Improved Particle Swarm Optimization with Deep Learning-Based Municipal Solid Waste Management in Smart Cities

Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequen...

Full description

Saved in:
Bibliographic Details
Published inRGSA : Revista de Gestão Social e Ambiental Vol. 17; no. 4; pp. e03561 - 20
Main Authors Udayakumar, R., Elankavi, R., R. Vimal, V., Sugumar, R.
Format Journal Article
LanguageEnglish
Published São Paulo Centro Universitário da FEI, Revista RGSA 27.06.2023
Subjects
Online AccessGet full text
ISSN1981-982X
1981-982X
DOI10.24857/rgsa.v17n4-022

Cover

Loading…
Abstract Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level.   Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities.   Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm.   Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming.   Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development.   Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification.
AbstractList Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level.   Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities.   Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm.   Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming.   Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development.   Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification.
Objetivos: A estrutura da Internet das Coisas (IoT) é fundamental para aprimorar os aplicativos de monitoramento para cidades inteligentes e controlar as operaçöes municipais em tempo real. O problema mais significativo dos aplicativos para cidades inteligentes tem sido o manuseio de residuos sólidos, que pode ter consequencias negativas para a saúde e o bem-estar das pessoas. O gerenciamento de residuos tornou-se um problema que as naçöes desenvolvidas e em desenvolvimento precisam enfrentar. O gerenciamento de residuos sólidos é uma questão importante e empolgante que afeta os habitats em todo o mundo. Portanto, é necessário criar um método eficiente para eliminar esses problemas ou, no mínimo, reduzi-los a um nivel gerenciável. Estrutura teórica: Este trabalho propôs uma otimização aprimorada de enxame de particulas com gerenciamento de residuos sólidos municipais baseado em aprendizagem profunda (IPSODL-MSWM) em cidades inteligentes. Métodos: A abordagem IPSODL-MSWM visa identificar vários tipos de materiais de residuos sólidos e permitir o gerenciamento sustentável de residuos. Um modelo SSD (Single Shot Detection) permite a detecção eficiente de objetos no paradigma IPSODL-MSWM. Em seguida, os vetores de recursos foram gerados usando o modelo MobileNetV2 com base em uma rede neural convolucional profunda (CNN). O IPSO foi obtido usando um algoritmo hibrido de algoritmo genético (GA) e algoritmo PSO. Resultados e conclusðes: O método IPSODL foi empregado para o ajuste automático de hiperparãmetros, pois o ajuste manual de hiperparãmetros por tentativa e erro consome muito tempo. Implicares da pesquisa: A abordagem IPSODL-MSWM usa Support Vector Machine (SVM) para a categorização precisa do excesso municipal neste trabalho. Isso implica um modelo sustentável de gerenciamento de residuos para um melhor desenvolvimento de cidades inteligentes. Originalidade/valor: Com uma precisão ideal de 99,45%, muitas simulaçöes mostram a capacidade aprimorada de classificação do modelo IPSODL-MSWM.
Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level. Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities. Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm. Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming. Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development. Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification.
Author Udayakumar, R.
R. Vimal, V.
Elankavi, R.
Sugumar, R.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0002-1395-583X
  surname: Udayakumar
  fullname: Udayakumar, R.
– sequence: 2
  givenname: R.
  orcidid: 0000-0001-5661-7278
  surname: Elankavi
  fullname: Elankavi, R.
– sequence: 3
  givenname: V.
  orcidid: 0000-0001-9401-4507
  surname: R. Vimal
  fullname: R. Vimal, V.
– sequence: 4
  givenname: R.
  orcidid: 0000-0002-0801-6600
  surname: Sugumar
  fullname: Sugumar, R.
BookMark eNp9UT1PwzAUtFCRgNKZ1RJzWtuJa2eE8ikVgVQQbJHjvBSjxAm22wp-PaYwICR4y3vD3T3d3QEa2M4CQkeUjFkmuZi4pVfjNRU2SwhjO2if5pImuWRPgx_3Hhp5_0LiSEI4o_vIXre969ZQ4TvlgtEN4MVGuRbf9sG05l0F01m8MeEZnwH0eA7KWWOXyanykXSzskabXjV40TWmwo_KB8A3yqoltGADNhYv2qiMZyYY8Idot1aNh9H3HqKHi_P72VUyv728np3ME814yhIQWudpJlQlJC8rrWmtueBlqcuKZVNOuCSKpWqaUQWQQy109KinWSlqUdcsHaLjL91o7nUFPhQv3crZ-LJIo3FJcs7JfygmOROCSkYjin-htOu8d1AX2oRtLsEp0xSUFNsOis8Oim0HRewg8ia_eL0zMYu3Pxkf4JON_A
CitedBy_id crossref_primary_10_3390_urbansci9010016
crossref_primary_10_24857_rgsa_v18n5_044
crossref_primary_10_1051_e3sconf_202454011006
crossref_primary_10_1016_j_apenergy_2025_125568
crossref_primary_10_24857_rgsa_v18n8_050
crossref_primary_10_1051_e3sconf_202454013005
crossref_primary_10_24857_rgsa_v18n6_014
crossref_primary_10_24857_rgsa_v18n1_056
Cites_doi 10.1007/s13369-020-04637-w
10.1177/0734242X211033716
10.1016/j.procs.2020.03.222
10.24857/rgsa.v17n3-001
10.1177/0734242X20906877
10.1007/s11783-023-1677-1
10.1016/j.wasman.2018.11.030
10.1007/s11356-021-16962-0
10.1016/j.egyr.2021.08.028
10.1016/j.wasman.2020.04.015
10.1038/s41467-020-17910-1
10.1016/j.scitotenv.2019.134279
10.58346/JISIS.2022.I4.007
10.1016/j.jenvman.2021.113675
10.1007/s11356-021-15289-0
10.1109/ACCESS.2020.2979015
10.24857/rgsa.v16n2-007
10.1016/j.jclepro.2020.123928
10.1186/s13638-020-01826-x
10.1016/j.ipm.2020.102221
10.1109/ACCESS.2019.2935375
10.1016/j.wasman.2021.04.012
10.1089/ees.2020.0232
10.3390/su15097321
10.1016/j.jclepro.2020.120387
10.1016/j.wasman.2020.05.033
10.1109/TII.2019.2915572
10.1142/S0218126621500134
ContentType Journal Article
Copyright 2023. This work is published under https://rgsa.emnuvens.com.br/rgsa/about/editorialPolicies#openAccessPolicy (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under https://rgsa.emnuvens.com.br/rgsa/about/editorialPolicies#openAccessPolicy (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
0-V
3V.
7ST
7WY
7WZ
7XB
87Z
88J
8FK
8FL
ABUWG
AEUYN
AFKRA
ALSLI
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
CLZPN
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
L.-
M0C
M2R
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRQQA
PYCSY
PYYUZ
Q9U
SOI
PRINS
DOI 10.24857/rgsa.v17n4-022
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Social Science Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
ProQuest Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Latin America & Iberian Database
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Social Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
Environmental Science Collection
ABI/INFORM Collection China
ProQuest Central Basic
Environment Abstracts
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Business Collection
Environmental Science Collection
ProQuest Social Science Journals
Latin America & Iberian Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest Central China
DatabaseTitleList CrossRef
Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1981-982X
EndPage 20
ExternalDocumentID 10_24857_rgsa_v17n4_022
GroupedDBID 0-V
4P2
5VS
7WY
7XC
8FE
8FH
8FL
91A
AAYXX
ABDHV
ABUWG
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARALO
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BPHCQ
CCPQU
CITATION
CLZPN
DWQXO
EDH
FRNLG
GNUQQ
HCIFZ
INF
ITC
K60
K6~
KQ8
M0C
M2R
ML.
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
PYCSY
3V.
7ST
7XB
8FK
C1K
L.-
PKEHL
POGQB
PQEST
PQUKI
PRQQA
Q9U
SOI
PRINS
ID FETCH-LOGICAL-c2532-e7cc9347ad785bdcc1fc575bbcbd24650580a23a641aee9ef7c198c64b7f7ff23
IEDL.DBID BENPR
ISSN 1981-982X
IngestDate Sat Jul 26 00:23:15 EDT 2025
Sat Jul 26 00:20:57 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Tue Jul 01 03:25:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2532-e7cc9347ad785bdcc1fc575bbcbd24650580a23a641aee9ef7c198c64b7f7ff23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5661-7278
0000-0001-9401-4507
0000-0002-0801-6600
0000-0002-1395-583X
OpenAccessLink https://www.proquest.com/docview/3052809550?pq-origsite=%requestingapplication%
PQID 2852771821
PQPubID 2031968
PageCount 20
ParticipantIDs proquest_journals_3052809550
proquest_journals_2852771821
crossref_citationtrail_10_24857_rgsa_v17n4_022
crossref_primary_10_24857_rgsa_v17n4_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-27
PublicationDateYYYYMMDD 2023-06-27
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-27
  day: 27
PublicationDecade 2020
PublicationPlace São Paulo
PublicationPlace_xml – name: São Paulo
PublicationTitle RGSA : Revista de Gestão Social e Ambiental
PublicationYear 2023
Publisher Centro Universitário da FEI, Revista RGSA
Publisher_xml – name: Centro Universitário da FEI, Revista RGSA
References 24013
24014
24015
24016
24017
24018
24019
24030
24031
24010
24032
24011
24033
24012
24034
24024
24025
24026
24027
24006
24028
24007
24029
24008
24009
24020
24021
24022
24023
References_xml – ident: 24008
  doi: 10.1007/s13369-020-04637-w
– ident: 24031
  doi: 10.1177/0734242X211033716
– ident: 24015
  doi: 10.1016/j.procs.2020.03.222
– ident: 24014
  doi: 10.24857/rgsa.v17n3-001
– ident: 24011
  doi: 10.1177/0734242X20906877
– ident: 24024
  doi: 10.1007/s11783-023-1677-1
– ident: 24016
  doi: 10.1016/j.wasman.2018.11.030
– ident: 24010
  doi: 10.1007/s11356-021-16962-0
– ident: 24020
  doi: 10.1016/j.egyr.2021.08.028
– ident: 24030
  doi: 10.1016/j.wasman.2020.04.015
– ident: 24034
  doi: 10.1038/s41467-020-17910-1
– ident: 24033
  doi: 10.1016/j.scitotenv.2019.134279
– ident: 24017
  doi: 10.58346/JISIS.2022.I4.007
– ident: 24025
  doi: 10.1016/j.jenvman.2021.113675
– ident: 24009
  doi: 10.1007/s11356-021-15289-0
– ident: 24006
  doi: 10.1109/ACCESS.2020.2979015
– ident: 24013
  doi: 10.24857/rgsa.v16n2-007
– ident: 24023
  doi: 10.1016/j.jclepro.2020.123928
– ident: 24022
  doi: 10.1186/s13638-020-01826-x
– ident: 24032
  doi: 10.1016/j.ipm.2020.102221
– ident: 24028
  doi: 10.1109/ACCESS.2019.2935375
– ident: 24019
  doi: 10.1016/j.wasman.2021.04.012
– ident: 24027
  doi: 10.1089/ees.2020.0232
– ident: 24007
  doi: 10.3390/su15097321
– ident: 24018
  doi: 10.1016/j.jclepro.2020.120387
– ident: 24026
  doi: 10.1016/j.wasman.2020.05.033
– ident: 24029
  doi: 10.1109/TII.2019.2915572
– ident: 24012
– ident: 24021
  doi: 10.1142/S0218126621500134
SSID ssj0000800521
Score 2.2857826
Snippet Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in...
Objetivos: A estrutura da Internet das Coisas (IoT) é fundamental para aprimorar os aplicativos de monitoramento para cidades inteligentes e controlar as...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage e03561
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Cities
Classification
Deep learning
Developed countries
Genetic algorithms
Interdisciplinary subjects
Internet of Things
Machine learning
Municipal solid waste
Municipal waste management
Neural networks
Object recognition
Optimization techniques
Particle swarm optimization
Smart cities
Solid waste management
Solid wastes
Support vector machines
Sustainability management
Sustainable waste management
Tuning
Waste management
Waste materials
Title Improved Particle Swarm Optimization with Deep Learning-Based Municipal Solid Waste Management in Smart Cities
URI https://www.proquest.com/docview/2852771821
https://www.proquest.com/docview/3052809550
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgu3BBDJgYbMiHHbh4Sxwndk4oaz2aqUmjJqMTlyh2bC4oG-vg7-c5dVdNAs6OfXg_v_difw-h067nsdYB-DdNesKMFUR1NiVMiZ5py-NUuAfORZnMrtnVTXzjG25rf61yGxPHQN3fatcjPwe7pMLxpQWf734SNzXK_V31IzSeo30IwQIsfP9CltXyscvi8BAkqA2nj2Pv4uf339fd2e-QD4wElD5NR0-j8ZhiLl-hlx4b4myjzAP0zAyv0aHcPUWDRe-L6zdoyItqufgqp7gCUJpP5hLXq2xZ4EXVQET6Njaf8CpvZngqZYXnMluWefmFXGQ1bCqg8pvkVTbH9WKeT_EqqxuJdwT_OC9xXcDJeJI3gBnfoutL2UxmxE9PIJrGESWGa51GjIM2RKx6rUOrAZsppVVPGQCzWAQdjbqEhZ0xqbFch6nQCVPccmtpdIj2htvBvENYmAjqqNiIwCqmVdQxx3rfJ2lodKiYOUJnWyG22lOLuwkXP1ooMUapt07q7Sj1FqR-hD49brjbsGr8-9PjrVZa717rloqYcsiqNPzr8s5W3v9_-QN64cbHu6tflB-jvYf7X-YEQMaD-ugt6Q-krcvd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELaizaG9VH1Fzav1oZV6IQFjMByiiuySrhtg0UK6US8UG7uXiDw2bdU_1d_YMQtZRWp7y9kYofE8vhk83yD0tm6YJ6UN9k38xqJKB5aodWhRETRUauaFgWlwTjN_ekY_nXvnG-j30AtjrlUOPrFz1M2lNDXyQ9BLEhi-NPvD1bVlpkaZv6vDCI2VWpyqXz8hZVse8Qmc7ztCTuJyPLX6qQKWJJ5LLMWkDF3K4CsDTzRSOloCZhFCioZQACxeYNfErX3q1EqFSjMJibn0qWCaaW2IDsDlb1IXoMIIbR7HWT6_q-oY_AUBccUhZNjC2OHNt2V98MNhLbVsQu6Hv_vevwtpJ0_Rkx6L4milPM_Qhmqfo6143foGi73tL1-glqf5fPY5nuAcQDAfJzEuFtE8xbO8BA_4pSt24QUvp3gSxzlO4mie8eyjdRwVsCmFTHPM8yjBxSzhE7yIijLG64ECmGe4SOHNeMxLwKgv0dmDyHULjdrLVr1COFAu5G2eCmwtqBRuTQ3LfuOHjpKOoGobHQxCrGRPZW4malxUkNJ0Uq-M1KtO6hVIfRu9v9twtWLx-Peje8OpVL05LysSeIRBFCfOX5fXurnz_-U36NG0TJMq4dnpLnpsRteba2eE7aHR7c13tQ8A51a87rUKo68Prch_AHxXCgE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqrYS4IL4qCgV8AIlLuhvHiZMDQukmy5om2WiTshWXEDs2lyr92ALir_HrGGeTrioBt54dR9H4eeaN43mD0Ju6Ya6UE9jfxGssqrRviVoHFhV-Q6VmbuCbAuc08-Yn9NOpe7qDfg-1MOZa5eATO0fdnEtzRj4GXBLf6KVNxrq_FpFHsw8Xl5bpIGX-tA7tNDYQOVa_fkL6tn7PI1jrt4TM4nI6t_oOA5YkrkMsxaQMHMrgi31XNFLaWgJ_EUKKhlAgL64_qYlTe9SulQqUZhKSdOlRwTTT2ogegPvfZaZ8dIR2j-IsX96c8BguBsFxoydklMPY-Orbuj78YbOWWhNCbofC25GgC2-zh-hBz0txuAHSI7Sj2sdoL96WwcFg7wfWT1DL03y5-BxHOAdCzKdJjItVuEzxIi_BG37pDr7wipdzHMVxjpM4XGY8-2gdhQVMSiHrnPI8THCxSHiEV2FRxnjbXADzDBcpvBlPeQl89Sk6uRO77qFRe96qZwj7yoEczlX-RAsqhVNTo7jfeIGtpC2o2keHgxEr2cuam-4aZxWkN53VK2P1qrN6BVbfR-9uJlxsFD3-_ejBsCpVv7XXFfFdwiCiE_uvw1ucPv__8Gt0DwBcJTw7foHumy725gYaYQdodH31Xb0ErnMtXvWgwujrXeP4D_oTDj8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMPROVED+PARTICLE+SWARM+OPTIMIZATION+WITH+DEEP+LEARNING-BASED+MUNICIPAL+SOLID+WASTE+MANAGEMENT+IN+SMART+CITIES&rft.jtitle=RGSA+%3A+Revista+de+Gest%C3%A3o+Social+e+Ambiental&rft.au=Udayakumar%2C+R&rft.au=Elankavi%2C+R&rft.au=Vimal%2C+V+R&rft.au=Sugumar%2C+R&rft.date=2023-06-27&rft.pub=Centro+Universit%C3%A1rio+da+FEI%2C+Revista+RGSA&rft.eissn=1981-982X&rft.volume=17&rft.issue=4&rft.spage=1&rft.epage=20&rft_id=info:doi/10.24857%2Frgsa.v17n4-022&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1981-982X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1981-982X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1981-982X&client=summon