MM-AutoSolver: A multimodal machine learning method for the auto-selection of iterative solvers and preconditioners

The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the increasing scale of these systems and the development of both HPC software and hardware, iterative solvers along with appropriate preconditio...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 205; p. 105144
Main Authors Xiong, Hantao, Yang, Wangdong, He, Weiqing, Lin, Shengle, Li, Keqin, Li, Kenli
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the increasing scale of these systems and the development of both HPC software and hardware, iterative solvers along with appropriate preconditioners have become mainstream methods for efficiently solving these sparse linear systems that arise from real-world HPC applications. Among abundant combinations of iterative solvers and preconditioners, the automatic selection of the optimal one has become a vital problem for accelerating the solution of these sparse linear systems. Previous work has utilized machine learning or deep learning algorithms to tackle this problem, but fails to abstract and exploit sufficient features from sparse linear systems, thus unable to obtain satisfactory results. In this work, we propose to address the automatic selection of the optimal combination of iterative solvers and preconditioners through the powerful multimodal machine learning framework, in which features of different modalities can be fully extracted and utilized to improve the results. Based on the multimodal machine learning framework, we put forward a multimodal machine learning model called MM-AutoSolver for the auto-selection of the optimal combination for a given sparse linear system. The experimental results based on a new large-scale matrix collection showcase that the proposed MM-AutoSolver outperforms state-of-the-art methods in predictive performance and has the capability to significantly accelerate the solution of large-scale sparse linear systems in HPC applications. •A multimodal machine learning framework used for learning features of different modalities.•A multimodal model MM-AutoSolver is proposed to learn numerical features and structural features from sparse linear systems.•A performance evaluation of the predictive accuracy of MM-AutoSolver and its speedup is constructed.
AbstractList The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the increasing scale of these systems and the development of both HPC software and hardware, iterative solvers along with appropriate preconditioners have become mainstream methods for efficiently solving these sparse linear systems that arise from real-world HPC applications. Among abundant combinations of iterative solvers and preconditioners, the automatic selection of the optimal one has become a vital problem for accelerating the solution of these sparse linear systems. Previous work has utilized machine learning or deep learning algorithms to tackle this problem, but fails to abstract and exploit sufficient features from sparse linear systems, thus unable to obtain satisfactory results. In this work, we propose to address the automatic selection of the optimal combination of iterative solvers and preconditioners through the powerful multimodal machine learning framework, in which features of different modalities can be fully extracted and utilized to improve the results. Based on the multimodal machine learning framework, we put forward a multimodal machine learning model called MM-AutoSolver for the auto-selection of the optimal combination for a given sparse linear system. The experimental results based on a new large-scale matrix collection showcase that the proposed MM-AutoSolver outperforms state-of-the-art methods in predictive performance and has the capability to significantly accelerate the solution of large-scale sparse linear systems in HPC applications. •A multimodal machine learning framework used for learning features of different modalities.•A multimodal model MM-AutoSolver is proposed to learn numerical features and structural features from sparse linear systems.•A performance evaluation of the predictive accuracy of MM-AutoSolver and its speedup is constructed.
ArticleNumber 105144
Author Li, Keqin
Xiong, Hantao
Li, Kenli
He, Weiqing
Lin, Shengle
Yang, Wangdong
Author_xml – sequence: 1
  givenname: Hantao
  orcidid: 0009-0001-5972-4199
  surname: Xiong
  fullname: Xiong, Hantao
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 2
  givenname: Wangdong
  surname: Yang
  fullname: Yang, Wangdong
  email: yangwangdong@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 3
  givenname: Weiqing
  orcidid: 0009-0006-5219-6289
  surname: He
  fullname: He, Weiqing
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 4
  givenname: Shengle
  orcidid: 0000-0003-3329-0924
  surname: Lin
  fullname: Lin, Shengle
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 5
  givenname: Keqin
  orcidid: 0000-0001-5224-4048
  surname: Li
  fullname: Li, Keqin
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 6
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
BookMark eNp9kMtOwzAQRb0oEi3wA6z8Ayl2YscJYlNVvKRWLIC15dhj6iixK9utxN-TUtasRrqaczVzFmjmgweEbilZUkLru37Z741elqTkU8ApYzM0J4JVhagov0SLlHpCKOWimaO03RarQw7vYThCvMcrPB6G7MZg1IBHpXfOAx5ARe_8Fx4h74LBNkScd4DVBBYJBtDZBY-DxS5DVNkdAaffwoSVN3gfQQdv3Glryq7RhVVDgpu_eYU-nx4_1i_F5u35db3aFLrkVS6otq2yorNlybkVumqFEl3Z0IbXttMcWmGo5TVrDLSKtEzUlPGmZazpWlZ11RUqz706hpQiWLmPblTxW1IiT6pkL0-q5EmVPKuaoIczBNNlRwdRJu3AazBu-iJLE9x_-A_baXf1
Cites_doi 10.1109/TIP.2020.3010631
10.1109/TPAMI.2021.3125995
10.1109/TIT.1967.1053964
10.1023/A:1022627411411
10.1109/MM.2021.3085578
10.1016/j.cma.2024.117031
10.1109/TITS.2020.3034239
10.1137/0907058
10.1137/15M1028406
10.1613/jair.301
10.1145/1462173.1462174
10.1109/TPDS.2021.3090328
10.1162/neco.1989.1.4.541
10.1007/s00521-019-04311-9
10.1006/jcph.2002.7176
10.1109/TPAMI.2018.2798607
10.1038/nature14539
10.1137/0913035
10.1098/rsta.2019.0053
10.1016/j.procs.2013.05.300
10.1109/TNNLS.2020.2978386
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2025.105144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jpdc_2025_105144
S074373152500111X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-1cf9af7bf2255f7c397a7b281856fbc5e97d1f5648de9a0947614589448b943b3
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Thu Aug 21 00:27:31 EDT 2025
Sat Aug 30 17:17:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords HPC
Auto-selection
Iterative solver
Preconditioner
Multimodal machine learning
Sparse linear systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-1cf9af7bf2255f7c397a7b281856fbc5e97d1f5648de9a0947614589448b943b3
ORCID 0009-0001-5972-4199
0009-0006-5219-6289
0000-0003-3329-0924
0000-0001-5224-4048
ParticipantIDs crossref_primary_10_1016_j_jpdc_2025_105144
elsevier_sciencedirect_doi_10_1016_j_jpdc_2025_105144
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Eller, Cheng, Maier (br0110) 2012
Liang, Qian, Guo, Cheng, Liang (br0340) 2022; 44
Kaelbling, Littman, Moore (br0590) 1996; 4
Balay, Abhyankar, Adams, Benson, Brown, Brune, Buschelman, Constantinescu, Dalcin, Dener, Eijkhout, Faibussowitsch, Gropp, Hapla, Isaac, Jolivet, Karpeev, Kaushik, Knepley, Kong, Kruger, May, McInnes, Mills, Mitchell, Munson, Roman, Rupp, Sanan, Sarich, Smith, Zampini, Zhang, Zhang, Zhang (br0440) 2023
Zou, Xu, Zhang (br0070) 2023
Bhowmick, Eijkhout, Freund, Fuentes, Keyes (br0090) 2006
Cover, Hart (br0510) 1967; 13
Cortes, Vapnik (br0490) 1995; 20
Sood, Norris, Jessup (br0560) 2017
Holloway, Chen (br0570) 2007
Sun, Jing, Xu (br0140) 2024
Freund, Schapire (br0500) 1995
Chen, Guestrin (br0460) 2016
Hecht (br0420) 2012; 20
Tang, Zhang, Chen (br0200) 2022
Fletcher (br0300) 2006
Bhowmick, Toth, Raghavan (br0100) 2009
Goodfellow, Bengio, Courville (br0610) 2016
LeCun, Bengio, Hinton (br0160) 2015; 521
Yeom, Thiagarajan, Bhatele, Bronevetsky, Kolev (br0170) 2016
Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine, Van der Vorst (br0050) 1994
Götz, Anzt (br0220) 2018
Yamada, Katagiri, Takizawa, Minami, Yokokawa, Nagai, Ogino (br0180) 2018
Zou, Zhou, Li, Ouyang, Chen (br0330) 2020; 32
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (br0480) 2016
Davis, Hu (br0060) 2011; 38
Wright (br0260) 2006
Tao, Hou, Qian, Zhu, Yi (br0350) 2020; 29
Anzt, Boman, Falgout, Ghysels, Heroux, Li, Curfman McInnes, Tran Mills, Rajamanickam, Rupp (br0010) 2020; 378
Webb, Keogh, Miikkulainen (br0520) 2010; 15
Hestenes, Stiefel (br0270) 1952
Eijkhout, Fuentes (br0530) 2010
Xia, Cheng, Zhou, Hu, Chun (br0450) 2021; 41
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (br0250) 1989; 1
Buluç, Fineman, Frigo, Gilbert, Leiserson (br0400) 2009
Saad (br0030) 2003
Benzi (br0040) 2002; 182
Davis (br0020) 2006
Jasak, Jemcov, Tukovic (br0430) 2007
Morency, Liang, Zadeh (br0230) 2022
Xie, Tan, Liu, Sun (br0380) 2019
Kuefler, Chen (br0580) 2008
Zabegaev, Keilegavlen, Iversen, Berre (br0150) 2024; 426
Sakurai, Katagiri, Kuroda, Naono, Igai, Ohshima (br0120) 2013; 18
Erk, Padó (br0600) 2008
Saad, Schultz (br0280) 1986; 7
Ruge, Stüben (br0290) 1987
Motter, Sood, Jessup, Norris (br0550) 2015
Mitchell (br0080) 1997
Jessup, Motter, Norris, Sood (br0130) 2016; 38
Chen, Li, Zhongyao, Piccialli, Hoi, Zeng (br0240) 2020; 23
Van der Vorst (br0310) 1992; 13
Freund, Mason (br0470) 1999; vol. 99
Eijkhout, Fuentes (br0410) 2009; 35
Long, Shelhamer, Darrell (br0370) 2015
Baltrušaitis, Ahuja, Morency (br0320) 2018; 41
Wu, Pan, Chen, Long, Zhang, Philip (br0360) 2020; 32
Funk, Götz, Anzt (br0190) 2022
Xie, Tan, Liu, Sun (br0390) 2021; 33
Sood (br0540) 2019
Burden (br0210) 2011
Zou (10.1016/j.jpdc.2025.105144_br0330) 2020; 32
Bhowmick (10.1016/j.jpdc.2025.105144_br0100) 2009
Tao (10.1016/j.jpdc.2025.105144_br0350) 2020; 29
Xia (10.1016/j.jpdc.2025.105144_br0450) 2021; 41
Freund (10.1016/j.jpdc.2025.105144_br0500) 1995
Abadi (10.1016/j.jpdc.2025.105144_br0480) 2016
Zabegaev (10.1016/j.jpdc.2025.105144_br0150) 2024; 426
Kuefler (10.1016/j.jpdc.2025.105144_br0580) 2008
Eijkhout (10.1016/j.jpdc.2025.105144_br0410) 2009; 35
Buluç (10.1016/j.jpdc.2025.105144_br0400) 2009
Yeom (10.1016/j.jpdc.2025.105144_br0170) 2016
Erk (10.1016/j.jpdc.2025.105144_br0600) 2008
Eijkhout (10.1016/j.jpdc.2025.105144_br0530) 2010
Xie (10.1016/j.jpdc.2025.105144_br0380) 2019
Webb (10.1016/j.jpdc.2025.105144_br0520) 2010; 15
Cortes (10.1016/j.jpdc.2025.105144_br0490) 1995; 20
LeCun (10.1016/j.jpdc.2025.105144_br0250) 1989; 1
Cover (10.1016/j.jpdc.2025.105144_br0510) 1967; 13
Zou (10.1016/j.jpdc.2025.105144_br0070)
Holloway (10.1016/j.jpdc.2025.105144_br0570) 2007
Liang (10.1016/j.jpdc.2025.105144_br0340) 2022; 44
Barrett (10.1016/j.jpdc.2025.105144_br0050) 1994
Götz (10.1016/j.jpdc.2025.105144_br0220) 2018
Hestenes (10.1016/j.jpdc.2025.105144_br0270) 1952
Eller (10.1016/j.jpdc.2025.105144_br0110) 2012
Chen (10.1016/j.jpdc.2025.105144_br0240) 2020; 23
Jasak (10.1016/j.jpdc.2025.105144_br0430) 2007
Motter (10.1016/j.jpdc.2025.105144_br0550) 2015
Tang (10.1016/j.jpdc.2025.105144_br0200) 2022
Anzt (10.1016/j.jpdc.2025.105144_br0010) 2020; 378
Wu (10.1016/j.jpdc.2025.105144_br0360) 2020; 32
Hecht (10.1016/j.jpdc.2025.105144_br0420) 2012; 20
Long (10.1016/j.jpdc.2025.105144_br0370) 2015
Mitchell (10.1016/j.jpdc.2025.105144_br0080) 1997
Davis (10.1016/j.jpdc.2025.105144_br0060) 2011; 38
Fletcher (10.1016/j.jpdc.2025.105144_br0300) 2006
Ruge (10.1016/j.jpdc.2025.105144_br0290) 1987
Jessup (10.1016/j.jpdc.2025.105144_br0130) 2016; 38
Saad (10.1016/j.jpdc.2025.105144_br0280) 1986; 7
Xie (10.1016/j.jpdc.2025.105144_br0390) 2021; 33
Sood (10.1016/j.jpdc.2025.105144_br0560) 2017
Van der Vorst (10.1016/j.jpdc.2025.105144_br0310) 1992; 13
Sood (10.1016/j.jpdc.2025.105144_br0540) 2019
Benzi (10.1016/j.jpdc.2025.105144_br0040) 2002; 182
Burden (10.1016/j.jpdc.2025.105144_br0210) 2011
Bhowmick (10.1016/j.jpdc.2025.105144_br0090) 2006
Funk (10.1016/j.jpdc.2025.105144_br0190) 2022
Balay (10.1016/j.jpdc.2025.105144_br0440)
Goodfellow (10.1016/j.jpdc.2025.105144_br0610) 2016
Yamada (10.1016/j.jpdc.2025.105144_br0180) 2018
Wright (10.1016/j.jpdc.2025.105144_br0260) 2006
Baltrušaitis (10.1016/j.jpdc.2025.105144_br0320) 2018; 41
LeCun (10.1016/j.jpdc.2025.105144_br0160) 2015; 521
Kaelbling (10.1016/j.jpdc.2025.105144_br0590) 1996; 4
Chen (10.1016/j.jpdc.2025.105144_br0460) 2016
Saad (10.1016/j.jpdc.2025.105144_br0030) 2003
Davis (10.1016/j.jpdc.2025.105144_br0020) 2006
Sakurai (10.1016/j.jpdc.2025.105144_br0120) 2013; 18
Sun (10.1016/j.jpdc.2025.105144_br0140) 2024
Morency (10.1016/j.jpdc.2025.105144_br0230) 2022
Freund (10.1016/j.jpdc.2025.105144_br0470) 1999; vol. 99
References_xml – volume: 33
  start-page: 159
  year: 2021
  end-page: 175
  ident: br0390
  article-title: A pattern-based spgemm library for multi-core and many-core architectures
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 785
  year: 2016
  end-page: 794
  ident: br0460
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  ident: br0280
  article-title: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 41
  start-page: 67
  year: 2021
  end-page: 75
  ident: br0450
  article-title: Kunpeng 920: the first 7-nm chiplet-based 64-core arm soc for cloud services
  publication-title: IEEE MICRO
– year: 1997
  ident: br0080
– year: 2006
  ident: br0260
  article-title: Numerical Optimization
– volume: 44
  start-page: 9236
  year: 2022
  end-page: 9254
  ident: br0340
  article-title: Af: an association-based fusion method for multi-modal classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: br0250
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– year: 1952
  ident: br0270
  article-title: Methods of Conjugate Gradients for Solving Linear Systems, vol. 49
– start-page: 257
  year: 2018
  end-page: 262
  ident: br0180
  article-title: Preconditioner auto-tuning using deep learning for sparse iterative algorithms
  publication-title: 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)
– start-page: 233
  year: 2009
  end-page: 244
  ident: br0400
  article-title: Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks
  publication-title: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures
– year: 2019
  ident: br0540
  article-title: Iterative solver selection techniques for sparse linear systems
– year: 2006
  ident: br0090
  article-title: Application of machine learning to the selection of sparse linear solvers
  publication-title: Int. J. High Perform. Comput. Appl.
– volume: 41
  start-page: 423
  year: 2018
  end-page: 443
  ident: br0320
  article-title: Multimodal machine learning: a survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 73
  year: 2006
  end-page: 89
  ident: br0300
  article-title: Conjugate gradient methods for indefinite systems
  publication-title: Numerical Analysis: Proceedings of the Dundee Conference on Numerical Analysis
– volume: 15
  start-page: 713
  year: 2010
  end-page: 714
  ident: br0520
  article-title: Naïve Bayes
  publication-title: Encycl. Mach. Learn.
– volume: 426
  year: 2024
  ident: br0150
  article-title: Automated linear solver selection for simulation of multiphysics processes in porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 20
  start-page: 251
  year: 2012
  end-page: 265
  ident: br0420
  article-title: New development in FreeFEM++
  publication-title: J. Numer. Math.
– start-page: 94
  year: 2019
  end-page: 105
  ident: br0380
  article-title: Ia-spgemm: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication
  publication-title: Proceedings of the ACM International Conference on Supercomputing
– year: 2011
  ident: br0210
  article-title: Numerical Analysis
– volume: 38
  start-page: S750
  year: 2016
  end-page: S771
  ident: br0130
  article-title: Performance-based numerical solver selection in the lighthouse framework
  publication-title: SIAM J. Sci. Comput.
– volume: 32
  start-page: 4
  year: 2020
  end-page: 24
  ident: br0360
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 265
  year: 2016
  end-page: 283
  ident: br0480
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation
– year: 2006
  ident: br0020
  article-title: Direct Methods for Sparse Linear Systems
– volume: 182
  start-page: 418
  year: 2002
  end-page: 477
  ident: br0040
  article-title: Preconditioning techniques for large linear systems: a survey
  publication-title: J. Comput. Phys.
– start-page: 16
  year: 2015
  end-page: 24
  ident: br0550
  article-title: Lighthouse: an automated solver selection tool
  publication-title: Proceedings of the 3rd International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering
– volume: 32
  start-page: 5633
  year: 2020
  end-page: 5647
  ident: br0330
  article-title: Multi-task cascade deep convolutional neural networks for large-scale commodity recognition
  publication-title: Neural Comput. Appl.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0160
  article-title: Deep learning
  publication-title: Nature
– start-page: 955
  year: 2008
  end-page: 964
  ident: br0580
  article-title: On using reinforcement learning to solve sparse linear systems
  publication-title: Computational Science–ICCS 2008: 8th International Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part I 8
– year: 2016
  ident: br0610
  article-title: Deep Learning
– start-page: 23
  year: 1995
  end-page: 37
  ident: br0500
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: European Conference on Computational Learning Theory
– volume: vol. 99
  start-page: 124
  year: 1999
  end-page: 133
  ident: br0470
  article-title: The alternating decision tree learning algorithm
  publication-title: ICML
– volume: 378
  year: 2020
  ident: br0010
  article-title: Preparing sparse solvers for exascale computing
  publication-title: Philos. Trans. R. Soc. A
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: br0490
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 13
  start-page: 631
  year: 1992
  end-page: 644
  ident: br0310
  article-title: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: br0370
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2024
  end-page: 18
  ident: br0140
  article-title: A new matrix feature selection strategy in machine learning models for certain Krylov solver prediction
  publication-title: J. Classif.
– start-page: 302
  year: 2007
  end-page: 309
  ident: br0570
  article-title: Neural networks for predicting the behavior of preconditioned iterative solvers
  publication-title: Computational Science–ICCS 2007: 7th International Conference, Beijing, China, May 27-30, 2007, Proceedings, Part I 7
– start-page: 1
  year: 2007
  end-page: 20
  ident: br0430
  article-title: OpenFOAM: a C++ library for complex physics simulations
  publication-title: International Workshop on Coupled Methods in Numerical Dynamics
– volume: 38
  start-page: 1
  year: 2011
  end-page: 25
  ident: br0060
  article-title: The University of Florida sparse matrix collection
  publication-title: ACM Trans. Math. Softw.
– start-page: 14
  year: 2022
  end-page: 24
  ident: br0190
  article-title: Prediction of optimal solvers for sparse linear systems using deep learning
  publication-title: Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing
– year: 2022
  ident: br0200
  article-title: Graph neural networks for selection of preconditioners and Krylov solvers
  publication-title: NeurIPS 2022 Workshop: New Frontiers in Graph Learning
– volume: 29
  start-page: 8083
  year: 2020
  end-page: 8096
  ident: br0350
  article-title: Latent complete row space recovery for multi-view subspace clustering
  publication-title: IEEE Trans. Image Process.
– year: 2023
  ident: br0440
  article-title: PETSc web page
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  ident: br0590
  article-title: Reinforcement learning: a survey
  publication-title: J. Artif. Intell. Res.
– start-page: 117
  year: 2010
  end-page: 136
  ident: br0530
  article-title: Machine learning for multi-stage selection of numerical methods
  publication-title: New Advances in Machine Learning
– year: 2023
  ident: br0070
  article-title: A survey on intelligent iterative methods for solving sparse linear algebraic equations
– volume: 18
  start-page: 1332
  year: 2013
  end-page: 1341
  ident: br0120
  article-title: A sparse matrix library with automatic selection of iterative solvers and preconditioners
  publication-title: Proc. Comput. Sci.
– year: 2003
  ident: br0030
  article-title: Iterative Methods for Sparse Linear Systems
– start-page: 26
  year: 2017
  end-page: 33
  ident: br0560
  article-title: Comparative performance modeling of parallel preconditioned Krylov methods
  publication-title: 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
– start-page: 463
  year: 2009
  end-page: 472
  ident: br0100
  article-title: Towards low-cost, high-accuracy classifiers for linear solver selection
  publication-title: Computational Science–ICCS 2009: 9th International Conference, Baton Rouge, LA, USA, May 25-27, 2009, Proceedings, Part I
– start-page: 32
  year: 2016
  end-page: 42
  ident: br0170
  article-title: Data-driven performance modeling of linear solvers for sparse matrices
  publication-title: 2016 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)
– start-page: 49
  year: 2018
  end-page: 56
  ident: br0220
  article-title: Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation
  publication-title: 2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)
– year: 1994
  ident: br0050
  article-title: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
– start-page: 897
  year: 2008
  end-page: 906
  ident: br0600
  article-title: A structured vector space model for word meaning in context
  publication-title: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing
– start-page: 33
  year: 2022
  end-page: 38
  ident: br0230
  article-title: Tutorial on multimodal machine learning
  publication-title: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts
– start-page: 73
  year: 1987
  end-page: 130
  ident: br0290
  article-title: Algebraic multigrid
  publication-title: Multigrid Methods
– start-page: 1915
  year: 2012
  end-page: 1924
  ident: br0110
  article-title: Dynamic linear solver selection for transient simulations using machine learning on distributed systems
  publication-title: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum
– volume: 23
  start-page: 3268
  year: 2020
  end-page: 3280
  ident: br0240
  article-title: A hybrid deep learning based framework for component defect detection of moving trains
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 35
  start-page: 1
  year: 2009
  end-page: 20
  ident: br0410
  article-title: A standard and software for numerical metadata
  publication-title: ACM Trans. Math. Softw.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: br0510
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– start-page: 265
  year: 2016
  ident: 10.1016/j.jpdc.2025.105144_br0480
  article-title: TensorFlow: a system for large-scale machine learning
– start-page: 94
  year: 2019
  ident: 10.1016/j.jpdc.2025.105144_br0380
  article-title: Ia-spgemm: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication
– start-page: 897
  year: 2008
  ident: 10.1016/j.jpdc.2025.105144_br0600
  article-title: A structured vector space model for word meaning in context
– year: 2016
  ident: 10.1016/j.jpdc.2025.105144_br0610
– volume: 29
  start-page: 8083
  year: 2020
  ident: 10.1016/j.jpdc.2025.105144_br0350
  article-title: Latent complete row space recovery for multi-view subspace clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3010631
– ident: 10.1016/j.jpdc.2025.105144_br0440
– volume: 44
  start-page: 9236
  issue: 12
  year: 2022
  ident: 10.1016/j.jpdc.2025.105144_br0340
  article-title: Af: an association-based fusion method for multi-modal classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3125995
– start-page: 955
  year: 2008
  ident: 10.1016/j.jpdc.2025.105144_br0580
  article-title: On using reinforcement learning to solve sparse linear systems
– start-page: 463
  year: 2009
  ident: 10.1016/j.jpdc.2025.105144_br0100
  article-title: Towards low-cost, high-accuracy classifiers for linear solver selection
– start-page: 257
  year: 2018
  ident: 10.1016/j.jpdc.2025.105144_br0180
  article-title: Preconditioner auto-tuning using deep learning for sparse iterative algorithms
– year: 2019
  ident: 10.1016/j.jpdc.2025.105144_br0540
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.jpdc.2025.105144_br0510
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– start-page: 23
  year: 1995
  ident: 10.1016/j.jpdc.2025.105144_br0500
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.jpdc.2025.105144_br0490
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 15
  start-page: 713
  issue: 1
  year: 2010
  ident: 10.1016/j.jpdc.2025.105144_br0520
  article-title: Naïve Bayes
  publication-title: Encycl. Mach. Learn.
– start-page: 117
  year: 2010
  ident: 10.1016/j.jpdc.2025.105144_br0530
  article-title: Machine learning for multi-stage selection of numerical methods
– volume: 41
  start-page: 67
  issue: 5
  year: 2021
  ident: 10.1016/j.jpdc.2025.105144_br0450
  article-title: Kunpeng 920: the first 7-nm chiplet-based 64-core arm soc for cloud services
  publication-title: IEEE MICRO
  doi: 10.1109/MM.2021.3085578
– start-page: 1915
  year: 2012
  ident: 10.1016/j.jpdc.2025.105144_br0110
  article-title: Dynamic linear solver selection for transient simulations using machine learning on distributed systems
– volume: 426
  year: 2024
  ident: 10.1016/j.jpdc.2025.105144_br0150
  article-title: Automated linear solver selection for simulation of multiphysics processes in porous media
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117031
– year: 2006
  ident: 10.1016/j.jpdc.2025.105144_br0260
– start-page: 233
  year: 2009
  ident: 10.1016/j.jpdc.2025.105144_br0400
  article-title: Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks
– volume: 23
  start-page: 3268
  issue: 4
  year: 2020
  ident: 10.1016/j.jpdc.2025.105144_br0240
  article-title: A hybrid deep learning based framework for component defect detection of moving trains
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3034239
– year: 2022
  ident: 10.1016/j.jpdc.2025.105144_br0200
  article-title: Graph neural networks for selection of preconditioners and Krylov solvers
– year: 1994
  ident: 10.1016/j.jpdc.2025.105144_br0050
– year: 1952
  ident: 10.1016/j.jpdc.2025.105144_br0270
– volume: 7
  start-page: 856
  issue: 3
  year: 1986
  ident: 10.1016/j.jpdc.2025.105144_br0280
  article-title: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– year: 1997
  ident: 10.1016/j.jpdc.2025.105144_br0080
– volume: 38
  start-page: S750
  issue: 5
  year: 2016
  ident: 10.1016/j.jpdc.2025.105144_br0130
  article-title: Performance-based numerical solver selection in the lighthouse framework
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1028406
– volume: 4
  start-page: 237
  year: 1996
  ident: 10.1016/j.jpdc.2025.105144_br0590
  article-title: Reinforcement learning: a survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– volume: 35
  start-page: 1
  issue: 4
  year: 2009
  ident: 10.1016/j.jpdc.2025.105144_br0410
  article-title: A standard and software for numerical metadata
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1462173.1462174
– volume: 38
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.jpdc.2025.105144_br0060
  article-title: The University of Florida sparse matrix collection
  publication-title: ACM Trans. Math. Softw.
– volume: 20
  start-page: 251
  issue: 3–4
  year: 2012
  ident: 10.1016/j.jpdc.2025.105144_br0420
  article-title: New development in FreeFEM++
  publication-title: J. Numer. Math.
– year: 2011
  ident: 10.1016/j.jpdc.2025.105144_br0210
– volume: 33
  start-page: 159
  issue: 1
  year: 2021
  ident: 10.1016/j.jpdc.2025.105144_br0390
  article-title: A pattern-based spgemm library for multi-core and many-core architectures
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2021.3090328
– start-page: 26
  year: 2017
  ident: 10.1016/j.jpdc.2025.105144_br0560
  article-title: Comparative performance modeling of parallel preconditioned Krylov methods
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.jpdc.2025.105144_br0250
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 32
  start-page: 5633
  year: 2020
  ident: 10.1016/j.jpdc.2025.105144_br0330
  article-title: Multi-task cascade deep convolutional neural networks for large-scale commodity recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04311-9
– start-page: 302
  year: 2007
  ident: 10.1016/j.jpdc.2025.105144_br0570
  article-title: Neural networks for predicting the behavior of preconditioned iterative solvers
– volume: 182
  start-page: 418
  issue: 2
  year: 2002
  ident: 10.1016/j.jpdc.2025.105144_br0040
  article-title: Preconditioning techniques for large linear systems: a survey
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7176
– volume: 41
  start-page: 423
  issue: 2
  year: 2018
  ident: 10.1016/j.jpdc.2025.105144_br0320
  article-title: Multimodal machine learning: a survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2798607
– start-page: 3431
  year: 2015
  ident: 10.1016/j.jpdc.2025.105144_br0370
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 73
  year: 2006
  ident: 10.1016/j.jpdc.2025.105144_br0300
  article-title: Conjugate gradient methods for indefinite systems
– start-page: 14
  year: 2022
  ident: 10.1016/j.jpdc.2025.105144_br0190
  article-title: Prediction of optimal solvers for sparse linear systems using deep learning
– start-page: 33
  year: 2022
  ident: 10.1016/j.jpdc.2025.105144_br0230
  article-title: Tutorial on multimodal machine learning
– start-page: 1
  year: 2007
  ident: 10.1016/j.jpdc.2025.105144_br0430
  article-title: OpenFOAM: a C++ library for complex physics simulations
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.jpdc.2025.105144_br0160
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.jpdc.2025.105144_br0070
– volume: 13
  start-page: 631
  issue: 2
  year: 1992
  ident: 10.1016/j.jpdc.2025.105144_br0310
  article-title: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913035
– volume: vol. 99
  start-page: 124
  year: 1999
  ident: 10.1016/j.jpdc.2025.105144_br0470
  article-title: The alternating decision tree learning algorithm
– start-page: 1
  year: 2024
  ident: 10.1016/j.jpdc.2025.105144_br0140
  article-title: A new matrix feature selection strategy in machine learning models for certain Krylov solver prediction
  publication-title: J. Classif.
– year: 2006
  ident: 10.1016/j.jpdc.2025.105144_br0090
  article-title: Application of machine learning to the selection of sparse linear solvers
  publication-title: Int. J. High Perform. Comput. Appl.
– start-page: 16
  year: 2015
  ident: 10.1016/j.jpdc.2025.105144_br0550
  article-title: Lighthouse: an automated solver selection tool
– year: 2006
  ident: 10.1016/j.jpdc.2025.105144_br0020
– start-page: 73
  year: 1987
  ident: 10.1016/j.jpdc.2025.105144_br0290
  article-title: Algebraic multigrid
– start-page: 32
  year: 2016
  ident: 10.1016/j.jpdc.2025.105144_br0170
  article-title: Data-driven performance modeling of linear solvers for sparse matrices
– start-page: 49
  year: 2018
  ident: 10.1016/j.jpdc.2025.105144_br0220
  article-title: Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation
– volume: 378
  issue: 2166
  year: 2020
  ident: 10.1016/j.jpdc.2025.105144_br0010
  article-title: Preparing sparse solvers for exascale computing
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2019.0053
– volume: 18
  start-page: 1332
  year: 2013
  ident: 10.1016/j.jpdc.2025.105144_br0120
  article-title: A sparse matrix library with automatic selection of iterative solvers and preconditioners
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2013.05.300
– year: 2003
  ident: 10.1016/j.jpdc.2025.105144_br0030
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.jpdc.2025.105144_br0360
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– start-page: 785
  year: 2016
  ident: 10.1016/j.jpdc.2025.105144_br0460
  article-title: Xgboost: a scalable tree boosting system
SSID ssj0011578
Score 2.426779
Snippet The solution of large-scale sparse linear systems of the form Ax=b is an important research problem in the field of High-performance Computing (HPC). With the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105144
SubjectTerms Auto-selection
HPC
Iterative solver
Multimodal machine learning
Preconditioner
Sparse linear systems
Title MM-AutoSolver: A multimodal machine learning method for the auto-selection of iterative solvers and preconditioners
URI https://dx.doi.org/10.1016/j.jpdc.2025.105144
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3iXNt06TeylCmsl3mYLeStIlssLXY7urf7stHRUE8eGzpa8tL8j7g934_hK5zYUil1B2Bcl6SqFABSULNCdVacaW0DnILkJ3G43n0vKCLDhq1szAGVuljv4vpNlr7OwPvzUG1XA5mJvmx0Oj3WMH0hZlgj5jZ5bcfXzAPwyXDWypO87QfnHEYr1VVGBrDgBq5W2gtfk9O3xLO4wHa85UiTt3PHKKO2hyh_VaFAftDeYzqyYSk26aclQbkfI9TbEGC67IA67XFSirsxSHesFOMxlCqYij9sABDUlstHFggXGrsaJYhBuLavrDGYlPgyjbOhSc2qk_Q_PHhdTQmXkqB5AENGzLMdSI0kxqOL9UshypEMGmZoGItc6oSVgw1jSNeqERAy8cgbVOeQPMmkyiU4SnqbuADZwgLHiWKCyhcIhkJHsNa5yzUkoVKCSpUD920Pswqx5iRtVCyVWY8nhmPZ87jPURbN2c_1j2DkP6H3fk_7S7Qrrly04SXqNu8b9UVlBWN7Nt900c76dPLePoJy0bOQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbAhU5rEccJWVVQF2i5tpW6RndioldpEJF357Zw_gkBCDKxNL4nO8d076fk9hG5TrkWl5AMBOC9IkEmPxL6KCFVKRlIq5aWGIDsOB7PgZU7nDdSrz8JoWqWr_bamm2rtfmm7bLaLxaI90c2P-dq_xximz7fQdgDbV9sY3H988Ty0mExUa3Hqv7uTM5bktSwyrWPoUe13C7PF793pW8fpH6A9BxVx177NIWrI9RHar20YsNuVx6gcjUh3U-WTXLOcH3EXG5bgKs8gemXIkhI7d4g3bC2jMWBVDNgPcwgkpTHDgRXCucJWZxmKIC7NDUvM1xkuzOScOWWj8gTN-k_T3oA4LwWSetSvSCdVMVdMKNi_VLEUYAhnwkhBhUqkVMYs6ygaBlEmYw4zH4O-TaMYpjcRB77wT1FzDQ84Q5hHQSwjDsglEAGPQljslPlKMF9KTrlsobs6h0lhJTOSmku2THTGE53xxGa8hWid5uTHwidQ0_-IO_9n3A3aGUxHw2T4PH69QLv6ij1aeIma1ftGXgHGqMS1-YY-AbFqz88
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MM-AutoSolver%3A+A+multimodal+machine+learning+method+for+the+auto-selection+of+iterative+solvers+and+preconditioners&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Xiong%2C+Hantao&rft.au=Yang%2C+Wangdong&rft.au=He%2C+Weiqing&rft.au=Lin%2C+Shengle&rft.date=2025-11-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.volume=205&rft_id=info:doi/10.1016%2Fj.jpdc.2025.105144&rft.externalDocID=S074373152500111X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon