Robust trajectory tracking for omnidirectional robots by means of anti-peaking linear active disturbance rejection
This article presents a Linear Active Disturbance Rejection scheme for the robust trajectory tracking control of an Omnidirectional robot, including an additional saturation element in the control design to improve the transient closed-loop response by including a saturation-input strategy in the Ex...
Saved in:
Published in | Robotics and autonomous systems Vol. 183; p. 104842 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-8890 |
DOI | 10.1016/j.robot.2024.104842 |
Cover
Abstract | This article presents a Linear Active Disturbance Rejection scheme for the robust trajectory tracking control of an Omnidirectional robot, including an additional saturation element in the control design to improve the transient closed-loop response by including a saturation-input strategy in the Extended State Observer design, mitigating the possible arising peaking phenomenon. In addition, the controller is implemented in the kinematic model of the robotic system, assuming as the available information the position and orientation measurement and concerning the system structure, it is just known the order of the system and the control gain matrix as well. A wide set of laboratory experiments, including a comparison with a standard ADRC (i.e. without the proposed anti-peaking mechanism) and a PI-based control including an anti-peaking proposal, in the presence of different disturbance elements in the terrain of smooth and abrupt nature is carried out to formulate a comprehensive assessment of the proposal which validate the practical advantages of the proposal in robust trajectory tracking of the kind of robots.
•An alternative anti-peaking approach enhances the ADRC transients.•A Lyapunov stability test of the observer-based controller is provided.•The proposal improves the tracking behavior in trajectory tracking tasks.•The ADRC scheme is proposed for a mobile robot subject to terrain disturbances. |
---|---|
AbstractList | This article presents a Linear Active Disturbance Rejection scheme for the robust trajectory tracking control of an Omnidirectional robot, including an additional saturation element in the control design to improve the transient closed-loop response by including a saturation-input strategy in the Extended State Observer design, mitigating the possible arising peaking phenomenon. In addition, the controller is implemented in the kinematic model of the robotic system, assuming as the available information the position and orientation measurement and concerning the system structure, it is just known the order of the system and the control gain matrix as well. A wide set of laboratory experiments, including a comparison with a standard ADRC (i.e. without the proposed anti-peaking mechanism) and a PI-based control including an anti-peaking proposal, in the presence of different disturbance elements in the terrain of smooth and abrupt nature is carried out to formulate a comprehensive assessment of the proposal which validate the practical advantages of the proposal in robust trajectory tracking of the kind of robots.
•An alternative anti-peaking approach enhances the ADRC transients.•A Lyapunov stability test of the observer-based controller is provided.•The proposal improves the tracking behavior in trajectory tracking tasks.•The ADRC scheme is proposed for a mobile robot subject to terrain disturbances. |
ArticleNumber | 104842 |
Author | Madonski, Rafal Ramírez-Neria, Mario Luviano-Juárez, Alberto Hernández-Martínez, Eduardo Gamaliel Fernández-Anaya, Guillermo Lozada-Castillo, Norma |
Author_xml | – sequence: 1 givenname: Mario orcidid: 0000-0001-5935-9083 surname: Ramírez-Neria fullname: Ramírez-Neria, Mario email: mario.ramirez@ibero.mx organization: InIAT Institute of Applied Research and Technology of Universidad Iberoamericana Ciudad de Mexico, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Ciudad de México 01219, Mexico – sequence: 2 givenname: Rafal orcidid: 0000-0002-1798-0717 surname: Madonski fullname: Madonski, Rafal email: rafal.madonski@jnu.edu.cn organization: Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice 44-100, Poland – sequence: 3 givenname: Eduardo Gamaliel orcidid: 0000-0002-2716-6196 surname: Hernández-Martínez fullname: Hernández-Martínez, Eduardo Gamaliel email: gamaliel.hernandez@ibero.mx organization: InIAT Institute of Applied Research and Technology of Universidad Iberoamericana Ciudad de Mexico, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Ciudad de México 01219, Mexico – sequence: 4 givenname: Norma orcidid: 0000-0002-6553-1924 surname: Lozada-Castillo fullname: Lozada-Castillo, Norma email: nlozadac@ipn.mx organization: Instituto Politécnico Nacional - UPIITA, Av. IPN 2580 Col. Barrio la Laguna Ticomán, Ciudad de México 07400, Mexico – sequence: 5 givenname: Guillermo orcidid: 0000-0002-9695-3409 surname: Fernández-Anaya fullname: Fernández-Anaya, Guillermo email: guillermo.fernandez@ibero.mx organization: InIAT Institute of Applied Research and Technology of Universidad Iberoamericana Ciudad de Mexico, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Ciudad de México 01219, Mexico – sequence: 6 givenname: Alberto orcidid: 0000-0001-8790-4165 surname: Luviano-Juárez fullname: Luviano-Juárez, Alberto email: aluvianoj@ipn.mx organization: Instituto Politécnico Nacional - UPIITA, Av. IPN 2580 Col. Barrio la Laguna Ticomán, Ciudad de México 07400, Mexico |
BookMark | eNp9kMtOwzAQRb0oEi3wBWz8Aym2k5B4wQJVvKRKSAjWlh9j5NDa1dit1L8nbVizmtHMnKu5d0FmMUUg5JazJWf8_m5YYjKpLAUTzThp-kbMyJxJwau-l-ySLHIeGGN129Vzgh_J7HOhBfUAtiQ8nlr7E-I39Qlp2sbgAo6rkKLe0LN2puZIt6BjpslTHUuodqDPzCZE0Ej1eH8A6kIuezQ6WqAIw6RyTS683mS4-atX5Ov56XP1Wq3fX95Wj-vKirYuFWeaO-mEbXlnOu01F74GK6STIB2TXdNKDsZKL6Vpatv2xsjWeSdY58BAfUXqSddiyhnBqx2Grcaj4kydolKDOttRp6jUFNVIPUwUjK8dAqDKNsBoYEpBuRT-5X8B55l7Uw |
Cites_doi | 10.1007/s11768-018-8134-x 10.1109/TMECH.2019.2953239 10.1016/j.robot.2023.104433 10.1080/00207179508921959 10.1016/j.isatra.2013.09.012 10.1007/s11044-018-9614-y 10.3390/math10203865 10.1080/00207179.2020.1870004 10.1007/s10846-022-01796-w 10.1002/asjc.523 10.1016/j.robot.2015.08.006 10.1109/TRA.2002.1019459 10.1016/j.conengprac.2018.02.002 10.1109/TMECH.2023.3257085 10.1109/TIE.2019.2892678 10.1016/j.conengprac.2018.07.011 10.1109/9.75101 10.1134/S0005117909020040 10.1016/j.robot.2021.103921 10.1016/j.conengprac.2018.11.021 10.1016/j.isatra.2016.02.003 10.1016/j.mechatronics.2022.102803 10.1115/1.4042347 10.1007/s11768-018-8142-x 10.1093/imamci/dns008 10.23919/ChiCC.2018.8484121 10.1109/LRA.2019.2959442 10.1002/rnc.4750 10.1016/j.isatra.2023.01.001 10.1080/00207179.2013.810345 10.1109/TCST.2012.2195664 10.1007/s11432-018-9647-6 10.1109/ACCESS.2021.3062557 10.1016/j.isatra.2020.01.027 10.1016/j.robot.2022.104285 10.1002/rnc.3524 10.1109/TIE.2008.2011621 10.1177/0142331218794812 10.1109/TIE.2015.2499168 10.1016/j.isatra.2014.11.008 10.1016/j.mechatronics.2018.04.003 10.1155/2020/2160743 10.1002/rnc.4838 10.1109/ChiCC.2014.6897008 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.robot.2024.104842 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_robot_2024_104842 S0921889024002264 |
GrantInformation_xml | – fundername: Secretaría de Investigación y Posgrado IPN sequence: 0 grantid: 20240763; 20240693 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c253t-10a1d9d2c517b7afa12f3ec29d9e9d0974591ebc9f99b43c58bb95dfd207debe3 |
IEDL.DBID | AIKHN |
ISSN | 0921-8890 |
IngestDate | Tue Jul 01 01:42:00 EDT 2025 Sat Dec 14 16:14:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Active disturbance rejection control Peaking Extended state observers Omnidirectional robots |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c253t-10a1d9d2c517b7afa12f3ec29d9e9d0974591ebc9f99b43c58bb95dfd207debe3 |
ORCID | 0000-0002-2716-6196 0000-0001-8790-4165 0000-0001-5935-9083 0000-0002-1798-0717 0000-0002-9695-3409 0000-0002-6553-1924 |
ParticipantIDs | crossref_primary_10_1016_j_robot_2024_104842 elsevier_sciencedirect_doi_10_1016_j_robot_2024_104842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Robotics and autonomous systems |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – sequence: 0 name: Elsevier B.V |
References | Niloy, Shama, Chakrabortty, Ryan, Badal, Tasneem, Ahamed, Moyeen, Das, Ali, Islam, Saha (b2) 2021; 9 Ruiz (b51) 2022; 95 Savkin, Wang, Baranzadeh, Xi, Nguyen (b49) 2016; 75 Herbst (b23) 2016; 63 Williams, Carter, Gallina, Rosati (b4) 2002; 18 Li, Wang, Yu, Li, Jin (b19) 2018; 79 Madonski, Herman (b22) 2015; 56 Ren, Li, Yang, Ma (b11) 2019; 66 He, Li, Meng, Si (b31) 2022; 84 Villafuerte, Mondié, Garrido (b48) 2012; 21 Pesterev, Rapoport (b53) 2009; 70 Sebastian, Ben-Tzvi (b32) 2019; 11 Jin, Song, Lan, Gao (b21) 2020; 63 Sira-Ramırez, López-Uribe, Velasco-Villa (b34) 2013; 15 Farooq, Eizad, Bae (b3) 2023; 159 X. Wu, J. Pang, T. Yang, Anti-windup design for active disturbance rejection control, in: Chinese Cont. Conf., 2014, pp. 2389–2395. González-Sierra, Dzul, Martínez (b50) 2022; 147 Fliess, Lévine, Martin, Rouchon (b46) 1995; 61 Han (b12) 2009; 56 Sira-Ramírez (b15) 2018; 16 González-Sierra, Hernandez-Martinez, Ramírez-Neria, Fernandez-Anaya (b52) 2023; 165 Sussmann, Kokotovic (b36) 1991; 36 Madonski, Shao, Zhang, Gao, Yang, Li (b24) 2019; 84 Martínez-Fonseca, Castañeda, Uranga, Luviano-Juárez, Chairez (b43) 2016; 62 Huang, Xue, Zhiqiang, Sira-Ramirez, Wu, Sun (b16) 2014 Wittenmark (b37) 1989 Chen, Wang, Sun, Sun (b20) 2019; 41 Z. Gao, Scaling and bandwidth-parameterization based controller tuning, in: American Control Conference, 2003, pp. 4989–4996. Santos, Conceição, Santos, Araújo (b55) 2018; 52 Hao, Liu, Geng, Wang (b38) 2023; 137 Xue, Ji, Qu, Peng, Qian (b6) 2023 Gao (b14) 2014; 53 Geng, Liu, Hao, Zhong, Wang (b39) 2020; 30 Morales, Magallanes, Delgado, Canahuire (b10) 2018 Liu, Luo, Chen, Tu (b18) 2020; 101 Ran, Wang, Dong (b40) 2016; 26 Sira-Ramirez, Luviano-Juárez, Ramírez-Neria, Zurita-Bustamante (b45) 2017 Gao, Zheng (b25) 2018; 16 Chu, Sun, Wu, Sepehri (b26) 2018; 74 Luo, Lin, Li, Yang (b1) 2020; 5 Adamov, Saypulaev (b8) 2021 Hai, Wang, Feng, Ren, Xu, Cui, Duan (b33) 2019; 24 Yang, Guo, Xia, Sun (b27) 2020; 30 Ochoa-Ortega, Villafuerte-Segura, Luviano-Juárez, Lozada-Castillo (b47) 2020 Lozada-Castillo, Alazki, Poznyak (b54) 2013; 30 Z. Gao, Active disturbance rejection control: a paradigm shift in feedback control system design, in: Proc. American Control Conference, 2006, pp. 2399–2405. Baquero-Suárez, Cortés-Romero, Arcos-Legarda, Coral-Enriquez (b30) 2019; 45 Ramírez-Neria, Luviano-Juárez, Madonski, Hernández-Martínez, Fernández-Anaya, Lozada-Castillo (b42) 2022 Adamov (b7) 2018 Fliess, Join (b44) 2013; 86 Sanchez-Sanchez, Hernandez-Martinez, González-Sierra, Ramírez-Neria, Flores-Godoy, Ferreira-Vazquez, Fernandez-Anaya (b29) 2023; 107 C. Ren, R. Liu, S. Ma, C. Hu, L. Cao, ESO based model predictive control of an omnidirectional mobile robot with friction compensation, in: Chinese Control Conference, 2018, pp. 3943–3948. Thi, Nguyen, Vo, Tran, Nguyen, Bui (b9) 2019 Zhang, Zhang (b5) 2018 Ramírez-Neria, González-Sierra, Luviano-Juárez, Lozada-Castillo, Madonski (b28) 2022; 10 10.1016/j.robot.2024.104842_b13 Sira-Ramırez (10.1016/j.robot.2024.104842_b34) 2013; 15 10.1016/j.robot.2024.104842_b17 Villafuerte (10.1016/j.robot.2024.104842_b48) 2012; 21 Morales (10.1016/j.robot.2024.104842_b10) 2018 Madonski (10.1016/j.robot.2024.104842_b24) 2019; 84 Williams (10.1016/j.robot.2024.104842_b4) 2002; 18 Sira-Ramírez (10.1016/j.robot.2024.104842_b15) 2018; 16 Han (10.1016/j.robot.2024.104842_b12) 2009; 56 Huang (10.1016/j.robot.2024.104842_b16) 2014 Li (10.1016/j.robot.2024.104842_b19) 2018; 79 Santos (10.1016/j.robot.2024.104842_b55) 2018; 52 Sanchez-Sanchez (10.1016/j.robot.2024.104842_b29) 2023; 107 Xue (10.1016/j.robot.2024.104842_b6) 2023 He (10.1016/j.robot.2024.104842_b31) 2022; 84 Savkin (10.1016/j.robot.2024.104842_b49) 2016; 75 Gao (10.1016/j.robot.2024.104842_b25) 2018; 16 Hai (10.1016/j.robot.2024.104842_b33) 2019; 24 Ramírez-Neria (10.1016/j.robot.2024.104842_b42) 2022 Chu (10.1016/j.robot.2024.104842_b26) 2018; 74 Ran (10.1016/j.robot.2024.104842_b40) 2016; 26 Ochoa-Ortega (10.1016/j.robot.2024.104842_b47) 2020 Martínez-Fonseca (10.1016/j.robot.2024.104842_b43) 2016; 62 Hao (10.1016/j.robot.2024.104842_b38) 2023; 137 10.1016/j.robot.2024.104842_b41 Herbst (10.1016/j.robot.2024.104842_b23) 2016; 63 Pesterev (10.1016/j.robot.2024.104842_b53) 2009; 70 Geng (10.1016/j.robot.2024.104842_b39) 2020; 30 Sussmann (10.1016/j.robot.2024.104842_b36) 1991; 36 10.1016/j.robot.2024.104842_b35 Liu (10.1016/j.robot.2024.104842_b18) 2020; 101 Chen (10.1016/j.robot.2024.104842_b20) 2019; 41 Ren (10.1016/j.robot.2024.104842_b11) 2019; 66 Adamov (10.1016/j.robot.2024.104842_b7) 2018 Yang (10.1016/j.robot.2024.104842_b27) 2020; 30 González-Sierra (10.1016/j.robot.2024.104842_b52) 2023; 165 Lozada-Castillo (10.1016/j.robot.2024.104842_b54) 2013; 30 Ramírez-Neria (10.1016/j.robot.2024.104842_b28) 2022; 10 Sebastian (10.1016/j.robot.2024.104842_b32) 2019; 11 Baquero-Suárez (10.1016/j.robot.2024.104842_b30) 2019; 45 Gao (10.1016/j.robot.2024.104842_b14) 2014; 53 Wittenmark (10.1016/j.robot.2024.104842_b37) 1989 Adamov (10.1016/j.robot.2024.104842_b8) 2021 Ruiz (10.1016/j.robot.2024.104842_b51) 2022; 95 Thi (10.1016/j.robot.2024.104842_b9) 2019 Fliess (10.1016/j.robot.2024.104842_b44) 2013; 86 Luo (10.1016/j.robot.2024.104842_b1) 2020; 5 Madonski (10.1016/j.robot.2024.104842_b22) 2015; 56 Zhang (10.1016/j.robot.2024.104842_b5) 2018 Fliess (10.1016/j.robot.2024.104842_b46) 1995; 61 Farooq (10.1016/j.robot.2024.104842_b3) 2023; 159 Sira-Ramirez (10.1016/j.robot.2024.104842_b45) 2017 Niloy (10.1016/j.robot.2024.104842_b2) 2021; 9 González-Sierra (10.1016/j.robot.2024.104842_b50) 2022; 147 Jin (10.1016/j.robot.2024.104842_b21) 2020; 63 |
References_xml | – volume: 62 start-page: 276 year: 2016 end-page: 286 ident: b43 article-title: Robust disturbance rejection control of a biped robotic system using high-order extended state observer publication-title: ISA Trans. – start-page: 1679 year: 1989 end-page: 1683 ident: b37 article-title: Integrators, nonlinearities, and anti-reset windup for different control structures publication-title: 1989 American Control Conference – reference: Z. Gao, Active disturbance rejection control: a paradigm shift in feedback control system design, in: Proc. American Control Conference, 2006, pp. 2399–2405. – start-page: 1 year: 2021 end-page: 6 ident: b8 article-title: Influence of dissipative forces and the design of mecanum-wheels on the omnidirectional platform dynamics publication-title: International Conference “Nonlinearity, Information and Robotics” – volume: 56 start-page: 900 year: 2009 end-page: 906 ident: b12 article-title: From PID to active disturbance rejection control publication-title: IEEE Tran. Ind. Electron. – volume: 30 start-page: 1311 year: 2020 end-page: 1327 ident: b39 article-title: Anti-windup design of active disturbance rejection control for sampled systems with input delay publication-title: Internat. J. Robust Nonlinear Control – volume: 36 start-page: 424 year: 1991 end-page: 440 ident: b36 article-title: The peaking phenomenon and the global stabilization of nonlinear systems publication-title: IEEE Trans. Autom. Control – volume: 74 start-page: 13 year: 2018 end-page: 21 ident: b26 article-title: Active disturbance rejection control applied to automated steering for lane keeping in autonomous vehicles publication-title: Control Eng. Pract. – volume: 84 start-page: 218 year: 2019 end-page: 229 ident: b24 article-title: General error-based active disturbance rejection control for swift industrial implementations publication-title: Control Eng. Pract. – volume: 165 year: 2023 ident: b52 article-title: Smooth collision avoidance for the formation control of first order multi-agent systems publication-title: Robot. Auton. Syst. – start-page: 1 year: 2018 end-page: 4 ident: b7 article-title: Influence of mecanum wheels construction on accuracy of the omnidirectional platform navigation (on example of kuka youbot robot) publication-title: International Conference on Integrated Navigation Systems – volume: 16 start-page: 249 year: 2018 end-page: 260 ident: b15 article-title: From flatness, GPI observers, GPI control and flat filters to observer-based ADRC publication-title: Control Theory Technol. – volume: 147 year: 2022 ident: b50 article-title: Formation control of distance and orientation based-model of an omnidirectional robot and a quadrotor UAV publication-title: Robot. Auton. Syst. – volume: 79 start-page: 185 year: 2018 end-page: 194 ident: b19 article-title: Application of LADRC with stability region for a hydrotreating back-flushing process publication-title: Control Eng. Pract. – volume: 52 start-page: 7 year: 2018 end-page: 21 ident: b55 article-title: Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation publication-title: Mechatronics – start-page: 1 year: 2014 end-page: 5 ident: b16 article-title: Active disturbance rejection control: Methodology, practice and analysis publication-title: Proceedings of the 33rd Chinese Control Conference – volume: 75 start-page: 463 year: 2016 end-page: 474 ident: b49 article-title: Distributed formation building algorithms for groups of wheeled mobile robots publication-title: Robot. Auton. Syst. – volume: 18 start-page: 285 year: 2002 end-page: 293 ident: b4 article-title: Dynamic model with slip for wheeled omnidirectional robots publication-title: IEEE Trans. Robot. Autom. – volume: 70 start-page: 219 year: 2009 end-page: 232 ident: b53 article-title: Construction of invariant ellipsoids in the stabilization problem for a wheeled robot following a curvilinear path publication-title: Autom. Remote Control – volume: 9 start-page: 35338 year: 2021 end-page: 35370 ident: b2 article-title: Critical design and control issues of indoor autonomous mobile robots: A review publication-title: IEEE Access – reference: C. Ren, R. Liu, S. Ma, C. Hu, L. Cao, ESO based model predictive control of an omnidirectional mobile robot with friction compensation, in: Chinese Control Conference, 2018, pp. 3943–3948. – start-page: 461 year: 2018 end-page: 466 ident: b5 article-title: Autonomous following indoor omnidirectional mobile robot publication-title: Chinese Control and Decision Conference – volume: 107 start-page: 6 year: 2023 ident: b29 article-title: Leader-follower power-based formation control applied to differential-drive mobile robots publication-title: J. Intell. Robot. Syst. – year: 2023 ident: b6 article-title: Oboat: An agile omnidirectional robotic platform for unmanned surface vehicle tasks publication-title: IEEE/ASME Trans. Mechatronics – volume: 30 start-page: 80 year: 2020 end-page: 99 ident: b27 article-title: Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control publication-title: Internat. J. Robust Nonlinear Control – volume: 61 start-page: 1327 year: 1995 end-page: 1361 ident: b46 article-title: Flatness and defect of non-linear systems: introductory theory and examples publication-title: Int. J. Control – volume: 5 start-page: 377 year: 2020 end-page: 384 ident: b1 article-title: A teleoperation framework for mobile robots based on shared control publication-title: IEEE Robot. Autom. Lett. – volume: 84 year: 2022 ident: b31 article-title: Anti-slip control for unmanned underwater tracked bulldozer based on active disturbance rejection control publication-title: Mechatronics – volume: 41 start-page: 2064 year: 2019 end-page: 2076 ident: b20 article-title: Convergence and stability analysis of active disturbance rejection control for first-order nonlinear dynamic systems publication-title: Trans. Inst. Meas. Control – volume: 159 year: 2023 ident: b3 article-title: Power solutions for autonomous mobile robots: A survey publication-title: Robot. Auton. Syst. – volume: 56 start-page: 18 year: 2015 end-page: 27 ident: b22 article-title: Survey on methods of increasing the efficiency of extended state disturbance observers publication-title: ISA Trans. – volume: 11 year: 2019 ident: b32 article-title: Active Disturbance Rejection Control for Handling Slip in Tracked Vehicle Locomotion publication-title: J. Mech. Robot. – volume: 15 start-page: 51 year: 2013 end-page: 63 ident: b34 article-title: Linear observer-based active disturbance rejection control of the omnidirectional mobile robot publication-title: Asian J. Control – volume: 101 start-page: 482 year: 2020 end-page: 492 ident: b18 article-title: Measurement delay compensated LADRC based current controller design for PMSM drives with a simple parameter tuning method publication-title: ISA Trans. – reference: Z. Gao, Scaling and bandwidth-parameterization based controller tuning, in: American Control Conference, 2003, pp. 4989–4996. – year: 2017 ident: b45 article-title: Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach – start-page: 131 year: 2019 end-page: 134 ident: b9 article-title: Trajectory tracking control for four-wheeled omnidirectional mobile robot using backstepping technique aggregated with sliding mode control publication-title: 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics – volume: 63 start-page: 1754 year: 2016 end-page: 1762 ident: b23 article-title: Practical active disturbance rejection control: bumpless transfer, rate limitation, and incremental algorithm publication-title: IEEE Trans. Ind. Electron. – volume: 45 start-page: 7 year: 2019 end-page: 35 ident: b30 article-title: A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle publication-title: Multibody Syst. Dyn. – volume: 26 start-page: 3421 year: 2016 end-page: 3438 ident: b40 article-title: Anti-windup design for uncertain nonlinear systems subject to actuator saturation and external disturbance publication-title: Internat. J. Robust Nonlinear Control – volume: 137 start-page: 519 year: 2023 end-page: 530 ident: b38 article-title: Anti-windup adrc design for temperature control systems with output delay against asymmetric input constraint publication-title: ISA Trans. – volume: 86 start-page: 2228 year: 2013 end-page: 2252 ident: b44 article-title: Model-free control publication-title: Internat. J. Control – volume: 24 start-page: 2616 year: 2019 end-page: 2626 ident: b33 article-title: Mobile robot ADRC with an automatic parameter tuning mechanism via modified pigeon-inspired optimization publication-title: IEEE/ASME Trans. Mechatronics – volume: 30 start-page: 1 year: 2013 end-page: 19 ident: b54 article-title: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises publication-title: IMA J. Math. Control Inform. – year: 2020 ident: b47 article-title: Cascade delayed controller design for a class of underactuated systems publication-title: Complexity – volume: 66 start-page: 9480 year: 2019 end-page: 9489 ident: b11 article-title: Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation publication-title: IEEE Trans. Ind. Electron. – volume: 21 start-page: 983 year: 2012 end-page: 990 ident: b48 article-title: Tuning of proportional retarded controllers: theory and experiments publication-title: IEEE Trans. Control Syst. Technol. – volume: 16 start-page: 301 year: 2018 end-page: 313 ident: b25 article-title: Active disturbance rejection control: some recent experimental and industrial case studies publication-title: Control Theory Technol. – reference: X. Wu, J. Pang, T. Yang, Anti-windup design for active disturbance rejection control, in: Chinese Cont. Conf., 2014, pp. 2389–2395. – start-page: 1 year: 2018 end-page: 5 ident: b10 article-title: LQR trajectory tracking control of an omnidirectional wheeled mobile robot publication-title: 2018 IEEE 2nd Colombian Conference on Robotics and Automation – volume: 53 start-page: 850 year: 2014 end-page: 857 ident: b14 article-title: On the centrality of disturbance rejection in automatic control publication-title: ISA Trans. – start-page: 2295 year: 2022 end-page: 2300 ident: b42 article-title: Trajectory tracking kinematic control of omnidirectional mobile robots via active disturbance rejection control with anti-peaking mechanism publication-title: 2022 IEEE 18th International Conference on Automation Science and Engineering – volume: 63 start-page: 1 year: 2020 end-page: 3 ident: b21 article-title: On the characteristics of ADRC: A pid interpretation publication-title: Sci. China Inf. Sci. – volume: 95 start-page: 1694 year: 2022 end-page: 1706 ident: b51 article-title: A game of surveillance between an omnidirectional agent and a differential drive robot publication-title: Internat. J. Control – volume: 10 start-page: 3865 year: 2022 ident: b28 article-title: Active disturbance rejection strategy for distance and formation angle decentralized control in differential-drive mobile robots publication-title: Mathematics – volume: 16 start-page: 249 year: 2018 ident: 10.1016/j.robot.2024.104842_b15 article-title: From flatness, GPI observers, GPI control and flat filters to observer-based ADRC publication-title: Control Theory Technol. doi: 10.1007/s11768-018-8134-x – volume: 24 start-page: 2616 year: 2019 ident: 10.1016/j.robot.2024.104842_b33 article-title: Mobile robot ADRC with an automatic parameter tuning mechanism via modified pigeon-inspired optimization publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2019.2953239 – volume: 165 year: 2023 ident: 10.1016/j.robot.2024.104842_b52 article-title: Smooth collision avoidance for the formation control of first order multi-agent systems publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2023.104433 – volume: 61 start-page: 1327 year: 1995 ident: 10.1016/j.robot.2024.104842_b46 article-title: Flatness and defect of non-linear systems: introductory theory and examples publication-title: Int. J. Control doi: 10.1080/00207179508921959 – volume: 53 start-page: 850 year: 2014 ident: 10.1016/j.robot.2024.104842_b14 article-title: On the centrality of disturbance rejection in automatic control publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.09.012 – start-page: 1 year: 2014 ident: 10.1016/j.robot.2024.104842_b16 article-title: Active disturbance rejection control: Methodology, practice and analysis – volume: 45 start-page: 7 year: 2019 ident: 10.1016/j.robot.2024.104842_b30 article-title: A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-018-9614-y – volume: 10 start-page: 3865 year: 2022 ident: 10.1016/j.robot.2024.104842_b28 article-title: Active disturbance rejection strategy for distance and formation angle decentralized control in differential-drive mobile robots publication-title: Mathematics doi: 10.3390/math10203865 – volume: 95 start-page: 1694 year: 2022 ident: 10.1016/j.robot.2024.104842_b51 article-title: A game of surveillance between an omnidirectional agent and a differential drive robot publication-title: Internat. J. Control doi: 10.1080/00207179.2020.1870004 – volume: 107 start-page: 6 year: 2023 ident: 10.1016/j.robot.2024.104842_b29 article-title: Leader-follower power-based formation control applied to differential-drive mobile robots publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-022-01796-w – volume: 15 start-page: 51 year: 2013 ident: 10.1016/j.robot.2024.104842_b34 article-title: Linear observer-based active disturbance rejection control of the omnidirectional mobile robot publication-title: Asian J. Control doi: 10.1002/asjc.523 – volume: 75 start-page: 463 year: 2016 ident: 10.1016/j.robot.2024.104842_b49 article-title: Distributed formation building algorithms for groups of wheeled mobile robots publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.08.006 – volume: 18 start-page: 285 year: 2002 ident: 10.1016/j.robot.2024.104842_b4 article-title: Dynamic model with slip for wheeled omnidirectional robots publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/TRA.2002.1019459 – volume: 74 start-page: 13 year: 2018 ident: 10.1016/j.robot.2024.104842_b26 article-title: Active disturbance rejection control applied to automated steering for lane keeping in autonomous vehicles publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.02.002 – start-page: 1679 year: 1989 ident: 10.1016/j.robot.2024.104842_b37 article-title: Integrators, nonlinearities, and anti-reset windup for different control structures – year: 2023 ident: 10.1016/j.robot.2024.104842_b6 article-title: Oboat: An agile omnidirectional robotic platform for unmanned surface vehicle tasks publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2023.3257085 – volume: 66 start-page: 9480 year: 2019 ident: 10.1016/j.robot.2024.104842_b11 article-title: Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2892678 – year: 2017 ident: 10.1016/j.robot.2024.104842_b45 – volume: 79 start-page: 185 year: 2018 ident: 10.1016/j.robot.2024.104842_b19 article-title: Application of LADRC with stability region for a hydrotreating back-flushing process publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.07.011 – volume: 36 start-page: 424 year: 1991 ident: 10.1016/j.robot.2024.104842_b36 article-title: The peaking phenomenon and the global stabilization of nonlinear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.75101 – volume: 70 start-page: 219 year: 2009 ident: 10.1016/j.robot.2024.104842_b53 article-title: Construction of invariant ellipsoids in the stabilization problem for a wheeled robot following a curvilinear path publication-title: Autom. Remote Control doi: 10.1134/S0005117909020040 – start-page: 1 year: 2018 ident: 10.1016/j.robot.2024.104842_b7 article-title: Influence of mecanum wheels construction on accuracy of the omnidirectional platform navigation (on example of kuka youbot robot) – start-page: 131 year: 2019 ident: 10.1016/j.robot.2024.104842_b9 article-title: Trajectory tracking control for four-wheeled omnidirectional mobile robot using backstepping technique aggregated with sliding mode control – volume: 147 year: 2022 ident: 10.1016/j.robot.2024.104842_b50 article-title: Formation control of distance and orientation based-model of an omnidirectional robot and a quadrotor UAV publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2021.103921 – volume: 84 start-page: 218 year: 2019 ident: 10.1016/j.robot.2024.104842_b24 article-title: General error-based active disturbance rejection control for swift industrial implementations publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.11.021 – volume: 62 start-page: 276 year: 2016 ident: 10.1016/j.robot.2024.104842_b43 article-title: Robust disturbance rejection control of a biped robotic system using high-order extended state observer publication-title: ISA Trans. doi: 10.1016/j.isatra.2016.02.003 – volume: 84 year: 2022 ident: 10.1016/j.robot.2024.104842_b31 article-title: Anti-slip control for unmanned underwater tracked bulldozer based on active disturbance rejection control publication-title: Mechatronics doi: 10.1016/j.mechatronics.2022.102803 – volume: 11 year: 2019 ident: 10.1016/j.robot.2024.104842_b32 article-title: Active Disturbance Rejection Control for Handling Slip in Tracked Vehicle Locomotion publication-title: J. Mech. Robot. doi: 10.1115/1.4042347 – volume: 16 start-page: 301 year: 2018 ident: 10.1016/j.robot.2024.104842_b25 article-title: Active disturbance rejection control: some recent experimental and industrial case studies publication-title: Control Theory Technol. doi: 10.1007/s11768-018-8142-x – volume: 30 start-page: 1 year: 2013 ident: 10.1016/j.robot.2024.104842_b54 article-title: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dns008 – ident: 10.1016/j.robot.2024.104842_b35 doi: 10.23919/ChiCC.2018.8484121 – volume: 5 start-page: 377 year: 2020 ident: 10.1016/j.robot.2024.104842_b1 article-title: A teleoperation framework for mobile robots based on shared control publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2959442 – volume: 30 start-page: 80 year: 2020 ident: 10.1016/j.robot.2024.104842_b27 article-title: Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4750 – volume: 137 start-page: 519 year: 2023 ident: 10.1016/j.robot.2024.104842_b38 article-title: Anti-windup adrc design for temperature control systems with output delay against asymmetric input constraint publication-title: ISA Trans. doi: 10.1016/j.isatra.2023.01.001 – ident: 10.1016/j.robot.2024.104842_b13 – ident: 10.1016/j.robot.2024.104842_b17 – volume: 86 start-page: 2228 year: 2013 ident: 10.1016/j.robot.2024.104842_b44 article-title: Model-free control publication-title: Internat. J. Control doi: 10.1080/00207179.2013.810345 – start-page: 461 year: 2018 ident: 10.1016/j.robot.2024.104842_b5 article-title: Autonomous following indoor omnidirectional mobile robot – volume: 21 start-page: 983 year: 2012 ident: 10.1016/j.robot.2024.104842_b48 article-title: Tuning of proportional retarded controllers: theory and experiments publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2195664 – volume: 63 start-page: 1 year: 2020 ident: 10.1016/j.robot.2024.104842_b21 article-title: On the characteristics of ADRC: A pid interpretation publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-018-9647-6 – volume: 9 start-page: 35338 year: 2021 ident: 10.1016/j.robot.2024.104842_b2 article-title: Critical design and control issues of indoor autonomous mobile robots: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062557 – volume: 101 start-page: 482 year: 2020 ident: 10.1016/j.robot.2024.104842_b18 article-title: Measurement delay compensated LADRC based current controller design for PMSM drives with a simple parameter tuning method publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.01.027 – volume: 159 year: 2023 ident: 10.1016/j.robot.2024.104842_b3 article-title: Power solutions for autonomous mobile robots: A survey publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2022.104285 – volume: 26 start-page: 3421 year: 2016 ident: 10.1016/j.robot.2024.104842_b40 article-title: Anti-windup design for uncertain nonlinear systems subject to actuator saturation and external disturbance publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.3524 – volume: 56 start-page: 900 year: 2009 ident: 10.1016/j.robot.2024.104842_b12 article-title: From PID to active disturbance rejection control publication-title: IEEE Tran. Ind. Electron. doi: 10.1109/TIE.2008.2011621 – volume: 41 start-page: 2064 year: 2019 ident: 10.1016/j.robot.2024.104842_b20 article-title: Convergence and stability analysis of active disturbance rejection control for first-order nonlinear dynamic systems publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331218794812 – volume: 63 start-page: 1754 year: 2016 ident: 10.1016/j.robot.2024.104842_b23 article-title: Practical active disturbance rejection control: bumpless transfer, rate limitation, and incremental algorithm publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2499168 – volume: 56 start-page: 18 year: 2015 ident: 10.1016/j.robot.2024.104842_b22 article-title: Survey on methods of increasing the efficiency of extended state disturbance observers publication-title: ISA Trans. doi: 10.1016/j.isatra.2014.11.008 – volume: 52 start-page: 7 year: 2018 ident: 10.1016/j.robot.2024.104842_b55 article-title: Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.04.003 – start-page: 2295 year: 2022 ident: 10.1016/j.robot.2024.104842_b42 article-title: Trajectory tracking kinematic control of omnidirectional mobile robots via active disturbance rejection control with anti-peaking mechanism – year: 2020 ident: 10.1016/j.robot.2024.104842_b47 article-title: Cascade delayed controller design for a class of underactuated systems publication-title: Complexity doi: 10.1155/2020/2160743 – start-page: 1 year: 2021 ident: 10.1016/j.robot.2024.104842_b8 article-title: Influence of dissipative forces and the design of mecanum-wheels on the omnidirectional platform dynamics – volume: 30 start-page: 1311 year: 2020 ident: 10.1016/j.robot.2024.104842_b39 article-title: Anti-windup design of active disturbance rejection control for sampled systems with input delay publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4838 – ident: 10.1016/j.robot.2024.104842_b41 doi: 10.1109/ChiCC.2014.6897008 – start-page: 1 year: 2018 ident: 10.1016/j.robot.2024.104842_b10 article-title: LQR trajectory tracking control of an omnidirectional wheeled mobile robot |
SSID | ssj0003573 |
Score | 2.4238758 |
Snippet | This article presents a Linear Active Disturbance Rejection scheme for the robust trajectory tracking control of an Omnidirectional robot, including an... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 104842 |
SubjectTerms | Active disturbance rejection control Extended state observers Omnidirectional robots Peaking |
Title | Robust trajectory tracking for omnidirectional robots by means of anti-peaking linear active disturbance rejection |
URI | https://dx.doi.org/10.1016/j.robot.2024.104842 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RssCAeIryqDwwEpo4thuPqKIqVGLgIbpF8UtKpTZVmg4s_HZsJ0EgIQamRJEd2efL953PlzuAqxBnRkkWBkolKiCKkUAYKe2uVbEwIdyxgou2eGSTV_Iwo7MtGLX_wriwygb7a0z3aN08GTTSHKzyfPAccktP7piMOCJipAPbOOaMdmH79n46efwC5JjWB822feA6tMmHfJhXWYjCxVRi4o47E4J_J6hvpDPeh73GWkS39YAOYEsvD2H3Ww7BIyifCrFZV6gqs7n3wL-7W-k84MgapKhYLPN6jt7ph_xI1ki8o4W2NIUKg6xw82ClfV0q5MzOrESZx0GkrBZsSuFUA5V6Xr_lGF7Hdy-jSdAUUggkpnFloTaLFFdY0mgohpnJImxiLTFXXHMV2i0F5ZEWkhvOBYklTYTgVBmFw6GyqxyfQHdZLPUpoMS4DPScWlaznz9LuDCYMC3DSEZKR6wH16300lWdLyNtA8nmqZ9i6oSd1sLuAWslnP5Y9tQi-l8dz_7b8Rx2sCvh670oF9Ctyo2-tHZFJfrQufmI-o32uOv06W36CcYS0VA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YGR0MSxnXhEFahA6QCt1C2KX1IrNanSdOjCb8d2ElEkxMAWRXZkny_3ne8-nwG49VGqpaC-J2UsPSwp9rgWwuxaJfVjzCwqWLbFkPbH-GVCJi3Qa87CWFplbfsrm-6sdf2mW0uzu5hOux8-M_Bk02TYAhHFW2AbkzCyvL77z2-eR0iqNLNp7dnmTekhR_Iqcp5bRiXCNtkZY_Q7PG1AztMB2K99RfhQDecQtFR2BPY2Kggeg-I956tlCcsinbn4-9o-Chv_hsYdhfk8m1YzdCE_6EayhHwN58qAFMw1NKKdegvlbqWC1ulMC5g6Kwil0YFVwa1iwELNqq-cgPHT46jX9-prFDyBSFgaQ5sGkkkkSBDxKNVpgHSoBGKSKSZ9s6EgLFBcMM0Yx6EgMeeMSC2RH0mzxuEpaGd5ps4AjLWtP8-IwTTz89OYcY0wVcIPRCBVQDvgrpFesqiqZSQNjWyWuCkmVthJJewOoI2Ekx-Lnhh7_lfH8_92vAE7_dHbIBk8D18vwC6yl_m6eMolaJfFSl0ZD6Pk106DvgAEodB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+trajectory+tracking+for+omnidirectional+robots+by+means+of+anti-peaking+linear+active+disturbance+rejection&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Ram%C3%ADrez-Neria%2C+Mario&rft.au=Madonski%2C+Rafal&rft.au=Hern%C3%A1ndez-Mart%C3%ADnez%2C+Eduardo+Gamaliel&rft.au=Lozada-Castillo%2C+Norma&rft.date=2025-01-01&rft.issn=0921-8890&rft.volume=183&rft.spage=104842&rft_id=info:doi/10.1016%2Fj.robot.2024.104842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2024_104842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |