Electrospun silk for biomedical applications
Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, an...
Saved in:
Published in | Med-X Vol. 2; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
18.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, and superior mechanical properties. The conversion of silk into nanofibers via electrospinning allows for the fine-tuning of its properties, thereby enhancing its suitability for a variety of biomedical applications. Electrospun silk not only inherits the natural advantages of silk but also acquires optimized characteristics such as increased surface area, high porosity, and good air permeability. This review article begins by summarizing the latest advances in the rational design and controlled fabrication of electrospun silk. Then, the biomedical applications of electrospun silk in three main areas: health monitoring, regenerative medicine, and personal protection, are reviewed. Lastly, the existing challenges and future perspectives of electrospun silk are discussed. This review aims to highlight the cutting-edge role of electrospun silk in biomedical applications, potentially revolutionizing traditional healthcare into a personalized model.
Graphical Abstract
Highlights
• Rational design, controlled fabrication, and advantages of electrospun silk are discussed.
• Biomedical applications, including health monitoring, regenerative medicine, and personal protection are systematically summarized.
• Electrospun silk paves a compelling road to biomedical applications for personalized healthcare. |
---|---|
AbstractList | Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, and superior mechanical properties. The conversion of silk into nanofibers via electrospinning allows for the fine-tuning of its properties, thereby enhancing its suitability for a variety of biomedical applications. Electrospun silk not only inherits the natural advantages of silk but also acquires optimized characteristics such as increased surface area, high porosity, and good air permeability. This review article begins by summarizing the latest advances in the rational design and controlled fabrication of electrospun silk. Then, the biomedical applications of electrospun silk in three main areas: health monitoring, regenerative medicine, and personal protection, are reviewed. Lastly, the existing challenges and future perspectives of electrospun silk are discussed. This review aims to highlight the cutting-edge role of electrospun silk in biomedical applications, potentially revolutionizing traditional healthcare into a personalized model.
Graphical Abstract Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, and superior mechanical properties. The conversion of silk into nanofibers via electrospinning allows for the fine-tuning of its properties, thereby enhancing its suitability for a variety of biomedical applications. Electrospun silk not only inherits the natural advantages of silk but also acquires optimized characteristics such as increased surface area, high porosity, and good air permeability. This review article begins by summarizing the latest advances in the rational design and controlled fabrication of electrospun silk. Then, the biomedical applications of electrospun silk in three main areas: health monitoring, regenerative medicine, and personal protection, are reviewed. Lastly, the existing challenges and future perspectives of electrospun silk are discussed. This review aims to highlight the cutting-edge role of electrospun silk in biomedical applications, potentially revolutionizing traditional healthcare into a personalized model. Graphical Abstract Highlights • Rational design, controlled fabrication, and advantages of electrospun silk are discussed. • Biomedical applications, including health monitoring, regenerative medicine, and personal protection are systematically summarized. • Electrospun silk paves a compelling road to biomedical applications for personalized healthcare. |
ArticleNumber | 22 |
Author | Liang, Huarun Zhu, Mengjia Zhang, Yingying Dai, Shufen |
Author_xml | – sequence: 1 givenname: Shufen surname: Dai fullname: Dai, Shufen organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University – sequence: 2 givenname: Huarun surname: Liang fullname: Liang, Huarun organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University – sequence: 3 givenname: Mengjia surname: Zhu fullname: Zhu, Mengjia organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University – sequence: 4 givenname: Yingying orcidid: 0000-0002-8448-3059 surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@mail.tsinghua.edu.cn organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University |
BookMark | eNp9j7FOwzAQhi1UJErpCzDlATCc7Th2RlQVilSJBWbLcc7IJU0iOx3y9qQtA2LodP9w393_3ZJZ27VIyD2DRwagnlKec6kp8JwCgNB0vCJzrgSjWjGY_ck3ZJnS7rjEGedCz8nDukE3xC71hzZLofnOfBezKnR7rIOzTWb7vpnCELo23ZFrb5uEy9-5IJ8v64_Vhm7fX99Wz1vquOQj9eiYl7aoSwTN0cqaS1n4kjNkUFullCwZWiZsjsqJIs9lBaoUgJXS3nuxIPx8103FUkRv-hj2No6GgTkqm7OymZTNSdmME6T_QS4Mp95DtKG5jIozmqY_7RdGs-sOsZ0UL1E_G25tvw |
CitedBy_id | crossref_primary_10_3390_ma18051052 crossref_primary_10_1016_j_bmt_2024_100068 |
Cites_doi | 10.1016/j.progpolymsci.2013.09.002 10.1038/s44286-024-00050-4 10.1080/00914037.2018.1552865 10.1016/j.actbio.2018.04.025 10.1016/j.jddst.2020.101498 10.1021/acs.nanolett.4c00308 10.1007/12_2011_143 10.1002/adhm.201200192 10.1038/s41427-020-0221-z 10.1002/adem.202100153 10.1002/adma.202005910 10.1007/s12010-014-1151-4 10.1016/j.eurpolymj.2014.08.030 10.1016/j.ijbiomac.2003.08.004 10.3390/polym13132087 10.1016/j.mtbio.2022.100243 10.3791/50492 10.1002/jbm.a.32497 10.1039/C4CS00226A 10.1016/j.jconrel.2020.02.022 10.1016/j.carbpol.2020.116465 10.1016/j.msec.2016.05.081 10.1002/smtd.202201340 10.1038/s41563-021-01093-1 10.1016/j.matdes.2023.112006 10.1039/D0CS00258E 10.1002/adma.202102500 10.1016/j.msec.2020.110776 10.1016/j.cej.2023.143127 10.1038/s43586-023-00278-z 10.1038/s41563-024-01802-6 10.1186/s13036-020-00249-y 10.1002/adma.202208236 10.3390/biomimetics7040149 10.1016/j.actbio.2008.12.013 10.1016/j.bioactmat.2016.07.001 10.1016/j.addr.2007.04.021 10.1038/s41570-023-00486-x 10.1016/j.biomaterials.2016.06.049 10.1016/j.nanoen.2018.03.033 10.1016/j.jconrel.2014.05.059 10.1039/C7RA12879G 10.1039/c9cs00587k 10.6023/a23060289 10.1016/j.nantod.2022.101745 10.1002/advs.202103981 10.1002/adma.202203193 10.1038/s41928-022-00723-z 10.1002/mabi.200900274 10.1016/j.actbio.2016.12.034 10.1021/acsbiomaterials.0c00060 10.1016/j.nantod.2014.10.002 10.1016/j.biomaterials.2011.02.002 10.1126/science.769161 10.1002/adfm.202300794 10.3389/fbioe.2022.833157 10.1039/C7RA12394A 10.1021/acs.nanolett.8b03085 10.1039/C3CS60426H 10.1007/s12274-022-4987-x 10.1016/j.ijbiomac.2023.126863 10.1002/adma.202308748 10.1016/j.biotechadv.2017.10.001 10.1016/j.ijbiomac.2009.09.006 10.1016/j.ijbiomac.2011.04.018 10.1016/j.tibtech.2010.07.006 10.1016/j.cej.2024.148722 10.1002/mabi.202200380 10.1016/j.polymer.2006.07.009 10.1016/j.cej.2019.05.163 10.1021/acs.chemrev.2c00823 10.1007/s12221-016-5822-3 10.1007/s10853-022-06873-x 10.1073/pnas.1407743111 10.1016/j.tibtech.2018.04.004 10.1021/acsbiomaterials.4c00254 10.1016/j.progpolymsci.2007.05.013 10.3390/pharmaceutics11040182 10.1002/admt.202200654 10.1016/j.msec.2009.05.012 10.1039/C7TA06924C 10.1002/adhm.201700121 10.1002/adhm.201800465 10.1002/wnan.1509 10.1016/j.bioactmat.2020.01.010 10.1002/advs.201801617 10.1039/C2CS35083A 10.1021/acs.chemrev.0c00816 10.1016/j.progpolymsci.2013.02.001 10.1002/admt.202201723 10.1002/aenm.202000845 10.1080/25740881.2024.2346314 10.1186/1479-5876-10-117 10.1016/j.biomaterials.2009.01.054 10.1016/j.nantod.2022.101723 10.1016/j.biotechadv.2010.01.004 10.1021/bm0255948 10.1016/S0032-3861(00)00250-0 10.1016/j.colsurfb.2015.12.001 10.1007/s12221-011-0431-7 10.1007/s42765-022-00135-w 10.1016/j.biomaterials.2008.01.022 10.1038/s41598-018-27917-w 10.1002/jbm.a.36303 10.1021/acs.chemrev.1c00502 10.1016/j.cej.2023.146245 10.1016/j.pmatsci.2020.100721 10.1002/aenm.202100801 10.1021/bm025581u 10.1016/j.jddst.2022.103994 10.1002/adfm.202200162 10.1021/acs.chemrev.8b00593 10.1039/D2TB01890J 10.1016/j.bioactmat.2020.04.005 10.1016/j.ijbiomac.2016.01.120 10.1038/s41467-024-47665-y 10.1002/adma.200803092 10.1021/acsnano.3c05460 10.1002/adhm.202100646 10.1021/acsami.2c13727 10.1007/s12274-016-1145-3 10.1002/adma.200400719 10.1016/S0142-9612(03)00609-4 10.1002/adhm.201500002 10.1016/j.biomaterials.2006.01.022 10.1021/ma048988v 10.1002/adhm.201800308 10.1039/d3ra04621d 10.1016/j.ijbiomac.2017.06.019 10.3390/molecules25235540 10.1016/j.polymdegradstab.2010.05.025 10.1016/j.jcis.2021.02.099 10.1007/s10924-022-02381-w 10.3390/biomimetics8010016 10.1038/s41598-024-54638-0 10.1002/pi.4499 10.1002/adsu.201700079 10.1126/sciadv.abc2036 10.1021/ja046079f 10.1016/j.ijbiomac.2010.07.010 10.1016/S1369-7021(10)70199-1 10.1016/j.progpolymsci.2008.08.002 10.1016/j.mtbio.2022.100381 10.1016/j.jconrel.2010.11.007 10.1007/s10311-020-01147-x 10.1038/natrevmats.2018.16 10.3390/ma9040221 10.1002/jbm.a.36124 10.1039/D3TC03769J 10.1038/s42254-023-00558-3 10.1021/ma011335j 10.1021/acssuschemeng.2c00189 10.1039/D2TB01182D 10.1515/rams-2022-0333 10.1016/j.device.2024.100323 10.1002/adma.201704636 10.1016/j.biomaterials.2003.08.045 10.1016/j.addr.2009.07.005 10.1038/nprot.2011.379 10.1016/j.matt.2022.08.028 10.3390/polym13152499 10.1021/acsami.3c16602 10.1002/mame.201500217 10.1016/j.ijbiomac.2023.127641 10.1126/science.1226325 10.1021/acs.chemrev.0c01200 10.1002/admt.202100410 10.3390/polym14183875 10.1016/j.cej.2023.145534 10.1021/acsabm.8b00637 10.1016/j.cej.2021.131947 10.1021/bm201719s 10.1093/rb/rbu017 10.1002/adfm.202313539 10.1039/C8TB00535D 10.1021/bm050010y 10.1016/j.actbio.2017.09.027 10.1039/D1TB00944C 10.1016/j.msec.2021.112235 10.1016/j.mtphys.2024.101334 10.1002/adfm.201909616 10.1016/j.msec.2016.06.019 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s44258-024-00038-y |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2731-8710 |
ExternalDocumentID | 10_1007_s44258_024_00038_y |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: No. 52403328 – fundername: the National Natural Science Foundation of China grantid: 52125201 – fundername: National Postdoctoral Program for Innovative Talents grantid: GZC20231247 funderid: http://dx.doi.org/10.13039/501100012152 – fundername: the Beijing Municipal Office of Philosophy and Social Science Planning grantid: Z221100002722015 |
GroupedDBID | 0R~ AAKKN ABDBF ABEEZ ACACY ACULB AFGXO ALMA_UNASSIGNED_HOLDINGS C24 C6C RSV AAYXX CITATION |
ID | FETCH-LOGICAL-c252y-fec1f5a6d9e082ea5d2556f921e10da777591ea13a4e7c36445b07930eb78fff3 |
IEDL.DBID | C24 |
ISSN | 2731-8710 |
IngestDate | Tue Jul 01 01:48:58 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 21 02:40:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Health monitoring Biomedical applications Regenerative medicine Electrospun silk |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c252y-fec1f5a6d9e082ea5d2556f921e10da777591ea13a4e7c36445b07930eb78fff3 |
ORCID | 0000-0002-8448-3059 |
OpenAccessLink | https://link.springer.com/10.1007/s44258-024-00038-y |
ParticipantIDs | crossref_primary_10_1007_s44258_024_00038_y crossref_citationtrail_10_1007_s44258_024_00038_y springer_journals_10_1007_s44258_024_00038_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241118 |
PublicationDateYYYYMMDD | 2024-11-18 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Med-X |
PublicationTitleAbbrev | Med-X |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore |
Publisher_xml | – name: Springer Nature Singapore |
References | Hajiabbas, Alemzadeh, Vossoughi (CR131) 2020; 245 Biswal, Dan, Sengupta (CR40) 2022; 30 Zhang, Reagan, Kaplan (CR28) 2009; 61 Xu, Zhang, Zhao (CR154) 2024; 24 Phillips, Drummy, Conrady (CR73) 2004; 126 Ji, Lin, Guo (CR33) 2024; 4 Farokhi, Mottaghitalab, Fatahi (CR49) 2018; 36 Xing, He, Huang (CR174) 2023; 474 Lin, Chen, Jiang (CR64) 2016; 139 Aslam, Zhou, Urbach (CR7) 2023; 5 Lu, Zhang, Zhu (CR68) 2024; 15 Zhang, Mo, Huang (CR126) 2010; 93 Panda, Biswas, Sukla (CR100) 2014; 174 Vasudevan, Tripathi, Sundarrajan (CR113) 2022; 7 Chaloupka, Malam, Seifalian (CR5) 2010; 28 Liang, Zhu, Li (CR105) 2022; 32 Wang, Song, Cui (CR142) 2021; 593 Jang, Kim, Park (CR123) 2020; 111 Sahoo, Hasturk, Falcucci (CR63) 2023; 7 Yao, Zou, Fan (CR112) 2022; 16 Zhang, Yu (CR170) 2022; 14 Keirouz, Wang, Reddy (CR36) 2023; 8 Mehraz, Nouri, Namazi (CR139) 2018; 4 Zhou, Cao, Ma (CR130) 2010; 95 Zhou, Zhao, Xu (CR4) 2021; 20 Um, Kweon, Lee (CR69) 2003; 33 Wu, Wang, Dong (CR150) 2022; 10 Zhang, Li, Xu (CR151) 2024; 12 Rajasekaran, Kumar Ojha, Sundeep Seesala (CR56) 2023; 475 Puerta, Peresin, Restrepo-Osorio (CR76) 2022; 57 Yao, Masuda, Zhao (CR71) 2002; 35 Zhu, Wang, Li (CR104) 2021; 10 Kundu, Dash, Dash (CR41) 2008; 33 Farokhi, Mottaghitalab, Reis (CR44) 2020; 321 Magaz, Faroni, Gough (CR115) 2018; 7 Li, Zhou, Dai (CR165) 2018; 6 Min, Lee, Kim (CR62) 2004; 25 Min, Kim, Kim (CR162) 2018; 8 Memic, Abdullah, Mohammed (CR116) 2019; 2 Lu, Liu, Sun (CR22) 2024; 36 Khalid, Bai, Abraham (CR55) 2020; 12 Zhang, Li, Dai (CR144) 2012; 10 Bhardwaj, Kundu (CR14) 2010; 28 Pignatelli, Perotto, Nardini (CR92) 2018; 73 Xie, Fan, Chen (CR125) 2016; 103 Forouzideh, Nadri, Fattahi (CR143) 2020; 56 Jin, Chen, Karageorgiou (CR61) 2004; 25 Iqbal, Shi, Kumar (CR168) 2023; 16 Yi, Zhang, Yu (CR77) 2018; 6 Zhang, Zheng, Chen (CR103) 2023; 81 Safdari, Shakiba, Kiaie (CR141) 2016; 17 Chen, Li, Li (CR80) 2023; 23 Shao, He, Han (CR124) 2016; 67 Dos Santos, Siqueira, de Morais (CR83) 2024; 254 Wu, Wang, Liang (CR97) 2024; 34 Wang, Wu, Jian (CR163) 2016; 9 Luraghi, Peri, Moroni (CR16) 2021; 334 Comroe, Dripps (CR6) 1976; 192 Yao, Chen, Liu (CR171) 2022; 34 Cao, Liu, Ren (CR54) 2021; 33 Xu, Zhang, Li (CR172) 2024; 481 Zhao, Zhou, Song (CR2) 2024; 23 Li, Xia (CR58) 2004; 16 Kirillova, Yeazel, Asheghali (CR20) 2021; 121 Yin, Jian, Wang (CR50) 2018; 18 Gil, Panilaitis, Bellas (CR119) 2013; 2 Gao, Gou, Zhang (CR158) 2018; 8 Holland, Numata, Rnjak-Kovacina (CR42) 2019; 8 Biagiotti, Bassani, Chiarini (CR132) 2022; 10 Peng, Jiang, Seuß (CR78) 2016; 301 Singh, Panda, Pramanik (CR74) 2016; 87 Ha, Park, Hudson (CR70) 2003; 4 Wang, Jin, Kaplan (CR45) 2004; 37 Li, Zhu, Chen (CR137) 2017; 7 Li, Hang, Ding (CR79) 2020; 6 Yang, Wang, Xiong (CR95) 2024; 14 Gu, Xu, Wang (CR153) 2023; 17 Zarei, Lee, Lee (CR182) 2023; 35 Vepari, Kaplan (CR38) 2007; 32 Zhou, Cao, Ma (CR128) 2009; 45 Ling, Kaplan, Buehler (CR66) 2018; 3 Ha, Tonelli, Hudson (CR72) 2005; 6 CR149 Li, Chen, Qian (CR37) 2021; 11 Li, Vepari, Jin (CR93) 2006; 27 Gore, Naebe, Wang (CR164) 2019; 374 Si, Shi, Hu (CR148) 2023; 48 Elakkiya, Malarvizhi, Rajiv (CR136) 2014; 63 Sabarees, Tamilarasi, Velmurugan (CR84) 2023; 79 Zhang, Peng, Li (CR81) 2023; 253 Guo, Zhang, Wang (CR106) 2018; 48 Sridhar, Lakshminarayanan, Madhaiyan (CR25) 2015; 44 Xue, Wu, Dai (CR32) 2019; 119 Shi, Zheng, Zhou (CR180) 2019; 6 Yucel, Lovett, Kaplan (CR121) 2014; 190 Humenik, Lang, Scheibel (CR43) 2018; 10 Karatepe, Ozdemir (CR57) 2020; 5 Agarwal, Wendorff, Greiner (CR86) 2009; 21 He, Zhang, Wu (CR147) 2023; 466 Solanas, Herrero, Dasari (CR101) 2014; 60 Fathi, Khanmohammadi, Goodarzi (CR120) 2020; 14 Libanori, Chen, Zhao (CR3) 2022; 5 Zou, Fan, Oliveira (CR30) 2022; 4 Tsai, Chang, Chen (CR167) 2023; 48 Wharram, Zhang, Kaplan (CR98) 2010; 10 Li, Zhu, Cheng (CR13) 2021; 6 Aigner, DeSimone, Scheibel (CR87) 2018; 30 Zhang, Qi, Wang (CR46) 2024; 1 Zhou, Cao, Ma (CR89) 2010; 47 Dadras Chomachayi, Solouk, Akbari (CR138) 2018; 106 Farokhi, Mottaghitalab, Samani (CR48) 2018; 36 Rahmati, Mills, Urbanska (CR31) 2021; 117 Gholipourmalekabadi, Sapru, Samadikuchaksaraei (CR82) 2020; 153 Zou, Wang, Fan (CR94) 2021; 9 CR117 Shabbirahmed, Sekar, Gomez (CR110) 2023; 8 CR118 Opálková Šišková, Mosnáčková, Hrůza (CR157) 2021; 13 Lu, Wang, Liu (CR23) 2024; 10 Shi, Hu, Wu (CR88) 2021; 33 Kopp, Smeets, Gosau (CR27) 2020; 5 Meinel, Kubow, Klotzsch (CR60) 2009; 30 Zhou, He, Cui (CR166) 2011; 12 Li, Li, Chen (CR39) 2015; 4 Kundu, Kurland, Bano (CR99) 2014; 39 Zhang, Yu (CR18) 2014; 43 Wanwong, Sangkhun, Jiamboonsri (CR155) 2023; 13 Liu, Li, Zhou (CR129) 2011; 32 Qian, Xin, Xiao (CR179) 2020; 12 Zhang, Baughman, Kaplan (CR91) 2008; 29 Li, Li, Qian (CR135) 2011; 49 Dang, Shan, Tian (CR161) 2024; 2 Kishan, Cosgriff-Hernandez (CR109) 2017; 105 Wang, Li, Lu (CR176) 2023; 7 Zhu, Huang, Zhang (CR75) 2016; 9 Agarwal, Greiner, Wendorff (CR26) 2013; 38 Liu, Li, Zhang (CR96) 2022; 14 Chen, Chuanbao, Xilan (CR51) 2006; 47 Zhao, Zhang, Gao (CR9) 2022; 10 Jin, Fridrikh, Rutledge (CR53) 2002; 3 Rockwood, Preda, Yucel (CR65) 2011; 6 Wenk, Merkle, Meinel (CR140) 2011; 150 Belbéoch, Lejeune, Vroman (CR59) 2021; 19 Bhattacharjee, Kundu, Naskar (CR47) 2017; 63 Kim, Kim, Lee (CR67) 2017; 104 Schneider, Wang, Kaplan (CR90) 2009; 5 Luo, Stoyanov, Stride (CR10) 2012; 41 Liu, Wang, Zhang (CR108) 2022; 14 Kennedy, Bhaw-Luximon, Jhurry (CR111) 2017; 50 Zhang, Zuo, Fan (CR127) 2012; 13 Wang, Fan, Li (CR29) 2022; 5 Shao, Ying, Ping (CR175) 2020; 49 Deitzel, Kleinmeyer, Harris (CR85) 2001; 42 Xu, Shi, Tang (CR133) 2020; 6 Jokisch, Neuenfeldt, Scheibel (CR160) 2017; 1 Feng, Jupei, Dong (CR122) 2023; 62 Xia, Kong, Li (CR152) 2024; 16 Cao, Chen, Huang (CR52) 2009; 29 Tao, Hwang, Marelli (CR178) 2014; 111 Taskin, Ahmad, Wistlich (CR19) 2021; 121 Min, Tu, Xu (CR102) 2023; 123 Liang, Hsiao, Chu (CR12) 2007; 59 Wang, Cui, Feng (CR146) 2021; 426 Sarkar, Gomez, Zambrano (CR15) 2010; 13 Wu, Ma, Liu (CR21) 2022; 9 Rashid, Gorga, Krause (CR34) 2021; 23 Fan, Zhang, Long (CR173) 2023; 33 Ye, Kuang, You (CR145) 2019; 11 Pakdel, Wang (CR169) 2023; 231 CR24 Yin, Lu, Gan (CR181) 2023; 8 Fadil, Affandi, Misnon (CR17) 2021; 13 Chen, Xiao, Zhao (CR1) 2022; 122 Müller, Zainuddin, Scheibel (CR156) 2020; 25 Wade, Burdick (CR11) 2014; 9 Hwang, Tao, Kim (CR177) 2012; 337 Supaphol, Suwantong, Sangsanoh (CR35) 2012; 246 Tian, Prabhakaran, Ramakrishna (CR134) 2015; 2 Lv, Cheng (CR8) 2021; 50 Wu, Hong (CR114) 2016; 1 Lang, Jokisch, Scheibel (CR159) 2013; 75 Gogurla, Kim (CR107) 2021; 11 DM Phillips (38_CR73) 2004; 126 C Pignatelli (38_CR92) 2018; 73 T Yucel (38_CR121) 2014; 190 J Zhou (38_CR130) 2010; 95 RJ Wade (38_CR11) 2014; 9 K Zhang (38_CR126) 2010; 93 C Qian (38_CR179) 2020; 12 Y Zhou (38_CR4) 2021; 20 S Lin (38_CR64) 2016; 139 Y Xu (38_CR154) 2024; 24 KM Kennedy (38_CR111) 2017; 50 M Zarei (38_CR182) 2023; 35 G Chen (38_CR1) 2022; 122 A Keirouz (38_CR36) 2023; 8 K Chen (38_CR80) 2023; 23 AP Kishan (38_CR109) 2017; 105 R Rajasekaran (38_CR56) 2023; 475 G Lang (38_CR159) 2013; 75 X Gao (38_CR158) 2018; 8 M Gholipourmalekabadi (38_CR82) 2020; 153 J Wang (38_CR29) 2022; 5 SR Jang (38_CR123) 2020; 111 Y Li (38_CR13) 2021; 6 C-L Zhang (38_CR18) 2014; 43 C Chen (38_CR51) 2006; 47 HJ Kim (38_CR67) 2017; 104 B Yi (38_CR77) 2018; 6 K Ye (38_CR145) 2019; 11 C Wang (38_CR163) 2016; 9 J Yao (38_CR71) 2002; 35 K Sarkar (38_CR15) 2010; 13 DN Rockwood (38_CR65) 2011; 6 S Agarwal (38_CR86) 2009; 21 H Li (38_CR137) 2017; 7 L Cao (38_CR54) 2021; 33 X Liang (38_CR105) 2022; 32 B Gu (38_CR153) 2023; 17 HJ Jin (38_CR53) 2002; 3 M Rahmati (38_CR31) 2021; 117 L Yang (38_CR95) 2024; 14 J He (38_CR147) 2023; 466 F Fadil (38_CR17) 2021; 13 K Min (38_CR162) 2018; 8 Y Feng (38_CR122) 2023; 62 PM Gore (38_CR164) 2019; 374 A Libanori (38_CR3) 2022; 5 H Zhang (38_CR144) 2012; 10 J Min (38_CR102) 2023; 123 P Yao (38_CR171) 2022; 34 SC Kundu (38_CR41) 2008; 33 IC Um (38_CR69) 2003; 33 Q Zhang (38_CR46) 2024; 1 M Farokhi (38_CR48) 2018; 36 FV Dos Santos (38_CR83) 2024; 254 S Jokisch (38_CR160) 2017; 1 38_CR24 H Tao (38_CR178) 2014; 111 MI Iqbal (38_CR168) 2023; 16 F Müller (38_CR156) 2020; 25 D Li (38_CR58) 2004; 16 C Dang (38_CR161) 2024; 2 Y Zhang (38_CR170) 2022; 14 H-J Jin (38_CR61) 2004; 25 C Belbéoch (38_CR59) 2021; 19 S-W Hwang (38_CR177) 2012; 337 R Wu (38_CR21) 2022; 9 C Shi (38_CR88) 2021; 33 M Zhu (38_CR104) 2021; 10 T Elakkiya (38_CR136) 2014; 63 L Peng (38_CR78) 2016; 301 E Wenk (38_CR140) 2011; 150 X Zhao (38_CR2) 2024; 23 B Kundu (38_CR99) 2014; 39 38_CR149 N Bhardwaj (38_CR14) 2010; 28 R Sridhar (38_CR25) 2015; 44 M Xie (38_CR125) 2016; 103 Z Wang (38_CR142) 2021; 593 S Li (38_CR79) 2020; 6 M Hajiabbas (38_CR131) 2020; 245 X Li (38_CR37) 2021; 11 G Li (38_CR39) 2015; 4 C Solanas (38_CR101) 2014; 60 E Pakdel (38_CR169) 2023; 231 A Kirillova (38_CR20) 2021; 121 S-W Ha (38_CR72) 2005; 6 N Forouzideh (38_CR143) 2020; 56 A Memic (38_CR116) 2019; 2 H Wang (38_CR176) 2023; 7 N Aslam (38_CR7) 2023; 5 J Wu (38_CR150) 2022; 10 M-T Tsai (38_CR167) 2023; 48 L Tian (38_CR134) 2015; 2 AJ Meinel (38_CR60) 2009; 30 Y Zhang (38_CR103) 2023; 81 M Puerta (38_CR76) 2022; 57 ES Gil (38_CR119) 2013; 2 J Zhu (38_CR75) 2016; 9 C Lu (38_CR23) 2024; 10 M Wang (38_CR45) 2004; 37 A Luraghi (38_CR16) 2021; 334 P Supaphol (38_CR35) 2012; 246 D Liang (38_CR12) 2007; 59 Z Li (38_CR165) 2018; 6 A Kopp (38_CR27) 2020; 5 H Cao (38_CR52) 2009; 29 L Lu (38_CR22) 2024; 36 A Fathi (38_CR120) 2020; 14 JK Sahoo (38_CR63) 2023; 7 A Magaz (38_CR115) 2018; 7 Y Shao (38_CR175) 2020; 49 A Schneider (38_CR90) 2009; 5 A Vasudevan (38_CR113) 2022; 7 S Ling (38_CR66) 2018; 3 X Zhang (38_CR91) 2008; 29 M Farokhi (38_CR44) 2020; 321 Z Liu (38_CR108) 2022; 14 F Zhang (38_CR127) 2012; 13 CJ Luo (38_CR10) 2012; 41 UY Karatepe (38_CR57) 2020; 5 SE Wharram (38_CR98) 2010; 10 Y Zhang (38_CR81) 2023; 253 Z Yin (38_CR181) 2023; 8 T Zhao (38_CR9) 2022; 10 J Zhou (38_CR89) 2010; 47 K Chaloupka (38_CR5) 2010; 28 M Humenik (38_CR43) 2018; 10 T Xing (38_CR174) 2023; 474 C Li (38_CR93) 2006; 27 AM Shabbirahmed (38_CR110) 2023; 8 S Zou (38_CR30) 2022; 4 Z Yin (38_CR50) 2018; 18 P Bhattacharjee (38_CR47) 2017; 63 B-M Min (38_CR62) 2004; 25 Z Wang (38_CR146) 2021; 426 D Ji (38_CR33) 2024; 4 TU Rashid (38_CR34) 2021; 23 G Sabarees (38_CR84) 2023; 79 N Gogurla (38_CR107) 2021; 11 TB Aigner (38_CR87) 2018; 30 M Biagiotti (38_CR132) 2022; 10 R Zhang (38_CR151) 2024; 12 JH Comroe Jr (38_CR6) 1976; 192 38_CR118 J Lv (38_CR8) 2021; 50 38_CR117 C Fan (38_CR173) 2023; 33 W Shao (38_CR124) 2016; 67 S Wanwong (38_CR155) 2023; 13 S-W Ha (38_CR70) 2003; 4 S Zou (38_CR94) 2021; 9 L Mehraz (38_CR139) 2018; 4 J Zhou (38_CR128) 2009; 45 H Liu (38_CR129) 2011; 32 B Biswal (38_CR40) 2022; 30 L Li (38_CR135) 2011; 49 W Zhou (38_CR166) 2011; 12 JM Deitzel (38_CR85) 2001; 42 Y Xu (38_CR172) 2024; 481 MB Taskin (38_CR19) 2021; 121 Z Shi (38_CR180) 2019; 6 J Xue (38_CR32) 2019; 119 S Agarwal (38_CR26) 2013; 38 Y Xu (38_CR133) 2020; 6 J Wu (38_CR114) 2016; 1 M Farokhi (38_CR49) 2018; 36 N Panda (38_CR100) 2014; 174 H Lu (38_CR68) 2024; 15 X Zhang (38_CR28) 2009; 61 Y Guo (38_CR106) 2018; 48 Y Si (38_CR148) 2023; 48 X Yao (38_CR112) 2022; 16 M Dadras Chomachayi (38_CR138) 2018; 106 M Safdari (38_CR141) 2016; 17 C Vepari (38_CR38) 2007; 32 BN Singh (38_CR74) 2016; 87 C Holland (38_CR42) 2019; 8 X Wu (38_CR97) 2024; 34 A Khalid (38_CR55) 2020; 12 J Liu (38_CR96) 2022; 14 A Opálková Šišková (38_CR157) 2021; 13 J Xia (38_CR152) 2024; 16 |
References_xml | – volume: 39 start-page: 251 year: 2014 end-page: 267 ident: CR99 article-title: Silk proteins for biomedical applications: Bioengineering perspectives publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2013.09.002 – volume: 1 start-page: 301 year: 2024 end-page: 310 ident: CR46 article-title: Daytime radiative cooling dressings for accelerating wound healing under sunlight publication-title: Nat Chem Eng doi: 10.1038/s44286-024-00050-4 – volume: 4 start-page: 211 year: 2018 end-page: 221 ident: CR139 article-title: Electrospun silk fibroin/β-cyclodextrin citrate nanofibers as a novel biomaterial for application in controlled drug release publication-title: Int J Polym Mater Po doi: 10.1080/00914037.2018.1552865 – volume: 73 start-page: 365 year: 2018 end-page: 376 ident: CR92 article-title: Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.04.025 – volume: 56 start-page: 101498 year: 2020 ident: CR143 article-title: Epigallocatechin gallate loaded electrospun silk fibroin scaffold with anti-angiogenic properties for corneal tissue engineering publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2020.101498 – volume: 24 start-page: 4462 year: 2024 end-page: 4470 ident: CR154 article-title: Radiative thermal management in face masks with a micro/nanofibrous filter publication-title: Nano Lett doi: 10.1021/acs.nanolett.4c00308 – volume: 246 start-page: 213 year: 2012 end-page: 239 ident: CR35 article-title: Electrospinning of biocompatible polymers and their potentials in biomedical applications publication-title: Biomedical applications of polymeric nanofibers doi: 10.1007/12_2011_143 – volume: 2 start-page: 206 year: 2013 end-page: 217 ident: CR119 article-title: Functionalized silk biomaterials for wound healing publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201200192 – volume: 12 start-page: 39 year: 2020 ident: CR179 article-title: Vascularized silk electrospun fiber for promoting oral mucosa regeneration publication-title: NPG Asia Mater doi: 10.1038/s41427-020-0221-z – volume: 23 start-page: 2100153 year: 2021 ident: CR34 article-title: Mechanical properties of electrospun fibers—a critical review publication-title: Adv Eng Mater doi: 10.1002/adem.202100153 – volume: 33 start-page: 2005910 year: 2021 ident: CR88 article-title: New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials publication-title: Adv Mater doi: 10.1002/adma.202005910 – volume: 174 start-page: 2403 year: 2014 end-page: 2412 ident: CR100 article-title: Degradation mechanism and control of blended eri and tasar silk nanofiber publication-title: Biotechnol Appl Biochem doi: 10.1007/s12010-014-1151-4 – volume: 60 start-page: 123 year: 2014 end-page: 134 ident: CR101 article-title: Insights into the production and characterization of electrospun fibers from regenerated silk fibroin publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2014.08.030 – volume: 33 start-page: 203 year: 2003 end-page: 213 ident: CR69 article-title: The role of formic acid in solution stability and crystallization of silk protein polymer publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2003.08.004 – volume: 13 start-page: 2087 year: 2021 ident: CR17 article-title: Review on electrospun nanofiber-applied products publication-title: Polymers doi: 10.3390/polym13132087 – volume: 14 start-page: 100243 year: 2022 ident: CR96 article-title: Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100243 – volume: 75 year: 2013 ident: CR159 article-title: Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins publication-title: Jove-j Vis Exp doi: 10.3791/50492 – volume: 93 start-page: 976 year: 2010 end-page: 983 ident: CR126 article-title: Electrospun scaffolds from silk fibroin and their cellular compatibility publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.32497 – volume: 44 start-page: 790 year: 2015 end-page: 814 ident: CR25 article-title: Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals publication-title: Chem Soc Rev doi: 10.1039/C4CS00226A – volume: 321 start-page: 324 year: 2020 end-page: 347 ident: CR44 article-title: Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges publication-title: J Control Release doi: 10.1016/j.jconrel.2020.02.022 – volume: 245 start-page: 116465 year: 2020 ident: CR131 article-title: A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.116465 – volume: 67 start-page: 599 year: 2016 end-page: 610 ident: CR124 article-title: A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering publication-title: Mat Sci Eng C-mater doi: 10.1016/j.msec.2016.05.081 – volume: 7 start-page: e2201340 year: 2023 ident: CR176 article-title: Carbon-based flexible devices for comprehensive health monitoring publication-title: Small Methods doi: 10.1002/smtd.202201340 – volume: 20 start-page: 1670 year: 2021 end-page: 1676 ident: CR4 article-title: Giant magnetoelastic effect in soft systems for bioelectronics publication-title: Nat Mater doi: 10.1038/s41563-021-01093-1 – volume: 231 start-page: 112006 year: 2023 ident: CR169 article-title: Thermoregulating textiles and fibrous materials for passive radiative cooling functionality publication-title: Mater Design doi: 10.1016/j.matdes.2023.112006 – volume: 50 start-page: 5435 year: 2021 end-page: 5467 ident: CR8 article-title: Fluoropolymers in biomedical applications: State-of-the-art and future perspectives publication-title: Chem Soc Rev doi: 10.1039/D0CS00258E – volume: 33 start-page: e2102500 year: 2021 ident: CR54 article-title: Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm publication-title: Adv Mater doi: 10.1002/adma.202102500 – volume: 111 start-page: 110776 year: 2020 ident: CR123 article-title: The controlled design of electrospun PCL/silk/quercetin fibrous tubular scaffold using a modified wound coil collector and L-shaped ground design for neural repair publication-title: Mat Sci Eng C-mater doi: 10.1016/j.msec.2020.110776 – volume: 466 start-page: 143127 year: 2023 ident: CR147 article-title: Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management publication-title: Chem Eng J doi: 10.1016/j.cej.2023.143127 – volume: 4 start-page: 557 year: 2024 end-page: 569 ident: CR33 article-title: Electrospinning of nanofibres publication-title: Nat Rev Methods Primers doi: 10.1038/s43586-023-00278-z – volume: 23 start-page: 703 year: 2024 end-page: 710 ident: CR2 article-title: Permanent fluidic magnets for liquid bioelectronics publication-title: Nat Mater doi: 10.1038/s41563-024-01802-6 – volume: 14 start-page: 27 year: 2020 ident: CR120 article-title: Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model publication-title: J Biol Eng doi: 10.1186/s13036-020-00249-y – volume: 34 start-page: 2208236 year: 2022 ident: CR171 article-title: Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling publication-title: Adv Mater doi: 10.1002/adma.202208236 – volume: 7 start-page: 149 year: 2022 ident: CR113 article-title: Evolution of electrospinning in liver tissue engineering publication-title: Biomimetics doi: 10.3390/biomimetics7040149 – volume: 5 start-page: 2570 year: 2009 end-page: 2578 ident: CR90 article-title: Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing publication-title: Acta Biomater doi: 10.1016/j.actbio.2008.12.013 – volume: 1 start-page: 56 year: 2016 end-page: 64 ident: CR114 article-title: Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2016.07.001 – volume: 59 start-page: 1392 year: 2007 end-page: 1412 ident: CR12 article-title: Functional electrospun nanofibrous scaffolds for biomedical applications publication-title: Adv Drug Delivery Rev doi: 10.1016/j.addr.2007.04.021 – volume: 7 start-page: 302 year: 2023 end-page: 318 ident: CR63 article-title: Silk chemistry and biomedical material designs publication-title: Nat Rev Chem doi: 10.1038/s41570-023-00486-x – volume: 103 start-page: 33 year: 2016 end-page: 43 ident: CR125 article-title: An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.049 – volume: 48 start-page: 152 year: 2018 end-page: 160 ident: CR106 article-title: All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.033 – volume: 190 start-page: 381 year: 2014 end-page: 397 ident: CR121 article-title: Silk-based biomaterials for sustained drug delivery publication-title: J Control Release doi: 10.1016/j.jconrel.2014.05.059 – volume: 8 start-page: 8181 year: 2018 end-page: 8189 ident: CR158 article-title: A silk fibroin based green nano-filter for air filtration publication-title: Rsc Adv doi: 10.1039/C7RA12879G – volume: 49 start-page: 4405 year: 2020 end-page: 4465 ident: CR175 article-title: Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends publication-title: Chem Soc Rev doi: 10.1039/c9cs00587k – volume: 81 start-page: 1402 year: 2023 end-page: 1419 ident: CR103 article-title: Flexible electrochemical sensors and their applications in noninvasive medical detection publication-title: Acta Chim Sin doi: 10.6023/a23060289 – volume: 48 start-page: 101745 year: 2023 ident: CR167 article-title: Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling publication-title: Nano Today doi: 10.1016/j.nantod.2022.101745 – volume: 9 start-page: 2103981 year: 2022 ident: CR21 article-title: From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics publication-title: Adv Sci doi: 10.1002/advs.202103981 – volume: 35 start-page: 2203193 year: 2023 ident: CR182 article-title: Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human–machine interfaces publication-title: Adv Mater doi: 10.1002/adma.202203193 – volume: 5 start-page: 142 year: 2022 end-page: 156 ident: CR3 article-title: Smart textiles for personalized healthcare publication-title: Nat Electron doi: 10.1038/s41928-022-00723-z – volume: 10 start-page: 246 year: 2010 end-page: 257 ident: CR98 article-title: Electrospun silk material systems for wound healing publication-title: Macromol Biosci doi: 10.1002/mabi.200900274 – volume: 50 start-page: 41 year: 2017 end-page: 55 ident: CR111 article-title: Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.12.034 – volume: 6 start-page: 2847 year: 2020 end-page: 2854 ident: CR79 article-title: Microfluidic silk fibers with aligned hierarchical microstructures publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.0c00060 – volume: 9 start-page: 722 year: 2014 end-page: 742 ident: CR11 article-title: Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly publication-title: Nano Today doi: 10.1016/j.nantod.2014.10.002 – volume: 32 start-page: 3784 year: 2011 end-page: 3793 ident: CR129 article-title: Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.02.002 – volume: 192 start-page: 105 year: 1976 end-page: 111 ident: CR6 article-title: Scientific basis for the support of biomedical science publication-title: Science doi: 10.1126/science.769161 – volume: 33 start-page: 2300794 year: 2023 ident: CR173 article-title: Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability publication-title: Adv Funct Mater doi: 10.1002/adfm.202300794 – volume: 10 start-page: 833157 year: 2022 ident: CR132 article-title: Electrospun silk fibroin scaffolds for tissue regeneration: chemical, structural, and toxicological implications of the formic acid-silk fibroin interaction publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.833157 – volume: 7 start-page: 56550 year: 2017 end-page: 56558 ident: CR137 article-title: Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release publication-title: Rsc Adv doi: 10.1039/C7RA12394A – volume: 18 start-page: 7085 year: 2018 end-page: 7091 ident: CR50 article-title: Splash-resistant and light-weight silk-sheathed wires for textile electronics publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b03085 – volume: 43 start-page: 4423 year: 2014 end-page: 4448 ident: CR18 article-title: Nanoparticles meet electrospinning: recent advances and future prospects publication-title: Chem Soc Rev doi: 10.1039/C3CS60426H – volume: 16 start-page: 2563 year: 2023 end-page: 2571 ident: CR168 article-title: Evaporative/radiative electrospun membrane for personal cooling publication-title: Nano Res doi: 10.1007/s12274-022-4987-x – volume: 253 start-page: 126863 year: 2023 ident: CR81 article-title: Design and function of lignin/silk fibroin-based multilayer water purification membranes for dye adsorption publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.126863 – volume: 36 start-page: 2308748 year: 2024 ident: CR22 article-title: Silk-fabric reinforced silk for artificial bones publication-title: Adv Mater doi: 10.1002/adma.202308748 – volume: 36 start-page: 68 year: 2018 end-page: 91 ident: CR48 article-title: Silk fibroin/hydroxyapatite composites for bone tissue engineering publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2017.10.001 – ident: CR117 – volume: 45 start-page: 504 year: 2009 end-page: 510 ident: CR128 article-title: A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2009.09.006 – volume: 49 start-page: 223 year: 2011 end-page: 232 ident: CR135 article-title: Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2011.04.018 – volume: 28 start-page: 580 year: 2010 end-page: 588 ident: CR5 article-title: Nanosilver as a new generation of nanoproduct in biomedical applications publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2010.07.006 – volume: 481 start-page: 148722 year: 2024 ident: CR172 article-title: Radiative cooling face mask based on mixed micro-and nanofibrous fabric publication-title: Chem Eng J doi: 10.1016/j.cej.2024.148722 – volume: 23 start-page: 2200380 year: 2023 ident: CR80 article-title: Silk fibroin combined with electrospinning as a promising strategy for tissue regeneration publication-title: Macromol Biosci doi: 10.1002/mabi.202200380 – volume: 47 start-page: 6322 year: 2006 end-page: 6327 ident: CR51 article-title: Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method publication-title: Polymer doi: 10.1016/j.polymer.2006.07.009 – volume: 374 start-page: 437 year: 2019 end-page: 470 ident: CR164 article-title: Progress in silk materials for integrated water treatments: Fabrication, modification and applications publication-title: Chem Eng J doi: 10.1016/j.cej.2019.05.163 – volume: 123 start-page: 5049 year: 2023 end-page: 5138 ident: CR102 article-title: Skin-interfaced wearable sweat sensors for precision medicine publication-title: Chem Rev doi: 10.1021/acs.chemrev.2c00823 – volume: 17 start-page: 744 year: 2016 end-page: 750 ident: CR141 article-title: Preparation and characterization of Ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing publication-title: Fiber Polym doi: 10.1007/s12221-016-5822-3 – volume: 57 start-page: 3842 year: 2022 end-page: 3854 ident: CR76 article-title: Effect of processing and storage time of aqueous solutions on silk fibroin structure and methanol post-treatment of electrospun fibers publication-title: J Mater Sci doi: 10.1007/s10853-022-06873-x – volume: 111 start-page: 17385 year: 2014 end-page: 17389 ident: CR178 article-title: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1407743111 – volume: 36 start-page: 907 year: 2018 end-page: 922 ident: CR49 article-title: Overview of silk fibroin use in wound dressings publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2018.04.004 – volume: 10 start-page: 2784 year: 2024 end-page: 2804 ident: CR23 article-title: Flexible meso electronics and photonics based on cocoon silk and applications publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.4c00254 – volume: 32 start-page: 991 year: 2007 end-page: 1007 ident: CR38 article-title: Silk as a biomaterial publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2007.05.013 – volume: 11 start-page: 182 year: 2019 ident: CR145 article-title: Electrospun nanofibers for tissue engineering with drug loading and release publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11040182 – volume: 8 start-page: 2200654 year: 2023 ident: CR181 article-title: Electronic fibers/textiles for health-monitoring: Fabrication and application publication-title: Adv Mater Technol doi: 10.1002/admt.202200654 – volume: 29 start-page: 2270 year: 2009 end-page: 2274 ident: CR52 article-title: Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution publication-title: Mat Sci Eng C-mater doi: 10.1016/j.msec.2009.05.012 – volume: 6 start-page: 3402 year: 2018 end-page: 3413 ident: CR165 article-title: Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal–organic frameworks grown on silk nanofibers for hazard collection in water publication-title: J Mater Chem A doi: 10.1039/C7TA06924C – volume: 153 start-page: 28 year: 2020 end-page: 53 ident: CR82 article-title: Silk fibroin for skin injury repair: where do things stand? publication-title: Adv Drug Delivery Rev doi: 10.1002/adhm.201700121 – volume: 8 start-page: 1800465 year: 2019 ident: CR42 article-title: The biomedical use of silk: past, present, future publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201800465 – volume: 10 start-page: e1509 year: 2018 ident: CR43 article-title: Silk nanofibril self-assembly versus electrospinning publication-title: WIRES Nanomed Nanobio doi: 10.1002/wnan.1509 – volume: 5 start-page: 241 year: 2020 end-page: 252 ident: CR27 article-title: Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.01.010 – volume: 6 start-page: 1801617 year: 2019 ident: CR180 article-title: Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding publication-title: Adv Sci doi: 10.1002/advs.201801617 – volume: 41 start-page: 4708 year: 2012 end-page: 4735 ident: CR10 article-title: Electrospinning versus fibre production methods: from specifics to technological convergence publication-title: Chem Soc Rev doi: 10.1039/C2CS35083A – volume: 121 start-page: 11194 year: 2021 end-page: 11237 ident: CR19 article-title: Bioactive electrospun fibers: Fabrication strategies and a critical review of surface-sensitive characterization and quantification publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00816 – volume: 38 start-page: 963 year: 2013 end-page: 991 ident: CR26 article-title: Functional materials by electrospinning of polymers publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2013.02.001 – volume: 8 start-page: 2201723 year: 2023 ident: CR36 article-title: The history of electrospinning: past, present, and future developments publication-title: Adv Mater Technol doi: 10.1002/admt.202201723 – volume: 11 start-page: 2000845 year: 2021 ident: CR37 article-title: Electrospinning-based strategies for battery materials publication-title: Adv Energy Mater doi: 10.1002/aenm.202000845 – volume: 334 start-page: 463 year: 2021 end-page: 484 ident: CR16 article-title: Electrospinning for drug delivery applications: a review publication-title: J Control Release doi: 10.1080/25740881.2024.2346314 – volume: 10 start-page: 1 year: 2012 end-page: 9 ident: CR144 article-title: Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery publication-title: J Transl Med. doi: 10.1186/1479-5876-10-117 – ident: CR24 – volume: 30 start-page: 3058 year: 2009 end-page: 3067 ident: CR60 article-title: Optimization strategies for electrospun silk fibroin tissue engineering scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.054 – volume: 48 start-page: 101723 year: 2023 ident: CR148 article-title: Applications of electrospinning in human health: from detection, protection, regulation to reconstruction publication-title: Nano Today doi: 10.1016/j.nantod.2022.101723 – volume: 28 start-page: 325 year: 2010 end-page: 347 ident: CR14 article-title: Electrospinning: A fascinating fiber fabrication technique publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2010.01.004 – volume: 4 start-page: 488 year: 2003 end-page: 496 ident: CR70 article-title: Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution publication-title: Biomacromol doi: 10.1021/bm0255948 – volume: 42 start-page: 261 year: 2001 end-page: 272 ident: CR85 article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles publication-title: Polymer doi: 10.1016/S0032-3861(00)00250-0 – volume: 139 start-page: 156 year: 2016 end-page: 163 ident: CR64 article-title: Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect publication-title: Colloid Surface B doi: 10.1016/j.colsurfb.2015.12.001 – volume: 12 start-page: 431 year: 2011 end-page: 437 ident: CR166 article-title: Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption publication-title: Fiber Polym doi: 10.1007/s12221-011-0431-7 – volume: 4 start-page: 758 year: 2022 end-page: 773 ident: CR30 article-title: 3D printed gelatin scaffold with improved shape fidelity and cytocompatibility by using antheraea pernyi silk fibroin nanofibers publication-title: Adv Fiber Mater doi: 10.1007/s42765-022-00135-w – volume: 29 start-page: 2217 year: 2008 end-page: 2227 ident: CR91 article-title: In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.01.022 – volume: 8 start-page: 9598 year: 2018 ident: CR162 article-title: Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters publication-title: Sci Rep doi: 10.1038/s41598-018-27917-w – volume: 106 start-page: 1092 year: 2018 end-page: 1103 ident: CR138 article-title: Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study publication-title: J Biomed Mate Res Part A doi: 10.1002/jbm.a.36303 – volume: 122 start-page: 3259 year: 2022 end-page: 3291 ident: CR1 article-title: Electronic textiles for wearable point-of-care systems publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00502 – volume: 475 start-page: 146245 year: 2023 ident: CR56 article-title: Polyaniline doped silk fibroin-PCL electrospunfiber: an electroactive fibrous sheet for full-thickness wound healing study publication-title: Chem Eng J doi: 10.1016/j.cej.2023.146245 – volume: 117 year: 2021 ident: CR31 article-title: Electrospinning for tissue engineering applications publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100721 – volume: 11 start-page: 2100801 year: 2021 ident: CR107 article-title: Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces publication-title: Adv Energy Mater doi: 10.1002/aenm.202100801 – volume: 3 start-page: 1233 year: 2002 end-page: 1239 ident: CR53 article-title: Electrospinning Bombyx mori silk with poly(ethylene oxide) publication-title: Biomacromol doi: 10.1021/bm025581u – volume: 79 start-page: 103994 year: 2023 ident: CR84 article-title: Emerging trends in silk fibroin based nanofibers for impaired wound healing publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2022.103994 – volume: 32 start-page: 2200162 year: 2022 ident: CR105 article-title: Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables publication-title: Adv Funct Mater doi: 10.1002/adfm.202200162 – volume: 119 start-page: 5298 year: 2019 end-page: 5415 ident: CR32 article-title: Electrospinning and electrospun nanofibers: methods, materials, and applications publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00593 – volume: 12 start-page: 48408 year: 2020 end-page: 48419 ident: CR55 article-title: Electrospun nanodiamond–silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications publication-title: ACS Appl Mater Interfaces doi: 10.1039/D2TB01890J – volume: 5 start-page: 510 year: 2020 end-page: 515 ident: CR57 article-title: Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.04.005 – volume: 87 start-page: 201 year: 2016 end-page: 207 ident: CR74 article-title: A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2016.01.120 – volume: 15 start-page: 3289 year: 2024 ident: CR68 article-title: Intelligent perceptual textiles based on ionic-conductive and strong silk fibers publication-title: Nat Commun doi: 10.1038/s41467-024-47665-y – volume: 21 start-page: 3343 year: 2009 end-page: 3351 ident: CR86 article-title: Progress in the field of electrospinning for tissue engineering applications publication-title: Adv Mater doi: 10.1002/adma.200803092 – volume: 17 start-page: 18308 year: 2023 end-page: 18317 ident: CR153 article-title: A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments publication-title: ACS Nano doi: 10.1021/acsnano.3c05460 – volume: 10 start-page: 2100646 year: 2021 ident: CR104 article-title: Flexible electrodes for in vivo and in vitro electrophysiological signal recording publication-title: Adv Healthcare Mater doi: 10.1002/adhm.202100646 – volume: 14 start-page: 45707 year: 2022 end-page: 45715 ident: CR170 article-title: Scalable and high-performance radiative cooling fabrics through an electrospinning method publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c13727 – volume: 9 start-page: 2590 year: 2016 end-page: 2597 ident: CR163 article-title: Silk nanofibers as high efficient and lightweight air filter publication-title: Nano Res doi: 10.1007/s12274-016-1145-3 – volume: 16 start-page: 1151 year: 2004 end-page: 1170 ident: CR58 article-title: Electrospinning of nanofibers: Reinventing the wheel? publication-title: Adv Mater doi: 10.1002/adma.200400719 – volume: 25 start-page: 1039 year: 2004 end-page: 1047 ident: CR61 article-title: Human bone marrow stromal cell responses on electrospun silk fibroin mats publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00609-4 – volume: 4 start-page: 1134 year: 2015 end-page: 1151 ident: CR39 article-title: Silk-based biomaterials in biomedical textiles and fiber-based implants publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201500002 – volume: 27 start-page: 3115 year: 2006 end-page: 3124 ident: CR93 article-title: Electrospun silk-BMP-2 scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.022 – volume: 37 start-page: 6856 year: 2004 end-page: 6864 ident: CR45 article-title: Mechanical properties of electrospun silk fibers publication-title: Macromolecules doi: 10.1021/ma048988v – volume: 7 start-page: 1800308 year: 2018 ident: CR115 article-title: Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201800308 – volume: 13 start-page: 25729 year: 2023 end-page: 25737 ident: CR155 article-title: Electrospun silk nanofiber loaded with Ag-doped TiO with high-reactive facet as multifunctional air filter publication-title: Rsc Adv doi: 10.1039/d3ra04621d – volume: 104 start-page: 294 year: 2017 end-page: 302 ident: CR67 article-title: Effect of degumming methods on structural characteristics and properties of regenerated silk publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.06.019 – volume: 25 start-page: 5540 year: 2020 ident: CR156 article-title: Roll-to-roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration applications publication-title: Molecules doi: 10.3390/molecules25235540 – volume: 95 start-page: 1679 year: 2010 end-page: 1685 ident: CR130 article-title: In vitro and in vivo degradation behavior of aqueous-derived electrospun silk fibroin scaffolds publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2010.05.025 – volume: 593 start-page: 142 year: 2021 end-page: 151 ident: CR142 article-title: Silk fibroin H-fibroin/poly (ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.02.099 – volume: 30 start-page: 2222 year: 2022 end-page: 2253 ident: CR40 article-title: Extraction of silk fibroin with several sericin removal processes and its importance in tissue engineering: a review publication-title: J Polym Environ doi: 10.1007/s10924-022-02381-w – volume: 8 start-page: 16 year: 2023 ident: CR110 article-title: Recent developments of silk-based scaffolds for tissue engineering and regenerative medicine applications: a special focus on the advancement of 3D printing publication-title: Biomimetics doi: 10.3390/biomimetics8010016 – volume: 14 start-page: 3942 year: 2024 ident: CR95 article-title: Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering publication-title: Sci Rep doi: 10.1038/s41598-024-54638-0 – volume: 63 start-page: 100 year: 2014 end-page: 105 ident: CR136 article-title: Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery publication-title: Polym Int doi: 10.1002/pi.4499 – volume: 1 start-page: 1700079 year: 2017 ident: CR160 article-title: Silk-based fine dust filters for air filtration publication-title: Adv Sustainable Syst doi: 10.1002/adsu.201700079 – volume: 6 start-page: eabc2036 year: 2020 ident: CR133 article-title: ECM-inspired micro/nanofibers for modulating cell function and tissue generation publication-title: Sci Adv. doi: 10.1126/sciadv.abc2036 – volume: 126 start-page: 14350 year: 2004 end-page: 14351 ident: CR73 article-title: Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids publication-title: J Am Chem Soc doi: 10.1021/ja046079f – volume: 47 start-page: 514 year: 2010 end-page: 519 ident: CR89 article-title: Electrospinning of silk fibroin and collagen for vascular tissue engineering publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2010.07.010 – volume: 13 start-page: 12 year: 2010 end-page: 14 ident: CR15 article-title: Electrospinning to forcespinning publication-title: Mater Today doi: 10.1016/S1369-7021(10)70199-1 – volume: 33 start-page: 998 year: 2008 end-page: 1012 ident: CR41 article-title: Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2008.08.002 – volume: 16 start-page: 100381 year: 2022 ident: CR112 article-title: Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100381 – volume: 150 start-page: 128 year: 2011 end-page: 141 ident: CR140 article-title: Silk fibroin as a vehicle for drug delivery applications publication-title: J Control Release doi: 10.1016/j.jconrel.2010.11.007 – volume: 19 start-page: 1737 year: 2021 end-page: 1763 ident: CR59 article-title: Silkworm and spider silk electrospinning: a review publication-title: Environ Chem Lett doi: 10.1007/s10311-020-01147-x – volume: 3 start-page: 18016 year: 2018 ident: CR66 article-title: Nanofibrils in nature and materials engineering publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2018.16 – volume: 9 start-page: 221 year: 2016 ident: CR75 article-title: Aqueous-based coaxial electrospinning of genetically engineered silk elastin core-shell nanofibers publication-title: Materials doi: 10.3390/ma9040221 – volume: 105 start-page: 2892 year: 2017 end-page: 2905 ident: CR109 article-title: Recent advancements in electrospinning design for tissue engineering applications: a review publication-title: J Biomed Mate Res Part A doi: 10.1002/jbm.a.36124 – volume: 12 start-page: 1377 year: 2024 end-page: 1385 ident: CR151 article-title: A hierarchical metafabric with dynamically thermochromic property for subambient daytime radiative cooling publication-title: J Mater Chem C doi: 10.1039/D3TC03769J – volume: 5 start-page: 157 year: 2023 end-page: 169 ident: CR7 article-title: Quantum sensors for biomedical applications publication-title: Nat Rev Phys doi: 10.1038/s42254-023-00558-3 – volume: 35 start-page: 6 year: 2002 end-page: 9 ident: CR71 article-title: Artificial spinning and characterization of silk fiber from bombyx m ori silk fibroin in hexafluoroacetone hydrate publication-title: Macromolecules doi: 10.1021/ma011335j – volume: 10 start-page: 7873 year: 2022 end-page: 7882 ident: CR150 article-title: Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.2c00189 – volume: 10 start-page: 6078 year: 2022 end-page: 6106 ident: CR9 article-title: Electrospun nanofibers for bone regeneration: from biomimetic composition, structure to function publication-title: J Mater Chem B doi: 10.1039/D2TB01182D – volume: 62 start-page: 20220333 year: 2023 ident: CR122 article-title: Characterization, biocompatibility, and optimization of electrospun SF/PCL composite nanofiber films publication-title: Rev Adv Mater Sci doi: 10.1515/rams-2022-0333 – volume: 2 start-page: 100323 year: 2024 ident: CR161 article-title: Silk-crosslinked polyester fibrous air filters with electrostatic interfacial mediation for high-efficiency and low-resistance air purification publication-title: Device doi: 10.1016/j.device.2024.100323 – volume: 30 start-page: 1704636 year: 2018 ident: CR87 article-title: Biomedical applications of recombinant silk-based materials publication-title: Adv Mater doi: 10.1002/adma.201704636 – volume: 25 start-page: 1289 year: 2004 end-page: 1297 ident: CR62 article-title: Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.08.045 – volume: 61 start-page: 988 year: 2009 end-page: 1006 ident: CR28 article-title: Electrospun silk biomaterial scaffolds for regenerative medicine publication-title: Adv Drug Delivery Rev doi: 10.1016/j.addr.2009.07.005 – volume: 6 start-page: 1612 year: 2011 end-page: 1631 ident: CR65 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat Protoc doi: 10.1038/nprot.2011.379 – volume: 5 start-page: 4396 year: 2022 end-page: 4406 ident: CR29 article-title: Artificial superstrong silkworm silk surpasses natural spider silks publication-title: Matter doi: 10.1016/j.matt.2022.08.028 – volume: 13 start-page: 2499 year: 2021 ident: CR157 article-title: Electrospun poly (ethylene terephthalate)/silk fibroin composite for filtration application publication-title: Polymers doi: 10.3390/polym13152499 – volume: 16 start-page: 7732 year: 2024 end-page: 7741 ident: CR152 article-title: High thermal conductivity and radiative cooling designed boron nitride nanosheets/silk fibroin films for personal thermal management publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.3c16602 – ident: CR149 – volume: 301 start-page: 48 year: 2016 end-page: 55 ident: CR78 article-title: Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly (l-lactide) by electrospinning publication-title: Macromol Mater Eng doi: 10.1002/mame.201500217 – volume: 254 start-page: 127641 year: 2024 ident: CR83 article-title: Silk fibroin-derived electrospun materials for biomedical applications: a review publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.127641 – volume: 337 start-page: 1640 year: 2012 end-page: 1644 ident: CR177 article-title: A physically transient form of silicon electronics publication-title: Science doi: 10.1126/science.1226325 – ident: CR118 – volume: 121 start-page: 11238 year: 2021 end-page: 11304 ident: CR20 article-title: Fabrication of biomedical scaffolds using biodegradable polymers publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01200 – volume: 6 start-page: 2100410 year: 2021 ident: CR13 article-title: Developments of advanced electrospinning techniques: a critical review publication-title: Adv Mater Technol doi: 10.1002/admt.202100410 – volume: 14 start-page: 3875 year: 2022 ident: CR108 article-title: Electrospinning silk fibroin/graphene nanofiber membrane used for 3D wearable pressure sensor publication-title: Polymers doi: 10.3390/polym14183875 – volume: 474 start-page: 145534 year: 2023 ident: CR174 article-title: Silk-based flexible electronics and smart wearable textiles: Progress and beyond publication-title: Chem Eng J doi: 10.1016/j.cej.2023.145534 – volume: 2 start-page: 952 year: 2019 end-page: 969 ident: CR116 article-title: Latest progress in electrospun nanofibers for wound healing applications publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.8b00637 – volume: 426 start-page: 131947 year: 2021 ident: CR146 article-title: A versatile silk fibroin based filtration membrane with enhanced mechanical property, disinfection and biodegradability publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131947 – volume: 13 start-page: 798 year: 2012 end-page: 804 ident: CR127 article-title: Mechanisms and control of silk-based electrospinning publication-title: Biomacromol doi: 10.1021/bm201719s – volume: 2 start-page: 31 year: 2015 end-page: 45 ident: CR134 article-title: Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules publication-title: Regen Biomater doi: 10.1093/rb/rbu017 – volume: 34 start-page: 2313539 year: 2024 ident: CR97 article-title: Durable radiative cooling multilayer silk textile with excellent comprehensive performance publication-title: Adv Funct Mater doi: 10.1002/adfm.202313539 – volume: 6 start-page: 3934 year: 2018 end-page: 3945 ident: CR77 article-title: Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration publication-title: J Mater Chem B doi: 10.1039/C8TB00535D – volume: 6 start-page: 1722 year: 2005 end-page: 1731 ident: CR72 article-title: Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning publication-title: Biomacromol doi: 10.1021/bm050010y – volume: 63 start-page: 1 year: 2017 end-page: 17 ident: CR47 article-title: Silk scaffolds in bone tissue engineering: an overview publication-title: Acta Biomater doi: 10.1016/j.actbio.2017.09.027 – volume: 9 start-page: 5514 year: 2021 end-page: 5527 ident: CR94 article-title: Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors publication-title: J Mater Chem B doi: 10.1039/D1TB00944C – volume: 63 start-page: 100 year: 2014 ident: 38_CR136 publication-title: Polym Int doi: 10.1002/pi.4499 – volume: 12 start-page: 39 year: 2020 ident: 38_CR179 publication-title: NPG Asia Mater doi: 10.1038/s41427-020-0221-z – volume: 35 start-page: 2203193 year: 2023 ident: 38_CR182 publication-title: Adv Mater doi: 10.1002/adma.202203193 – volume: 17 start-page: 744 year: 2016 ident: 38_CR141 publication-title: Fiber Polym doi: 10.1007/s12221-016-5822-3 – volume: 21 start-page: 3343 year: 2009 ident: 38_CR86 publication-title: Adv Mater doi: 10.1002/adma.200803092 – volume: 67 start-page: 599 year: 2016 ident: 38_CR124 publication-title: Mat Sci Eng C-mater doi: 10.1016/j.msec.2016.05.081 – volume: 6 start-page: 3402 year: 2018 ident: 38_CR165 publication-title: J Mater Chem A doi: 10.1039/C7TA06924C – volume: 2 start-page: 100323 year: 2024 ident: 38_CR161 publication-title: Device doi: 10.1016/j.device.2024.100323 – volume: 47 start-page: 514 year: 2010 ident: 38_CR89 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2010.07.010 – volume: 25 start-page: 1039 year: 2004 ident: 38_CR61 publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00609-4 – volume: 6 start-page: 2847 year: 2020 ident: 38_CR79 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.0c00060 – volume: 25 start-page: 1289 year: 2004 ident: 38_CR62 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.08.045 – volume: 2 start-page: 31 year: 2015 ident: 38_CR134 publication-title: Regen Biomater doi: 10.1093/rb/rbu017 – volume: 466 start-page: 143127 year: 2023 ident: 38_CR147 publication-title: Chem Eng J doi: 10.1016/j.cej.2023.143127 – volume: 13 start-page: 12 year: 2010 ident: 38_CR15 publication-title: Mater Today doi: 10.1016/S1369-7021(10)70199-1 – volume: 14 start-page: 3942 year: 2024 ident: 38_CR95 publication-title: Sci Rep doi: 10.1038/s41598-024-54638-0 – volume: 36 start-page: 68 year: 2018 ident: 38_CR48 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2017.10.001 – volume: 1 start-page: 301 year: 2024 ident: 38_CR46 publication-title: Nat Chem Eng doi: 10.1038/s44286-024-00050-4 – volume: 48 start-page: 101723 year: 2023 ident: 38_CR148 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101723 – volume: 474 start-page: 145534 year: 2023 ident: 38_CR174 publication-title: Chem Eng J doi: 10.1016/j.cej.2023.145534 – volume: 153 start-page: 28 year: 2020 ident: 38_CR82 publication-title: Adv Drug Delivery Rev doi: 10.1002/adhm.201700121 – volume: 11 start-page: 182 year: 2019 ident: 38_CR145 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11040182 – volume: 8 start-page: 2200654 year: 2023 ident: 38_CR181 publication-title: Adv Mater Technol doi: 10.1002/admt.202200654 – volume: 13 start-page: 798 year: 2012 ident: 38_CR127 publication-title: Biomacromol doi: 10.1021/bm201719s – volume: 15 start-page: 3289 year: 2024 ident: 38_CR68 publication-title: Nat Commun doi: 10.1038/s41467-024-47665-y – volume: 41 start-page: 4708 year: 2012 ident: 38_CR10 publication-title: Chem Soc Rev doi: 10.1039/C2CS35083A – volume: 23 start-page: 703 year: 2024 ident: 38_CR2 publication-title: Nat Mater doi: 10.1038/s41563-024-01802-6 – volume: 20 start-page: 1670 year: 2021 ident: 38_CR4 publication-title: Nat Mater doi: 10.1038/s41563-021-01093-1 – volume: 254 start-page: 127641 year: 2024 ident: 38_CR83 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.127641 – volume: 30 start-page: 1704636 year: 2018 ident: 38_CR87 publication-title: Adv Mater doi: 10.1002/adma.201704636 – volume: 33 start-page: 2005910 year: 2021 ident: 38_CR88 publication-title: Adv Mater doi: 10.1002/adma.202005910 – volume: 60 start-page: 123 year: 2014 ident: 38_CR101 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2014.08.030 – volume: 59 start-page: 1392 year: 2007 ident: 38_CR12 publication-title: Adv Drug Delivery Rev doi: 10.1016/j.addr.2007.04.021 – volume: 104 start-page: 294 year: 2017 ident: 38_CR67 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.06.019 – volume: 14 start-page: 27 year: 2020 ident: 38_CR120 publication-title: J Biol Eng doi: 10.1186/s13036-020-00249-y – volume: 29 start-page: 2270 year: 2009 ident: 38_CR52 publication-title: Mat Sci Eng C-mater doi: 10.1016/j.msec.2009.05.012 – volume: 9 start-page: 221 year: 2016 ident: 38_CR75 publication-title: Materials doi: 10.3390/ma9040221 – volume: 475 start-page: 146245 year: 2023 ident: 38_CR56 publication-title: Chem Eng J doi: 10.1016/j.cej.2023.146245 – volume: 150 start-page: 128 year: 2011 ident: 38_CR140 publication-title: J Control Release doi: 10.1016/j.jconrel.2010.11.007 – volume: 7 start-page: e2201340 year: 2023 ident: 38_CR176 publication-title: Small Methods doi: 10.1002/smtd.202201340 – volume: 13 start-page: 2087 year: 2021 ident: 38_CR17 publication-title: Polymers doi: 10.3390/polym13132087 – volume: 3 start-page: 1233 year: 2002 ident: 38_CR53 publication-title: Biomacromol doi: 10.1021/bm025581u – volume: 12 start-page: 1377 year: 2024 ident: 38_CR151 publication-title: J Mater Chem C doi: 10.1039/D3TC03769J – volume: 23 start-page: 2100153 year: 2021 ident: 38_CR34 publication-title: Adv Eng Mater doi: 10.1002/adem.202100153 – volume: 12 start-page: 48408 year: 2020 ident: 38_CR55 publication-title: ACS Appl Mater Interfaces doi: 10.1039/D2TB01890J – volume: 62 start-page: 20220333 year: 2023 ident: 38_CR122 publication-title: Rev Adv Mater Sci doi: 10.1515/rams-2022-0333 – volume: 16 start-page: 7732 year: 2024 ident: 38_CR152 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.3c16602 – volume: 1 start-page: 56 year: 2016 ident: 38_CR114 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2016.07.001 – volume: 16 start-page: 100381 year: 2022 ident: 38_CR112 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100381 – volume: 6 start-page: 1801617 year: 2019 ident: 38_CR180 publication-title: Adv Sci doi: 10.1002/advs.201801617 – volume: 4 start-page: 758 year: 2022 ident: 38_CR30 publication-title: Adv Fiber Mater doi: 10.1007/s42765-022-00135-w – volume: 95 start-page: 1679 year: 2010 ident: 38_CR130 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2010.05.025 – volume: 11 start-page: 2100801 year: 2021 ident: 38_CR107 publication-title: Adv Energy Mater doi: 10.1002/aenm.202100801 – volume: 117 year: 2021 ident: 38_CR31 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100721 – volume: 47 start-page: 6322 year: 2006 ident: 38_CR51 publication-title: Polymer doi: 10.1016/j.polymer.2006.07.009 – volume: 334 start-page: 463 year: 2021 ident: 38_CR16 publication-title: J Control Release doi: 10.1080/25740881.2024.2346314 – volume: 7 start-page: 149 year: 2022 ident: 38_CR113 publication-title: Biomimetics doi: 10.3390/biomimetics7040149 – volume: 121 start-page: 11238 year: 2021 ident: 38_CR20 publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01200 – volume: 87 start-page: 201 year: 2016 ident: 38_CR74 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2016.01.120 – volume: 73 start-page: 365 year: 2018 ident: 38_CR92 publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.04.025 – volume: 32 start-page: 2200162 year: 2022 ident: 38_CR105 publication-title: Adv Funct Mater doi: 10.1002/adfm.202200162 – volume: 253 start-page: 126863 year: 2023 ident: 38_CR81 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.126863 – volume: 42 start-page: 261 year: 2001 ident: 38_CR85 publication-title: Polymer doi: 10.1016/S0032-3861(00)00250-0 – volume: 27 start-page: 3115 year: 2006 ident: 38_CR93 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.022 – volume: 13 start-page: 2499 year: 2021 ident: 38_CR157 publication-title: Polymers doi: 10.3390/polym13152499 – volume: 28 start-page: 325 year: 2010 ident: 38_CR14 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2010.01.004 – volume: 10 start-page: 2100646 year: 2021 ident: 38_CR104 publication-title: Adv Healthcare Mater doi: 10.1002/adhm.202100646 – volume: 6 start-page: 1722 year: 2005 ident: 38_CR72 publication-title: Biomacromol doi: 10.1021/bm050010y – volume: 4 start-page: 1134 year: 2015 ident: 38_CR39 publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201500002 – volume: 7 start-page: 1800308 year: 2018 ident: 38_CR115 publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201800308 – volume: 16 start-page: 2563 year: 2023 ident: 38_CR168 publication-title: Nano Res doi: 10.1007/s12274-022-4987-x – volume: 245 start-page: 116465 year: 2020 ident: 38_CR131 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.116465 – volume: 48 start-page: 101745 year: 2023 ident: 38_CR167 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101745 – volume: 8 start-page: 2201723 year: 2023 ident: 38_CR36 publication-title: Adv Mater Technol doi: 10.1002/admt.202201723 – volume: 6 start-page: 3934 year: 2018 ident: 38_CR77 publication-title: J Mater Chem B doi: 10.1039/C8TB00535D – volume: 61 start-page: 988 year: 2009 ident: 38_CR28 publication-title: Adv Drug Delivery Rev doi: 10.1016/j.addr.2009.07.005 – volume: 36 start-page: 2308748 year: 2024 ident: 38_CR22 publication-title: Adv Mater doi: 10.1002/adma.202308748 – volume: 33 start-page: 203 year: 2003 ident: 38_CR69 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2003.08.004 – volume: 246 start-page: 213 year: 2012 ident: 38_CR35 publication-title: Biomedical applications of polymeric nanofibers doi: 10.1007/12_2011_143 – volume: 5 start-page: 142 year: 2022 ident: 38_CR3 publication-title: Nat Electron doi: 10.1038/s41928-022-00723-z – volume: 43 start-page: 4423 year: 2014 ident: 38_CR18 publication-title: Chem Soc Rev doi: 10.1039/C3CS60426H – volume: 63 start-page: 1 year: 2017 ident: 38_CR47 publication-title: Acta Biomater doi: 10.1016/j.actbio.2017.09.027 – volume: 481 start-page: 148722 year: 2024 ident: 38_CR172 publication-title: Chem Eng J doi: 10.1016/j.cej.2024.148722 – volume: 139 start-page: 156 year: 2016 ident: 38_CR64 publication-title: Colloid Surface B doi: 10.1016/j.colsurfb.2015.12.001 – volume: 56 start-page: 101498 year: 2020 ident: 38_CR143 publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2020.101498 – volume: 30 start-page: 3058 year: 2009 ident: 38_CR60 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.054 – volume: 79 start-page: 103994 year: 2023 ident: 38_CR84 publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2022.103994 – volume: 57 start-page: 3842 year: 2022 ident: 38_CR76 publication-title: J Mater Sci doi: 10.1007/s10853-022-06873-x – volume: 4 start-page: 488 year: 2003 ident: 38_CR70 publication-title: Biomacromol doi: 10.1021/bm0255948 – volume: 3 start-page: 18016 year: 2018 ident: 38_CR66 publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2018.16 – volume: 5 start-page: 4396 year: 2022 ident: 38_CR29 publication-title: Matter doi: 10.1016/j.matt.2022.08.028 – volume: 14 start-page: 3875 year: 2022 ident: 38_CR108 publication-title: Polymers doi: 10.3390/polym14183875 – volume: 23 start-page: 2200380 year: 2023 ident: 38_CR80 publication-title: Macromol Biosci doi: 10.1002/mabi.202200380 – volume: 50 start-page: 41 year: 2017 ident: 38_CR111 publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.12.034 – volume: 10 start-page: 7873 year: 2022 ident: 38_CR150 publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.2c00189 – volume: 9 start-page: 722 year: 2014 ident: 38_CR11 publication-title: Nano Today doi: 10.1016/j.nantod.2014.10.002 – volume: 374 start-page: 437 year: 2019 ident: 38_CR164 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.05.163 – volume: 32 start-page: 991 year: 2007 ident: 38_CR38 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2007.05.013 – volume: 10 start-page: 6078 year: 2022 ident: 38_CR9 publication-title: J Mater Chem B doi: 10.1039/D2TB01182D – volume: 34 start-page: 2313539 year: 2024 ident: 38_CR97 publication-title: Adv Funct Mater doi: 10.1002/adfm.202313539 – volume: 30 start-page: 2222 year: 2022 ident: 38_CR40 publication-title: J Polym Environ doi: 10.1007/s10924-022-02381-w – volume: 32 start-page: 3784 year: 2011 ident: 38_CR129 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.02.002 – volume: 8 start-page: 16 year: 2023 ident: 38_CR110 publication-title: Biomimetics doi: 10.3390/biomimetics8010016 – volume: 301 start-page: 48 year: 2016 ident: 38_CR78 publication-title: Macromol Mater Eng doi: 10.1002/mame.201500217 – ident: 38_CR117 doi: 10.1016/j.msec.2021.112235 – volume: 2 start-page: 952 year: 2019 ident: 38_CR116 publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.8b00637 – volume: 119 start-page: 5298 year: 2019 ident: 38_CR32 publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00593 – volume: 39 start-page: 251 year: 2014 ident: 38_CR99 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2013.09.002 – volume: 105 start-page: 2892 year: 2017 ident: 38_CR109 publication-title: J Biomed Mate Res Part A doi: 10.1002/jbm.a.36124 – volume: 9 start-page: 5514 year: 2021 ident: 38_CR94 publication-title: J Mater Chem B doi: 10.1039/D1TB00944C – volume: 106 start-page: 1092 year: 2018 ident: 38_CR138 publication-title: J Biomed Mate Res Part A doi: 10.1002/jbm.a.36303 – volume: 2 start-page: 206 year: 2013 ident: 38_CR119 publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201200192 – volume: 111 start-page: 110776 year: 2020 ident: 38_CR123 publication-title: Mat Sci Eng C-mater doi: 10.1016/j.msec.2020.110776 – volume: 103 start-page: 33 year: 2016 ident: 38_CR125 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.049 – volume: 49 start-page: 4405 year: 2020 ident: 38_CR175 publication-title: Chem Soc Rev doi: 10.1039/c9cs00587k – volume: 126 start-page: 14350 year: 2004 ident: 38_CR73 publication-title: J Am Chem Soc doi: 10.1021/ja046079f – ident: 38_CR149 doi: 10.1016/j.mtphys.2024.101334 – ident: 38_CR24 doi: 10.1002/adfm.201909616 – volume: 36 start-page: 907 year: 2018 ident: 38_CR49 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2018.04.004 – volume: 44 start-page: 790 year: 2015 ident: 38_CR25 publication-title: Chem Soc Rev doi: 10.1039/C4CS00226A – volume: 11 start-page: 2000845 year: 2021 ident: 38_CR37 publication-title: Adv Energy Mater doi: 10.1002/aenm.202000845 – volume: 48 start-page: 152 year: 2018 ident: 38_CR106 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.033 – volume: 4 start-page: 211 year: 2018 ident: 38_CR139 publication-title: Int J Polym Mater Po doi: 10.1080/00914037.2018.1552865 – volume: 1 start-page: 1700079 year: 2017 ident: 38_CR160 publication-title: Adv Sustainable Syst doi: 10.1002/adsu.201700079 – volume: 121 start-page: 11194 year: 2021 ident: 38_CR19 publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00816 – volume: 5 start-page: 157 year: 2023 ident: 38_CR7 publication-title: Nat Rev Phys doi: 10.1038/s42254-023-00558-3 – volume: 5 start-page: 241 year: 2020 ident: 38_CR27 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.01.010 – volume: 17 start-page: 18308 year: 2023 ident: 38_CR153 publication-title: ACS Nano doi: 10.1021/acsnano.3c05460 – volume: 10 start-page: 2784 year: 2024 ident: 38_CR23 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.4c00254 – volume: 6 start-page: 2100410 year: 2021 ident: 38_CR13 publication-title: Adv Mater Technol doi: 10.1002/admt.202100410 – volume: 14 start-page: 100243 year: 2022 ident: 38_CR96 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100243 – volume: 9 start-page: 2103981 year: 2022 ident: 38_CR21 publication-title: Adv Sci doi: 10.1002/advs.202103981 – volume: 37 start-page: 6856 year: 2004 ident: 38_CR45 publication-title: Macromolecules doi: 10.1021/ma048988v – volume: 7 start-page: 302 year: 2023 ident: 38_CR63 publication-title: Nat Rev Chem doi: 10.1038/s41570-023-00486-x – volume: 6 start-page: eabc2036 year: 2020 ident: 38_CR133 publication-title: Sci Adv. doi: 10.1126/sciadv.abc2036 – volume: 75 year: 2013 ident: 38_CR159 publication-title: Jove-j Vis Exp doi: 10.3791/50492 – volume: 10 start-page: e1509 year: 2018 ident: 38_CR43 publication-title: WIRES Nanomed Nanobio doi: 10.1002/wnan.1509 – volume: 19 start-page: 1737 year: 2021 ident: 38_CR59 publication-title: Environ Chem Lett doi: 10.1007/s10311-020-01147-x – volume: 5 start-page: 2570 year: 2009 ident: 38_CR90 publication-title: Acta Biomater doi: 10.1016/j.actbio.2008.12.013 – volume: 7 start-page: 56550 year: 2017 ident: 38_CR137 publication-title: Rsc Adv doi: 10.1039/C7RA12394A – volume: 13 start-page: 25729 year: 2023 ident: 38_CR155 publication-title: Rsc Adv doi: 10.1039/d3ra04621d – volume: 49 start-page: 223 year: 2011 ident: 38_CR135 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2011.04.018 – volume: 10 start-page: 1 year: 2012 ident: 38_CR144 publication-title: J Transl Med. doi: 10.1186/1479-5876-10-117 – volume: 123 start-page: 5049 year: 2023 ident: 38_CR102 publication-title: Chem Rev doi: 10.1021/acs.chemrev.2c00823 – volume: 25 start-page: 5540 year: 2020 ident: 38_CR156 publication-title: Molecules doi: 10.3390/molecules25235540 – volume: 231 start-page: 112006 year: 2023 ident: 38_CR169 publication-title: Mater Design doi: 10.1016/j.matdes.2023.112006 – volume: 33 start-page: 998 year: 2008 ident: 38_CR41 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2008.08.002 – volume: 10 start-page: 833157 year: 2022 ident: 38_CR132 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.833157 – volume: 50 start-page: 5435 year: 2021 ident: 38_CR8 publication-title: Chem Soc Rev doi: 10.1039/D0CS00258E – volume: 5 start-page: 510 year: 2020 ident: 38_CR57 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.04.005 – volume: 14 start-page: 45707 year: 2022 ident: 38_CR170 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c13727 – volume: 4 start-page: 557 year: 2024 ident: 38_CR33 publication-title: Nat Rev Methods Primers doi: 10.1038/s43586-023-00278-z – volume: 12 start-page: 431 year: 2011 ident: 38_CR166 publication-title: Fiber Polym doi: 10.1007/s12221-011-0431-7 – volume: 34 start-page: 2208236 year: 2022 ident: 38_CR171 publication-title: Adv Mater doi: 10.1002/adma.202208236 – volume: 593 start-page: 142 year: 2021 ident: 38_CR142 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.02.099 – volume: 29 start-page: 2217 year: 2008 ident: 38_CR91 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.01.022 – volume: 33 start-page: 2300794 year: 2023 ident: 38_CR173 publication-title: Adv Funct Mater doi: 10.1002/adfm.202300794 – volume: 321 start-page: 324 year: 2020 ident: 38_CR44 publication-title: J Control Release doi: 10.1016/j.jconrel.2020.02.022 – volume: 8 start-page: 8181 year: 2018 ident: 38_CR158 publication-title: Rsc Adv doi: 10.1039/C7RA12879G – volume: 6 start-page: 1612 year: 2011 ident: 38_CR65 publication-title: Nat Protoc doi: 10.1038/nprot.2011.379 – volume: 93 start-page: 976 year: 2010 ident: 38_CR126 publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.32497 – volume: 8 start-page: 1800465 year: 2019 ident: 38_CR42 publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201800465 – volume: 18 start-page: 7085 year: 2018 ident: 38_CR50 publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b03085 – volume: 16 start-page: 1151 year: 2004 ident: 38_CR58 publication-title: Adv Mater doi: 10.1002/adma.200400719 – volume: 426 start-page: 131947 year: 2021 ident: 38_CR146 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131947 – volume: 122 start-page: 3259 year: 2022 ident: 38_CR1 publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00502 – volume: 81 start-page: 1402 year: 2023 ident: 38_CR103 publication-title: Acta Chim Sin doi: 10.6023/a23060289 – volume: 9 start-page: 2590 year: 2016 ident: 38_CR163 publication-title: Nano Res doi: 10.1007/s12274-016-1145-3 – volume: 174 start-page: 2403 year: 2014 ident: 38_CR100 publication-title: Biotechnol Appl Biochem doi: 10.1007/s12010-014-1151-4 – volume: 45 start-page: 504 year: 2009 ident: 38_CR128 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2009.09.006 – volume: 10 start-page: 246 year: 2010 ident: 38_CR98 publication-title: Macromol Biosci doi: 10.1002/mabi.200900274 – volume: 192 start-page: 105 year: 1976 ident: 38_CR6 publication-title: Science doi: 10.1126/science.769161 – volume: 111 start-page: 17385 year: 2014 ident: 38_CR178 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1407743111 – ident: 38_CR118 doi: 10.1016/j.msec.2016.06.019 – volume: 38 start-page: 963 year: 2013 ident: 38_CR26 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2013.02.001 – volume: 8 start-page: 9598 year: 2018 ident: 38_CR162 publication-title: Sci Rep doi: 10.1038/s41598-018-27917-w – volume: 28 start-page: 580 year: 2010 ident: 38_CR5 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2010.07.006 – volume: 33 start-page: e2102500 year: 2021 ident: 38_CR54 publication-title: Adv Mater doi: 10.1002/adma.202102500 – volume: 190 start-page: 381 year: 2014 ident: 38_CR121 publication-title: J Control Release doi: 10.1016/j.jconrel.2014.05.059 – volume: 24 start-page: 4462 year: 2024 ident: 38_CR154 publication-title: Nano Lett doi: 10.1021/acs.nanolett.4c00308 – volume: 337 start-page: 1640 year: 2012 ident: 38_CR177 publication-title: Science doi: 10.1126/science.1226325 – volume: 35 start-page: 6 year: 2002 ident: 38_CR71 publication-title: Macromolecules doi: 10.1021/ma011335j |
SSID | ssj0003212238 |
Score | 2.2947974 |
SecondaryResourceType | review_article |
Snippet | Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Biomaterials Biomechanics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Computational Biology/Bioinformatics Regenerative Medicine/Tissue Engineering Review |
Title | Electrospun silk for biomedical applications |
URI | https://link.springer.com/article/10.1007/s44258-024-00038-y |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovHgRRcX5RQ_eXGBp89EcpWwMD54c7FaSNAFx1GG3Q_97kzQtDmTgJaeXQn4vfb8X3hfAU8WziikiUGqkRCTXGuVWWoSFJv7RzKUK2RZvbLEkryu6ikVhTZ_t3ockg6Ueit2Iu145cpyCQjwLtcdwQt3b3d_rItY4ePubOWvsiChWyPy9dZ-F9kOggVnm53AWXcLkpdPhBRyZ-hIms24-TbPZ1Unzsf5MnHeZdMXyHtfkd-T5Cpbz2XuxQHGyAdIpTVtkjcaWSlYJ4yjYSFr5TmBWpNjgaSU551RgI3EmieE6cz4LVb6T3dQonltrs2sY1V-1uYGEcS6NVO4TMiWZpMIqwSpqc8GIVkqNAfcnLXVs--2nT6zLoWFxQKd06JQBnbIdw_OwZ9M1vTgoPekBLOMP0BwQv_2f-B2cpl5xPvMuv4fR9ntnHpwfsFWPQe1-ZcUP01Csdg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20HvQiior1cw_ebLDZzcfmKKWlau2phd5Ckk1ALGvptof-e5PdbbEiBe-TwL4M-yaZmTcADxlPMqaJQLFVCpHUGJQ65RAWhoRLM1e6rLYYsv6YvE7opJbJCb0wv_L3TwXxTpUizySozGKh1T4cEH9TDuV7HdbZvKck_h_s6afui_l76Tb3bCc-Sz7pncBxHQhGz9XJncKezc-g1a2m0hSzZR4VH9PPyMeUUdUiH9CMfuabz2Hc6446fVTPM0AmpvEKOWuwo4plwnritYpmQf_LiRhb3M4U55wKbBVOFLHcJD5SoTro17Wt5qlzLrmARv6V20uIGOfKKu23UDFJFBVOC5ZRlwpGjNa6CXj9pdLUYt9h5sRUbmSKS3SkR0eW6MhVEx43a2aV1MVO69YaQFm7fbHD_Op_5vdw2B-9D-TgZfh2DUdxOMRQe5feQGMxX9pbHwks9F3pAt-fQKqq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIomJ97sGbDW1289gcpbbUB8WDhd5CniCWbbHtof_eJLtdWpCC90lgJ8l-k8x83wDwYFhmqMIcplZKiHOtYe6kg4hrHC7NTKpYbTGkgxF-HZPxBos_VruvU5IlpyGoNBWL9sy4dk18w36r5dDjC4y5LbjaBwf-phITtV3arV9ZMv9n9qBUsWX-HrqNSNvp0Igy_RNwXIWHyVO5nqdgzxZnoNUre9XMZ8simX9NvhMfaSYlcT74ONnMQp-DUb_32R3AqssB1ClJV9BZjRyR1HDr4dhKYoIqmOMpsqhjJGOMcGQlyiS2TGc-fiEqqNp1rGK5cy67AI1iWthLkFDGpJXKTyFTnEnCneLUEJdzirVSqgnQ-kuFriTAQyeKiajFi6N3hPeOiN4RqyZ4rMfMSgGMndattQNFdRjmO8yv_md-Dw4_nvvi_WX4dg2O0rCGoSAvvwGNxc_S3vrwYKHu4g74BalKsvE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+silk+for+biomedical+applications&rft.jtitle=Med-X&rft.au=Dai%2C+Shufen&rft.au=Liang%2C+Huarun&rft.au=Zhu%2C+Mengjia&rft.au=Zhang%2C+Yingying&rft.date=2024-11-18&rft.issn=2731-8710&rft.eissn=2731-8710&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1007%2Fs44258-024-00038-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44258_024_00038_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-8710&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-8710&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-8710&client=summon |