A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates

This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on t...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 209; p. 108177
Main Authors Lou, Yichen, Ma, Yuqing, Xiang, Liming, Sun, Jianguo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text
ISSN0167-9473
DOI10.1016/j.csda.2025.108177

Cover

Loading…
Abstract This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study.
AbstractList This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study.
ArticleNumber 108177
Author Lou, Yichen
Ma, Yuqing
Xiang, Liming
Sun, Jianguo
Author_xml – sequence: 1
  givenname: Yichen
  surname: Lou
  fullname: Lou, Yichen
  organization: Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Yuqing
  surname: Ma
  fullname: Ma, Yuqing
  organization: Jiangsu Hengrui Pharmaceuticals, Co., Ltd., Shanghai, China
– sequence: 3
  givenname: Liming
  orcidid: 0000-0003-0698-5173
  surname: Xiang
  fullname: Xiang, Liming
  email: lmxiang@ntu.edu.sg
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Jianguo
  surname: Sun
  fullname: Sun, Jianguo
  organization: Department of Statistics, University of Missouri, MO, USA
BookMark eNp9kM1KAzEURrOoYFt9AVd5gamZZCbJgJtS_APBja5DmtzYlJlkSNKqb--UiktXF-73ncvlLNAsxAAI3dRkVZOa3-5XJlu9ooS200LWQszQfApE1TWCXaJFzntCCG2EnKOyxsOhL37sAfthPBRdfAxYj2OK2uywiwm7Hr78dioM0ULf-_CBo8M-FEhH3VcGQo4JLLa6aPzpyw4PPudTTQeL_2ITjzp5XSBfoQun-wzXv3OJ3h_u3zZP1cvr4_Nm_VIZ2rJSUa75loiOcpC2lbxxrWHAtq0Q3EnhwDEGgjPJTdeBNB21holGmNZaDo1kS0TPd02KOSdwakx-0Olb1USdXKm9OrlSJ1fq7GqC7s4QTJ8dPSSVjYdgwPoEpigb_X_4DyZieRc
Cites_doi 10.1080/01621459.2016.1205500
10.3233/JAD-161201
10.1198/016214505000000295
10.1016/j.jalz.2013.05.1769
10.1214/11-AOS934
10.1080/1047322X.1990.10389587
10.1093/biomet/63.3.581
10.1002/cjs.11544
10.1093/biomet/85.4.935
10.1007/s10985-022-09550-y
10.1111/j.0006-341X.1999.00591.x
10.1093/biostatistics/kxu023
10.1002/sim.7816
10.1016/j.csda.2014.08.014
10.1177/0962280210395740
10.1177/0962280219884720
10.1080/24709360.2017.1342187
10.1093/biomet/asv055
10.1080/01621459.2016.1158113
10.1111/sjos.12115
10.1093/biomet/asp027
10.1016/j.jmva.2013.01.003
10.1111/biom.13387
10.3150/16-BEJ850
10.1016/j.jalz.2015.04.005
10.1080/01621459.1993.10476408
10.1111/j.1541-0420.2010.01505.x
10.1002/bimj.201800275
10.1177/0962280214521348
10.1002/sim.10035
10.1002/sim.1601
10.1111/biom.13309
10.1097/EDE.0b013e3181ce97d8
10.1093/biomet/asw013
10.1080/02664763.2012.681362
10.1093/biomet/ast029
10.1016/j.csda.2013.07.027
10.1002/sim.6346
10.1002/sim.3368
10.1007/s10651-012-0191-6
10.1198/jasa.2009.tm07172
10.1093/brain/awq277
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.csda.2025.108177
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_csda_2025_108177
S0167947325000532
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
UMC
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c253t-26a6b07926e8d5864f5c3e3b5776f87fef33e76386c99e8c92dc3747c5dd6e483
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Tue Jul 01 05:08:30 EDT 2025
Sat May 03 15:56:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Interval censoring
Semiparametric transformation model
Rejection sampling
Missing at random
Detection limit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-26a6b07926e8d5864f5c3e3b5776f87fef33e76386c99e8c92dc3747c5dd6e483
ORCID 0000-0003-0698-5173
ParticipantIDs crossref_primary_10_1016_j_csda_2025_108177
elsevier_sciencedirect_doi_10_1016_j_csda_2025_108177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Paik, Luo, Tsai (br0420) 2009; 104
Zhang, Zhao (br0470) 2013; 116
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (br0390) 2013; 9
Luo, Tsai, Xu (br0270) 2009; 96
Li, Wu, Sun (br0220) 2020; 29
Zhou, Hu, Sun (br0490) 2017; 112
Kong, Nan (br0180) 2016; 103
Steingrimsson, Strawderman (br0340) 2017; 112
Doehler, Davidian (br0100) 2008; 27
Yu, Xiang, Wang (br0450) 2021; 77
Zeng, Mao, Lin (br0460) 2016; 103
Little, Rubin (br0230) 2002
Nie, Chu, Liu, Cole, Vexler, Schisterman (br0280) 2010; 21
Seaman, White (br0330) 2013; 22
Jack, Wiste, Vemuri, Weigand, Senjem, Zeng, Bernstein, Gunter, Pankratz, Aisen (br0170) 2010; 133
Zhao, Wu, Yin (br0480) 2017; 23
Sun (br0350) 2006
Arunajadai, Rauh (br0010) 2012; 19
Yi, Tang, Sun (br0440) 2022; 78
Bernhardt, Wang, Zhang (br0060) 2014; 69
Ibrahim, Chen, Lipsitz (br0160) 1999; 55
Wu, Chen, Ware, Koyama (br0410) 2012; 39
Heitjan, Little (br0120) 1991; 40
Li, Zhang, Zhu, Li, Sun (br0200) 2020; 48
Ding, Nan (br0090) 2011; 39
Austin, Hoch (br0030) 2004; 23
Bartlett, Seaman, White, Carpenter, Initiative (br0050) 2015; 24
Sun, Chen (br0360) 2022
Liu, Zeng (br0240) 2013; 100
Hu, Chen, Sun (br0140) 2015; 42
Rubin (br0320) 1987
Li, Chan, Doody, Quinn, Luo, Initiative (br0210) 2017; 58
Xu, Lam, Cowling, Bun Cheung (br0430) 2015; 34
Chen, Sun, Peace (br0070) 2012
Bartlett, Carpenter, Tilling, Vansteelandt (br0040) 2014; 15
Hu, Xiang (br0150) 2016; 93
Lou, Sun, Wang (br0260) 2024
Li, Cao, Sun, Tang (br0190) 2023
Atem, Matsouaka, Zimmern (br0020) 2019; 61
Ding, Kong, Kang, Chen (br0080) 2018; 37
Lou, Ma, Du (br0250) 2024; 43
Weiner, Veitch, Aisen, Beckett, Cairns, Cedarbaum, Donohue, Green, Harvey, Jack (br0380) 2015; 11
Hornung, Reed (br0130) 1990; 5
Qi, Wang, Prentice (br0290) 2005; 100
Wang, Robins (br0370) 1998; 85
Rubin (br0310) 1976; 63
Han, Zhang, Shao, Initiative (br0110) 2017; 1
Rousseeuw, Croux (br0300) 1993; 88
Zhou, Li, Sun, Tang (br0500) 2022; 28
Wen, Lin (br0400) 2011; 67
Zhou (10.1016/j.csda.2025.108177_br0500) 2022; 28
Xu (10.1016/j.csda.2025.108177_br0430) 2015; 34
Liu (10.1016/j.csda.2025.108177_br0240) 2013; 100
Wu (10.1016/j.csda.2025.108177_br0410) 2012; 39
Wen (10.1016/j.csda.2025.108177_br0400) 2011; 67
Nie (10.1016/j.csda.2025.108177_br0280) 2010; 21
Arunajadai (10.1016/j.csda.2025.108177_br0010) 2012; 19
Bartlett (10.1016/j.csda.2025.108177_br0050) 2015; 24
Weiner (10.1016/j.csda.2025.108177_br0380) 2015; 11
Xu (10.1016/j.csda.2025.108177_br0420) 2009; 104
Zhao (10.1016/j.csda.2025.108177_br0480) 2017; 23
Seaman (10.1016/j.csda.2025.108177_br0330) 2013; 22
Steingrimsson (10.1016/j.csda.2025.108177_br0340) 2017; 112
Doehler (10.1016/j.csda.2025.108177_br0100) 2008; 27
Sun (10.1016/j.csda.2025.108177_br0350) 2006
Rubin (10.1016/j.csda.2025.108177_br0320) 1987
Zhou (10.1016/j.csda.2025.108177_br0490) 2017; 112
Li (10.1016/j.csda.2025.108177_br0200) 2020; 48
Sun (10.1016/j.csda.2025.108177_br0360) 2022
Lou (10.1016/j.csda.2025.108177_br0250) 2024; 43
Hu (10.1016/j.csda.2025.108177_br0150) 2016; 93
Kong (10.1016/j.csda.2025.108177_br0180) 2016; 103
Bernhardt (10.1016/j.csda.2025.108177_br0060) 2014; 69
Zeng (10.1016/j.csda.2025.108177_br0460) 2016; 103
Ding (10.1016/j.csda.2025.108177_br0080) 2018; 37
Little (10.1016/j.csda.2025.108177_br0230) 2002
Ibrahim (10.1016/j.csda.2025.108177_br0160) 1999; 55
Hornung (10.1016/j.csda.2025.108177_br0130) 1990; 5
Qi (10.1016/j.csda.2025.108177_br0290) 2005; 100
Rubin (10.1016/j.csda.2025.108177_br0310) 1976; 63
Ding (10.1016/j.csda.2025.108177_br0090) 2011; 39
Heitjan (10.1016/j.csda.2025.108177_br0120) 1991; 40
Li (10.1016/j.csda.2025.108177_br0220) 2020; 29
Bartlett (10.1016/j.csda.2025.108177_br0040) 2014; 15
Atem (10.1016/j.csda.2025.108177_br0020) 2019; 61
Chen (10.1016/j.csda.2025.108177_br0070) 2012
Jack (10.1016/j.csda.2025.108177_br0170) 2010; 133
Yi (10.1016/j.csda.2025.108177_br0440) 2022; 78
Li (10.1016/j.csda.2025.108177_br0190) 2023
Wang (10.1016/j.csda.2025.108177_br0370) 1998; 85
Weiner (10.1016/j.csda.2025.108177_br0390) 2013; 9
Li (10.1016/j.csda.2025.108177_br0210) 2017; 58
Rousseeuw (10.1016/j.csda.2025.108177_br0300) 1993; 88
Han (10.1016/j.csda.2025.108177_br0110) 2017; 1
Zhang (10.1016/j.csda.2025.108177_br0470) 2013; 116
Austin (10.1016/j.csda.2025.108177_br0030) 2004; 23
Lou (10.1016/j.csda.2025.108177_br0260) 2024
Yu (10.1016/j.csda.2025.108177_br0450) 2021; 77
Hu (10.1016/j.csda.2025.108177_br0140) 2015; 42
Luo (10.1016/j.csda.2025.108177_br0270) 2009; 96
References_xml – volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  ident: br0310
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 40
  start-page: 13
  year: 1991
  end-page: 29
  ident: br0120
  article-title: Multiple imputation for the fatal accident reporting system
  publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat.
– volume: 9
  start-page: e111
  year: 2013
  end-page: e194
  ident: br0390
  article-title: The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception
  publication-title: Alzheimer's Dement.
– volume: 11
  start-page: 865
  year: 2015
  end-page: 884
  ident: br0380
  article-title: Impact of the Alzheimer's disease neuroimaging initiative, 2004 to 2014
  publication-title: Alzheimer's Dement.
– volume: 43
  start-page: 2062
  year: 2024
  end-page: 2082
  ident: br0250
  article-title: A new and unified method for regression analysis of interval-censored failure time data under semiparametric transformation models with missing covariates
  publication-title: Stat. Med.
– volume: 29
  start-page: 2151
  year: 2020
  end-page: 2166
  ident: br0220
  article-title: Penalized estimation of semiparametric transformation models with interval-censored data and application to Alzheimer's disease
  publication-title: Stat. Methods Med. Res.
– volume: 69
  start-page: 81
  year: 2014
  end-page: 91
  ident: br0060
  article-title: Flexible modeling of survival data with covariates subject to detection limits via multiple imputation
  publication-title: Comput. Stat. Data Anal.
– volume: 133
  start-page: 3336
  year: 2010
  end-page: 3348
  ident: br0170
  article-title: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease
  publication-title: Brain
– volume: 78
  start-page: 151
  year: 2022
  end-page: 164
  ident: br0440
  article-title: Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring
  publication-title: Biometrics
– volume: 21
  start-page: S17
  year: 2010
  ident: br0280
  article-title: Linear regression with an independent variable subject to a detection limit
  publication-title: Epidemiology
– volume: 39
  start-page: 1733
  year: 2012
  end-page: 1747
  ident: br0410
  article-title: A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury
  publication-title: J. Appl. Stat.
– volume: 61
  start-page: 1020
  year: 2019
  end-page: 1032
  ident: br0020
  article-title: Cox regression model with randomly censored covariates
  publication-title: Biom. J.
– volume: 96
  start-page: 617
  year: 2009
  end-page: 633
  ident: br0270
  article-title: Pseudo-partial likelihood estimators for the Cox regression model with missing covariates
  publication-title: Biometrika
– volume: 116
  start-page: 398
  year: 2013
  end-page: 409
  ident: br0470
  article-title: Empirical likelihood for linear transformation models with interval-censored failure time data
  publication-title: J. Multivar. Anal.
– volume: 42
  start-page: 438
  year: 2015
  end-page: 452
  ident: br0140
  article-title: Regression analysis of length-biased and right-censored failure time data with missing covariates
  publication-title: Scand. J. Stat.
– volume: 67
  start-page: 760
  year: 2011
  end-page: 769
  ident: br0400
  article-title: Analysis of current status data with missing covariates
  publication-title: Biometrics
– volume: 100
  start-page: 1250
  year: 2005
  end-page: 1263
  ident: br0290
  article-title: Weighted estimators for proportional hazards regression with missing covariates
  publication-title: J. Am. Stat. Assoc.
– volume: 55
  start-page: 591
  year: 1999
  end-page: 596
  ident: br0160
  article-title: Monte Carlo em for missing covariates in parametric regression models
  publication-title: Biometrics
– volume: 23
  start-page: 411
  year: 2004
  end-page: 429
  ident: br0030
  article-title: Estimating linear regression models in the presence of a censored independent variable
  publication-title: Stat. Med.
– volume: 28
  start-page: 335
  year: 2022
  end-page: 355
  ident: br0500
  article-title: A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates
  publication-title: Lifetime Data Anal.
– year: 2012
  ident: br0070
  article-title: Interval-Censored Time-to-Event Data: Methods and Applications
– year: 2006
  ident: br0350
  article-title: The Statistical Analysis of Interval-Censored Failure Time Data
– volume: 85
  start-page: 935
  year: 1998
  end-page: 948
  ident: br0370
  article-title: Large-sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
– volume: 93
  start-page: 257
  year: 2016
  end-page: 269
  ident: br0150
  article-title: Partially linear transformation cure models for interval-censored data
  publication-title: Comput. Stat. Data Anal.
– volume: 34
  start-page: 307
  year: 2015
  end-page: 316
  ident: br0430
  article-title: Estimation of intervention effect using paired interval-censored data with clumping below lower detection limit
  publication-title: Stat. Med.
– volume: 1
  start-page: 105
  year: 2017
  end-page: 118
  ident: br0110
  article-title: Application of concordance probability estimate to predict conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: Biostat. Epidemiol.
– volume: 104
  start-page: 1155
  year: 2009
  end-page: 1167
  ident: br0420
  article-title: Reweighting estimators for Cox regression with missing covariates
  publication-title: J. Am. Stat. Assoc.
– volume: 77
  start-page: 610
  year: 2021
  end-page: 621
  ident: br0450
  article-title: Quantile regression for survival data with covariates subject to detection limits
  publication-title: Biometrics
– year: 2002
  ident: br0230
  article-title: Statistical Analysis with Missing Data
– year: 2022
  ident: br0360
  article-title: Emerging Topics in Modeling Interval-Censored Survival Data
– volume: 88
  start-page: 1273
  year: 1993
  end-page: 1283
  ident: br0300
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
– volume: 22
  start-page: 278
  year: 2013
  end-page: 295
  ident: br0330
  article-title: Review of inverse probability weighting for dealing with missing data
  publication-title: Stat. Methods Med. Res.
– volume: 100
  start-page: 859
  year: 2013
  end-page: 876
  ident: br0240
  article-title: Variable selection in semiparametric transformation models for right-censored data
  publication-title: Biometrika
– volume: 112
  start-page: 664
  year: 2017
  end-page: 672
  ident: br0490
  article-title: A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data
  publication-title: J. Am. Stat. Assoc.
– volume: 19
  start-page: 369
  year: 2012
  end-page: 391
  ident: br0010
  article-title: Handling covariates subject to limits of detection in regression
  publication-title: Environ. Ecol. Stat.
– volume: 15
  start-page: 719
  year: 2014
  end-page: 730
  ident: br0040
  article-title: Improving upon the efficiency of complete case analysis when covariates are mnar
  publication-title: Biostatistics
– volume: 103
  start-page: 161
  year: 2016
  end-page: 174
  ident: br0180
  article-title: Semiparametric approach to regression with a covariate subject to a detection limit
  publication-title: Biometrika
– volume: 27
  start-page: 5421
  year: 2008
  end-page: 5439
  ident: br0100
  article-title: ‘Smooth’ inference for survival functions with arbitrarily censored data
  publication-title: Stat. Med.
– volume: 39
  start-page: 2795
  year: 2011
  ident: br0090
  article-title: A sieve m-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data
  publication-title: Ann. Stat.
– volume: 37
  start-page: 3293
  year: 2018
  end-page: 3308
  ident: br0080
  article-title: A semiparametric imputation approach for regression with censored covariate with application to an amd progression study
  publication-title: Stat. Med.
– volume: 48
  start-page: 499
  year: 2020
  end-page: 517
  ident: br0200
  article-title: Estimation of the additive hazards model with interval-censored data and missing covariates
  publication-title: Can. J. Stat.
– volume: 5
  start-page: 46
  year: 1990
  end-page: 51
  ident: br0130
  article-title: Estimation of average concentration in the presence of nondetectable values
  publication-title: Appl. Occup. Environ. Hyg.
– volume: 103
  start-page: 253
  year: 2016
  end-page: 271
  ident: br0460
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data
  publication-title: Biometrika
– volume: 58
  start-page: 361
  year: 2017
  end-page: 371
  ident: br0210
  article-title: Prediction of conversion to Alzheimer's disease with longitudinal measures and time-to-event data
  publication-title: J. Alzheimer's Dis.
– volume: 23
  start-page: 3385
  year: 2017
  end-page: 3411
  ident: br0480
  article-title: Sieve maximum likelihood estimation for a general class of accelerated hazards models with bundled parameters
  publication-title: Bernoulli
– year: 1987
  ident: br0320
  article-title: Multiple Imputation for Nonresponse in Surveys
– year: 2023
  ident: br0190
  article-title: New feature screening methods for massive interval-censored failure time data
  publication-title: Stat. Sin.
– volume: 24
  start-page: 462
  year: 2015
  end-page: 487
  ident: br0050
  article-title: Multiple imputation of covariates by fully conditional specification: accommodating the substantive model
  publication-title: Stat. Methods Med. Res.
– volume: 112
  start-page: 1221
  year: 2017
  end-page: 1235
  ident: br0340
  article-title: Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation
  publication-title: J. Am. Stat. Assoc.
– year: 2024
  ident: br0260
  article-title: Semiparametric cure regression models with informative case k interval-censored failure time data
  publication-title: Stat. Sin.
– volume: 112
  start-page: 1221
  year: 2017
  ident: 10.1016/j.csda.2025.108177_br0340
  article-title: Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1205500
– volume: 40
  start-page: 13
  year: 1991
  ident: 10.1016/j.csda.2025.108177_br0120
  article-title: Multiple imputation for the fatal accident reporting system
  publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat.
– volume: 58
  start-page: 361
  year: 2017
  ident: 10.1016/j.csda.2025.108177_br0210
  article-title: Prediction of conversion to Alzheimer's disease with longitudinal measures and time-to-event data
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-161201
– volume: 100
  start-page: 1250
  year: 2005
  ident: 10.1016/j.csda.2025.108177_br0290
  article-title: Weighted estimators for proportional hazards regression with missing covariates
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214505000000295
– year: 2012
  ident: 10.1016/j.csda.2025.108177_br0070
– volume: 9
  start-page: e111
  year: 2013
  ident: 10.1016/j.csda.2025.108177_br0390
  article-title: The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception
  publication-title: Alzheimer's Dement.
  doi: 10.1016/j.jalz.2013.05.1769
– volume: 39
  start-page: 2795
  year: 2011
  ident: 10.1016/j.csda.2025.108177_br0090
  article-title: A sieve m-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS934
– volume: 5
  start-page: 46
  year: 1990
  ident: 10.1016/j.csda.2025.108177_br0130
  article-title: Estimation of average concentration in the presence of nondetectable values
  publication-title: Appl. Occup. Environ. Hyg.
  doi: 10.1080/1047322X.1990.10389587
– volume: 63
  start-page: 581
  year: 1976
  ident: 10.1016/j.csda.2025.108177_br0310
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 48
  start-page: 499
  year: 2020
  ident: 10.1016/j.csda.2025.108177_br0200
  article-title: Estimation of the additive hazards model with interval-censored data and missing covariates
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.11544
– year: 2022
  ident: 10.1016/j.csda.2025.108177_br0360
– volume: 85
  start-page: 935
  year: 1998
  ident: 10.1016/j.csda.2025.108177_br0370
  article-title: Large-sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.935
– volume: 28
  start-page: 335
  year: 2022
  ident: 10.1016/j.csda.2025.108177_br0500
  article-title: A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-022-09550-y
– volume: 55
  start-page: 591
  year: 1999
  ident: 10.1016/j.csda.2025.108177_br0160
  article-title: Monte Carlo em for missing covariates in parametric regression models
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00591.x
– volume: 15
  start-page: 719
  year: 2014
  ident: 10.1016/j.csda.2025.108177_br0040
  article-title: Improving upon the efficiency of complete case analysis when covariates are mnar
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu023
– volume: 37
  start-page: 3293
  year: 2018
  ident: 10.1016/j.csda.2025.108177_br0080
  article-title: A semiparametric imputation approach for regression with censored covariate with application to an amd progression study
  publication-title: Stat. Med.
  doi: 10.1002/sim.7816
– volume: 93
  start-page: 257
  year: 2016
  ident: 10.1016/j.csda.2025.108177_br0150
  article-title: Partially linear transformation cure models for interval-censored data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2014.08.014
– volume: 22
  start-page: 278
  year: 2013
  ident: 10.1016/j.csda.2025.108177_br0330
  article-title: Review of inverse probability weighting for dealing with missing data
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280210395740
– volume: 29
  start-page: 2151
  year: 2020
  ident: 10.1016/j.csda.2025.108177_br0220
  article-title: Penalized estimation of semiparametric transformation models with interval-censored data and application to Alzheimer's disease
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280219884720
– year: 1987
  ident: 10.1016/j.csda.2025.108177_br0320
– volume: 1
  start-page: 105
  year: 2017
  ident: 10.1016/j.csda.2025.108177_br0110
  article-title: Application of concordance probability estimate to predict conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: Biostat. Epidemiol.
  doi: 10.1080/24709360.2017.1342187
– volume: 103
  start-page: 161
  year: 2016
  ident: 10.1016/j.csda.2025.108177_br0180
  article-title: Semiparametric approach to regression with a covariate subject to a detection limit
  publication-title: Biometrika
  doi: 10.1093/biomet/asv055
– volume: 112
  start-page: 664
  year: 2017
  ident: 10.1016/j.csda.2025.108177_br0490
  article-title: A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1158113
– volume: 42
  start-page: 438
  year: 2015
  ident: 10.1016/j.csda.2025.108177_br0140
  article-title: Regression analysis of length-biased and right-censored failure time data with missing covariates
  publication-title: Scand. J. Stat.
  doi: 10.1111/sjos.12115
– year: 2023
  ident: 10.1016/j.csda.2025.108177_br0190
  article-title: New feature screening methods for massive interval-censored failure time data
  publication-title: Stat. Sin.
– volume: 96
  start-page: 617
  year: 2009
  ident: 10.1016/j.csda.2025.108177_br0270
  article-title: Pseudo-partial likelihood estimators for the Cox regression model with missing covariates
  publication-title: Biometrika
  doi: 10.1093/biomet/asp027
– volume: 116
  start-page: 398
  year: 2013
  ident: 10.1016/j.csda.2025.108177_br0470
  article-title: Empirical likelihood for linear transformation models with interval-censored failure time data
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2013.01.003
– volume: 78
  start-page: 151
  year: 2022
  ident: 10.1016/j.csda.2025.108177_br0440
  article-title: Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring
  publication-title: Biometrics
  doi: 10.1111/biom.13387
– volume: 23
  start-page: 3385
  year: 2017
  ident: 10.1016/j.csda.2025.108177_br0480
  article-title: Sieve maximum likelihood estimation for a general class of accelerated hazards models with bundled parameters
  publication-title: Bernoulli
  doi: 10.3150/16-BEJ850
– volume: 11
  start-page: 865
  year: 2015
  ident: 10.1016/j.csda.2025.108177_br0380
  article-title: Impact of the Alzheimer's disease neuroimaging initiative, 2004 to 2014
  publication-title: Alzheimer's Dement.
  doi: 10.1016/j.jalz.2015.04.005
– volume: 88
  start-page: 1273
  year: 1993
  ident: 10.1016/j.csda.2025.108177_br0300
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476408
– volume: 67
  start-page: 760
  year: 2011
  ident: 10.1016/j.csda.2025.108177_br0400
  article-title: Analysis of current status data with missing covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01505.x
– volume: 61
  start-page: 1020
  year: 2019
  ident: 10.1016/j.csda.2025.108177_br0020
  article-title: Cox regression model with randomly censored covariates
  publication-title: Biom. J.
  doi: 10.1002/bimj.201800275
– volume: 24
  start-page: 462
  year: 2015
  ident: 10.1016/j.csda.2025.108177_br0050
  article-title: Multiple imputation of covariates by fully conditional specification: accommodating the substantive model
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280214521348
– volume: 43
  start-page: 2062
  year: 2024
  ident: 10.1016/j.csda.2025.108177_br0250
  article-title: A new and unified method for regression analysis of interval-censored failure time data under semiparametric transformation models with missing covariates
  publication-title: Stat. Med.
  doi: 10.1002/sim.10035
– volume: 23
  start-page: 411
  year: 2004
  ident: 10.1016/j.csda.2025.108177_br0030
  article-title: Estimating linear regression models in the presence of a censored independent variable
  publication-title: Stat. Med.
  doi: 10.1002/sim.1601
– year: 2006
  ident: 10.1016/j.csda.2025.108177_br0350
– volume: 77
  start-page: 610
  year: 2021
  ident: 10.1016/j.csda.2025.108177_br0450
  article-title: Quantile regression for survival data with covariates subject to detection limits
  publication-title: Biometrics
  doi: 10.1111/biom.13309
– volume: 21
  start-page: S17
  year: 2010
  ident: 10.1016/j.csda.2025.108177_br0280
  article-title: Linear regression with an independent variable subject to a detection limit
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce97d8
– volume: 103
  start-page: 253
  year: 2016
  ident: 10.1016/j.csda.2025.108177_br0460
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/asw013
– volume: 39
  start-page: 1733
  year: 2012
  ident: 10.1016/j.csda.2025.108177_br0410
  article-title: A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2012.681362
– volume: 100
  start-page: 859
  year: 2013
  ident: 10.1016/j.csda.2025.108177_br0240
  article-title: Variable selection in semiparametric transformation models for right-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/ast029
– volume: 69
  start-page: 81
  year: 2014
  ident: 10.1016/j.csda.2025.108177_br0060
  article-title: Flexible modeling of survival data with covariates subject to detection limits via multiple imputation
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.07.027
– volume: 34
  start-page: 307
  year: 2015
  ident: 10.1016/j.csda.2025.108177_br0430
  article-title: Estimation of intervention effect using paired interval-censored data with clumping below lower detection limit
  publication-title: Stat. Med.
  doi: 10.1002/sim.6346
– year: 2024
  ident: 10.1016/j.csda.2025.108177_br0260
  article-title: Semiparametric cure regression models with informative case k interval-censored failure time data
  publication-title: Stat. Sin.
– volume: 27
  start-page: 5421
  year: 2008
  ident: 10.1016/j.csda.2025.108177_br0100
  article-title: ‘Smooth’ inference for survival functions with arbitrarily censored data
  publication-title: Stat. Med.
  doi: 10.1002/sim.3368
– volume: 19
  start-page: 369
  year: 2012
  ident: 10.1016/j.csda.2025.108177_br0010
  article-title: Handling covariates subject to limits of detection in regression
  publication-title: Environ. Ecol. Stat.
  doi: 10.1007/s10651-012-0191-6
– volume: 104
  start-page: 1155
  year: 2009
  ident: 10.1016/j.csda.2025.108177_br0420
  article-title: Reweighting estimators for Cox regression with missing covariates
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm07172
– year: 2002
  ident: 10.1016/j.csda.2025.108177_br0230
– volume: 133
  start-page: 3336
  year: 2010
  ident: 10.1016/j.csda.2025.108177_br0170
  article-title: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awq277
SSID ssj0002478
Score 2.440919
Snippet This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108177
SubjectTerms Detection limit
Interval censoring
Missing at random
Rejection sampling
Semiparametric transformation model
Title A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates
URI https://dx.doi.org/10.1016/j.csda.2025.108177
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eZO02z82xFEu1tAe12NuyeUFF2tKuHv3tZvbhA8SDp2U3CSxfhm9mwjcThC6J5zZjXRU5ESyYgb5RAxnGPFM6-DeiYqgdHk_EcMruZnzWQP26FgZklRX3l5xesHX1pVOh2VnN550HENArJinhRUUp8DBjEqz8-v1L5kFYycbQ3xtmV4UzpcbLbCz0HiIcpHZdKX93Tt8czmAP7VaRIu6VP7OPGm5xgHbGn21WN4co7-FaEIjncDtDATOu-4TjEJBiDx0vdZhQ3HkDxed46fG8kDpmL5EJaexy7SwGqSiGU1kcdh4OEHC2sPhz2CzfQlYNgekRmg5uHvvDqLpGITKE0zwiIhM6looIl1ieCOa5oY5qLqXwifTOU-oCzSTCKOUSo4g1NGQZhlsrHEvoMWoulgt3gjCx1LHYGNM1mnntMmmMVxkVMdHCO9tCVzV-6arslpHWMrLnFNBOAe20RLuFeA1x-mPP00Dnf6w7_ee6M7QNb6VC7Bw18_WruwghRa7bhc200VbvdjScwHN0_zT6APJozuM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lPagHccW65uBNhk6zzeRYiqW1y8UWehsmG4xIp7TV32_eLEVBPHidTCB8CV_eC9_7HkKPxHGTsq4MrPAnmIG-UQEZhjyVyt9vRIZQOzydieGCvSz5soH6dS0MyCor7i85vWDr6kunQrOzzrLOKwjoJYso4UVFqefhFrhT8SZq9Ubj4WxPyISVhAwW3zChqp0pZV56a8B-iHBQ23Wj6Pf76dudMzhBx1WwiHvlek5Rw67O0NF077S6PUe7Hq41gTiDBg0F0ri2Csc-JsUOTC-V_6FoewP15zh3OCvUjul7oH0mm2-swaAWxfAwi_3mwxsCTlcG74d1_ukTa4hNL9Bi8DzvD4Oqk0KgCae7gIhUqDCSRNjY8FgwxzW1VPEoEi6OnHWUWs80sdBS2lhLYjT1iYbmxgjLYnqJmqt8Za8QJoZaFmqtu1oxp2waae1kSkVIlHDWtNFTjV-yLg0zklpJ9pYA2gmgnZRotxGvIU5-bHviGf2Pedf_nPeADobz6SSZjGbjG3QII6Vg7BY1d5sPe-cjjJ26r07QF5Ywz_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiple+imputation+approach+for+flexible+modelling+of+interval-censored+data+with+missing+and+censored+covariates&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Lou%2C+Yichen&rft.au=Ma%2C+Yuqing&rft.au=Xiang%2C+Liming&rft.au=Sun%2C+Jianguo&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.volume=209&rft_id=info:doi/10.1016%2Fj.csda.2025.108177&rft.externalDocID=S0167947325000532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon