Memory-augmented-based meta-learning framework for cross-subject motor imagery classification
Brain-computer interfaces (BCIs) offer a groundbreaking avenue for facilitating communication between the human brain and external devices. Particularly, motor imagery (MI)-based BCIs have shown potential in various applications such as assistive technologies and rehabilitation. However, the challen...
Saved in:
Published in | Biomedical signal processing and control Vol. 110; p. 108246 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain-computer interfaces (BCIs) offer a groundbreaking avenue for facilitating communication between the human brain and external devices. Particularly, motor imagery (MI)-based BCIs have shown potential in various applications such as assistive technologies and rehabilitation. However, the challenge of cross-subject variability remains a significant hurdle for the widespread adoption of BCIs, as it affects the generalization capability of these systems to new subjects. In this work, the memory-augmented-based meta-learning framework is proposed, which integrates the Echo State Network (ESN) with Model-Agnostic Meta-Learning (MAML) to address the issue of cross-subject variability in MI-BCI classification, named as MAgML. The proposed framework utilizes processing power of the parallel ESNs. It captures the rich temporal dynamics of Electroencephalogram (EEG) signals and combines this with attentional mechanisms to enhance prolonged feature acquisition. Additionally, the MAML is employed to quickly adapt to new subjects with minimal calibration. The results demonstrate the effectiveness of them on multiple EEG datasets, and the MAgML outperforms existing methods. On the BCI-2A dataset, the results show MAgML has an improvement with 4.3 % over the best-performing method on 1 shot scenario, and 8.4 % on 20 shots scenario. On the BCI-2B dataset, the improvement ranges from 4.3 % (with 1 shot) to 6.6 % (with 20 shots). The MAgML provides a robust zero-calibration solution for practical and efficient BCI applications. |
---|---|
AbstractList | Brain-computer interfaces (BCIs) offer a groundbreaking avenue for facilitating communication between the human brain and external devices. Particularly, motor imagery (MI)-based BCIs have shown potential in various applications such as assistive technologies and rehabilitation. However, the challenge of cross-subject variability remains a significant hurdle for the widespread adoption of BCIs, as it affects the generalization capability of these systems to new subjects. In this work, the memory-augmented-based meta-learning framework is proposed, which integrates the Echo State Network (ESN) with Model-Agnostic Meta-Learning (MAML) to address the issue of cross-subject variability in MI-BCI classification, named as MAgML. The proposed framework utilizes processing power of the parallel ESNs. It captures the rich temporal dynamics of Electroencephalogram (EEG) signals and combines this with attentional mechanisms to enhance prolonged feature acquisition. Additionally, the MAML is employed to quickly adapt to new subjects with minimal calibration. The results demonstrate the effectiveness of them on multiple EEG datasets, and the MAgML outperforms existing methods. On the BCI-2A dataset, the results show MAgML has an improvement with 4.3 % over the best-performing method on 1 shot scenario, and 8.4 % on 20 shots scenario. On the BCI-2B dataset, the improvement ranges from 4.3 % (with 1 shot) to 6.6 % (with 20 shots). The MAgML provides a robust zero-calibration solution for practical and efficient BCI applications. |
ArticleNumber | 108246 |
Author | Qin, Sheng Luo, Yuling Tan, Hongxiao Liu, Junxiu Fu, Qiang Zhao, Xuanyu |
Author_xml | – sequence: 1 givenname: Junxiu surname: Liu fullname: Liu, Junxiu email: j.liu@ieee.org organization: Guangxi Key Lab of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China – sequence: 2 givenname: Xuanyu surname: Zhao fullname: Zhao, Xuanyu email: zhaoxuanyu@stu.gxnu.edu.cn organization: Guangxi Key Lab of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China – sequence: 3 givenname: Yuling surname: Luo fullname: Luo, Yuling email: yuling0616@gxnu.edu.cn organization: Guangxi Key Lab of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China – sequence: 4 givenname: Sheng orcidid: 0000-0001-7348-901X surname: Qin fullname: Qin, Sheng email: qinsheng@gxnu.edu.cn organization: Guangxi Key Lab of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China – sequence: 5 givenname: Qiang surname: Fu fullname: Fu, Qiang email: qiangfu@gxnu.edu.cn organization: Guangxi Key Lab of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China – sequence: 6 givenname: Hongxiao surname: Tan fullname: Tan, Hongxiao organization: Guangxi Key Lab of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China |
BookMark | eNp9kMtOwzAQRb0oEm3hB1jlB1xsx24SiQ2qeFQqYgNLZI2dSeXQ2JWdgvr3uJQ1q9Fc6YzunBmZ-OCRkBvOFpzx5W2_MGlvF4IJlYNayOWETHkll7Rmjbwks5R6xmRdcTklHy84hHikcNgO6EdsqYGEbTHgCHSHEL3z26KLMOB3iJ9FF2JhY0iJpoPp0Y7FEMacuQG2GI-F3UFKrnMWRhf8FbnoYJfw-m_Oyfvjw9vqmW5en9ar-w21QpUjFVypqquatilNWTfSqIqDFYZxUTKpKlmDEEa0eVOIiktojFS2tZUygADlnIjz3d9qETu9j7lRPGrO9EmK7vVJij5J0WcpGbo7Q5ibfTmMOlmH3mLrYn5Mt8H9h_8AEqdwjQ |
Cites_doi | 10.1109/JPROC.2023.3277471 10.1007/s00521-017-2919-6 10.1109/TNSRE.2020.3037326 10.1109/5.939829 10.1016/j.cmpb.2022.106692 10.1016/j.dsp.2018.02.020 10.1109/TII.2021.3132340 10.1109/JBHI.2024.3366341 10.1016/j.eswa.2018.08.031 10.1016/j.neunet.2022.03.025 10.1016/j.compbiomed.2024.108727 10.1088/1741-2552/aace8c 10.1016/j.eswa.2019.01.080 10.1109/LSENS.2024.3358589 10.3389/fnins.2012.00055 10.1016/j.compbiomed.2018.05.019 10.1049/iet-smt.2017.0058 10.1016/j.neunet.2023.03.039 10.1016/j.compeleceng.2019.01.025 10.1016/S1474-4422(08)70223-0 10.1016/j.future.2019.06.027 10.1016/j.asoc.2016.11.002 10.1049/el.2020.2526 10.3390/diagnostics12040995 10.1109/JBHI.2020.2967128 10.1002/hbm.23730 10.1109/COMST.2022.3232576 10.1016/j.future.2018.10.005 10.3390/app7040385 10.1109/TNSRE.2007.906956 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2025.108246 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2025_108246 S1746809425007578 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AAYXX CITATION SSH |
ID | FETCH-LOGICAL-c253t-21557f79d93b3894b571ac2b0123045748a22b2d2305ee514a9b45cdc75baeaa3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Jul 24 02:15:27 EDT 2025 Sat Aug 09 17:31:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Memory augmentation Attention mechanism Motor imagery Cross-subject Meta-learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-21557f79d93b3894b571ac2b0123045748a22b2d2305ee514a9b45cdc75baeaa3 |
ORCID | 0000-0001-7348-901X |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2025_108246 elsevier_sciencedirect_doi_10_1016_j_bspc_2025_108246 |
PublicationCentury | 2000 |
PublicationDate | December 2025 2025-12-00 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ajmeria, Mondal, Banerjee, Halder, Deb, Mishra, Nayak, Misra, Pal, Chakravarty (b0180) 2023; 25 Pfurtscheller, Neuper (b0010) 2001; 89 Patidar, Pachori, Upadhyay, Rajendra Acharya (b0045) 2017; 50 Chikontwe, Kim, Park (b0205) 2022 Pachori, Gandhi (b0020) 2024; 8 Finn, Abbeel, Levine (b0125) 2017 Dolzhikova, Abibullaev, Sameni, Zollanvari (b0225) 2021 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter (b0185) 2017; 38 Ye, Hu, Zhan, Sha (b0200) 2020 Sharma, Pachori, Upadhyay (b0040) 2017; 28 Daly, Wolpaw (b0140) 2008; 7 Bhattacharyya, Singh, Pachori (b0025) 2018; 78 Sun, Lo, Lo (b0100) 2019; 125 Lian, Li (b0110) 2024; 178 Dose, Møller, Iversen, Puthusserypady (b0215) 2018; 114 Wu, Lu, Hu, Zeng (b0005) 2023; 111 Altuwaijri, Muhammad, Altaheri, Alsulaiman (b0080) 2022; 12 Sharma, Pachori (b0030) 2018; 12 Schuster (b0015) 2011; 9 Bhattacharyya, Pachori, Upadhyay, Acharya (b0210) 2017; 7 Sung, Yang, Zhang (b0190) 2018 Sharma, Patidar, Upadhyay, Rajendra Acharya (b0050) 2019; 75 Zhang, Chen, Jian, Yao (b0075) 2020; 24 Han, Bak, Kim, Choi, Shin, Son, Kam (b0130) 2024; 238 Santoro, Bartunov, Botvinick, Wierstra, Lillicrap (b0165) 2016 Pachori, Tripathy, Jain (b0035) 2024; 8 Li, Xu, Wang, Fang, Ji (b0090) 2020; 28 Sun, Wu, Hu, Li (b0120) 2022; 151 Li, Wang, Huang, Qi, Pan (b0160) 2023; 163 Leeb, Lee, Keinrath, Scherer, Bischof, Pfurtscheller (b0170) 2007; 15 A. Nishad, A. Upadhyay, G. Ravi Shankar Reddy, V. Bajaj, Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform, Electron. Lett., vol. 56, no. 25, pp. 1370–1372, 2020. Amin, Alsulaiman, Muhammad, Mekhtiche, Shamim Hossain (b0145) 2019; 101 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz, Nolte, Pfurtscheller, Preissl, Schalk, Schlögl, Vidaurre, Waldert, Blankertz (b0175) 2012; 6 Ahmad, Zhu, Li, Javeed, Kumar, Chen (b0220) 2024; 28 An, Kim, Chikontwe, Park (b0135) 2023; 28 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0085) 2018; 15 Mathur, Choudhary, Upadhyay, Pachori (b0065) 2015 Sun, Jin, Yang, Tong, Liu, Xiong (b0115) 2019; 475 Al-Saegh, Dawwd, Abdul-Jabbar (b0070) 2021; 63 Ng, Guan (b0155) 2024; 172 Xu (b0105) 2022; 218 Nishad, Upadhyay, Pachori, Acharya (b0055) 2019; 93 Doersch (b0195) 2020 Amin, Altaheri, Muhammad, Abdul, Alsulaiman (b0150) 2022; 18 Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (b0095) 2018; 99 Chikontwe (10.1016/j.bspc.2025.108246_b0205) 2022 Lian (10.1016/j.bspc.2025.108246_b0110) 2024; 178 Wu (10.1016/j.bspc.2025.108246_b0005) 2023; 111 Al-Saegh (10.1016/j.bspc.2025.108246_b0070) 2021; 63 Tangermann (10.1016/j.bspc.2025.108246_b0175) 2012; 6 Schirrmeister (10.1016/j.bspc.2025.108246_b0185) 2017; 38 Pfurtscheller (10.1016/j.bspc.2025.108246_b0010) 2001; 89 Ahmad (10.1016/j.bspc.2025.108246_b0220) 2024; 28 Bhattacharyya (10.1016/j.bspc.2025.108246_b0025) 2018; 78 Sharma (10.1016/j.bspc.2025.108246_b0030) 2018; 12 Li (10.1016/j.bspc.2025.108246_b0090) 2020; 28 Amin (10.1016/j.bspc.2025.108246_b0150) 2022; 18 Schuster (10.1016/j.bspc.2025.108246_b0015) 2011; 9 Ng (10.1016/j.bspc.2025.108246_b0155) 2024; 172 Li (10.1016/j.bspc.2025.108246_b0160) 2023; 163 Lawhern (10.1016/j.bspc.2025.108246_b0085) 2018; 15 Leeb (10.1016/j.bspc.2025.108246_b0170) 2007; 15 Pachori (10.1016/j.bspc.2025.108246_b0035) 2024; 8 An (10.1016/j.bspc.2025.108246_b0135) 2023; 28 Ajmeria (10.1016/j.bspc.2025.108246_b0180) 2023; 25 Amin (10.1016/j.bspc.2025.108246_b0145) 2019; 101 Ye (10.1016/j.bspc.2025.108246_b0200) 2020 Sung (10.1016/j.bspc.2025.108246_b0190) 2018 Dolzhikova (10.1016/j.bspc.2025.108246_b0225) 2021 Patidar (10.1016/j.bspc.2025.108246_b0045) 2017; 50 Nishad (10.1016/j.bspc.2025.108246_b0055) 2019; 93 Pachori (10.1016/j.bspc.2025.108246_b0020) 2024; 8 10.1016/j.bspc.2025.108246_b0060 Doersch (10.1016/j.bspc.2025.108246_b0195) 2020 Bhattacharyya (10.1016/j.bspc.2025.108246_b0210) 2017; 7 Altuwaijri (10.1016/j.bspc.2025.108246_b0080) 2022; 12 Han (10.1016/j.bspc.2025.108246_b0130) 2024; 238 Sharma (10.1016/j.bspc.2025.108246_b0040) 2017; 28 Tsiouris (10.1016/j.bspc.2025.108246_b0095) 2018; 99 Sun (10.1016/j.bspc.2025.108246_b0115) 2019; 475 Mathur (10.1016/j.bspc.2025.108246_b0065) 2015 Santoro (10.1016/j.bspc.2025.108246_b0165) 2016 Daly (10.1016/j.bspc.2025.108246_b0140) 2008; 7 Sharma (10.1016/j.bspc.2025.108246_b0050) 2019; 75 Zhang (10.1016/j.bspc.2025.108246_b0075) 2020; 24 Sun (10.1016/j.bspc.2025.108246_b0100) 2019; 125 Xu (10.1016/j.bspc.2025.108246_b0105) 2022; 218 Sun (10.1016/j.bspc.2025.108246_b0120) 2022; 151 Finn (10.1016/j.bspc.2025.108246_b0125) 2017 Dose (10.1016/j.bspc.2025.108246_b0215) 2018; 114 |
References_xml | – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: b0010 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE – volume: 63 year: 2021 ident: b0070 article-title: Deep learning for motor imagery EEG-based classification: a review publication-title: Biomed. Signal Process. Control – volume: 178 year: 2024 ident: b0110 article-title: An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features publication-title: Comput. Biol. Med. – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b0185 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 8 start-page: 1 year: 2024 end-page: 4 ident: b0020 article-title: FBSE-based Approach for Discriminating Seizure and Normal EEG Signals publication-title: IEEE Sensors Lett. – volume: 18 start-page: 5412 year: 2022 end-page: 5421 ident: b0150 article-title: Attention-inception and long- short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation publication-title: IEEE Trans. Ind. Informatics – start-page: 14554 year: 2022 end-page: 14563 ident: b0205 article-title: CAD: Co-adapting discriminative features for improved few-shot classification publication-title: In – volume: 28 start-page: 2615 year: 2020 end-page: 2626 ident: b0090 article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 238 year: 2024 ident: b0130 article-title: META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain–computer interfaces publication-title: Expert Syst. Appl. – volume: 151 start-page: 111 year: 2022 end-page: 120 ident: b0120 article-title: Golden subject is everyone: a subject transfer neural network for motor imagery-based brain computer interfaces publication-title: Neural Netw. – volume: 28 start-page: 3236 year: 2024 end-page: 3247 ident: b0220 article-title: A secure and Interpretable AI for smart healthcare system: a case study on epilepsy diagnosis using EEG signals publication-title: IEEE J. Biomed. Heal. Informatics – volume: 28 start-page: 2959 year: 2017 end-page: 2978 ident: b0040 article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals publication-title: Neural Comput. Appl. – volume: 12 start-page: 72 year: 2018 end-page: 82 ident: b0030 article-title: Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals publication-title: IET Sci. Meas. Technol. – volume: 75 start-page: 101 year: 2019 end-page: 111 ident: b0050 article-title: Accurate tunable-Q wavelet transform based method for QRS complex detection publication-title: Comput. Electr. Eng. – volume: 7 start-page: 1 year: 2017 end-page: 18 ident: b0210 article-title: Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals publication-title: Appl. Sci. – reference: A. Nishad, A. Upadhyay, G. Ravi Shankar Reddy, V. Bajaj, Classification of epileptic EEG signals using sparse spectrum based empirical wavelet transform, Electron. Lett., vol. 56, no. 25, pp. 1370–1372, 2020. – volume: 8 start-page: 1 year: 2024 end-page: 4 ident: b0035 article-title: Detection of atrial fibrillation from PPG sensor data using variational mode decomposition publication-title: IEEE Sensors Lett. – volume: 15 start-page: 473 year: 2007 end-page: 482 ident: b0170 article-title: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 101 start-page: 542 year: 2019 end-page: 554 ident: b0145 article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion publication-title: Futur. Gener. Comput. Syst. – volume: 7 start-page: 1032 year: 2008 end-page: 1043 ident: b0140 article-title: Brain-computer interfaces in neurological rehabilitation publication-title: Lancet Neurol. – volume: 6 start-page: 55 year: 2012 ident: b0175 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – start-page: 1856 year: 2017 end-page: 1868 ident: b0125 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: In – volume: 50 start-page: 71 year: 2017 end-page: 78 ident: b0045 article-title: An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism publication-title: Appl. Soft Comput. J. – start-page: 319 year: 2021 end-page: 324 ident: b0225 article-title: An ensemble CNN for subject-independent classification of motor imagery-based EEG publication-title: In – volume: 28 start-page: 1 year: 2023 end-page: 15 ident: b0135 article-title: Dual attention relation network with fine-tuning for few-shot EEG motor imagery classification publication-title: IEEE Trans. Neural Networks Learn. Syst. – start-page: 1199 year: 2018 end-page: 1208 ident: b0190 article-title: Relation Network for Few-Shot Learning publication-title: In – volume: 93 start-page: 96 year: 2019 end-page: 110 ident: b0055 article-title: Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals publication-title: Futur. Gener. Comput. Syst. – volume: 99 start-page: 24 year: 2018 end-page: 37 ident: b0095 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. – volume: 475 start-page: 1 year: 2019 end-page: 17 ident: b0115 article-title: Unsupervised EEG feature extraction based on echo state network publication-title: Inf. Sci. (ny) – volume: 25 start-page: 184 year: 2023 end-page: 212 ident: b0180 article-title: A critical survey of EEG-Based BCI Systems for Applications in Industrial internet of things publication-title: IEEE Commun. Surv. Tutorials – start-page: 8805 year: 2020 end-page: 8814 ident: b0200 article-title: Few-shot learning via embedding adaptation with set-to-set functions publication-title: In – volume: 218 year: 2022 ident: b0105 article-title: A framework for motor imagery with LSTM neural network publication-title: Comput. Methods Programs Biomed. – year: 2020 ident: b0195 article-title: CrossTransformers : spatially-aware few-shot transfer publication-title: Neural Information Processing Systems – volume: 9 start-page: 1115 year: 2011 ident: b0015 article-title: Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines publication-title: BMC Med. – start-page: 474 year: 2015 end-page: 478 ident: b0065 article-title: Detection of glottal closure instants from voiced speech signals using the Fourier-Bessel series expansion publication-title: In 2015 International Conference on Communication and Signal Processing, ICCSP 2015 – volume: 163 start-page: 195 year: 2023 end-page: 204 ident: b0160 article-title: A novel semi-supervised meta learning method for subject-transfer brain–computer interface publication-title: Neural Netw. – start-page: 2740 year: 2016 end-page: 2751 ident: b0165 article-title: Meta-Learning with Memory-Augmented Neural Networks publication-title: In – volume: 78 start-page: 185 year: 2018 end-page: 196 ident: b0025 article-title: Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals publication-title: Digit. Signal Process. A Rev. J. – volume: 114 start-page: 532 year: 2018 end-page: 542 ident: b0215 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Syst. Appl. – volume: 15 year: 2018 ident: b0085 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. – volume: 111 start-page: 1314 year: 2023 end-page: 1332 ident: b0005 article-title: Affective brain-computer interfaces (aBCIs): a tutorial publication-title: Proc. IEEE – volume: 125 start-page: 259 year: 2019 end-page: 267 ident: b0100 article-title: EEG-based user identification system using 1D-convolutional long short-term memory neural networks publication-title: Expert Syst. Appl. – volume: 24 start-page: 2570 year: 2020 end-page: 2579 ident: b0075 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Heal. Informatics – volume: 172 year: 2024 ident: b0155 article-title: Subject-independent meta-learning framework towards optimal training of EEG-based classifiers publication-title: Neural Netw. – volume: 12 start-page: 995 year: 2022 ident: b0080 article-title: A multi-branch convolutional neural network with squeeze-and-excitation attention blocks for EEG-based motor imagery signals classification publication-title: Diagnostics – volume: 111 start-page: 1314 issue: 10 year: 2023 ident: 10.1016/j.bspc.2025.108246_b0005 article-title: Affective brain-computer interfaces (aBCIs): a tutorial publication-title: Proc. IEEE doi: 10.1109/JPROC.2023.3277471 – volume: 475 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.bspc.2025.108246_b0115 article-title: Unsupervised EEG feature extraction based on echo state network publication-title: Inf. Sci. (ny) – start-page: 319 year: 2021 ident: 10.1016/j.bspc.2025.108246_b0225 article-title: An ensemble CNN for subject-independent classification of motor imagery-based EEG – year: 2020 ident: 10.1016/j.bspc.2025.108246_b0195 article-title: CrossTransformers : spatially-aware few-shot transfer publication-title: Neural Information Processing Systems – volume: 28 start-page: 2959 issue: 10 year: 2017 ident: 10.1016/j.bspc.2025.108246_b0040 article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2919-6 – volume: 28 start-page: 2615 issue: 12 year: 2020 ident: 10.1016/j.bspc.2025.108246_b0090 article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3037326 – volume: 89 start-page: 1123 issue: 7 year: 2001 ident: 10.1016/j.bspc.2025.108246_b0010 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 63 issue: 1 year: 2021 ident: 10.1016/j.bspc.2025.108246_b0070 article-title: Deep learning for motor imagery EEG-based classification: a review publication-title: Biomed. Signal Process. Control – volume: 218 year: 2022 ident: 10.1016/j.bspc.2025.108246_b0105 article-title: A framework for motor imagery with LSTM neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.106692 – volume: 78 start-page: 185 year: 2018 ident: 10.1016/j.bspc.2025.108246_b0025 article-title: Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals publication-title: Digit. Signal Process. A Rev. J. doi: 10.1016/j.dsp.2018.02.020 – volume: 18 start-page: 5412 issue: 8 year: 2022 ident: 10.1016/j.bspc.2025.108246_b0150 article-title: Attention-inception and long- short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2021.3132340 – volume: 9 start-page: 1115 issue: 75 year: 2011 ident: 10.1016/j.bspc.2025.108246_b0015 article-title: Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines publication-title: BMC Med. – volume: 8 start-page: 1 issue: 12 year: 2024 ident: 10.1016/j.bspc.2025.108246_b0020 article-title: FBSE-based Approach for Discriminating Seizure and Normal EEG Signals publication-title: IEEE Sensors Lett. – volume: 28 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.bspc.2025.108246_b0135 article-title: Dual attention relation network with fine-tuning for few-shot EEG motor imagery classification publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 28 start-page: 3236 issue: 6 year: 2024 ident: 10.1016/j.bspc.2025.108246_b0220 article-title: A secure and Interpretable AI for smart healthcare system: a case study on epilepsy diagnosis using EEG signals publication-title: IEEE J. Biomed. Heal. Informatics doi: 10.1109/JBHI.2024.3366341 – volume: 114 start-page: 532 issue: 1 year: 2018 ident: 10.1016/j.bspc.2025.108246_b0215 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.031 – volume: 151 start-page: 111 issue: 1 year: 2022 ident: 10.1016/j.bspc.2025.108246_b0120 article-title: Golden subject is everyone: a subject transfer neural network for motor imagery-based brain computer interfaces publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.03.025 – volume: 178 year: 2024 ident: 10.1016/j.bspc.2025.108246_b0110 article-title: An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108727 – start-page: 1199 year: 2018 ident: 10.1016/j.bspc.2025.108246_b0190 article-title: Relation Network for Few-Shot Learning – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.bspc.2025.108246_b0085 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 125 start-page: 259 year: 2019 ident: 10.1016/j.bspc.2025.108246_b0100 article-title: EEG-based user identification system using 1D-convolutional long short-term memory neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.080 – volume: 8 start-page: 1 issue: 3 year: 2024 ident: 10.1016/j.bspc.2025.108246_b0035 article-title: Detection of atrial fibrillation from PPG sensor data using variational mode decomposition publication-title: IEEE Sensors Lett. doi: 10.1109/LSENS.2024.3358589 – volume: 6 start-page: 55 year: 2012 ident: 10.1016/j.bspc.2025.108246_b0175 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – volume: 99 start-page: 24 year: 2018 ident: 10.1016/j.bspc.2025.108246_b0095 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – start-page: 1856 year: 2017 ident: 10.1016/j.bspc.2025.108246_b0125 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – start-page: 14554 year: 2022 ident: 10.1016/j.bspc.2025.108246_b0205 article-title: CAD: Co-adapting discriminative features for improved few-shot classification – volume: 12 start-page: 72 issue: 1 year: 2018 ident: 10.1016/j.bspc.2025.108246_b0030 article-title: Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2017.0058 – volume: 163 start-page: 195 year: 2023 ident: 10.1016/j.bspc.2025.108246_b0160 article-title: A novel semi-supervised meta learning method for subject-transfer brain–computer interface publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.03.039 – volume: 75 start-page: 101 year: 2019 ident: 10.1016/j.bspc.2025.108246_b0050 article-title: Accurate tunable-Q wavelet transform based method for QRS complex detection publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.01.025 – volume: 7 start-page: 1032 issue: 11 year: 2008 ident: 10.1016/j.bspc.2025.108246_b0140 article-title: Brain-computer interfaces in neurological rehabilitation publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70223-0 – volume: 101 start-page: 542 issue: 1 year: 2019 ident: 10.1016/j.bspc.2025.108246_b0145 article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.06.027 – volume: 50 start-page: 71 year: 2017 ident: 10.1016/j.bspc.2025.108246_b0045 article-title: An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2016.11.002 – start-page: 8805 year: 2020 ident: 10.1016/j.bspc.2025.108246_b0200 article-title: Few-shot learning via embedding adaptation with set-to-set functions – ident: 10.1016/j.bspc.2025.108246_b0060 doi: 10.1049/el.2020.2526 – start-page: 2740 year: 2016 ident: 10.1016/j.bspc.2025.108246_b0165 article-title: Meta-Learning with Memory-Augmented Neural Networks – volume: 12 start-page: 995 issue: 4 year: 2022 ident: 10.1016/j.bspc.2025.108246_b0080 article-title: A multi-branch convolutional neural network with squeeze-and-excitation attention blocks for EEG-based motor imagery signals classification publication-title: Diagnostics doi: 10.3390/diagnostics12040995 – volume: 24 start-page: 2570 issue: 9 year: 2020 ident: 10.1016/j.bspc.2025.108246_b0075 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Heal. Informatics doi: 10.1109/JBHI.2020.2967128 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.bspc.2025.108246_b0185 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 25 start-page: 184 issue: 1 year: 2023 ident: 10.1016/j.bspc.2025.108246_b0180 article-title: A critical survey of EEG-Based BCI Systems for Applications in Industrial internet of things publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2022.3232576 – start-page: 474 year: 2015 ident: 10.1016/j.bspc.2025.108246_b0065 article-title: Detection of glottal closure instants from voiced speech signals using the Fourier-Bessel series expansion – volume: 93 start-page: 96 year: 2019 ident: 10.1016/j.bspc.2025.108246_b0055 article-title: Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.10.005 – volume: 7 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.bspc.2025.108246_b0210 article-title: Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals publication-title: Appl. Sci. doi: 10.3390/app7040385 – volume: 172 issue: 1 year: 2024 ident: 10.1016/j.bspc.2025.108246_b0155 article-title: Subject-independent meta-learning framework towards optimal training of EEG-based classifiers publication-title: Neural Netw. – volume: 238 issue: 1 year: 2024 ident: 10.1016/j.bspc.2025.108246_b0130 article-title: META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain–computer interfaces publication-title: Expert Syst. Appl. – volume: 15 start-page: 473 issue: 4 year: 2007 ident: 10.1016/j.bspc.2025.108246_b0170 article-title: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.906956 |
SSID | ssj0048714 |
Score | 2.3845918 |
Snippet | Brain-computer interfaces (BCIs) offer a groundbreaking avenue for facilitating communication between the human brain and external devices. Particularly, motor... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 108246 |
SubjectTerms | Attention mechanism Cross-subject Memory augmentation Meta-learning Motor imagery |
Title | Memory-augmented-based meta-learning framework for cross-subject motor imagery classification |
URI | https://dx.doi.org/10.1016/j.bspc.2025.108246 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXvQgfmL9KDl4k9g2m2y6x1IsVWkvWuhFQpJNSoXWYreHXvztzuyHKIgHjwkJWd6Embfh5YWQa2FEqqR0rJvINhNdE5gNQTCnIBHGxkYq4DnkaBwPJ-JhKqc10q_uwqCsssz9RU7Ps3XZ0yrRbK3m89YTcOm4C38nUMTb6MqON9iFwl1--_El8wA-nvt742CGo8uLM4XGy65XaGPIJUrtOJLg34rTt4IzOCD7JVOkveJjDknNL4_I3jf_wGPyMkKd7JaZzSz31kwZFqWULnxmWPkexIyGSn9FgaDSfGW23lg8gKEQKOibL9DJYksdUmnUDuXhOiGTwd1zf8jK9xKY4zLKGFRvqYJK0iSywEOElapjHLdIm4C5KYgE55an0JLeA1MyiRXSpU5Ja7wx0SmpL9-W_oxQYEU28AiwjZyQAS28OxhNz32sknbaIDcVUHpV2GLoSi_2qhFWjbDqAtYGkRWW-kdwNeTtP-ad_3PeBdnFVqE6uST17H3jr4A7ZLaZb44m2endPw7Hn9lfw_o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtoeSp_UPnPorSzqJps1R5FKrI9LFbyUZTfZiAWt1Hjw33cmD7BQeugxmx0SvgkzX5ZvvwV48rQXSyEi1g5Ek3ltnTCTJB6LJBZCXxtXJrQOORr74dR7nYlZBbrlXhiSVRa1P6_pWbUuRhoFmo31YtF4Qy7tt_HvBJt4k1zZD6BG7lSiCrVOfxCOy4KMlDyz-Kb5jAKKvTO5zMts1uRkyAWp7Tjx4N_6017P6Z3CSUEWnU7-PmdQsatzON6zELyA9xFJZXdMb-eZvWbMqC_FztKmmhVHQsydpJRgOchRnezJbLM1tAbjYK5wbLEkM4udExGbJvlQlrFLmPZeJt2QFUcmsIgLN2XYwIVMZBAHrkEq4hkhWzrihpgTkjeJyeDc8BivhLVIlnRgPBHFkRRGW63dK6iuPlf2GhwkRibhLsLrRp5IyMW7RQm13PoyaMZ1eC6BUuvcGUOVkrEPRbAqglXlsNZBlFiqH_lVWLr_iLv5Z9wjHIaT0VAN--PBLRzRnVyEcgfV9Gtr75FKpOah-FS-AaaAxqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory-augmented-based+meta-learning+framework+for+cross-subject+motor+imagery+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Liu%2C+Junxiu&rft.au=Zhao%2C+Xuanyu&rft.au=Luo%2C+Yuling&rft.au=Qin%2C+Sheng&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=110&rft_id=info:doi/10.1016%2Fj.bspc.2025.108246&rft.externalDocID=S1746809425007578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |