Low dissipative configuration in flow networks subject to constraints

•Optimal design of dendritic flow networks.•Size and flow regime constraints.•General model for homothety ratios of diameters and lengths.•Scaling laws for diameters-lengths, sizes-diameters, and resistances-lengths.•General model for prefractal dimension. The homothetic relationships for the design...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 467; p. 134269
Main Author Miguel, Antonio F.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Optimal design of dendritic flow networks.•Size and flow regime constraints.•General model for homothety ratios of diameters and lengths.•Scaling laws for diameters-lengths, sizes-diameters, and resistances-lengths.•General model for prefractal dimension. The homothetic relationships for the design of dendritic networks are examined in terms of minimal size under constant flow resistance, and minimum flow resistance under constant size. Based on a comprehensive methodology, we offer a general approach for the homothety ratios of diameters and lengths that apply to different flow regimes and size constraints. In addition, scaling laws for diameters-lengths, sizes-diameters, and resistances-lengths are provided. Since the dendritic trees designed based on size homothety ratios have prefractal characteristics, a methodology for determining prefractal dimensions in terms of fluid flow and size constraint characteristics is also offered. Among the findings, we show that the homothety ratios are the same regardless of whether the functions we selected are used as the constraint or the cost function. The approaches presented and literature data were compared, and a significant degree of agreement was found. The findings presented here not only serve as a tool for the design of microfluidic chip devices but also deepen our understanding of natural networks such as the ones that support the life of mammals.
AbstractList •Optimal design of dendritic flow networks.•Size and flow regime constraints.•General model for homothety ratios of diameters and lengths.•Scaling laws for diameters-lengths, sizes-diameters, and resistances-lengths.•General model for prefractal dimension. The homothetic relationships for the design of dendritic networks are examined in terms of minimal size under constant flow resistance, and minimum flow resistance under constant size. Based on a comprehensive methodology, we offer a general approach for the homothety ratios of diameters and lengths that apply to different flow regimes and size constraints. In addition, scaling laws for diameters-lengths, sizes-diameters, and resistances-lengths are provided. Since the dendritic trees designed based on size homothety ratios have prefractal characteristics, a methodology for determining prefractal dimensions in terms of fluid flow and size constraint characteristics is also offered. Among the findings, we show that the homothety ratios are the same regardless of whether the functions we selected are used as the constraint or the cost function. The approaches presented and literature data were compared, and a significant degree of agreement was found. The findings presented here not only serve as a tool for the design of microfluidic chip devices but also deepen our understanding of natural networks such as the ones that support the life of mammals.
ArticleNumber 134269
Author Miguel, Antonio F.
Author_xml – sequence: 1
  givenname: Antonio F.
  surname: Miguel
  fullname: Miguel, Antonio F.
  email: afm@uevora.pt
  organization: Complex Flow Systems Lab, Institute of Earth Sciences, the branch of Evora, Portugal
BookMark eNp9j8tOwzAQRb0oEi3wBWzyAwl-JHG8YIGq8pAqsYG1ZTtjcCh2Zbut-ve4lDWr0WjuGd2zQDMfPCB0S3BDMOnvpmb7eUxjQzFtG8Ja2osZmpcLrykfxCVapDRhjAlnfI5W63CoRpeS26rs9lCZ4K372MWyBV85X9lNSXjIhxC_UpV2egKTqxxOyZSjcj6na3Rh1SbBzd-8Qu-Pq7flc71-fXpZPqxrQzuWa6YH0atBEdFyxoRuLWOc9XYcOqx6RrWGgekOWKmtqBBGW2V7aIm2HQeB2RVi578mhpQiWLmN7lvFoyRYnuzlJH_t5clenu0LdX-moFTbO4gyGQfewOhicZFjcP_yPwCEaWE
Cites_doi 10.3389/fnins.2020.00016
10.1115/1.4063260
10.1007/BF01457179
10.1016/j.arr.2022.101651
10.1007/BF01681580
10.1016/S1290-0729(00)01176-5
10.1115/1.4033966
10.1038/s41598-021-85434-9
10.1016/j.icheatmasstransfer.2021.105122
10.1063/1.449774
10.1016/j.icheatmasstransfer.2011.12.003
10.1073/pnas.12.3.207
10.1103/PhysRevLett.51.1127
10.1016/j.ijheatmasstransfer.2018.01.095
10.29252/jafm.12.04.29610
10.1063/5.0085040
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physd.2024.134269
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_physd_2024_134269
S0167278924002203
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
AATTM
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c253t-3b896a8a1947339b4f33736fd850a632bbe83b5e3134a299cbfaf6e41bf57e903
IEDL.DBID .~1
ISSN 0167-2789
IngestDate Tue Jul 01 02:39:59 EDT 2025
Sat Feb 08 15:52:07 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Intraspecific scaling
Fractal networks
Prefractal dimension
Dendritic flow network
Homothety ratios
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-3b896a8a1947339b4f33736fd850a632bbe83b5e3134a299cbfaf6e41bf57e903
ParticipantIDs crossref_primary_10_1016_j_physd_2024_134269
elsevier_sciencedirect_doi_10_1016_j_physd_2024_134269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Physica. D
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nulton, Salamon, Andresen, Qi (bib0016) 1985; 83
Miguel, Rocha (bib0002) 2018
Mandelbrot (bib0009) 1982
Xu, Sasmito, Yu, Mujmdar (bib0001) 2016; 68
Murray (bib0019) 1926; 12
Nava-Arriaga, Hernandez-Guerrero, Luviano-Ortiz, Bejan (bib0007) 2021; 125
Azoumah, Bieupoude, Neveu (bib0005) 2012; 39
Salamon, Berry (bib0015) 1983; 51
Essey, Maina (bib0020) 2006; 10
Hausdorff (bib0017) 1919; 79
Talou, Safaei, Hunter, Blanco (bib0008) 2021; 11
Falconer (bib0010) 2004
Miguel (bib0014) 2019; 12
Lemmens, Devulder, van Keer, Bierkens, de Boever, Stalmans (bib0012) 2020; 14
Soni, Nayak, Wereley (bib0003) 2022; 34
Bejan, Rocha, Lorente (bib0013) 2000; 39
Soni, Mal, Nayak (bib0004) 2024; 146
Miguel (bib0006) 2018; 122
Ziukelis, Mak, Dounavi, Su, O'Brien (bib0011) 2022; 79
Hess (bib0018) 1917; 168
Essey (10.1016/j.physd.2024.134269_bib0020) 2006; 10
Miguel (10.1016/j.physd.2024.134269_bib0002) 2018
Lemmens (10.1016/j.physd.2024.134269_bib0012) 2020; 14
Azoumah (10.1016/j.physd.2024.134269_bib0005) 2012; 39
Miguel (10.1016/j.physd.2024.134269_bib0006) 2018; 122
Hess (10.1016/j.physd.2024.134269_bib0018) 1917; 168
Xu (10.1016/j.physd.2024.134269_bib0001) 2016; 68
Salamon (10.1016/j.physd.2024.134269_bib0015) 1983; 51
Bejan (10.1016/j.physd.2024.134269_bib0013) 2000; 39
Murray (10.1016/j.physd.2024.134269_bib0019) 1926; 12
Talou (10.1016/j.physd.2024.134269_bib0008) 2021; 11
Hausdorff (10.1016/j.physd.2024.134269_bib0017) 1919; 79
Nava-Arriaga (10.1016/j.physd.2024.134269_bib0007) 2021; 125
Mandelbrot (10.1016/j.physd.2024.134269_bib0009) 1982
Ziukelis (10.1016/j.physd.2024.134269_bib0011) 2022; 79
Miguel (10.1016/j.physd.2024.134269_bib0014) 2019; 12
Nulton (10.1016/j.physd.2024.134269_bib0016) 1985; 83
Soni (10.1016/j.physd.2024.134269_bib0004) 2024; 146
Falconer (10.1016/j.physd.2024.134269_bib0010) 2004
Soni (10.1016/j.physd.2024.134269_bib0003) 2022; 34
References_xml – volume: 51
  start-page: 1127
  year: 1983
  ident: bib0015
  article-title: Thermodynamic length and dissipated availability
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 207
  year: 1926
  end-page: 214
  ident: bib0019
  article-title: The physiological principle of minimum work, I. The vascular system and the cost of blood volume
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 122
  start-page: 204
  year: 2018
  end-page: 211
  ident: bib0006
  article-title: Constructal branching design for fluid flow and heat transfer
  publication-title: Int. J. Heat Mass Transf.
– volume: 39
  start-page: 949
  year: 2000
  end-page: 960
  ident: bib0013
  article-title: Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams
  publication-title: Int. J. Therm. Sci.
– year: 1982
  ident: bib0009
  article-title: The fractal geometry of nature
– volume: 12
  start-page: 1223
  year: 2019
  end-page: 1229
  ident: bib0014
  article-title: Towards methodologies for optimal fluid networks design
  publication-title: J. Appl. Fluid Mech.
– volume: 146
  year: 2024
  ident: bib0004
  article-title: Effect of bronchial blood flow on respiratory heat exchange: a mathematical analysis for infectious diseases
  publication-title: J. Fluids Eng.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 22
  ident: bib0008
  article-title: Adaptive constrained constructive optimisation for complex vascularisation processes
  publication-title: Sci. Rep.
– year: 2004
  ident: bib0010
  article-title: Fractal geometry: mathematical foundations and applications
– volume: 68
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib0001
  article-title: Transport phenomena and properties in treelike networks
  publication-title: Appl. Mech. Rev.
– start-page: 9
  year: 2018
  end-page: 34
  ident: bib0002
  article-title: Tree-shaped flow networks fundamentals
  publication-title: in:
– volume: 125
  year: 2021
  ident: bib0007
  article-title: Heat sinks with minichannels and flow distributors based on constructal law
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 79
  year: 2022
  ident: bib0011
  article-title: Fractal dimension of the brain in neurodegenerative disease and dementia: a systematic review
  publication-title: Ageing Res. Rev.
– volume: 79
  start-page: 157
  year: 1919
  end-page: 179
  ident: bib0017
  article-title: Dimension und äußeres
  publication-title: Maß Mathematische Annalen
– volume: 14
  start-page: 16
  year: 2020
  ident: bib0012
  article-title: Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker
  publication-title: Front. Neurosci.
– volume: 168
  start-page: 439
  year: 1917
  end-page: 490
  ident: bib0018
  article-title: Über die periphere Regulierung der Blutzirkulation, Pflüger's Archiv für die
  publication-title: Gesamte Physiologie des Menschen und der Tiere
– volume: 10
  year: 2006
  ident: bib0020
  article-title: Fractal analysis of concurrently prepared latex rubber casts of the bronchial and vascular systems of the human lung
  publication-title: Open. Biol.
– volume: 83
  start-page: 334
  year: 1985
  end-page: 338
  ident: bib0016
  article-title: Quasistatic processes as step equilibrations
  publication-title: J. Chem. Phys.
– volume: 34
  year: 2022
  ident: bib0003
  article-title: A novel approach to quantify ventilation heterogeneity in occluded bronchial tree based on lung admittance
  publication-title: Phys. Fluids
– volume: 39
  start-page: 182
  year: 2012
  end-page: 189
  ident: bib0005
  article-title: Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison
  publication-title: Int. Commun. Heat Mass Transf.
– year: 2004
  ident: 10.1016/j.physd.2024.134269_bib0010
– volume: 14
  start-page: 16
  year: 2020
  ident: 10.1016/j.physd.2024.134269_bib0012
  article-title: Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00016
– volume: 146
  year: 2024
  ident: 10.1016/j.physd.2024.134269_bib0004
  article-title: Effect of bronchial blood flow on respiratory heat exchange: a mathematical analysis for infectious diseases
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4063260
– year: 1982
  ident: 10.1016/j.physd.2024.134269_bib0009
– volume: 79
  start-page: 157
  year: 1919
  ident: 10.1016/j.physd.2024.134269_bib0017
  article-title: Dimension und äußeres
  publication-title: Maß Mathematische Annalen
  doi: 10.1007/BF01457179
– volume: 79
  year: 2022
  ident: 10.1016/j.physd.2024.134269_bib0011
  article-title: Fractal dimension of the brain in neurodegenerative disease and dementia: a systematic review
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2022.101651
– volume: 168
  start-page: 439
  year: 1917
  ident: 10.1016/j.physd.2024.134269_bib0018
  article-title: Über die periphere Regulierung der Blutzirkulation, Pflüger's Archiv für die
  publication-title: Gesamte Physiologie des Menschen und der Tiere
  doi: 10.1007/BF01681580
– volume: 10
  year: 2006
  ident: 10.1016/j.physd.2024.134269_bib0020
  article-title: Fractal analysis of concurrently prepared latex rubber casts of the bronchial and vascular systems of the human lung
  publication-title: Open. Biol.
– volume: 39
  start-page: 949
  year: 2000
  ident: 10.1016/j.physd.2024.134269_bib0013
  article-title: Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/S1290-0729(00)01176-5
– volume: 68
  start-page: 1
  year: 2016
  ident: 10.1016/j.physd.2024.134269_bib0001
  article-title: Transport phenomena and properties in treelike networks
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4033966
– start-page: 9
  year: 2018
  ident: 10.1016/j.physd.2024.134269_bib0002
  article-title: Tree-shaped flow networks fundamentals
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.physd.2024.134269_bib0008
  article-title: Adaptive constrained constructive optimisation for complex vascularisation processes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85434-9
– volume: 125
  year: 2021
  ident: 10.1016/j.physd.2024.134269_bib0007
  article-title: Heat sinks with minichannels and flow distributors based on constructal law
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105122
– volume: 83
  start-page: 334
  year: 1985
  ident: 10.1016/j.physd.2024.134269_bib0016
  article-title: Quasistatic processes as step equilibrations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449774
– volume: 39
  start-page: 182
  year: 2012
  ident: 10.1016/j.physd.2024.134269_bib0005
  article-title: Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2011.12.003
– volume: 12
  start-page: 207
  year: 1926
  ident: 10.1016/j.physd.2024.134269_bib0019
  article-title: The physiological principle of minimum work, I. The vascular system and the cost of blood volume
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.12.3.207
– volume: 51
  start-page: 1127
  year: 1983
  ident: 10.1016/j.physd.2024.134269_bib0015
  article-title: Thermodynamic length and dissipated availability
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1127
– volume: 122
  start-page: 204
  year: 2018
  ident: 10.1016/j.physd.2024.134269_bib0006
  article-title: Constructal branching design for fluid flow and heat transfer
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.095
– volume: 12
  start-page: 1223
  year: 2019
  ident: 10.1016/j.physd.2024.134269_bib0014
  article-title: Towards methodologies for optimal fluid networks design
  publication-title: J. Appl. Fluid Mech.
  doi: 10.29252/jafm.12.04.29610
– volume: 34
  year: 2022
  ident: 10.1016/j.physd.2024.134269_bib0003
  article-title: A novel approach to quantify ventilation heterogeneity in occluded bronchial tree based on lung admittance
  publication-title: Phys. Fluids
  doi: 10.1063/5.0085040
SSID ssj0001737
Score 2.4417164
Snippet •Optimal design of dendritic flow networks.•Size and flow regime constraints.•General model for homothety ratios of diameters and lengths.•Scaling laws for...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 134269
SubjectTerms Dendritic flow network
Fractal networks
Homothety ratios
Intraspecific scaling
Prefractal dimension
Title Low dissipative configuration in flow networks subject to constraints
URI https://dx.doi.org/10.1016/j.physd.2024.134269
Volume 467
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEfQgOhXnj5GDR7u1SZq0xzE25q9ddLBbSdZEKtIN2-nNv928tMUJ4sHeWt6D9kt4L3353heErpSkOjKB9ogRymMmkp5kNPWUkNRmdN8IDaWBhymfzNjtPJy30LDphQFaZR37q5juonX9pF-j2V9lWf8RCPTQxwksSEKc4idjAmZ57_Ob5hGISjcT9L3BulEechwvqB6AXChhvYBCU-fv2Wkj44wP0H69VMSD6m0OUUvnbbS3ISDYRjuOwLkojtDofvmBYXPdUaTfNbb_uSZ7XlcDjLMcm1drkVes7wIXawUVGFwuwbJwJ0WUxTGajUdPw4lXH5HgLUhIS4-qKOYykkHMBKWxYoZSQblJo9CXnBKldERVqKn9PGkzz0IZabhmgTKh0LFPT9BWvsz1KcJEyTQItM9TBldsvTgRsZSEGROHuoOuG2iSVaWEkTQUsZfEIZkAkkmFZAfxBr7kx4AmNlb_5Xj2X8dztAt3VaPgBdoq39b60q4YStV1U6KLtgc3d5PpF-YGwRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEJ00bYx6MFo11k8OHsXC7rLAsWnaUPtxsU16I7tl12AMbYTq35fhw9TEeJAj7CTwlrxZhjdvAe6loMrTtjKJdqXJtCdMwWhkSlfQPKNb2lVYGpjOeLBgT0tn2YB-3QuDssqK-0tOL9i6OtOt0Oxu4rj7jAJ67ONEFSQh6PjZQncqpwmt3mgczL4J2XZL60y0-MaA2nyokHlhAQEdQwl7tCn2df6eoHaSzvAYjqrVotErb-gEGippw-GOh2Ab9goN5yo9hcFk_Wng__VCJf2hjPxTV8cv23KOjTgx9Fs-IimF36mRbiUWYYxsjSPTYrOILD2DxXAw7wdmtUuCuSIOzUwqPZ8LT9g-cyn1JdOUupTryHMswSmRUnlUOormjyfy5LOSWmiumC214yrfoufQTNaJugCDSBHZtrJ4xPDw8yhOXF8IwrT2HdWBhxqacFOaYYS1Suw1LJAMEcmwRLIDvIYv_DGnYU7XfwVe_jfwDvaD-XQSTkaz8RUc4JWyb_Aamtn7Vt3kC4hM3lYvyBebScPB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+dissipative+configuration+in+flow+networks+subject+to+constraints&rft.jtitle=Physica.+D&rft.au=Miguel%2C+Antonio+F.&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.volume=467&rft_id=info:doi/10.1016%2Fj.physd.2024.134269&rft.externalDocID=S0167278924002203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon