Improved Particle Swarm Optimization with Deep Learning-Based Municipal Solid Waste Management in Smart Cities
Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequen...
Saved in:
Published in | RGSA : Revista de Gestão Social e Ambiental Vol. 17; no. 4; pp. e03561 - 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
São Paulo
Centro Universitário da FEI, Revista RGSA
27.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1981-982X 1981-982X |
DOI | 10.24857/rgsa.v17n4-022 |
Cover
Loading…
Abstract | Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level.
Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities.
Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm.
Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming.
Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development.
Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification. |
---|---|
AbstractList | Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level.
Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities.
Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm.
Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming.
Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development.
Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification. Objetivos: A estrutura da Internet das Coisas (IoT) é fundamental para aprimorar os aplicativos de monitoramento para cidades inteligentes e controlar as operaçöes municipais em tempo real. O problema mais significativo dos aplicativos para cidades inteligentes tem sido o manuseio de residuos sólidos, que pode ter consequencias negativas para a saúde e o bem-estar das pessoas. O gerenciamento de residuos tornou-se um problema que as naçöes desenvolvidas e em desenvolvimento precisam enfrentar. O gerenciamento de residuos sólidos é uma questão importante e empolgante que afeta os habitats em todo o mundo. Portanto, é necessário criar um método eficiente para eliminar esses problemas ou, no mínimo, reduzi-los a um nivel gerenciável. Estrutura teórica: Este trabalho propôs uma otimização aprimorada de enxame de particulas com gerenciamento de residuos sólidos municipais baseado em aprendizagem profunda (IPSODL-MSWM) em cidades inteligentes. Métodos: A abordagem IPSODL-MSWM visa identificar vários tipos de materiais de residuos sólidos e permitir o gerenciamento sustentável de residuos. Um modelo SSD (Single Shot Detection) permite a detecção eficiente de objetos no paradigma IPSODL-MSWM. Em seguida, os vetores de recursos foram gerados usando o modelo MobileNetV2 com base em uma rede neural convolucional profunda (CNN). O IPSO foi obtido usando um algoritmo hibrido de algoritmo genético (GA) e algoritmo PSO. Resultados e conclusðes: O método IPSODL foi empregado para o ajuste automático de hiperparãmetros, pois o ajuste manual de hiperparãmetros por tentativa e erro consome muito tempo. Implicares da pesquisa: A abordagem IPSODL-MSWM usa Support Vector Machine (SVM) para a categorização precisa do excesso municipal neste trabalho. Isso implica um modelo sustentável de gerenciamento de residuos para um melhor desenvolvimento de cidades inteligentes. Originalidade/valor: Com uma precisão ideal de 99,45%, muitas simulaçöes mostram a capacidade aprimorada de classificação do modelo IPSODL-MSWM. Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level. Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities. Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm. Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming. Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development. Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification. |
Author | Udayakumar, R. R. Vimal, V. Elankavi, R. Sugumar, R. |
Author_xml | – sequence: 1 givenname: R. orcidid: 0000-0002-1395-583X surname: Udayakumar fullname: Udayakumar, R. – sequence: 2 givenname: R. orcidid: 0000-0001-5661-7278 surname: Elankavi fullname: Elankavi, R. – sequence: 3 givenname: V. orcidid: 0000-0001-9401-4507 surname: R. Vimal fullname: R. Vimal, V. – sequence: 4 givenname: R. orcidid: 0000-0002-0801-6600 surname: Sugumar fullname: Sugumar, R. |
BookMark | eNp9UT1PwzAUtFCRgNKZ1RJzWtuJa2eE8ikVgVQQbJHjvBSjxAm22wp-PaYwICR4y3vD3T3d3QEa2M4CQkeUjFkmuZi4pVfjNRU2SwhjO2if5pImuWRPgx_3Hhp5_0LiSEI4o_vIXre969ZQ4TvlgtEN4MVGuRbf9sG05l0F01m8MeEZnwH0eA7KWWOXyanykXSzskabXjV40TWmwo_KB8A3yqoltGADNhYv2qiMZyYY8Idot1aNh9H3HqKHi_P72VUyv728np3ME814yhIQWudpJlQlJC8rrWmtueBlqcuKZVNOuCSKpWqaUQWQQy109KinWSlqUdcsHaLjL91o7nUFPhQv3crZ-LJIo3FJcs7JfygmOROCSkYjin-htOu8d1AX2oRtLsEp0xSUFNsOis8Oim0HRewg8ia_eL0zMYu3Pxkf4JON_A |
CitedBy_id | crossref_primary_10_3390_urbansci9010016 crossref_primary_10_24857_rgsa_v18n5_044 crossref_primary_10_1051_e3sconf_202454011006 crossref_primary_10_1016_j_apenergy_2025_125568 crossref_primary_10_24857_rgsa_v18n8_050 crossref_primary_10_1051_e3sconf_202454013005 crossref_primary_10_24857_rgsa_v18n6_014 crossref_primary_10_24857_rgsa_v18n1_056 |
Cites_doi | 10.1007/s13369-020-04637-w 10.1177/0734242X211033716 10.1016/j.procs.2020.03.222 10.24857/rgsa.v17n3-001 10.1177/0734242X20906877 10.1007/s11783-023-1677-1 10.1016/j.wasman.2018.11.030 10.1007/s11356-021-16962-0 10.1016/j.egyr.2021.08.028 10.1016/j.wasman.2020.04.015 10.1038/s41467-020-17910-1 10.1016/j.scitotenv.2019.134279 10.58346/JISIS.2022.I4.007 10.1016/j.jenvman.2021.113675 10.1007/s11356-021-15289-0 10.1109/ACCESS.2020.2979015 10.24857/rgsa.v16n2-007 10.1016/j.jclepro.2020.123928 10.1186/s13638-020-01826-x 10.1016/j.ipm.2020.102221 10.1109/ACCESS.2019.2935375 10.1016/j.wasman.2021.04.012 10.1089/ees.2020.0232 10.3390/su15097321 10.1016/j.jclepro.2020.120387 10.1016/j.wasman.2020.05.033 10.1109/TII.2019.2915572 10.1142/S0218126621500134 |
ContentType | Journal Article |
Copyright | 2023. This work is published under https://rgsa.emnuvens.com.br/rgsa/about/editorialPolicies#openAccessPolicy (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under https://rgsa.emnuvens.com.br/rgsa/about/editorialPolicies#openAccessPolicy (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 0-V 3V. 7ST 7WY 7WZ 7XB 87Z 88J 8FK 8FL ABUWG AEUYN AFKRA ALSLI ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU CLZPN DWQXO FRNLG F~G GNUQQ HCIFZ K60 K6~ L.- M0C M2R PATMY PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQQKQ PQUKI PRQQA PYCSY PYYUZ Q9U SOI PRINS |
DOI | 10.24857/rgsa.v17n4-022 |
DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Social Science Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central - New (Subscription) ProQuest Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Latin America & Iberian Database ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Social Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences Environmental Science Collection ABI/INFORM Collection China ProQuest Central Basic Environment Abstracts ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Business Collection Environmental Science Collection ProQuest Social Science Journals Latin America & Iberian Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest Central China |
DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1981-982X |
EndPage | 20 |
ExternalDocumentID | 10_24857_rgsa_v17n4_022 |
GroupedDBID | 0-V 4P2 5VS 7WY 7XC 8FE 8FH 8FL 91A AAYXX ABDHV ABUWG AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ALSLI ARALO ATCPS AZQEC BENPR BEZIV BHPHI BPHCQ CCPQU CITATION CLZPN DWQXO EDH FRNLG GNUQQ HCIFZ INF ITC K60 K6~ KQ8 M0C M2R ML. M~E OK1 PATMY PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC PYCSY 3V. 7ST 7XB 8FK C1K L.- PKEHL POGQB PQEST PQUKI PRQQA Q9U SOI PRINS |
ID | FETCH-LOGICAL-c2532-e7cc9347ad785bdcc1fc575bbcbd24650580a23a641aee9ef7c198c64b7f7ff23 |
IEDL.DBID | BENPR |
ISSN | 1981-982X |
IngestDate | Sat Jul 26 00:23:15 EDT 2025 Sat Jul 26 00:20:57 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Tue Jul 01 03:25:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2532-e7cc9347ad785bdcc1fc575bbcbd24650580a23a641aee9ef7c198c64b7f7ff23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5661-7278 0000-0001-9401-4507 0000-0002-0801-6600 0000-0002-1395-583X |
OpenAccessLink | https://www.proquest.com/docview/3052809550?pq-origsite=%requestingapplication% |
PQID | 2852771821 |
PQPubID | 2031968 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3052809550 proquest_journals_2852771821 crossref_citationtrail_10_24857_rgsa_v17n4_022 crossref_primary_10_24857_rgsa_v17n4_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-27 |
PublicationDateYYYYMMDD | 2023-06-27 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | São Paulo |
PublicationPlace_xml | – name: São Paulo |
PublicationTitle | RGSA : Revista de Gestão Social e Ambiental |
PublicationYear | 2023 |
Publisher | Centro Universitário da FEI, Revista RGSA |
Publisher_xml | – name: Centro Universitário da FEI, Revista RGSA |
References | 24013 24014 24015 24016 24017 24018 24019 24030 24031 24010 24032 24011 24033 24012 24034 24024 24025 24026 24027 24006 24028 24007 24029 24008 24009 24020 24021 24022 24023 |
References_xml | – ident: 24008 doi: 10.1007/s13369-020-04637-w – ident: 24031 doi: 10.1177/0734242X211033716 – ident: 24015 doi: 10.1016/j.procs.2020.03.222 – ident: 24014 doi: 10.24857/rgsa.v17n3-001 – ident: 24011 doi: 10.1177/0734242X20906877 – ident: 24024 doi: 10.1007/s11783-023-1677-1 – ident: 24016 doi: 10.1016/j.wasman.2018.11.030 – ident: 24010 doi: 10.1007/s11356-021-16962-0 – ident: 24020 doi: 10.1016/j.egyr.2021.08.028 – ident: 24030 doi: 10.1016/j.wasman.2020.04.015 – ident: 24034 doi: 10.1038/s41467-020-17910-1 – ident: 24033 doi: 10.1016/j.scitotenv.2019.134279 – ident: 24017 doi: 10.58346/JISIS.2022.I4.007 – ident: 24025 doi: 10.1016/j.jenvman.2021.113675 – ident: 24009 doi: 10.1007/s11356-021-15289-0 – ident: 24006 doi: 10.1109/ACCESS.2020.2979015 – ident: 24013 doi: 10.24857/rgsa.v16n2-007 – ident: 24023 doi: 10.1016/j.jclepro.2020.123928 – ident: 24022 doi: 10.1186/s13638-020-01826-x – ident: 24032 doi: 10.1016/j.ipm.2020.102221 – ident: 24028 doi: 10.1109/ACCESS.2019.2935375 – ident: 24019 doi: 10.1016/j.wasman.2021.04.012 – ident: 24027 doi: 10.1089/ees.2020.0232 – ident: 24007 doi: 10.3390/su15097321 – ident: 24018 doi: 10.1016/j.jclepro.2020.120387 – ident: 24026 doi: 10.1016/j.wasman.2020.05.033 – ident: 24029 doi: 10.1109/TII.2019.2915572 – ident: 24012 – ident: 24021 doi: 10.1142/S0218126621500134 |
SSID | ssj0000800521 |
Score | 2.2857826 |
Snippet | Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in... Objetivos: A estrutura da Internet das Coisas (IoT) é fundamental para aprimorar os aplicativos de monitoramento para cidades inteligentes e controlar as... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | e03561 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Cities Classification Deep learning Developed countries Genetic algorithms Interdisciplinary subjects Internet of Things Machine learning Municipal solid waste Municipal waste management Neural networks Object recognition Optimization techniques Particle swarm optimization Smart cities Solid waste management Solid wastes Support vector machines Sustainability management Sustainable waste management Tuning Waste management Waste materials |
Title | Improved Particle Swarm Optimization with Deep Learning-Based Municipal Solid Waste Management in Smart Cities |
URI | https://www.proquest.com/docview/2852771821 https://www.proquest.com/docview/3052809550 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgu3BBDJgYbMiHHbh4Sxwndk4oaz2aqUmjJqMTlyh2bC4oG-vg7-c5dVdNAs6OfXg_v_difw-h067nsdYB-DdNesKMFUR1NiVMiZ5py-NUuAfORZnMrtnVTXzjG25rf61yGxPHQN3fatcjPwe7pMLxpQWf734SNzXK_V31IzSeo30IwQIsfP9CltXyscvi8BAkqA2nj2Pv4uf339fd2e-QD4wElD5NR0-j8ZhiLl-hlx4b4myjzAP0zAyv0aHcPUWDRe-L6zdoyItqufgqp7gCUJpP5hLXq2xZ4EXVQET6Njaf8CpvZngqZYXnMluWefmFXGQ1bCqg8pvkVTbH9WKeT_EqqxuJdwT_OC9xXcDJeJI3gBnfoutL2UxmxE9PIJrGESWGa51GjIM2RKx6rUOrAZsppVVPGQCzWAQdjbqEhZ0xqbFch6nQCVPccmtpdIj2htvBvENYmAjqqNiIwCqmVdQxx3rfJ2lodKiYOUJnWyG22lOLuwkXP1ooMUapt07q7Sj1FqR-hD49brjbsGr8-9PjrVZa717rloqYcsiqNPzr8s5W3v9_-QN64cbHu6tflB-jvYf7X-YEQMaD-ugt6Q-krcvd |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELaizaG9VH1Fzav1oZV6IQFjMByiiuySrhtg0UK6US8UG7uXiDw2bdU_1d_YMQtZRWp7y9kYofE8vhk83yD0tm6YJ6UN9k38xqJKB5aodWhRETRUauaFgWlwTjN_ekY_nXvnG-j30AtjrlUOPrFz1M2lNDXyQ9BLEhi-NPvD1bVlpkaZv6vDCI2VWpyqXz8hZVse8Qmc7ztCTuJyPLX6qQKWJJ5LLMWkDF3K4CsDTzRSOloCZhFCioZQACxeYNfErX3q1EqFSjMJibn0qWCaaW2IDsDlb1IXoMIIbR7HWT6_q-oY_AUBccUhZNjC2OHNt2V98MNhLbVsQu6Hv_vevwtpJ0_Rkx6L4milPM_Qhmqfo6143foGi73tL1-glqf5fPY5nuAcQDAfJzEuFtE8xbO8BA_4pSt24QUvp3gSxzlO4mie8eyjdRwVsCmFTHPM8yjBxSzhE7yIijLG64ECmGe4SOHNeMxLwKgv0dmDyHULjdrLVr1COFAu5G2eCmwtqBRuTQ3LfuOHjpKOoGobHQxCrGRPZW4malxUkNJ0Uq-M1KtO6hVIfRu9v9twtWLx-Peje8OpVL05LysSeIRBFCfOX5fXurnz_-U36NG0TJMq4dnpLnpsRteba2eE7aHR7c13tQ8A51a87rUKo68Prch_AHxXCgE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqrYS4IL4qCgV8AIlLuhvHiZMDQukmy5om2WiTshWXEDs2lyr92ALir_HrGGeTrioBt54dR9H4eeaN43mD0Ju6Ya6UE9jfxGssqrRviVoHFhV-Q6VmbuCbAuc08-Yn9NOpe7qDfg-1MOZa5eATO0fdnEtzRj4GXBLf6KVNxrq_FpFHsw8Xl5bpIGX-tA7tNDYQOVa_fkL6tn7PI1jrt4TM4nI6t_oOA5YkrkMsxaQMHMrgi31XNFLaWgJ_EUKKhlAgL64_qYlTe9SulQqUZhKSdOlRwTTT2ogegPvfZaZ8dIR2j-IsX96c8BguBsFxoydklMPY-Orbuj78YbOWWhNCbofC25GgC2-zh-hBz0txuAHSI7Sj2sdoL96WwcFg7wfWT1DL03y5-BxHOAdCzKdJjItVuEzxIi_BG37pDr7wipdzHMVxjpM4XGY8-2gdhQVMSiHrnPI8THCxSHiEV2FRxnjbXADzDBcpvBlPeQl89Sk6uRO77qFRe96qZwj7yoEczlX-RAsqhVNTo7jfeIGtpC2o2keHgxEr2cuam-4aZxWkN53VK2P1qrN6BVbfR-9uJlxsFD3-_ejBsCpVv7XXFfFdwiCiE_uvw1ucPv__8Gt0DwBcJTw7foHumy725gYaYQdodH31Xb0ErnMtXvWgwujrXeP4D_oTDj8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMPROVED+PARTICLE+SWARM+OPTIMIZATION+WITH+DEEP+LEARNING-BASED+MUNICIPAL+SOLID+WASTE+MANAGEMENT+IN+SMART+CITIES&rft.jtitle=RGSA+%3A+Revista+de+Gest%C3%A3o+Social+e+Ambiental&rft.au=Udayakumar%2C+R&rft.au=Elankavi%2C+R&rft.au=Vimal%2C+V+R&rft.au=Sugumar%2C+R&rft.date=2023-06-27&rft.pub=Centro+Universit%C3%A1rio+da+FEI%2C+Revista+RGSA&rft.eissn=1981-982X&rft.volume=17&rft.issue=4&rft.spage=1&rft.epage=20&rft_id=info:doi/10.24857%2Frgsa.v17n4-022&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1981-982X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1981-982X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1981-982X&client=summon |