJXSB2MVZ0Iuid2FphsxANLY0EPso58CFrVL6GmD6GsHnxRiyEPsaAw0H5DivB1boOOJG7JrQ55oG2g8YqBfowt57GmaUsb-mlw0rkt48zOvyPvT49v2pdi_Pu-2D_sChJK5WMO6VuBPaYVhmitkVeW90VpssAY0HEEq57URDozcCIemAVdLJYUGZBt5RdT5LwwxpQEbexza3g2T5czOZuxswM4GrDBW27OZE3f_h4M2u9zOhV3b_UN_A9P9bxY
CitedBy_id crossref_primary_10_1103_PhysRevA_110_012429
crossref_primary_10_1016_j_ijleo_2021_167957
crossref_primary_10_1088_1674_1056_ab7da3
crossref_primary_10_1103_PhysRevA_111_032418
crossref_primary_10_1142_S0217979222500138
crossref_primary_10_1088_1612_202X_ac0bc2
Cites_doi 10.1103/PhysRevLett.92.047905
10.1016/j.physleta.2018.12.025
10.1103/PhysRevLett.99.160502
10.1103/PhysRevA.86.042105
10.1364/JOSAB.32.001873
10.1038/nphys1734
10.1103/PhysRevLett.98.203006
10.1007/s11128-018-1857-2
10.1038/nphys2047
10.1209/0295-5075/111/50006
10.1103/PhysRevA.49.2133
10.1364/JOSAB.30.000475
10.1007/BF01397280
10.1016/0375-9601(84)90118-X
10.1007/s11128-018-1973-z
10.1109/TIT.2014.2371464
10.1103/PhysRevA.75.032323
10.1103/PhysRevA.90.052327
10.1103/PhysRevLett.70.548
10.1038/s41598-017-01094-8
10.1007/s11128-015-1237-0
10.1103/PhysRevLett.103.020402
10.1038/nphys2048
10.2307/2372390
10.1007/s10773-018-3942-9
10.1038/srep19359
10.1007/s11467-018-0880-1
10.1016/j.automatica.2012.03.001
10.1103/PhysRevA.95.032109
10.1103/PhysRevLett.50.631
10.1103/PhysRevLett.60.1103
10.1103/PhysRevA.58.2733
10.1007/s11128-016-1299-7
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/28/7/070303
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1088_1674_1056_28_7_070303
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAYXX
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFUIB
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
M45
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
ID FETCH-LOGICAL-c253t-4c4b5cd703280715e066dd87729ebce81ec35ad782ac8392ae8fcab35327ce093
ISSN 1674-1056
IngestDate Tue Jul 01 02:55:30 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-4c4b5cd703280715e066dd87729ebce81ec35ad782ac8392ae8fcab35327ce093
ParticipantIDs crossref_primary_10_1088_1674_1056_28_7_070303
crossref_citationtrail_10_1088_1674_1056_28_7_070303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationYear 2019
References Riccardi (cpb_28_7_070303_bib12) 2017; 95
Ji (cpb_28_7_070303_bib45) 2019; 58
Renes (cpb_28_7_070303_bib6) 2009; 103
Hirschman (cpb_28_7_070303_bib2) 1957; 79
Berta (cpb_28_7_070303_bib7) 2010; 6
Wiseman (cpb_28_7_070303_bib33) 1994; 49
Thanh Long (cpb_28_7_070303_bib41) 2012; 85
Bialynicki-Birula (cpb_28_7_070303_bib4) 1984; 103
Zheng (cpb_28_7_070303_bib39) 2015; 91
Wang (cpb_28_7_070303_bib13) 2017; 7
Ganesan (cpb_28_7_070303_bib36) 2007; 75
Hu (cpb_28_7_070303_bib20) 2012; 86
Zhang (cpb_28_7_070303_bib17) 2015; 24
Pati (cpb_28_7_070303_bib21) 2012; 86
Li (cpb_28_7_070303_bib22) 2018; 17
Ji (cpb_28_7_070303_bib44) 2018; 27
Ming (cpb_28_7_070303_bib14) 2018; 17
Wiseman (cpb_28_7_070303_bib32) 1993; 70
Heisenberg (cpb_28_7_070303_bib1) 1927; 43
Yu (cpb_28_7_070303_bib23) 2017; 95
Grosshans (cpb_28_7_070303_bib27) 2004; 92
Li (cpb_28_7_070303_bib42) 2011; 84
Bai (cpb_28_7_070303_bib16) 2016; 15
Yang (cpb_28_7_070303_bib19) 2019; 14
Yang (cpb_28_7_070303_bib31) 2018; 97
Li (cpb_28_7_070303_bib10) 2011; 7
Bellomo (cpb_28_7_070303_bib43) 2007; 99
Sun (cpb_28_7_070303_bib29) 2015; 32
Li (cpb_28_7_070303_bib38) 2008; 77
Vallone (cpb_28_7_070303_bib28) 2014; 90
Viola (cpb_28_7_070303_bib34) 1998; 58
Deutsch (cpb_28_7_070303_bib3) 1983; 50
Dupuis (cpb_28_7_070303_bib26) 2015; 61
Mondal (cpb_28_7_070303_bib11) 2017; 95
Shao (cpb_28_7_070303_bib37) 2016; 94
Shuzhi Sam (cpb_28_7_070303_bib40) 2012; 48
Maassen (cpb_28_7_070303_bib5) 1988; 60
Prevedel (cpb_28_7_070303_bib9) 2011; 7
Chen (cpb_28_7_070303_bib18) 2019; 383
Karpat (cpb_28_7_070303_bib15) 2015; 111
Liu (cpb_28_7_070303_bib24) 2016; 6
Liu (cpb_28_7_070303_bib25) 2016; 15
Chen (cpb_28_7_070303_bib30) 2013; 30
Katz (cpb_28_7_070303_bib35) 2007; 98
Xu (cpb_28_7_070303_bib8) 2012; 101
References_xml – volume: 91
  year: 2015
  ident: cpb_28_7_070303_bib39
  publication-title: Phys. Rev.
– volume: 27
  year: 2018
  ident: cpb_28_7_070303_bib44
  publication-title: Chin. Phys.
– volume: 24
  year: 2015
  ident: cpb_28_7_070303_bib17
  publication-title: Chin. Phys.
– volume: 92
  year: 2004
  ident: cpb_28_7_070303_bib27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.047905
– volume: 77
  year: 2008
  ident: cpb_28_7_070303_bib38
  publication-title: Phys. Rev.
– volume: 383
  start-page: 977
  year: 2019
  ident: cpb_28_7_070303_bib18
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2018.12.025
– volume: 99
  year: 2007
  ident: cpb_28_7_070303_bib43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.160502
– volume: 84
  year: 2011
  ident: cpb_28_7_070303_bib42
  publication-title: Phys. Rev.
– volume: 86
  year: 2012
  ident: cpb_28_7_070303_bib21
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.86.042105
– volume: 32
  start-page: 1873
  year: 2015
  ident: cpb_28_7_070303_bib29
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAB.32.001873
– volume: 6
  start-page: 659
  year: 2010
  ident: cpb_28_7_070303_bib7
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1734
– volume: 98
  year: 2007
  ident: cpb_28_7_070303_bib35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.203006
– volume: 17
  start-page: 89
  year: 2018
  ident: cpb_28_7_070303_bib14
  publication-title: Quantum Inf. Process
  doi: 10.1007/s11128-018-1857-2
– volume: 7
  start-page: 752
  year: 2011
  ident: cpb_28_7_070303_bib10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2047
– volume: 111
  start-page: 50006
  year: 2015
  ident: cpb_28_7_070303_bib15
  publication-title: Eur. Phys. Lett.
  doi: 10.1209/0295-5075/111/50006
– volume: 49
  start-page: 2133
  year: 1994
  ident: cpb_28_7_070303_bib33
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.49.2133
– volume: 30
  start-page: 475
  year: 2013
  ident: cpb_28_7_070303_bib30
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAB.30.000475
– volume: 95
  year: 2017
  ident: cpb_28_7_070303_bib23
  publication-title: Phys Rev
– volume: 43
  start-page: 172
  year: 1927
  ident: cpb_28_7_070303_bib1
  publication-title: Z. Phys.
  doi: 10.1007/BF01397280
– volume: 103
  start-page: 253
  year: 1984
  ident: cpb_28_7_070303_bib4
  publication-title: Phys. Lett.
  doi: 10.1016/0375-9601(84)90118-X
– volume: 17
  start-page: 206
  year: 2018
  ident: cpb_28_7_070303_bib22
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-018-1973-z
– volume: 61
  start-page: 1093
  year: 2015
  ident: cpb_28_7_070303_bib26
  publication-title: IEEE Trans Inf. Theory
  doi: 10.1109/TIT.2014.2371464
– volume: 75
  year: 2007
  ident: cpb_28_7_070303_bib36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.75.032323
– volume: 90
  year: 2014
  ident: cpb_28_7_070303_bib28
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.90.052327
– volume: 97
  year: 2018
  ident: cpb_28_7_070303_bib31
  publication-title: Phys. Rev.
– volume: 70
  start-page: 548
  year: 1993
  ident: cpb_28_7_070303_bib32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.548
– volume: 7
  start-page: 1066
  year: 2017
  ident: cpb_28_7_070303_bib13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01094-8
– volume: 15
  start-page: 1793
  year: 2016
  ident: cpb_28_7_070303_bib25
  publication-title: Quantum Inform. Process
  doi: 10.1007/s11128-015-1237-0
– volume: 103
  year: 2009
  ident: cpb_28_7_070303_bib6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.020402
– volume: 7
  start-page: 757
  year: 2011
  ident: cpb_28_7_070303_bib9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2048
– volume: 79
  start-page: 152
  year: 1957
  ident: cpb_28_7_070303_bib2
  publication-title: Amer J. Math.
  doi: 10.2307/2372390
– volume: 86
  year: 2012
  ident: cpb_28_7_070303_bib20
  publication-title: Phys. Rev.
– volume: 58
  start-page: 403
  year: 2019
  ident: cpb_28_7_070303_bib45
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-018-3942-9
– volume: 95
  year: 2017
  ident: cpb_28_7_070303_bib11
  publication-title: Phys. Rev.
– volume: 6
  start-page: 19359
  year: 2016
  ident: cpb_28_7_070303_bib24
  publication-title: Sci. Rep.
  doi: 10.1038/srep19359
– volume: 14
  start-page: 31601
  year: 2019
  ident: cpb_28_7_070303_bib19
  publication-title: Front. Phys.
  doi: 10.1007/s11467-018-0880-1
– volume: 48
  start-page: 1031
  year: 2012
  ident: cpb_28_7_070303_bib40
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.03.001
– volume: 85
  year: 2012
  ident: cpb_28_7_070303_bib41
  publication-title: Phys. Rev.
– volume: 94
  year: 2016
  ident: cpb_28_7_070303_bib37
  publication-title: Phys. Rev.
– volume: 95
  year: 2017
  ident: cpb_28_7_070303_bib12
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.95.032109
– volume: 50
  start-page: 631
  year: 1983
  ident: cpb_28_7_070303_bib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.631
– volume: 60
  start-page: 1103
  year: 1988
  ident: cpb_28_7_070303_bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.1103
– volume: 101
  year: 2012
  ident: cpb_28_7_070303_bib8
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 2733
  year: 1998
  ident: cpb_28_7_070303_bib34
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.58.2733
– volume: 15
  start-page: 2771
  year: 2016
  ident: cpb_28_7_070303_bib16
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-016-1299-7
SSID ssj0061023
Score 2.2001824
Snippet For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 70303
Title Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGXkPRBty906G3xPix5pRxLSdkE0qaQwN6MHmNI29hL4z2kv74zluQ4JSxNLsY7oFnwJ-YlzTeMfZQWxMyoIgMhXYa_qsy4uckqp0HYhVXeUb3j5OtieS6PV8UqzWqP3SWtnbg_d_aVPARVlCGu1CV7D2R7pSjAd8QXn4gwPv8L46M0YaQL-ZrLxl_XkJFj8uMK3ZI17md_GT2cCoypmtusL9wYHVq4DtB2rX80RotaLNEHXUZ-52HgSnO24QpiJeTqZljzchOaO35skmS16Yqk3yOndywpdF1MqaQQrOBCSbTPgfE7mclcD7aDGtg8shniTmuMFowKA0kbNZ-QgA6JZ_2q2xzY__im_sZgd1audUnKSlJW5rpUZVDzmD3JlepO6Y--nSZHvCBWCsq30_-nBi7M-XvZNNdTNQ1qBqHJIMY422O7MTngnwLS--wR1M_Z09PwyV-wssebNxW_jTdPePOIN29qjnjzhDcf4M0vak5484g3D3i_ZOdfDs8-L7M4ICNzeSHaTDppC-cVcSJiqFgAxo_ea0qYwDrQc3CiMB6DQOMoEDagK2esKESuHMwOxCu2Uzc1vKYbbpUl-jfQB0Zi1myAuOCUnnmpvZqbEZPp25QussfTEJNf5VZkRmzSL1sH-pTtC97cd8Fb9uxmC79jO-3vDbzHOLG1H7rd8BckWGHu
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+homodyne-based+feedback+control+on+the+entropic+uncertainty+in+open+quantum+system&rft.jtitle=Chinese+physics+B&rft.au=Hu%2C+Juju&rft.au=Xue%2C+Qin&rft.date=2019-07-01&rft.issn=1674-1056&rft.volume=28&rft.issue=7&rft.spage=70303&rft_id=info:doi/10.1088%2F1674-1056%2F28%2F7%2F070303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_28_7_070303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon