MM-AutoSolver: A multimodal machine learning method for the auto-selection of iterative solvers and preconditioners
The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the increasing scale of these systems and the development of both HPC software and hardware, iterative solvers along with appropriate preconditio...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 205; p. 105144 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the increasing scale of these systems and the development of both HPC software and hardware, iterative solvers along with appropriate preconditioners have become mainstream methods for efficiently solving these sparse linear systems that arise from real-world HPC applications. Among abundant combinations of iterative solvers and preconditioners, the automatic selection of the optimal one has become a vital problem for accelerating the solution of these sparse linear systems. Previous work has utilized machine learning or deep learning algorithms to tackle this problem, but fails to abstract and exploit sufficient features from sparse linear systems, thus unable to obtain satisfactory results. In this work, we propose to address the automatic selection of the optimal combination of iterative solvers and preconditioners through the powerful multimodal machine learning framework, in which features of different modalities can be fully extracted and utilized to improve the results. Based on the multimodal machine learning framework, we put forward a multimodal machine learning model called MM-AutoSolver for the auto-selection of the optimal combination for a given sparse linear system. The experimental results based on a new large-scale matrix collection showcase that the proposed MM-AutoSolver outperforms state-of-the-art methods in predictive performance and has the capability to significantly accelerate the solution of large-scale sparse linear systems in HPC applications.
•A multimodal machine learning framework used for learning features of different modalities.•A multimodal model MM-AutoSolver is proposed to learn numerical features and structural features from sparse linear systems.•A performance evaluation of the predictive accuracy of MM-AutoSolver and its speedup is constructed. |
---|---|
AbstractList | The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the increasing scale of these systems and the development of both HPC software and hardware, iterative solvers along with appropriate preconditioners have become mainstream methods for efficiently solving these sparse linear systems that arise from real-world HPC applications. Among abundant combinations of iterative solvers and preconditioners, the automatic selection of the optimal one has become a vital problem for accelerating the solution of these sparse linear systems. Previous work has utilized machine learning or deep learning algorithms to tackle this problem, but fails to abstract and exploit sufficient features from sparse linear systems, thus unable to obtain satisfactory results. In this work, we propose to address the automatic selection of the optimal combination of iterative solvers and preconditioners through the powerful multimodal machine learning framework, in which features of different modalities can be fully extracted and utilized to improve the results. Based on the multimodal machine learning framework, we put forward a multimodal machine learning model called MM-AutoSolver for the auto-selection of the optimal combination for a given sparse linear system. The experimental results based on a new large-scale matrix collection showcase that the proposed MM-AutoSolver outperforms state-of-the-art methods in predictive performance and has the capability to significantly accelerate the solution of large-scale sparse linear systems in HPC applications.
•A multimodal machine learning framework used for learning features of different modalities.•A multimodal model MM-AutoSolver is proposed to learn numerical features and structural features from sparse linear systems.•A performance evaluation of the predictive accuracy of MM-AutoSolver and its speedup is constructed. |
ArticleNumber | 105144 |
Author | Li, Keqin Xiong, Hantao Li, Kenli He, Weiqing Lin, Shengle Yang, Wangdong |
Author_xml | – sequence: 1 givenname: Hantao orcidid: 0009-0001-5972-4199 surname: Xiong fullname: Xiong, Hantao organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 2 givenname: Wangdong surname: Yang fullname: Yang, Wangdong email: yangwangdong@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 3 givenname: Weiqing orcidid: 0009-0006-5219-6289 surname: He fullname: He, Weiqing organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 4 givenname: Shengle orcidid: 0000-0003-3329-0924 surname: Lin fullname: Lin, Shengle organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 5 givenname: Keqin orcidid: 0000-0001-5224-4048 surname: Li fullname: Li, Keqin organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 6 givenname: Kenli surname: Li fullname: Li, Kenli organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China |
BookMark | eNp9kMtOwzAQRb0oEi3wA6z8Ayl2YscJYlNVvKRWLIC15dhj6iixK9utxN-TUtasRrqaczVzFmjmgweEbilZUkLru37Z741elqTkU8ApYzM0J4JVhagov0SLlHpCKOWimaO03RarQw7vYThCvMcrPB6G7MZg1IBHpXfOAx5ARe_8Fx4h74LBNkScd4DVBBYJBtDZBY-DxS5DVNkdAaffwoSVN3gfQQdv3Glryq7RhVVDgpu_eYU-nx4_1i_F5u35db3aFLrkVS6otq2yorNlybkVumqFEl3Z0IbXttMcWmGo5TVrDLSKtEzUlPGmZazpWlZ11RUqz706hpQiWLmPblTxW1IiT6pkL0-q5EmVPKuaoIczBNNlRwdRJu3AazBu-iJLE9x_-A_baXf1 |
Cites_doi | 10.1109/TIP.2020.3010631 10.1109/TPAMI.2021.3125995 10.1109/TIT.1967.1053964 10.1023/A:1022627411411 10.1109/MM.2021.3085578 10.1016/j.cma.2024.117031 10.1109/TITS.2020.3034239 10.1137/0907058 10.1137/15M1028406 10.1613/jair.301 10.1145/1462173.1462174 10.1109/TPDS.2021.3090328 10.1162/neco.1989.1.4.541 10.1007/s00521-019-04311-9 10.1006/jcph.2002.7176 10.1109/TPAMI.2018.2798607 10.1038/nature14539 10.1137/0913035 10.1098/rsta.2019.0053 10.1016/j.procs.2013.05.300 10.1109/TNNLS.2020.2978386 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpdc.2025.105144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_jpdc_2025_105144 S074373152500111X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFSI ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADFGL ADHUB ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c253t-1cf9af7bf2255f7c397a7b281856fbc5e97d1f5648de9a0947614589448b943b3 |
IEDL.DBID | .~1 |
ISSN | 0743-7315 |
IngestDate | Thu Aug 21 00:27:31 EDT 2025 Sat Aug 30 17:17:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HPC Auto-selection Iterative solver Preconditioner Multimodal machine learning Sparse linear systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-1cf9af7bf2255f7c397a7b281856fbc5e97d1f5648de9a0947614589448b943b3 |
ORCID | 0009-0001-5972-4199 0009-0006-5219-6289 0000-0003-3329-0924 0000-0001-5224-4048 |
ParticipantIDs | crossref_primary_10_1016_j_jpdc_2025_105144 elsevier_sciencedirect_doi_10_1016_j_jpdc_2025_105144 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Eller, Cheng, Maier (br0110) 2012 Liang, Qian, Guo, Cheng, Liang (br0340) 2022; 44 Kaelbling, Littman, Moore (br0590) 1996; 4 Balay, Abhyankar, Adams, Benson, Brown, Brune, Buschelman, Constantinescu, Dalcin, Dener, Eijkhout, Faibussowitsch, Gropp, Hapla, Isaac, Jolivet, Karpeev, Kaushik, Knepley, Kong, Kruger, May, McInnes, Mills, Mitchell, Munson, Roman, Rupp, Sanan, Sarich, Smith, Zampini, Zhang, Zhang, Zhang (br0440) 2023 Zou, Xu, Zhang (br0070) 2023 Bhowmick, Eijkhout, Freund, Fuentes, Keyes (br0090) 2006 Cover, Hart (br0510) 1967; 13 Cortes, Vapnik (br0490) 1995; 20 Sood, Norris, Jessup (br0560) 2017 Holloway, Chen (br0570) 2007 Sun, Jing, Xu (br0140) 2024 Freund, Schapire (br0500) 1995 Chen, Guestrin (br0460) 2016 Hecht (br0420) 2012; 20 Tang, Zhang, Chen (br0200) 2022 Fletcher (br0300) 2006 Bhowmick, Toth, Raghavan (br0100) 2009 Goodfellow, Bengio, Courville (br0610) 2016 LeCun, Bengio, Hinton (br0160) 2015; 521 Yeom, Thiagarajan, Bhatele, Bronevetsky, Kolev (br0170) 2016 Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine, Van der Vorst (br0050) 1994 Götz, Anzt (br0220) 2018 Yamada, Katagiri, Takizawa, Minami, Yokokawa, Nagai, Ogino (br0180) 2018 Zou, Zhou, Li, Ouyang, Chen (br0330) 2020; 32 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (br0480) 2016 Davis, Hu (br0060) 2011; 38 Wright (br0260) 2006 Tao, Hou, Qian, Zhu, Yi (br0350) 2020; 29 Anzt, Boman, Falgout, Ghysels, Heroux, Li, Curfman McInnes, Tran Mills, Rajamanickam, Rupp (br0010) 2020; 378 Webb, Keogh, Miikkulainen (br0520) 2010; 15 Hestenes, Stiefel (br0270) 1952 Eijkhout, Fuentes (br0530) 2010 Xia, Cheng, Zhou, Hu, Chun (br0450) 2021; 41 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (br0250) 1989; 1 Buluç, Fineman, Frigo, Gilbert, Leiserson (br0400) 2009 Saad (br0030) 2003 Benzi (br0040) 2002; 182 Davis (br0020) 2006 Jasak, Jemcov, Tukovic (br0430) 2007 Morency, Liang, Zadeh (br0230) 2022 Xie, Tan, Liu, Sun (br0380) 2019 Kuefler, Chen (br0580) 2008 Zabegaev, Keilegavlen, Iversen, Berre (br0150) 2024; 426 Sakurai, Katagiri, Kuroda, Naono, Igai, Ohshima (br0120) 2013; 18 Erk, Padó (br0600) 2008 Saad, Schultz (br0280) 1986; 7 Ruge, Stüben (br0290) 1987 Motter, Sood, Jessup, Norris (br0550) 2015 Mitchell (br0080) 1997 Jessup, Motter, Norris, Sood (br0130) 2016; 38 Chen, Li, Zhongyao, Piccialli, Hoi, Zeng (br0240) 2020; 23 Van der Vorst (br0310) 1992; 13 Freund, Mason (br0470) 1999; vol. 99 Eijkhout, Fuentes (br0410) 2009; 35 Long, Shelhamer, Darrell (br0370) 2015 Baltrušaitis, Ahuja, Morency (br0320) 2018; 41 Wu, Pan, Chen, Long, Zhang, Philip (br0360) 2020; 32 Funk, Götz, Anzt (br0190) 2022 Xie, Tan, Liu, Sun (br0390) 2021; 33 Sood (br0540) 2019 Burden (br0210) 2011 Zou (10.1016/j.jpdc.2025.105144_br0330) 2020; 32 Bhowmick (10.1016/j.jpdc.2025.105144_br0100) 2009 Tao (10.1016/j.jpdc.2025.105144_br0350) 2020; 29 Xia (10.1016/j.jpdc.2025.105144_br0450) 2021; 41 Freund (10.1016/j.jpdc.2025.105144_br0500) 1995 Abadi (10.1016/j.jpdc.2025.105144_br0480) 2016 Zabegaev (10.1016/j.jpdc.2025.105144_br0150) 2024; 426 Kuefler (10.1016/j.jpdc.2025.105144_br0580) 2008 Eijkhout (10.1016/j.jpdc.2025.105144_br0410) 2009; 35 Buluç (10.1016/j.jpdc.2025.105144_br0400) 2009 Yeom (10.1016/j.jpdc.2025.105144_br0170) 2016 Erk (10.1016/j.jpdc.2025.105144_br0600) 2008 Eijkhout (10.1016/j.jpdc.2025.105144_br0530) 2010 Xie (10.1016/j.jpdc.2025.105144_br0380) 2019 Webb (10.1016/j.jpdc.2025.105144_br0520) 2010; 15 Cortes (10.1016/j.jpdc.2025.105144_br0490) 1995; 20 LeCun (10.1016/j.jpdc.2025.105144_br0250) 1989; 1 Cover (10.1016/j.jpdc.2025.105144_br0510) 1967; 13 Zou (10.1016/j.jpdc.2025.105144_br0070) Holloway (10.1016/j.jpdc.2025.105144_br0570) 2007 Liang (10.1016/j.jpdc.2025.105144_br0340) 2022; 44 Barrett (10.1016/j.jpdc.2025.105144_br0050) 1994 Götz (10.1016/j.jpdc.2025.105144_br0220) 2018 Hestenes (10.1016/j.jpdc.2025.105144_br0270) 1952 Eller (10.1016/j.jpdc.2025.105144_br0110) 2012 Chen (10.1016/j.jpdc.2025.105144_br0240) 2020; 23 Jasak (10.1016/j.jpdc.2025.105144_br0430) 2007 Motter (10.1016/j.jpdc.2025.105144_br0550) 2015 Tang (10.1016/j.jpdc.2025.105144_br0200) 2022 Anzt (10.1016/j.jpdc.2025.105144_br0010) 2020; 378 Wu (10.1016/j.jpdc.2025.105144_br0360) 2020; 32 Hecht (10.1016/j.jpdc.2025.105144_br0420) 2012; 20 Long (10.1016/j.jpdc.2025.105144_br0370) 2015 Mitchell (10.1016/j.jpdc.2025.105144_br0080) 1997 Davis (10.1016/j.jpdc.2025.105144_br0060) 2011; 38 Fletcher (10.1016/j.jpdc.2025.105144_br0300) 2006 Ruge (10.1016/j.jpdc.2025.105144_br0290) 1987 Jessup (10.1016/j.jpdc.2025.105144_br0130) 2016; 38 Saad (10.1016/j.jpdc.2025.105144_br0280) 1986; 7 Xie (10.1016/j.jpdc.2025.105144_br0390) 2021; 33 Sood (10.1016/j.jpdc.2025.105144_br0560) 2017 Van der Vorst (10.1016/j.jpdc.2025.105144_br0310) 1992; 13 Sood (10.1016/j.jpdc.2025.105144_br0540) 2019 Benzi (10.1016/j.jpdc.2025.105144_br0040) 2002; 182 Burden (10.1016/j.jpdc.2025.105144_br0210) 2011 Bhowmick (10.1016/j.jpdc.2025.105144_br0090) 2006 Funk (10.1016/j.jpdc.2025.105144_br0190) 2022 Balay (10.1016/j.jpdc.2025.105144_br0440) Goodfellow (10.1016/j.jpdc.2025.105144_br0610) 2016 Yamada (10.1016/j.jpdc.2025.105144_br0180) 2018 Wright (10.1016/j.jpdc.2025.105144_br0260) 2006 Baltrušaitis (10.1016/j.jpdc.2025.105144_br0320) 2018; 41 LeCun (10.1016/j.jpdc.2025.105144_br0160) 2015; 521 Kaelbling (10.1016/j.jpdc.2025.105144_br0590) 1996; 4 Chen (10.1016/j.jpdc.2025.105144_br0460) 2016 Saad (10.1016/j.jpdc.2025.105144_br0030) 2003 Davis (10.1016/j.jpdc.2025.105144_br0020) 2006 Sakurai (10.1016/j.jpdc.2025.105144_br0120) 2013; 18 Sun (10.1016/j.jpdc.2025.105144_br0140) 2024 Morency (10.1016/j.jpdc.2025.105144_br0230) 2022 Freund (10.1016/j.jpdc.2025.105144_br0470) 1999; vol. 99 |
References_xml | – volume: 33 start-page: 159 year: 2021 end-page: 175 ident: br0390 article-title: A pattern-based spgemm library for multi-core and many-core architectures publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 785 year: 2016 end-page: 794 ident: br0460 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 7 start-page: 856 year: 1986 end-page: 869 ident: br0280 article-title: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. – volume: 41 start-page: 67 year: 2021 end-page: 75 ident: br0450 article-title: Kunpeng 920: the first 7-nm chiplet-based 64-core arm soc for cloud services publication-title: IEEE MICRO – year: 1997 ident: br0080 – year: 2006 ident: br0260 article-title: Numerical Optimization – volume: 44 start-page: 9236 year: 2022 end-page: 9254 ident: br0340 article-title: Af: an association-based fusion method for multi-modal classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: br0250 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – year: 1952 ident: br0270 article-title: Methods of Conjugate Gradients for Solving Linear Systems, vol. 49 – start-page: 257 year: 2018 end-page: 262 ident: br0180 article-title: Preconditioner auto-tuning using deep learning for sparse iterative algorithms publication-title: 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW) – start-page: 233 year: 2009 end-page: 244 ident: br0400 article-title: Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks publication-title: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures – year: 2019 ident: br0540 article-title: Iterative solver selection techniques for sparse linear systems – year: 2006 ident: br0090 article-title: Application of machine learning to the selection of sparse linear solvers publication-title: Int. J. High Perform. Comput. Appl. – volume: 41 start-page: 423 year: 2018 end-page: 443 ident: br0320 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 73 year: 2006 end-page: 89 ident: br0300 article-title: Conjugate gradient methods for indefinite systems publication-title: Numerical Analysis: Proceedings of the Dundee Conference on Numerical Analysis – volume: 15 start-page: 713 year: 2010 end-page: 714 ident: br0520 article-title: Naïve Bayes publication-title: Encycl. Mach. Learn. – volume: 426 year: 2024 ident: br0150 article-title: Automated linear solver selection for simulation of multiphysics processes in porous media publication-title: Comput. Methods Appl. Mech. Eng. – volume: 20 start-page: 251 year: 2012 end-page: 265 ident: br0420 article-title: New development in FreeFEM++ publication-title: J. Numer. Math. – start-page: 94 year: 2019 end-page: 105 ident: br0380 article-title: Ia-spgemm: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication publication-title: Proceedings of the ACM International Conference on Supercomputing – year: 2011 ident: br0210 article-title: Numerical Analysis – volume: 38 start-page: S750 year: 2016 end-page: S771 ident: br0130 article-title: Performance-based numerical solver selection in the lighthouse framework publication-title: SIAM J. Sci. Comput. – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: br0360 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 265 year: 2016 end-page: 283 ident: br0480 article-title: TensorFlow: a system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation – year: 2006 ident: br0020 article-title: Direct Methods for Sparse Linear Systems – volume: 182 start-page: 418 year: 2002 end-page: 477 ident: br0040 article-title: Preconditioning techniques for large linear systems: a survey publication-title: J. Comput. Phys. – start-page: 16 year: 2015 end-page: 24 ident: br0550 article-title: Lighthouse: an automated solver selection tool publication-title: Proceedings of the 3rd International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering – volume: 32 start-page: 5633 year: 2020 end-page: 5647 ident: br0330 article-title: Multi-task cascade deep convolutional neural networks for large-scale commodity recognition publication-title: Neural Comput. Appl. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0160 article-title: Deep learning publication-title: Nature – start-page: 955 year: 2008 end-page: 964 ident: br0580 article-title: On using reinforcement learning to solve sparse linear systems publication-title: Computational Science–ICCS 2008: 8th International Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part I 8 – year: 2016 ident: br0610 article-title: Deep Learning – start-page: 23 year: 1995 end-page: 37 ident: br0500 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: European Conference on Computational Learning Theory – volume: vol. 99 start-page: 124 year: 1999 end-page: 133 ident: br0470 article-title: The alternating decision tree learning algorithm publication-title: ICML – volume: 378 year: 2020 ident: br0010 article-title: Preparing sparse solvers for exascale computing publication-title: Philos. Trans. R. Soc. A – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: br0490 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 13 start-page: 631 year: 1992 end-page: 644 ident: br0310 article-title: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. – start-page: 3431 year: 2015 end-page: 3440 ident: br0370 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2024 end-page: 18 ident: br0140 article-title: A new matrix feature selection strategy in machine learning models for certain Krylov solver prediction publication-title: J. Classif. – start-page: 302 year: 2007 end-page: 309 ident: br0570 article-title: Neural networks for predicting the behavior of preconditioned iterative solvers publication-title: Computational Science–ICCS 2007: 7th International Conference, Beijing, China, May 27-30, 2007, Proceedings, Part I 7 – start-page: 1 year: 2007 end-page: 20 ident: br0430 article-title: OpenFOAM: a C++ library for complex physics simulations publication-title: International Workshop on Coupled Methods in Numerical Dynamics – volume: 38 start-page: 1 year: 2011 end-page: 25 ident: br0060 article-title: The University of Florida sparse matrix collection publication-title: ACM Trans. Math. Softw. – start-page: 14 year: 2022 end-page: 24 ident: br0190 article-title: Prediction of optimal solvers for sparse linear systems using deep learning publication-title: Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing – year: 2022 ident: br0200 article-title: Graph neural networks for selection of preconditioners and Krylov solvers publication-title: NeurIPS 2022 Workshop: New Frontiers in Graph Learning – volume: 29 start-page: 8083 year: 2020 end-page: 8096 ident: br0350 article-title: Latent complete row space recovery for multi-view subspace clustering publication-title: IEEE Trans. Image Process. – year: 2023 ident: br0440 article-title: PETSc web page – volume: 4 start-page: 237 year: 1996 end-page: 285 ident: br0590 article-title: Reinforcement learning: a survey publication-title: J. Artif. Intell. Res. – start-page: 117 year: 2010 end-page: 136 ident: br0530 article-title: Machine learning for multi-stage selection of numerical methods publication-title: New Advances in Machine Learning – year: 2023 ident: br0070 article-title: A survey on intelligent iterative methods for solving sparse linear algebraic equations – volume: 18 start-page: 1332 year: 2013 end-page: 1341 ident: br0120 article-title: A sparse matrix library with automatic selection of iterative solvers and preconditioners publication-title: Proc. Comput. Sci. – year: 2003 ident: br0030 article-title: Iterative Methods for Sparse Linear Systems – start-page: 26 year: 2017 end-page: 33 ident: br0560 article-title: Comparative performance modeling of parallel preconditioned Krylov methods publication-title: 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS) – start-page: 463 year: 2009 end-page: 472 ident: br0100 article-title: Towards low-cost, high-accuracy classifiers for linear solver selection publication-title: Computational Science–ICCS 2009: 9th International Conference, Baton Rouge, LA, USA, May 25-27, 2009, Proceedings, Part I – start-page: 32 year: 2016 end-page: 42 ident: br0170 article-title: Data-driven performance modeling of linear solvers for sparse matrices publication-title: 2016 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) – start-page: 49 year: 2018 end-page: 56 ident: br0220 article-title: Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation publication-title: 2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA) – year: 1994 ident: br0050 article-title: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods – start-page: 897 year: 2008 end-page: 906 ident: br0600 article-title: A structured vector space model for word meaning in context publication-title: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing – start-page: 33 year: 2022 end-page: 38 ident: br0230 article-title: Tutorial on multimodal machine learning publication-title: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts – start-page: 73 year: 1987 end-page: 130 ident: br0290 article-title: Algebraic multigrid publication-title: Multigrid Methods – start-page: 1915 year: 2012 end-page: 1924 ident: br0110 article-title: Dynamic linear solver selection for transient simulations using machine learning on distributed systems publication-title: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum – volume: 23 start-page: 3268 year: 2020 end-page: 3280 ident: br0240 article-title: A hybrid deep learning based framework for component defect detection of moving trains publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 35 start-page: 1 year: 2009 end-page: 20 ident: br0410 article-title: A standard and software for numerical metadata publication-title: ACM Trans. Math. Softw. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: br0510 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – start-page: 265 year: 2016 ident: 10.1016/j.jpdc.2025.105144_br0480 article-title: TensorFlow: a system for large-scale machine learning – start-page: 94 year: 2019 ident: 10.1016/j.jpdc.2025.105144_br0380 article-title: Ia-spgemm: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication – start-page: 897 year: 2008 ident: 10.1016/j.jpdc.2025.105144_br0600 article-title: A structured vector space model for word meaning in context – year: 2016 ident: 10.1016/j.jpdc.2025.105144_br0610 – volume: 29 start-page: 8083 year: 2020 ident: 10.1016/j.jpdc.2025.105144_br0350 article-title: Latent complete row space recovery for multi-view subspace clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3010631 – ident: 10.1016/j.jpdc.2025.105144_br0440 – volume: 44 start-page: 9236 issue: 12 year: 2022 ident: 10.1016/j.jpdc.2025.105144_br0340 article-title: Af: an association-based fusion method for multi-modal classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3125995 – start-page: 955 year: 2008 ident: 10.1016/j.jpdc.2025.105144_br0580 article-title: On using reinforcement learning to solve sparse linear systems – start-page: 463 year: 2009 ident: 10.1016/j.jpdc.2025.105144_br0100 article-title: Towards low-cost, high-accuracy classifiers for linear solver selection – start-page: 257 year: 2018 ident: 10.1016/j.jpdc.2025.105144_br0180 article-title: Preconditioner auto-tuning using deep learning for sparse iterative algorithms – year: 2019 ident: 10.1016/j.jpdc.2025.105144_br0540 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.jpdc.2025.105144_br0510 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – start-page: 23 year: 1995 ident: 10.1016/j.jpdc.2025.105144_br0500 article-title: A decision-theoretic generalization of on-line learning and an application to boosting – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.jpdc.2025.105144_br0490 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 15 start-page: 713 issue: 1 year: 2010 ident: 10.1016/j.jpdc.2025.105144_br0520 article-title: Naïve Bayes publication-title: Encycl. Mach. Learn. – start-page: 117 year: 2010 ident: 10.1016/j.jpdc.2025.105144_br0530 article-title: Machine learning for multi-stage selection of numerical methods – volume: 41 start-page: 67 issue: 5 year: 2021 ident: 10.1016/j.jpdc.2025.105144_br0450 article-title: Kunpeng 920: the first 7-nm chiplet-based 64-core arm soc for cloud services publication-title: IEEE MICRO doi: 10.1109/MM.2021.3085578 – start-page: 1915 year: 2012 ident: 10.1016/j.jpdc.2025.105144_br0110 article-title: Dynamic linear solver selection for transient simulations using machine learning on distributed systems – volume: 426 year: 2024 ident: 10.1016/j.jpdc.2025.105144_br0150 article-title: Automated linear solver selection for simulation of multiphysics processes in porous media publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117031 – year: 2006 ident: 10.1016/j.jpdc.2025.105144_br0260 – start-page: 233 year: 2009 ident: 10.1016/j.jpdc.2025.105144_br0400 article-title: Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks – volume: 23 start-page: 3268 issue: 4 year: 2020 ident: 10.1016/j.jpdc.2025.105144_br0240 article-title: A hybrid deep learning based framework for component defect detection of moving trains publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3034239 – year: 2022 ident: 10.1016/j.jpdc.2025.105144_br0200 article-title: Graph neural networks for selection of preconditioners and Krylov solvers – year: 1994 ident: 10.1016/j.jpdc.2025.105144_br0050 – year: 1952 ident: 10.1016/j.jpdc.2025.105144_br0270 – volume: 7 start-page: 856 issue: 3 year: 1986 ident: 10.1016/j.jpdc.2025.105144_br0280 article-title: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – year: 1997 ident: 10.1016/j.jpdc.2025.105144_br0080 – volume: 38 start-page: S750 issue: 5 year: 2016 ident: 10.1016/j.jpdc.2025.105144_br0130 article-title: Performance-based numerical solver selection in the lighthouse framework publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1028406 – volume: 4 start-page: 237 year: 1996 ident: 10.1016/j.jpdc.2025.105144_br0590 article-title: Reinforcement learning: a survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – volume: 35 start-page: 1 issue: 4 year: 2009 ident: 10.1016/j.jpdc.2025.105144_br0410 article-title: A standard and software for numerical metadata publication-title: ACM Trans. Math. Softw. doi: 10.1145/1462173.1462174 – volume: 38 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.jpdc.2025.105144_br0060 article-title: The University of Florida sparse matrix collection publication-title: ACM Trans. Math. Softw. – volume: 20 start-page: 251 issue: 3–4 year: 2012 ident: 10.1016/j.jpdc.2025.105144_br0420 article-title: New development in FreeFEM++ publication-title: J. Numer. Math. – year: 2011 ident: 10.1016/j.jpdc.2025.105144_br0210 – volume: 33 start-page: 159 issue: 1 year: 2021 ident: 10.1016/j.jpdc.2025.105144_br0390 article-title: A pattern-based spgemm library for multi-core and many-core architectures publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2021.3090328 – start-page: 26 year: 2017 ident: 10.1016/j.jpdc.2025.105144_br0560 article-title: Comparative performance modeling of parallel preconditioned Krylov methods – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.jpdc.2025.105144_br0250 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 32 start-page: 5633 year: 2020 ident: 10.1016/j.jpdc.2025.105144_br0330 article-title: Multi-task cascade deep convolutional neural networks for large-scale commodity recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04311-9 – start-page: 302 year: 2007 ident: 10.1016/j.jpdc.2025.105144_br0570 article-title: Neural networks for predicting the behavior of preconditioned iterative solvers – volume: 182 start-page: 418 issue: 2 year: 2002 ident: 10.1016/j.jpdc.2025.105144_br0040 article-title: Preconditioning techniques for large linear systems: a survey publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7176 – volume: 41 start-page: 423 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2025.105144_br0320 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2798607 – start-page: 3431 year: 2015 ident: 10.1016/j.jpdc.2025.105144_br0370 article-title: Fully convolutional networks for semantic segmentation – start-page: 73 year: 2006 ident: 10.1016/j.jpdc.2025.105144_br0300 article-title: Conjugate gradient methods for indefinite systems – start-page: 14 year: 2022 ident: 10.1016/j.jpdc.2025.105144_br0190 article-title: Prediction of optimal solvers for sparse linear systems using deep learning – start-page: 33 year: 2022 ident: 10.1016/j.jpdc.2025.105144_br0230 article-title: Tutorial on multimodal machine learning – start-page: 1 year: 2007 ident: 10.1016/j.jpdc.2025.105144_br0430 article-title: OpenFOAM: a C++ library for complex physics simulations – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.jpdc.2025.105144_br0160 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.jpdc.2025.105144_br0070 – volume: 13 start-page: 631 issue: 2 year: 1992 ident: 10.1016/j.jpdc.2025.105144_br0310 article-title: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0913035 – volume: vol. 99 start-page: 124 year: 1999 ident: 10.1016/j.jpdc.2025.105144_br0470 article-title: The alternating decision tree learning algorithm – start-page: 1 year: 2024 ident: 10.1016/j.jpdc.2025.105144_br0140 article-title: A new matrix feature selection strategy in machine learning models for certain Krylov solver prediction publication-title: J. Classif. – year: 2006 ident: 10.1016/j.jpdc.2025.105144_br0090 article-title: Application of machine learning to the selection of sparse linear solvers publication-title: Int. J. High Perform. Comput. Appl. – start-page: 16 year: 2015 ident: 10.1016/j.jpdc.2025.105144_br0550 article-title: Lighthouse: an automated solver selection tool – year: 2006 ident: 10.1016/j.jpdc.2025.105144_br0020 – start-page: 73 year: 1987 ident: 10.1016/j.jpdc.2025.105144_br0290 article-title: Algebraic multigrid – start-page: 32 year: 2016 ident: 10.1016/j.jpdc.2025.105144_br0170 article-title: Data-driven performance modeling of linear solvers for sparse matrices – start-page: 49 year: 2018 ident: 10.1016/j.jpdc.2025.105144_br0220 article-title: Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation – volume: 378 issue: 2166 year: 2020 ident: 10.1016/j.jpdc.2025.105144_br0010 article-title: Preparing sparse solvers for exascale computing publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2019.0053 – volume: 18 start-page: 1332 year: 2013 ident: 10.1016/j.jpdc.2025.105144_br0120 article-title: A sparse matrix library with automatic selection of iterative solvers and preconditioners publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2013.05.300 – year: 2003 ident: 10.1016/j.jpdc.2025.105144_br0030 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.jpdc.2025.105144_br0360 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – start-page: 785 year: 2016 ident: 10.1016/j.jpdc.2025.105144_br0460 article-title: Xgboost: a scalable tree boosting system |
SSID | ssj0011578 |
Score | 2.426779 |
Snippet | The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105144 |
SubjectTerms | Auto-selection HPC Iterative solver Multimodal machine learning Preconditioner Sparse linear systems |
Title | MM-AutoSolver: A multimodal machine learning method for the auto-selection of iterative solvers and preconditioners |
URI | https://dx.doi.org/10.1016/j.jpdc.2025.105144 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3iXNt06TeylCmsl3mYLeStIlssLXY7urf7stHRUE8eGzpa8tL8j7g934_hK5zYUil1B2Bcl6SqFABSULNCdVacaW0DnILkJ3G43n0vKCLDhq1szAGVuljv4vpNlr7OwPvzUG1XA5mJvmx0Oj3WMH0hZlgj5jZ5bcfXzAPwyXDWypO87QfnHEYr1VVGBrDgBq5W2gtfk9O3xLO4wHa85UiTt3PHKKO2hyh_VaFAftDeYzqyYSk26aclQbkfI9TbEGC67IA67XFSirsxSHesFOMxlCqYij9sABDUlstHFggXGrsaJYhBuLavrDGYlPgyjbOhSc2qk_Q_PHhdTQmXkqB5AENGzLMdSI0kxqOL9UshypEMGmZoGItc6oSVgw1jSNeqERAy8cgbVOeQPMmkyiU4SnqbuADZwgLHiWKCyhcIhkJHsNa5yzUkoVKCSpUD920Pswqx5iRtVCyVWY8nhmPZ87jPURbN2c_1j2DkP6H3fk_7S7Qrrly04SXqNu8b9UVlBWN7Nt900c76dPLePoJy0bOQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbAhU5rEccJWVVQF2i5tpW6RndioldpEJF357Zw_gkBCDKxNL4nO8d076fk9hG5TrkWl5AMBOC9IkEmPxL6KCFVKRlIq5aWGIDsOB7PgZU7nDdSrz8JoWqWr_bamm2rtfmm7bLaLxaI90c2P-dq_xximz7fQdgDbV9sY3H988Ty0mExUa3Hqv7uTM5bktSwyrWPoUe13C7PF793pW8fpH6A9BxVx177NIWrI9RHar20YsNuVx6gcjUh3U-WTXLOcH3EXG5bgKs8gemXIkhI7d4g3bC2jMWBVDNgPcwgkpTHDgRXCucJWZxmKIC7NDUvM1xkuzOScOWWj8gTN-k_T3oA4LwWSetSvSCdVMVdMKNi_VLEUYAhnwkhBhUqkVMYs6ygaBlEmYw4zH4O-TaMYpjcRB77wT1FzDQ84Q5hHQSwjDsglEAGPQljslPlKMF9KTrlsobs6h0lhJTOSmku2THTGE53xxGa8hWid5uTHwidQ0_-IO_9n3A3aGUxHw2T4PH69QLv6ij1aeIma1ftGXgHGqMS1-YY-AbFqz88 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MM-AutoSolver%3A+A+multimodal+machine+learning+method+for+the+auto-selection+of+iterative+solvers+and+preconditioners&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Xiong%2C+Hantao&rft.au=Yang%2C+Wangdong&rft.au=He%2C+Weiqing&rft.au=Lin%2C+Shengle&rft.date=2025-11-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.volume=205&rft_id=info:doi/10.1016%2Fj.jpdc.2025.105144&rft.externalDocID=S074373152500111X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |