Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations...
Saved in:
Published in | Chinese physics B Vol. 28; no. 7; p. 70303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.07.2019
|
Online Access | Get full text |
ISSN | 1674-1056 |
DOI | 10.1088/1674-1056/28/7/070303 |
Cover
Loading…
Abstract | For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system. For the homodyne feedback control
F
=
λ
σ
x
(or
F
=
λ
σ
y
)
, due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients
λ
, the exchange of feedback coefficients will cause variations of the entropic uncertainty. When the feedback coefficient corresponding to the memory qubit B is larger (
λ
B
>
λ
A
)
, the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system. However, for the feedback control
F
=
λ
σ
z
, the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty. |
---|---|
AbstractList | For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system. For the homodyne feedback control
F
=
λ
σ
x
(or
F
=
λ
σ
y
)
, due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients
λ
, the exchange of feedback coefficients will cause variations of the entropic uncertainty. When the feedback coefficient corresponding to the memory qubit B is larger (
λ
B
>
λ
A
)
, the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system. However, for the feedback control
F
=
λ
σ
z
, the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty. |
Author | Hu, Juju Xue, Qin |
Author_xml | – sequence: 1 givenname: Juju surname: Hu fullname: Hu, Juju – sequence: 2 givenname: Qin surname: Xue fullname: Xue, Qin |
BookMark | eNqFkMtOwzAQRb0oEi3wCUj-gRA_6tgVK1TxqFSJDawtZzxRA4ldYmeRv6dREQs2rEYz0hnde1ZkEWJAQm45u-PMmJJXel1wpqpSmFKXTDPJ5IIsf--XZJXSB2MVZ0Iuid2FphsxANLY0EPso58CFrVL6GmD6GsHnxRiyEPsaAw0H5DivB1boOOJG7JrQ55oG2g8YqBfowt57GmaUsb-mlw0rkt48zOvyPvT49v2pdi_Pu-2D_sChJK5WMO6VuBPaYVhmitkVeW90VpssAY0HEEq57URDozcCIemAVdLJYUGZBt5RdT5LwwxpQEbexza3g2T5czOZuxswM4GrDBW27OZE3f_h4M2u9zOhV3b_UN_A9P9bxY |
CitedBy_id | crossref_primary_10_1103_PhysRevA_110_012429 crossref_primary_10_1016_j_ijleo_2021_167957 crossref_primary_10_1088_1674_1056_ab7da3 crossref_primary_10_1103_PhysRevA_111_032418 crossref_primary_10_1142_S0217979222500138 crossref_primary_10_1088_1612_202X_ac0bc2 |
Cites_doi | 10.1103/PhysRevLett.92.047905 10.1016/j.physleta.2018.12.025 10.1103/PhysRevLett.99.160502 10.1103/PhysRevA.86.042105 10.1364/JOSAB.32.001873 10.1038/nphys1734 10.1103/PhysRevLett.98.203006 10.1007/s11128-018-1857-2 10.1038/nphys2047 10.1209/0295-5075/111/50006 10.1103/PhysRevA.49.2133 10.1364/JOSAB.30.000475 10.1007/BF01397280 10.1016/0375-9601(84)90118-X 10.1007/s11128-018-1973-z 10.1109/TIT.2014.2371464 10.1103/PhysRevA.75.032323 10.1103/PhysRevA.90.052327 10.1103/PhysRevLett.70.548 10.1038/s41598-017-01094-8 10.1007/s11128-015-1237-0 10.1103/PhysRevLett.103.020402 10.1038/nphys2048 10.2307/2372390 10.1007/s10773-018-3942-9 10.1038/srep19359 10.1007/s11467-018-0880-1 10.1016/j.automatica.2012.03.001 10.1103/PhysRevA.95.032109 10.1103/PhysRevLett.50.631 10.1103/PhysRevLett.60.1103 10.1103/PhysRevA.58.2733 10.1007/s11128-016-1299-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/28/7/070303 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1088_1674_1056_28_7_070303 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFUIB AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 IJHAN IOP IZVLO KOT M45 N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 |
ID | FETCH-LOGICAL-c253t-4c4b5cd703280715e066dd87729ebce81ec35ad782ac8392ae8fcab35327ce093 |
ISSN | 1674-1056 |
IngestDate | Tue Jul 01 02:55:30 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c253t-4c4b5cd703280715e066dd87729ebce81ec35ad782ac8392ae8fcab35327ce093 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_28_7_070303 crossref_citationtrail_10_1088_1674_1056_28_7_070303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationYear | 2019 |
References | Riccardi (cpb_28_7_070303_bib12) 2017; 95 Ji (cpb_28_7_070303_bib45) 2019; 58 Renes (cpb_28_7_070303_bib6) 2009; 103 Hirschman (cpb_28_7_070303_bib2) 1957; 79 Berta (cpb_28_7_070303_bib7) 2010; 6 Wiseman (cpb_28_7_070303_bib33) 1994; 49 Thanh Long (cpb_28_7_070303_bib41) 2012; 85 Bialynicki-Birula (cpb_28_7_070303_bib4) 1984; 103 Zheng (cpb_28_7_070303_bib39) 2015; 91 Wang (cpb_28_7_070303_bib13) 2017; 7 Ganesan (cpb_28_7_070303_bib36) 2007; 75 Hu (cpb_28_7_070303_bib20) 2012; 86 Zhang (cpb_28_7_070303_bib17) 2015; 24 Pati (cpb_28_7_070303_bib21) 2012; 86 Li (cpb_28_7_070303_bib22) 2018; 17 Ji (cpb_28_7_070303_bib44) 2018; 27 Ming (cpb_28_7_070303_bib14) 2018; 17 Wiseman (cpb_28_7_070303_bib32) 1993; 70 Heisenberg (cpb_28_7_070303_bib1) 1927; 43 Yu (cpb_28_7_070303_bib23) 2017; 95 Grosshans (cpb_28_7_070303_bib27) 2004; 92 Li (cpb_28_7_070303_bib42) 2011; 84 Bai (cpb_28_7_070303_bib16) 2016; 15 Yang (cpb_28_7_070303_bib19) 2019; 14 Yang (cpb_28_7_070303_bib31) 2018; 97 Li (cpb_28_7_070303_bib10) 2011; 7 Bellomo (cpb_28_7_070303_bib43) 2007; 99 Sun (cpb_28_7_070303_bib29) 2015; 32 Li (cpb_28_7_070303_bib38) 2008; 77 Vallone (cpb_28_7_070303_bib28) 2014; 90 Viola (cpb_28_7_070303_bib34) 1998; 58 Deutsch (cpb_28_7_070303_bib3) 1983; 50 Dupuis (cpb_28_7_070303_bib26) 2015; 61 Mondal (cpb_28_7_070303_bib11) 2017; 95 Shao (cpb_28_7_070303_bib37) 2016; 94 Shuzhi Sam (cpb_28_7_070303_bib40) 2012; 48 Maassen (cpb_28_7_070303_bib5) 1988; 60 Prevedel (cpb_28_7_070303_bib9) 2011; 7 Chen (cpb_28_7_070303_bib18) 2019; 383 Karpat (cpb_28_7_070303_bib15) 2015; 111 Liu (cpb_28_7_070303_bib24) 2016; 6 Liu (cpb_28_7_070303_bib25) 2016; 15 Chen (cpb_28_7_070303_bib30) 2013; 30 Katz (cpb_28_7_070303_bib35) 2007; 98 Xu (cpb_28_7_070303_bib8) 2012; 101 |
References_xml | – volume: 91 year: 2015 ident: cpb_28_7_070303_bib39 publication-title: Phys. Rev. – volume: 27 year: 2018 ident: cpb_28_7_070303_bib44 publication-title: Chin. Phys. – volume: 24 year: 2015 ident: cpb_28_7_070303_bib17 publication-title: Chin. Phys. – volume: 92 year: 2004 ident: cpb_28_7_070303_bib27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.047905 – volume: 77 year: 2008 ident: cpb_28_7_070303_bib38 publication-title: Phys. Rev. – volume: 383 start-page: 977 year: 2019 ident: cpb_28_7_070303_bib18 publication-title: Phys. Lett. doi: 10.1016/j.physleta.2018.12.025 – volume: 99 year: 2007 ident: cpb_28_7_070303_bib43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.160502 – volume: 84 year: 2011 ident: cpb_28_7_070303_bib42 publication-title: Phys. Rev. – volume: 86 year: 2012 ident: cpb_28_7_070303_bib21 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.86.042105 – volume: 32 start-page: 1873 year: 2015 ident: cpb_28_7_070303_bib29 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAB.32.001873 – volume: 6 start-page: 659 year: 2010 ident: cpb_28_7_070303_bib7 publication-title: Nat. Phys. doi: 10.1038/nphys1734 – volume: 98 year: 2007 ident: cpb_28_7_070303_bib35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.203006 – volume: 17 start-page: 89 year: 2018 ident: cpb_28_7_070303_bib14 publication-title: Quantum Inf. Process doi: 10.1007/s11128-018-1857-2 – volume: 7 start-page: 752 year: 2011 ident: cpb_28_7_070303_bib10 publication-title: Nat. Phys. doi: 10.1038/nphys2047 – volume: 111 start-page: 50006 year: 2015 ident: cpb_28_7_070303_bib15 publication-title: Eur. Phys. Lett. doi: 10.1209/0295-5075/111/50006 – volume: 49 start-page: 2133 year: 1994 ident: cpb_28_7_070303_bib33 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.49.2133 – volume: 30 start-page: 475 year: 2013 ident: cpb_28_7_070303_bib30 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAB.30.000475 – volume: 95 year: 2017 ident: cpb_28_7_070303_bib23 publication-title: Phys Rev – volume: 43 start-page: 172 year: 1927 ident: cpb_28_7_070303_bib1 publication-title: Z. Phys. doi: 10.1007/BF01397280 – volume: 103 start-page: 253 year: 1984 ident: cpb_28_7_070303_bib4 publication-title: Phys. Lett. doi: 10.1016/0375-9601(84)90118-X – volume: 17 start-page: 206 year: 2018 ident: cpb_28_7_070303_bib22 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-018-1973-z – volume: 61 start-page: 1093 year: 2015 ident: cpb_28_7_070303_bib26 publication-title: IEEE Trans Inf. Theory doi: 10.1109/TIT.2014.2371464 – volume: 75 year: 2007 ident: cpb_28_7_070303_bib36 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.75.032323 – volume: 90 year: 2014 ident: cpb_28_7_070303_bib28 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.90.052327 – volume: 97 year: 2018 ident: cpb_28_7_070303_bib31 publication-title: Phys. Rev. – volume: 70 start-page: 548 year: 1993 ident: cpb_28_7_070303_bib32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.548 – volume: 7 start-page: 1066 year: 2017 ident: cpb_28_7_070303_bib13 publication-title: Sci. Rep. doi: 10.1038/s41598-017-01094-8 – volume: 15 start-page: 1793 year: 2016 ident: cpb_28_7_070303_bib25 publication-title: Quantum Inform. Process doi: 10.1007/s11128-015-1237-0 – volume: 103 year: 2009 ident: cpb_28_7_070303_bib6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.020402 – volume: 7 start-page: 757 year: 2011 ident: cpb_28_7_070303_bib9 publication-title: Nat. Phys. doi: 10.1038/nphys2048 – volume: 79 start-page: 152 year: 1957 ident: cpb_28_7_070303_bib2 publication-title: Amer J. Math. doi: 10.2307/2372390 – volume: 86 year: 2012 ident: cpb_28_7_070303_bib20 publication-title: Phys. Rev. – volume: 58 start-page: 403 year: 2019 ident: cpb_28_7_070303_bib45 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-018-3942-9 – volume: 95 year: 2017 ident: cpb_28_7_070303_bib11 publication-title: Phys. Rev. – volume: 6 start-page: 19359 year: 2016 ident: cpb_28_7_070303_bib24 publication-title: Sci. Rep. doi: 10.1038/srep19359 – volume: 14 start-page: 31601 year: 2019 ident: cpb_28_7_070303_bib19 publication-title: Front. Phys. doi: 10.1007/s11467-018-0880-1 – volume: 48 start-page: 1031 year: 2012 ident: cpb_28_7_070303_bib40 publication-title: Automatica doi: 10.1016/j.automatica.2012.03.001 – volume: 85 year: 2012 ident: cpb_28_7_070303_bib41 publication-title: Phys. Rev. – volume: 94 year: 2016 ident: cpb_28_7_070303_bib37 publication-title: Phys. Rev. – volume: 95 year: 2017 ident: cpb_28_7_070303_bib12 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.95.032109 – volume: 50 start-page: 631 year: 1983 ident: cpb_28_7_070303_bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.631 – volume: 60 start-page: 1103 year: 1988 ident: cpb_28_7_070303_bib5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.1103 – volume: 101 year: 2012 ident: cpb_28_7_070303_bib8 publication-title: Appl. Phys. Lett. – volume: 58 start-page: 2733 year: 1998 ident: cpb_28_7_070303_bib34 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.58.2733 – volume: 15 start-page: 2771 year: 2016 ident: cpb_28_7_070303_bib16 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-016-1299-7 |
SSID | ssj0061023 |
Score | 2.2001824 |
Snippet | For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 70303 |
Title | Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGXkPRBty906G3xPix5pRxLSdkE0qaQwN6MHmNI29hL4z2kv74zluQ4JSxNLsY7oFnwJ-YlzTeMfZQWxMyoIgMhXYa_qsy4uckqp0HYhVXeUb3j5OtieS6PV8UqzWqP3SWtnbg_d_aVPARVlCGu1CV7D2R7pSjAd8QXn4gwPv8L46M0YaQL-ZrLxl_XkJFj8uMK3ZI17md_GT2cCoypmtusL9wYHVq4DtB2rX80RotaLNEHXUZ-52HgSnO24QpiJeTqZljzchOaO35skmS16Yqk3yOndywpdF1MqaQQrOBCSbTPgfE7mclcD7aDGtg8shniTmuMFowKA0kbNZ-QgA6JZ_2q2xzY__im_sZgd1audUnKSlJW5rpUZVDzmD3JlepO6Y--nSZHvCBWCsq30_-nBi7M-XvZNNdTNQ1qBqHJIMY422O7MTngnwLS--wR1M_Z09PwyV-wssebNxW_jTdPePOIN29qjnjzhDcf4M0vak5484g3D3i_ZOdfDs8-L7M4ICNzeSHaTDppC-cVcSJiqFgAxo_ea0qYwDrQc3CiMB6DQOMoEDagK2esKESuHMwOxCu2Uzc1vKYbbpUl-jfQB0Zi1myAuOCUnnmpvZqbEZPp25QussfTEJNf5VZkRmzSL1sH-pTtC97cd8Fb9uxmC79jO-3vDbzHOLG1H7rd8BckWGHu |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+homodyne-based+feedback+control+on+the+entropic+uncertainty+in+open+quantum+system&rft.jtitle=Chinese+physics+B&rft.au=Hu%2C+Juju&rft.au=Xue%2C+Qin&rft.date=2019-07-01&rft.issn=1674-1056&rft.volume=28&rft.issue=7&rft.spage=70303&rft_id=info:doi/10.1088%2F1674-1056%2F28%2F7%2F070303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_28_7_070303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |