A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates
This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on t...
Saved in:
Published in | Computational statistics & data analysis Vol. 209; p. 108177 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 |
DOI | 10.1016/j.csda.2025.108177 |
Cover
Loading…
Abstract | This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study. |
---|---|
AbstractList | This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study. |
ArticleNumber | 108177 |
Author | Lou, Yichen Ma, Yuqing Xiang, Liming Sun, Jianguo |
Author_xml | – sequence: 1 givenname: Yichen surname: Lou fullname: Lou, Yichen organization: Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China – sequence: 2 givenname: Yuqing surname: Ma fullname: Ma, Yuqing organization: Jiangsu Hengrui Pharmaceuticals, Co., Ltd., Shanghai, China – sequence: 3 givenname: Liming orcidid: 0000-0003-0698-5173 surname: Xiang fullname: Xiang, Liming email: lmxiang@ntu.edu.sg organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore – sequence: 4 givenname: Jianguo surname: Sun fullname: Sun, Jianguo organization: Department of Statistics, University of Missouri, MO, USA |
BookMark | eNp9kM1KAzEURrOoYFt9AVd5gamZZCbJgJtS_APBja5DmtzYlJlkSNKqb--UiktXF-73ncvlLNAsxAAI3dRkVZOa3-5XJlu9ooS200LWQszQfApE1TWCXaJFzntCCG2EnKOyxsOhL37sAfthPBRdfAxYj2OK2uywiwm7Hr78dioM0ULf-_CBo8M-FEhH3VcGQo4JLLa6aPzpyw4PPudTTQeL_2ITjzp5XSBfoQun-wzXv3OJ3h_u3zZP1cvr4_Nm_VIZ2rJSUa75loiOcpC2lbxxrWHAtq0Q3EnhwDEGgjPJTdeBNB21holGmNZaDo1kS0TPd02KOSdwakx-0Olb1USdXKm9OrlSJ1fq7GqC7s4QTJ8dPSSVjYdgwPoEpigb_X_4DyZieRc |
Cites_doi | 10.1080/01621459.2016.1205500 10.3233/JAD-161201 10.1198/016214505000000295 10.1016/j.jalz.2013.05.1769 10.1214/11-AOS934 10.1080/1047322X.1990.10389587 10.1093/biomet/63.3.581 10.1002/cjs.11544 10.1093/biomet/85.4.935 10.1007/s10985-022-09550-y 10.1111/j.0006-341X.1999.00591.x 10.1093/biostatistics/kxu023 10.1002/sim.7816 10.1016/j.csda.2014.08.014 10.1177/0962280210395740 10.1177/0962280219884720 10.1080/24709360.2017.1342187 10.1093/biomet/asv055 10.1080/01621459.2016.1158113 10.1111/sjos.12115 10.1093/biomet/asp027 10.1016/j.jmva.2013.01.003 10.1111/biom.13387 10.3150/16-BEJ850 10.1016/j.jalz.2015.04.005 10.1080/01621459.1993.10476408 10.1111/j.1541-0420.2010.01505.x 10.1002/bimj.201800275 10.1177/0962280214521348 10.1002/sim.10035 10.1002/sim.1601 10.1111/biom.13309 10.1097/EDE.0b013e3181ce97d8 10.1093/biomet/asw013 10.1080/02664763.2012.681362 10.1093/biomet/ast029 10.1016/j.csda.2013.07.027 10.1002/sim.6346 10.1002/sim.3368 10.1007/s10651-012-0191-6 10.1198/jasa.2009.tm07172 10.1093/brain/awq277 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.csda.2025.108177 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_csda_2025_108177 S0167947325000532 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SSH SST SSV SSW SSZ T5K UMC VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c253t-26a6b07926e8d5864f5c3e3b5776f87fef33e76386c99e8c92dc3747c5dd6e483 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Tue Jul 01 05:08:30 EDT 2025 Sat May 03 15:56:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interval censoring Semiparametric transformation model Rejection sampling Missing at random Detection limit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-26a6b07926e8d5864f5c3e3b5776f87fef33e76386c99e8c92dc3747c5dd6e483 |
ORCID | 0000-0003-0698-5173 |
ParticipantIDs | crossref_primary_10_1016_j_csda_2025_108177 elsevier_sciencedirect_doi_10_1016_j_csda_2025_108177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Paik, Luo, Tsai (br0420) 2009; 104 Zhang, Zhao (br0470) 2013; 116 Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (br0390) 2013; 9 Luo, Tsai, Xu (br0270) 2009; 96 Li, Wu, Sun (br0220) 2020; 29 Zhou, Hu, Sun (br0490) 2017; 112 Kong, Nan (br0180) 2016; 103 Steingrimsson, Strawderman (br0340) 2017; 112 Doehler, Davidian (br0100) 2008; 27 Yu, Xiang, Wang (br0450) 2021; 77 Zeng, Mao, Lin (br0460) 2016; 103 Little, Rubin (br0230) 2002 Nie, Chu, Liu, Cole, Vexler, Schisterman (br0280) 2010; 21 Seaman, White (br0330) 2013; 22 Jack, Wiste, Vemuri, Weigand, Senjem, Zeng, Bernstein, Gunter, Pankratz, Aisen (br0170) 2010; 133 Zhao, Wu, Yin (br0480) 2017; 23 Sun (br0350) 2006 Arunajadai, Rauh (br0010) 2012; 19 Yi, Tang, Sun (br0440) 2022; 78 Bernhardt, Wang, Zhang (br0060) 2014; 69 Ibrahim, Chen, Lipsitz (br0160) 1999; 55 Wu, Chen, Ware, Koyama (br0410) 2012; 39 Heitjan, Little (br0120) 1991; 40 Li, Zhang, Zhu, Li, Sun (br0200) 2020; 48 Ding, Nan (br0090) 2011; 39 Austin, Hoch (br0030) 2004; 23 Bartlett, Seaman, White, Carpenter, Initiative (br0050) 2015; 24 Sun, Chen (br0360) 2022 Liu, Zeng (br0240) 2013; 100 Hu, Chen, Sun (br0140) 2015; 42 Rubin (br0320) 1987 Li, Chan, Doody, Quinn, Luo, Initiative (br0210) 2017; 58 Xu, Lam, Cowling, Bun Cheung (br0430) 2015; 34 Chen, Sun, Peace (br0070) 2012 Bartlett, Carpenter, Tilling, Vansteelandt (br0040) 2014; 15 Hu, Xiang (br0150) 2016; 93 Lou, Sun, Wang (br0260) 2024 Li, Cao, Sun, Tang (br0190) 2023 Atem, Matsouaka, Zimmern (br0020) 2019; 61 Ding, Kong, Kang, Chen (br0080) 2018; 37 Lou, Ma, Du (br0250) 2024; 43 Weiner, Veitch, Aisen, Beckett, Cairns, Cedarbaum, Donohue, Green, Harvey, Jack (br0380) 2015; 11 Hornung, Reed (br0130) 1990; 5 Qi, Wang, Prentice (br0290) 2005; 100 Wang, Robins (br0370) 1998; 85 Rubin (br0310) 1976; 63 Han, Zhang, Shao, Initiative (br0110) 2017; 1 Rousseeuw, Croux (br0300) 1993; 88 Zhou, Li, Sun, Tang (br0500) 2022; 28 Wen, Lin (br0400) 2011; 67 Zhou (10.1016/j.csda.2025.108177_br0500) 2022; 28 Xu (10.1016/j.csda.2025.108177_br0430) 2015; 34 Liu (10.1016/j.csda.2025.108177_br0240) 2013; 100 Wu (10.1016/j.csda.2025.108177_br0410) 2012; 39 Wen (10.1016/j.csda.2025.108177_br0400) 2011; 67 Nie (10.1016/j.csda.2025.108177_br0280) 2010; 21 Arunajadai (10.1016/j.csda.2025.108177_br0010) 2012; 19 Bartlett (10.1016/j.csda.2025.108177_br0050) 2015; 24 Weiner (10.1016/j.csda.2025.108177_br0380) 2015; 11 Xu (10.1016/j.csda.2025.108177_br0420) 2009; 104 Zhao (10.1016/j.csda.2025.108177_br0480) 2017; 23 Seaman (10.1016/j.csda.2025.108177_br0330) 2013; 22 Steingrimsson (10.1016/j.csda.2025.108177_br0340) 2017; 112 Doehler (10.1016/j.csda.2025.108177_br0100) 2008; 27 Sun (10.1016/j.csda.2025.108177_br0350) 2006 Rubin (10.1016/j.csda.2025.108177_br0320) 1987 Zhou (10.1016/j.csda.2025.108177_br0490) 2017; 112 Li (10.1016/j.csda.2025.108177_br0200) 2020; 48 Sun (10.1016/j.csda.2025.108177_br0360) 2022 Lou (10.1016/j.csda.2025.108177_br0250) 2024; 43 Hu (10.1016/j.csda.2025.108177_br0150) 2016; 93 Kong (10.1016/j.csda.2025.108177_br0180) 2016; 103 Bernhardt (10.1016/j.csda.2025.108177_br0060) 2014; 69 Zeng (10.1016/j.csda.2025.108177_br0460) 2016; 103 Ding (10.1016/j.csda.2025.108177_br0080) 2018; 37 Little (10.1016/j.csda.2025.108177_br0230) 2002 Ibrahim (10.1016/j.csda.2025.108177_br0160) 1999; 55 Hornung (10.1016/j.csda.2025.108177_br0130) 1990; 5 Qi (10.1016/j.csda.2025.108177_br0290) 2005; 100 Rubin (10.1016/j.csda.2025.108177_br0310) 1976; 63 Ding (10.1016/j.csda.2025.108177_br0090) 2011; 39 Heitjan (10.1016/j.csda.2025.108177_br0120) 1991; 40 Li (10.1016/j.csda.2025.108177_br0220) 2020; 29 Bartlett (10.1016/j.csda.2025.108177_br0040) 2014; 15 Atem (10.1016/j.csda.2025.108177_br0020) 2019; 61 Chen (10.1016/j.csda.2025.108177_br0070) 2012 Jack (10.1016/j.csda.2025.108177_br0170) 2010; 133 Yi (10.1016/j.csda.2025.108177_br0440) 2022; 78 Li (10.1016/j.csda.2025.108177_br0190) 2023 Wang (10.1016/j.csda.2025.108177_br0370) 1998; 85 Weiner (10.1016/j.csda.2025.108177_br0390) 2013; 9 Li (10.1016/j.csda.2025.108177_br0210) 2017; 58 Rousseeuw (10.1016/j.csda.2025.108177_br0300) 1993; 88 Han (10.1016/j.csda.2025.108177_br0110) 2017; 1 Zhang (10.1016/j.csda.2025.108177_br0470) 2013; 116 Austin (10.1016/j.csda.2025.108177_br0030) 2004; 23 Lou (10.1016/j.csda.2025.108177_br0260) 2024 Yu (10.1016/j.csda.2025.108177_br0450) 2021; 77 Hu (10.1016/j.csda.2025.108177_br0140) 2015; 42 Luo (10.1016/j.csda.2025.108177_br0270) 2009; 96 |
References_xml | – volume: 63 start-page: 581 year: 1976 end-page: 592 ident: br0310 article-title: Inference and missing data publication-title: Biometrika – volume: 40 start-page: 13 year: 1991 end-page: 29 ident: br0120 article-title: Multiple imputation for the fatal accident reporting system publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat. – volume: 9 start-page: e111 year: 2013 end-page: e194 ident: br0390 article-title: The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception publication-title: Alzheimer's Dement. – volume: 11 start-page: 865 year: 2015 end-page: 884 ident: br0380 article-title: Impact of the Alzheimer's disease neuroimaging initiative, 2004 to 2014 publication-title: Alzheimer's Dement. – volume: 43 start-page: 2062 year: 2024 end-page: 2082 ident: br0250 article-title: A new and unified method for regression analysis of interval-censored failure time data under semiparametric transformation models with missing covariates publication-title: Stat. Med. – volume: 29 start-page: 2151 year: 2020 end-page: 2166 ident: br0220 article-title: Penalized estimation of semiparametric transformation models with interval-censored data and application to Alzheimer's disease publication-title: Stat. Methods Med. Res. – volume: 69 start-page: 81 year: 2014 end-page: 91 ident: br0060 article-title: Flexible modeling of survival data with covariates subject to detection limits via multiple imputation publication-title: Comput. Stat. Data Anal. – volume: 133 start-page: 3336 year: 2010 end-page: 3348 ident: br0170 article-title: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease publication-title: Brain – volume: 78 start-page: 151 year: 2022 end-page: 164 ident: br0440 article-title: Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring publication-title: Biometrics – volume: 21 start-page: S17 year: 2010 ident: br0280 article-title: Linear regression with an independent variable subject to a detection limit publication-title: Epidemiology – volume: 39 start-page: 1733 year: 2012 end-page: 1747 ident: br0410 article-title: A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury publication-title: J. Appl. Stat. – volume: 61 start-page: 1020 year: 2019 end-page: 1032 ident: br0020 article-title: Cox regression model with randomly censored covariates publication-title: Biom. J. – volume: 96 start-page: 617 year: 2009 end-page: 633 ident: br0270 article-title: Pseudo-partial likelihood estimators for the Cox regression model with missing covariates publication-title: Biometrika – volume: 116 start-page: 398 year: 2013 end-page: 409 ident: br0470 article-title: Empirical likelihood for linear transformation models with interval-censored failure time data publication-title: J. Multivar. Anal. – volume: 42 start-page: 438 year: 2015 end-page: 452 ident: br0140 article-title: Regression analysis of length-biased and right-censored failure time data with missing covariates publication-title: Scand. J. Stat. – volume: 67 start-page: 760 year: 2011 end-page: 769 ident: br0400 article-title: Analysis of current status data with missing covariates publication-title: Biometrics – volume: 100 start-page: 1250 year: 2005 end-page: 1263 ident: br0290 article-title: Weighted estimators for proportional hazards regression with missing covariates publication-title: J. Am. Stat. Assoc. – volume: 55 start-page: 591 year: 1999 end-page: 596 ident: br0160 article-title: Monte Carlo em for missing covariates in parametric regression models publication-title: Biometrics – volume: 23 start-page: 411 year: 2004 end-page: 429 ident: br0030 article-title: Estimating linear regression models in the presence of a censored independent variable publication-title: Stat. Med. – volume: 28 start-page: 335 year: 2022 end-page: 355 ident: br0500 article-title: A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates publication-title: Lifetime Data Anal. – year: 2012 ident: br0070 article-title: Interval-Censored Time-to-Event Data: Methods and Applications – year: 2006 ident: br0350 article-title: The Statistical Analysis of Interval-Censored Failure Time Data – volume: 85 start-page: 935 year: 1998 end-page: 948 ident: br0370 article-title: Large-sample theory for parametric multiple imputation procedures publication-title: Biometrika – volume: 93 start-page: 257 year: 2016 end-page: 269 ident: br0150 article-title: Partially linear transformation cure models for interval-censored data publication-title: Comput. Stat. Data Anal. – volume: 34 start-page: 307 year: 2015 end-page: 316 ident: br0430 article-title: Estimation of intervention effect using paired interval-censored data with clumping below lower detection limit publication-title: Stat. Med. – volume: 1 start-page: 105 year: 2017 end-page: 118 ident: br0110 article-title: Application of concordance probability estimate to predict conversion from mild cognitive impairment to Alzheimer's disease publication-title: Biostat. Epidemiol. – volume: 104 start-page: 1155 year: 2009 end-page: 1167 ident: br0420 article-title: Reweighting estimators for Cox regression with missing covariates publication-title: J. Am. Stat. Assoc. – volume: 77 start-page: 610 year: 2021 end-page: 621 ident: br0450 article-title: Quantile regression for survival data with covariates subject to detection limits publication-title: Biometrics – year: 2002 ident: br0230 article-title: Statistical Analysis with Missing Data – year: 2022 ident: br0360 article-title: Emerging Topics in Modeling Interval-Censored Survival Data – volume: 88 start-page: 1273 year: 1993 end-page: 1283 ident: br0300 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. – volume: 22 start-page: 278 year: 2013 end-page: 295 ident: br0330 article-title: Review of inverse probability weighting for dealing with missing data publication-title: Stat. Methods Med. Res. – volume: 100 start-page: 859 year: 2013 end-page: 876 ident: br0240 article-title: Variable selection in semiparametric transformation models for right-censored data publication-title: Biometrika – volume: 112 start-page: 664 year: 2017 end-page: 672 ident: br0490 article-title: A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data publication-title: J. Am. Stat. Assoc. – volume: 19 start-page: 369 year: 2012 end-page: 391 ident: br0010 article-title: Handling covariates subject to limits of detection in regression publication-title: Environ. Ecol. Stat. – volume: 15 start-page: 719 year: 2014 end-page: 730 ident: br0040 article-title: Improving upon the efficiency of complete case analysis when covariates are mnar publication-title: Biostatistics – volume: 103 start-page: 161 year: 2016 end-page: 174 ident: br0180 article-title: Semiparametric approach to regression with a covariate subject to a detection limit publication-title: Biometrika – volume: 27 start-page: 5421 year: 2008 end-page: 5439 ident: br0100 article-title: ‘Smooth’ inference for survival functions with arbitrarily censored data publication-title: Stat. Med. – volume: 39 start-page: 2795 year: 2011 ident: br0090 article-title: A sieve m-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data publication-title: Ann. Stat. – volume: 37 start-page: 3293 year: 2018 end-page: 3308 ident: br0080 article-title: A semiparametric imputation approach for regression with censored covariate with application to an amd progression study publication-title: Stat. Med. – volume: 48 start-page: 499 year: 2020 end-page: 517 ident: br0200 article-title: Estimation of the additive hazards model with interval-censored data and missing covariates publication-title: Can. J. Stat. – volume: 5 start-page: 46 year: 1990 end-page: 51 ident: br0130 article-title: Estimation of average concentration in the presence of nondetectable values publication-title: Appl. Occup. Environ. Hyg. – volume: 103 start-page: 253 year: 2016 end-page: 271 ident: br0460 article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data publication-title: Biometrika – volume: 58 start-page: 361 year: 2017 end-page: 371 ident: br0210 article-title: Prediction of conversion to Alzheimer's disease with longitudinal measures and time-to-event data publication-title: J. Alzheimer's Dis. – volume: 23 start-page: 3385 year: 2017 end-page: 3411 ident: br0480 article-title: Sieve maximum likelihood estimation for a general class of accelerated hazards models with bundled parameters publication-title: Bernoulli – year: 1987 ident: br0320 article-title: Multiple Imputation for Nonresponse in Surveys – year: 2023 ident: br0190 article-title: New feature screening methods for massive interval-censored failure time data publication-title: Stat. Sin. – volume: 24 start-page: 462 year: 2015 end-page: 487 ident: br0050 article-title: Multiple imputation of covariates by fully conditional specification: accommodating the substantive model publication-title: Stat. Methods Med. Res. – volume: 112 start-page: 1221 year: 2017 end-page: 1235 ident: br0340 article-title: Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation publication-title: J. Am. Stat. Assoc. – year: 2024 ident: br0260 article-title: Semiparametric cure regression models with informative case k interval-censored failure time data publication-title: Stat. Sin. – volume: 112 start-page: 1221 year: 2017 ident: 10.1016/j.csda.2025.108177_br0340 article-title: Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1205500 – volume: 40 start-page: 13 year: 1991 ident: 10.1016/j.csda.2025.108177_br0120 article-title: Multiple imputation for the fatal accident reporting system publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat. – volume: 58 start-page: 361 year: 2017 ident: 10.1016/j.csda.2025.108177_br0210 article-title: Prediction of conversion to Alzheimer's disease with longitudinal measures and time-to-event data publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-161201 – volume: 100 start-page: 1250 year: 2005 ident: 10.1016/j.csda.2025.108177_br0290 article-title: Weighted estimators for proportional hazards regression with missing covariates publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214505000000295 – year: 2012 ident: 10.1016/j.csda.2025.108177_br0070 – volume: 9 start-page: e111 year: 2013 ident: 10.1016/j.csda.2025.108177_br0390 article-title: The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception publication-title: Alzheimer's Dement. doi: 10.1016/j.jalz.2013.05.1769 – volume: 39 start-page: 2795 year: 2011 ident: 10.1016/j.csda.2025.108177_br0090 article-title: A sieve m-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data publication-title: Ann. Stat. doi: 10.1214/11-AOS934 – volume: 5 start-page: 46 year: 1990 ident: 10.1016/j.csda.2025.108177_br0130 article-title: Estimation of average concentration in the presence of nondetectable values publication-title: Appl. Occup. Environ. Hyg. doi: 10.1080/1047322X.1990.10389587 – volume: 63 start-page: 581 year: 1976 ident: 10.1016/j.csda.2025.108177_br0310 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 48 start-page: 499 year: 2020 ident: 10.1016/j.csda.2025.108177_br0200 article-title: Estimation of the additive hazards model with interval-censored data and missing covariates publication-title: Can. J. Stat. doi: 10.1002/cjs.11544 – year: 2022 ident: 10.1016/j.csda.2025.108177_br0360 – volume: 85 start-page: 935 year: 1998 ident: 10.1016/j.csda.2025.108177_br0370 article-title: Large-sample theory for parametric multiple imputation procedures publication-title: Biometrika doi: 10.1093/biomet/85.4.935 – volume: 28 start-page: 335 year: 2022 ident: 10.1016/j.csda.2025.108177_br0500 article-title: A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates publication-title: Lifetime Data Anal. doi: 10.1007/s10985-022-09550-y – volume: 55 start-page: 591 year: 1999 ident: 10.1016/j.csda.2025.108177_br0160 article-title: Monte Carlo em for missing covariates in parametric regression models publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00591.x – volume: 15 start-page: 719 year: 2014 ident: 10.1016/j.csda.2025.108177_br0040 article-title: Improving upon the efficiency of complete case analysis when covariates are mnar publication-title: Biostatistics doi: 10.1093/biostatistics/kxu023 – volume: 37 start-page: 3293 year: 2018 ident: 10.1016/j.csda.2025.108177_br0080 article-title: A semiparametric imputation approach for regression with censored covariate with application to an amd progression study publication-title: Stat. Med. doi: 10.1002/sim.7816 – volume: 93 start-page: 257 year: 2016 ident: 10.1016/j.csda.2025.108177_br0150 article-title: Partially linear transformation cure models for interval-censored data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2014.08.014 – volume: 22 start-page: 278 year: 2013 ident: 10.1016/j.csda.2025.108177_br0330 article-title: Review of inverse probability weighting for dealing with missing data publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280210395740 – volume: 29 start-page: 2151 year: 2020 ident: 10.1016/j.csda.2025.108177_br0220 article-title: Penalized estimation of semiparametric transformation models with interval-censored data and application to Alzheimer's disease publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280219884720 – year: 1987 ident: 10.1016/j.csda.2025.108177_br0320 – volume: 1 start-page: 105 year: 2017 ident: 10.1016/j.csda.2025.108177_br0110 article-title: Application of concordance probability estimate to predict conversion from mild cognitive impairment to Alzheimer's disease publication-title: Biostat. Epidemiol. doi: 10.1080/24709360.2017.1342187 – volume: 103 start-page: 161 year: 2016 ident: 10.1016/j.csda.2025.108177_br0180 article-title: Semiparametric approach to regression with a covariate subject to a detection limit publication-title: Biometrika doi: 10.1093/biomet/asv055 – volume: 112 start-page: 664 year: 2017 ident: 10.1016/j.csda.2025.108177_br0490 article-title: A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1158113 – volume: 42 start-page: 438 year: 2015 ident: 10.1016/j.csda.2025.108177_br0140 article-title: Regression analysis of length-biased and right-censored failure time data with missing covariates publication-title: Scand. J. Stat. doi: 10.1111/sjos.12115 – year: 2023 ident: 10.1016/j.csda.2025.108177_br0190 article-title: New feature screening methods for massive interval-censored failure time data publication-title: Stat. Sin. – volume: 96 start-page: 617 year: 2009 ident: 10.1016/j.csda.2025.108177_br0270 article-title: Pseudo-partial likelihood estimators for the Cox regression model with missing covariates publication-title: Biometrika doi: 10.1093/biomet/asp027 – volume: 116 start-page: 398 year: 2013 ident: 10.1016/j.csda.2025.108177_br0470 article-title: Empirical likelihood for linear transformation models with interval-censored failure time data publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2013.01.003 – volume: 78 start-page: 151 year: 2022 ident: 10.1016/j.csda.2025.108177_br0440 article-title: Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring publication-title: Biometrics doi: 10.1111/biom.13387 – volume: 23 start-page: 3385 year: 2017 ident: 10.1016/j.csda.2025.108177_br0480 article-title: Sieve maximum likelihood estimation for a general class of accelerated hazards models with bundled parameters publication-title: Bernoulli doi: 10.3150/16-BEJ850 – volume: 11 start-page: 865 year: 2015 ident: 10.1016/j.csda.2025.108177_br0380 article-title: Impact of the Alzheimer's disease neuroimaging initiative, 2004 to 2014 publication-title: Alzheimer's Dement. doi: 10.1016/j.jalz.2015.04.005 – volume: 88 start-page: 1273 year: 1993 ident: 10.1016/j.csda.2025.108177_br0300 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476408 – volume: 67 start-page: 760 year: 2011 ident: 10.1016/j.csda.2025.108177_br0400 article-title: Analysis of current status data with missing covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01505.x – volume: 61 start-page: 1020 year: 2019 ident: 10.1016/j.csda.2025.108177_br0020 article-title: Cox regression model with randomly censored covariates publication-title: Biom. J. doi: 10.1002/bimj.201800275 – volume: 24 start-page: 462 year: 2015 ident: 10.1016/j.csda.2025.108177_br0050 article-title: Multiple imputation of covariates by fully conditional specification: accommodating the substantive model publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280214521348 – volume: 43 start-page: 2062 year: 2024 ident: 10.1016/j.csda.2025.108177_br0250 article-title: A new and unified method for regression analysis of interval-censored failure time data under semiparametric transformation models with missing covariates publication-title: Stat. Med. doi: 10.1002/sim.10035 – volume: 23 start-page: 411 year: 2004 ident: 10.1016/j.csda.2025.108177_br0030 article-title: Estimating linear regression models in the presence of a censored independent variable publication-title: Stat. Med. doi: 10.1002/sim.1601 – year: 2006 ident: 10.1016/j.csda.2025.108177_br0350 – volume: 77 start-page: 610 year: 2021 ident: 10.1016/j.csda.2025.108177_br0450 article-title: Quantile regression for survival data with covariates subject to detection limits publication-title: Biometrics doi: 10.1111/biom.13309 – volume: 21 start-page: S17 year: 2010 ident: 10.1016/j.csda.2025.108177_br0280 article-title: Linear regression with an independent variable subject to a detection limit publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181ce97d8 – volume: 103 start-page: 253 year: 2016 ident: 10.1016/j.csda.2025.108177_br0460 article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data publication-title: Biometrika doi: 10.1093/biomet/asw013 – volume: 39 start-page: 1733 year: 2012 ident: 10.1016/j.csda.2025.108177_br0410 article-title: A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury publication-title: J. Appl. Stat. doi: 10.1080/02664763.2012.681362 – volume: 100 start-page: 859 year: 2013 ident: 10.1016/j.csda.2025.108177_br0240 article-title: Variable selection in semiparametric transformation models for right-censored data publication-title: Biometrika doi: 10.1093/biomet/ast029 – volume: 69 start-page: 81 year: 2014 ident: 10.1016/j.csda.2025.108177_br0060 article-title: Flexible modeling of survival data with covariates subject to detection limits via multiple imputation publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.07.027 – volume: 34 start-page: 307 year: 2015 ident: 10.1016/j.csda.2025.108177_br0430 article-title: Estimation of intervention effect using paired interval-censored data with clumping below lower detection limit publication-title: Stat. Med. doi: 10.1002/sim.6346 – year: 2024 ident: 10.1016/j.csda.2025.108177_br0260 article-title: Semiparametric cure regression models with informative case k interval-censored failure time data publication-title: Stat. Sin. – volume: 27 start-page: 5421 year: 2008 ident: 10.1016/j.csda.2025.108177_br0100 article-title: ‘Smooth’ inference for survival functions with arbitrarily censored data publication-title: Stat. Med. doi: 10.1002/sim.3368 – volume: 19 start-page: 369 year: 2012 ident: 10.1016/j.csda.2025.108177_br0010 article-title: Handling covariates subject to limits of detection in regression publication-title: Environ. Ecol. Stat. doi: 10.1007/s10651-012-0191-6 – volume: 104 start-page: 1155 year: 2009 ident: 10.1016/j.csda.2025.108177_br0420 article-title: Reweighting estimators for Cox regression with missing covariates publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.tm07172 – year: 2002 ident: 10.1016/j.csda.2025.108177_br0230 – volume: 133 start-page: 3336 year: 2010 ident: 10.1016/j.csda.2025.108177_br0170 article-title: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awq277 |
SSID | ssj0002478 |
Score | 2.440919 |
Snippet | This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 108177 |
SubjectTerms | Detection limit Interval censoring Missing at random Rejection sampling Semiparametric transformation model |
Title | A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates |
URI | https://dx.doi.org/10.1016/j.csda.2025.108177 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eZO02z82xFEu1tAe12NuyeUFF2tKuHv3tZvbhA8SDp2U3CSxfhm9mwjcThC6J5zZjXRU5ESyYgb5RAxnGPFM6-DeiYqgdHk_EcMruZnzWQP26FgZklRX3l5xesHX1pVOh2VnN550HENArJinhRUUp8DBjEqz8-v1L5kFYycbQ3xtmV4UzpcbLbCz0HiIcpHZdKX93Tt8czmAP7VaRIu6VP7OPGm5xgHbGn21WN4co7-FaEIjncDtDATOu-4TjEJBiDx0vdZhQ3HkDxed46fG8kDpmL5EJaexy7SwGqSiGU1kcdh4OEHC2sPhz2CzfQlYNgekRmg5uHvvDqLpGITKE0zwiIhM6looIl1ieCOa5oY5qLqXwifTOU-oCzSTCKOUSo4g1NGQZhlsrHEvoMWoulgt3gjCx1LHYGNM1mnntMmmMVxkVMdHCO9tCVzV-6arslpHWMrLnFNBOAe20RLuFeA1x-mPP00Dnf6w7_ee6M7QNb6VC7Bw18_WruwghRa7bhc200VbvdjScwHN0_zT6APJozuM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lPagHccW65uBNhk6zzeRYiqW1y8UWehsmG4xIp7TV32_eLEVBPHidTCB8CV_eC9_7HkKPxHGTsq4MrPAnmIG-UQEZhjyVyt9vRIZQOzydieGCvSz5soH6dS0MyCor7i85vWDr6kunQrOzzrLOKwjoJYso4UVFqefhFrhT8SZq9Ubj4WxPyISVhAwW3zChqp0pZV56a8B-iHBQ23Wj6Pf76dudMzhBx1WwiHvlek5Rw67O0NF077S6PUe7Hq41gTiDBg0F0ri2Csc-JsUOTC-V_6FoewP15zh3OCvUjul7oH0mm2-swaAWxfAwi_3mwxsCTlcG74d1_ukTa4hNL9Bi8DzvD4Oqk0KgCae7gIhUqDCSRNjY8FgwxzW1VPEoEi6OnHWUWs80sdBS2lhLYjT1iYbmxgjLYnqJmqt8Za8QJoZaFmqtu1oxp2waae1kSkVIlHDWtNFTjV-yLg0zklpJ9pYA2gmgnZRotxGvIU5-bHviGf2Pedf_nPeADobz6SSZjGbjG3QII6Vg7BY1d5sPe-cjjJ26r07QF5Ywz_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiple+imputation+approach+for+flexible+modelling+of+interval-censored+data+with+missing+and+censored+covariates&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Lou%2C+Yichen&rft.au=Ma%2C+Yuqing&rft.au=Xiang%2C+Liming&rft.au=Sun%2C+Jianguo&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.volume=209&rft_id=info:doi/10.1016%2Fj.csda.2025.108177&rft.externalDocID=S0167947325000532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |