Electrospun silk for biomedical applications

Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, an...

Full description

Saved in:
Bibliographic Details
Published inMed-X Vol. 2; no. 1
Main Authors Dai, Shufen, Liang, Huarun, Zhu, Mengjia, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 18.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, and superior mechanical properties. The conversion of silk into nanofibers via electrospinning allows for the fine-tuning of its properties, thereby enhancing its suitability for a variety of biomedical applications. Electrospun silk not only inherits the natural advantages of silk but also acquires optimized characteristics such as increased surface area, high porosity, and good air permeability. This review article begins by summarizing the latest advances in the rational design and controlled fabrication of electrospun silk. Then, the biomedical applications of electrospun silk in three main areas: health monitoring, regenerative medicine, and personal protection, are reviewed. Lastly, the existing challenges and future perspectives of electrospun silk are discussed. This review aims to highlight the cutting-edge role of electrospun silk in biomedical applications, potentially revolutionizing traditional healthcare into a personalized model. Graphical Abstract Highlights • Rational design, controlled fabrication, and advantages of electrospun silk are discussed. • Biomedical applications, including health monitoring, regenerative medicine, and personal protection are systematically summarized. • Electrospun silk paves a compelling road to biomedical applications for personalized healthcare.
AbstractList Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, and superior mechanical properties. The conversion of silk into nanofibers via electrospinning allows for the fine-tuning of its properties, thereby enhancing its suitability for a variety of biomedical applications. Electrospun silk not only inherits the natural advantages of silk but also acquires optimized characteristics such as increased surface area, high porosity, and good air permeability. This review article begins by summarizing the latest advances in the rational design and controlled fabrication of electrospun silk. Then, the biomedical applications of electrospun silk in three main areas: health monitoring, regenerative medicine, and personal protection, are reviewed. Lastly, the existing challenges and future perspectives of electrospun silk are discussed. This review aims to highlight the cutting-edge role of electrospun silk in biomedical applications, potentially revolutionizing traditional healthcare into a personalized model. Graphical Abstract
Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an important tool in the biomedical field. Silk, as a well-known natural biopolymer, features good biocompatibility, customizable biodegradability, and superior mechanical properties. The conversion of silk into nanofibers via electrospinning allows for the fine-tuning of its properties, thereby enhancing its suitability for a variety of biomedical applications. Electrospun silk not only inherits the natural advantages of silk but also acquires optimized characteristics such as increased surface area, high porosity, and good air permeability. This review article begins by summarizing the latest advances in the rational design and controlled fabrication of electrospun silk. Then, the biomedical applications of electrospun silk in three main areas: health monitoring, regenerative medicine, and personal protection, are reviewed. Lastly, the existing challenges and future perspectives of electrospun silk are discussed. This review aims to highlight the cutting-edge role of electrospun silk in biomedical applications, potentially revolutionizing traditional healthcare into a personalized model. Graphical Abstract Highlights • Rational design, controlled fabrication, and advantages of electrospun silk are discussed. • Biomedical applications, including health monitoring, regenerative medicine, and personal protection are systematically summarized. • Electrospun silk paves a compelling road to biomedical applications for personalized healthcare.
ArticleNumber 22
Author Liang, Huarun
Zhu, Mengjia
Zhang, Yingying
Dai, Shufen
Author_xml – sequence: 1
  givenname: Shufen
  surname: Dai
  fullname: Dai, Shufen
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University
– sequence: 2
  givenname: Huarun
  surname: Liang
  fullname: Liang, Huarun
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University
– sequence: 3
  givenname: Mengjia
  surname: Zhu
  fullname: Zhu, Mengjia
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University
– sequence: 4
  givenname: Yingying
  orcidid: 0000-0002-8448-3059
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@mail.tsinghua.edu.cn
  organization: Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University
BookMark eNp9j7FOwzAQhi1UJErpCzDlATCc7Th2RlQVilSJBWbLcc7IJU0iOx3y9qQtA2LodP9w393_3ZJZ27VIyD2DRwagnlKec6kp8JwCgNB0vCJzrgSjWjGY_ck3ZJnS7rjEGedCz8nDukE3xC71hzZLofnOfBezKnR7rIOzTWb7vpnCELo23ZFrb5uEy9-5IJ8v64_Vhm7fX99Wz1vquOQj9eiYl7aoSwTN0cqaS1n4kjNkUFullCwZWiZsjsqJIs9lBaoUgJXS3nuxIPx8103FUkRv-hj2No6GgTkqm7OymZTNSdmME6T_QS4Mp95DtKG5jIozmqY_7RdGs-sOsZ0UL1E_G25tvw
CitedBy_id crossref_primary_10_3390_ma18051052
crossref_primary_10_1016_j_bmt_2024_100068
Cites_doi 10.1016/j.progpolymsci.2013.09.002
10.1038/s44286-024-00050-4
10.1080/00914037.2018.1552865
10.1016/j.actbio.2018.04.025
10.1016/j.jddst.2020.101498
10.1021/acs.nanolett.4c00308
10.1007/12_2011_143
10.1002/adhm.201200192
10.1038/s41427-020-0221-z
10.1002/adem.202100153
10.1002/adma.202005910
10.1007/s12010-014-1151-4
10.1016/j.eurpolymj.2014.08.030
10.1016/j.ijbiomac.2003.08.004
10.3390/polym13132087
10.1016/j.mtbio.2022.100243
10.3791/50492
10.1002/jbm.a.32497
10.1039/C4CS00226A
10.1016/j.jconrel.2020.02.022
10.1016/j.carbpol.2020.116465
10.1016/j.msec.2016.05.081
10.1002/smtd.202201340
10.1038/s41563-021-01093-1
10.1016/j.matdes.2023.112006
10.1039/D0CS00258E
10.1002/adma.202102500
10.1016/j.msec.2020.110776
10.1016/j.cej.2023.143127
10.1038/s43586-023-00278-z
10.1038/s41563-024-01802-6
10.1186/s13036-020-00249-y
10.1002/adma.202208236
10.3390/biomimetics7040149
10.1016/j.actbio.2008.12.013
10.1016/j.bioactmat.2016.07.001
10.1016/j.addr.2007.04.021
10.1038/s41570-023-00486-x
10.1016/j.biomaterials.2016.06.049
10.1016/j.nanoen.2018.03.033
10.1016/j.jconrel.2014.05.059
10.1039/C7RA12879G
10.1039/c9cs00587k
10.6023/a23060289
10.1016/j.nantod.2022.101745
10.1002/advs.202103981
10.1002/adma.202203193
10.1038/s41928-022-00723-z
10.1002/mabi.200900274
10.1016/j.actbio.2016.12.034
10.1021/acsbiomaterials.0c00060
10.1016/j.nantod.2014.10.002
10.1016/j.biomaterials.2011.02.002
10.1126/science.769161
10.1002/adfm.202300794
10.3389/fbioe.2022.833157
10.1039/C7RA12394A
10.1021/acs.nanolett.8b03085
10.1039/C3CS60426H
10.1007/s12274-022-4987-x
10.1016/j.ijbiomac.2023.126863
10.1002/adma.202308748
10.1016/j.biotechadv.2017.10.001
10.1016/j.ijbiomac.2009.09.006
10.1016/j.ijbiomac.2011.04.018
10.1016/j.tibtech.2010.07.006
10.1016/j.cej.2024.148722
10.1002/mabi.202200380
10.1016/j.polymer.2006.07.009
10.1016/j.cej.2019.05.163
10.1021/acs.chemrev.2c00823
10.1007/s12221-016-5822-3
10.1007/s10853-022-06873-x
10.1073/pnas.1407743111
10.1016/j.tibtech.2018.04.004
10.1021/acsbiomaterials.4c00254
10.1016/j.progpolymsci.2007.05.013
10.3390/pharmaceutics11040182
10.1002/admt.202200654
10.1016/j.msec.2009.05.012
10.1039/C7TA06924C
10.1002/adhm.201700121
10.1002/adhm.201800465
10.1002/wnan.1509
10.1016/j.bioactmat.2020.01.010
10.1002/advs.201801617
10.1039/C2CS35083A
10.1021/acs.chemrev.0c00816
10.1016/j.progpolymsci.2013.02.001
10.1002/admt.202201723
10.1002/aenm.202000845
10.1080/25740881.2024.2346314
10.1186/1479-5876-10-117
10.1016/j.biomaterials.2009.01.054
10.1016/j.nantod.2022.101723
10.1016/j.biotechadv.2010.01.004
10.1021/bm0255948
10.1016/S0032-3861(00)00250-0
10.1016/j.colsurfb.2015.12.001
10.1007/s12221-011-0431-7
10.1007/s42765-022-00135-w
10.1016/j.biomaterials.2008.01.022
10.1038/s41598-018-27917-w
10.1002/jbm.a.36303
10.1021/acs.chemrev.1c00502
10.1016/j.cej.2023.146245
10.1016/j.pmatsci.2020.100721
10.1002/aenm.202100801
10.1021/bm025581u
10.1016/j.jddst.2022.103994
10.1002/adfm.202200162
10.1021/acs.chemrev.8b00593
10.1039/D2TB01890J
10.1016/j.bioactmat.2020.04.005
10.1016/j.ijbiomac.2016.01.120
10.1038/s41467-024-47665-y
10.1002/adma.200803092
10.1021/acsnano.3c05460
10.1002/adhm.202100646
10.1021/acsami.2c13727
10.1007/s12274-016-1145-3
10.1002/adma.200400719
10.1016/S0142-9612(03)00609-4
10.1002/adhm.201500002
10.1016/j.biomaterials.2006.01.022
10.1021/ma048988v
10.1002/adhm.201800308
10.1039/d3ra04621d
10.1016/j.ijbiomac.2017.06.019
10.3390/molecules25235540
10.1016/j.polymdegradstab.2010.05.025
10.1016/j.jcis.2021.02.099
10.1007/s10924-022-02381-w
10.3390/biomimetics8010016
10.1038/s41598-024-54638-0
10.1002/pi.4499
10.1002/adsu.201700079
10.1126/sciadv.abc2036
10.1021/ja046079f
10.1016/j.ijbiomac.2010.07.010
10.1016/S1369-7021(10)70199-1
10.1016/j.progpolymsci.2008.08.002
10.1016/j.mtbio.2022.100381
10.1016/j.jconrel.2010.11.007
10.1007/s10311-020-01147-x
10.1038/natrevmats.2018.16
10.3390/ma9040221
10.1002/jbm.a.36124
10.1039/D3TC03769J
10.1038/s42254-023-00558-3
10.1021/ma011335j
10.1021/acssuschemeng.2c00189
10.1039/D2TB01182D
10.1515/rams-2022-0333
10.1016/j.device.2024.100323
10.1002/adma.201704636
10.1016/j.biomaterials.2003.08.045
10.1016/j.addr.2009.07.005
10.1038/nprot.2011.379
10.1016/j.matt.2022.08.028
10.3390/polym13152499
10.1021/acsami.3c16602
10.1002/mame.201500217
10.1016/j.ijbiomac.2023.127641
10.1126/science.1226325
10.1021/acs.chemrev.0c01200
10.1002/admt.202100410
10.3390/polym14183875
10.1016/j.cej.2023.145534
10.1021/acsabm.8b00637
10.1016/j.cej.2021.131947
10.1021/bm201719s
10.1093/rb/rbu017
10.1002/adfm.202313539
10.1039/C8TB00535D
10.1021/bm050010y
10.1016/j.actbio.2017.09.027
10.1039/D1TB00944C
10.1016/j.msec.2021.112235
10.1016/j.mtphys.2024.101334
10.1002/adfm.201909616
10.1016/j.msec.2016.06.019
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
DOI 10.1007/s44258-024-00038-y
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2731-8710
ExternalDocumentID 10_1007_s44258_024_00038_y
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: No. 52403328
– fundername: the National Natural Science Foundation of China
  grantid: 52125201
– fundername: National Postdoctoral Program for Innovative Talents
  grantid: GZC20231247
  funderid: http://dx.doi.org/10.13039/501100012152
– fundername: the Beijing Municipal Office of Philosophy and Social Science Planning
  grantid: Z221100002722015
GroupedDBID 0R~
AAKKN
ABDBF
ABEEZ
ACACY
ACULB
AFGXO
ALMA_UNASSIGNED_HOLDINGS
C24
C6C
RSV
AAYXX
CITATION
ID FETCH-LOGICAL-c252y-fec1f5a6d9e082ea5d2556f921e10da777591ea13a4e7c36445b07930eb78fff3
IEDL.DBID C24
ISSN 2731-8710
IngestDate Tue Jul 01 01:48:58 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Health monitoring
Biomedical applications
Regenerative medicine
Electrospun silk
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c252y-fec1f5a6d9e082ea5d2556f921e10da777591ea13a4e7c36445b07930eb78fff3
ORCID 0000-0002-8448-3059
OpenAccessLink https://link.springer.com/10.1007/s44258-024-00038-y
ParticipantIDs crossref_primary_10_1007_s44258_024_00038_y
crossref_citationtrail_10_1007_s44258_024_00038_y
springer_journals_10_1007_s44258_024_00038_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241118
PublicationDateYYYYMMDD 2024-11-18
PublicationDate_xml – month: 11
  year: 2024
  text: 20241118
  day: 18
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Med-X
PublicationTitleAbbrev Med-X
PublicationYear 2024
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References Hajiabbas, Alemzadeh, Vossoughi (CR131) 2020; 245
Biswal, Dan, Sengupta (CR40) 2022; 30
Zhang, Reagan, Kaplan (CR28) 2009; 61
Xu, Zhang, Zhao (CR154) 2024; 24
Phillips, Drummy, Conrady (CR73) 2004; 126
Ji, Lin, Guo (CR33) 2024; 4
Farokhi, Mottaghitalab, Fatahi (CR49) 2018; 36
Xing, He, Huang (CR174) 2023; 474
Lin, Chen, Jiang (CR64) 2016; 139
Aslam, Zhou, Urbach (CR7) 2023; 5
Lu, Zhang, Zhu (CR68) 2024; 15
Zhang, Mo, Huang (CR126) 2010; 93
Panda, Biswas, Sukla (CR100) 2014; 174
Vasudevan, Tripathi, Sundarrajan (CR113) 2022; 7
Chaloupka, Malam, Seifalian (CR5) 2010; 28
Liang, Zhu, Li (CR105) 2022; 32
Wang, Song, Cui (CR142) 2021; 593
Jang, Kim, Park (CR123) 2020; 111
Sahoo, Hasturk, Falcucci (CR63) 2023; 7
Yao, Zou, Fan (CR112) 2022; 16
Zhang, Yu (CR170) 2022; 14
Keirouz, Wang, Reddy (CR36) 2023; 8
Mehraz, Nouri, Namazi (CR139) 2018; 4
Zhou, Cao, Ma (CR130) 2010; 95
Zhou, Zhao, Xu (CR4) 2021; 20
Um, Kweon, Lee (CR69) 2003; 33
Wu, Wang, Dong (CR150) 2022; 10
Zhang, Li, Xu (CR151) 2024; 12
Rajasekaran, Kumar Ojha, Sundeep Seesala (CR56) 2023; 475
Puerta, Peresin, Restrepo-Osorio (CR76) 2022; 57
Yao, Masuda, Zhao (CR71) 2002; 35
Zhu, Wang, Li (CR104) 2021; 10
Kundu, Dash, Dash (CR41) 2008; 33
Farokhi, Mottaghitalab, Reis (CR44) 2020; 321
Magaz, Faroni, Gough (CR115) 2018; 7
Li, Zhou, Dai (CR165) 2018; 6
Min, Lee, Kim (CR62) 2004; 25
Min, Kim, Kim (CR162) 2018; 8
Memic, Abdullah, Mohammed (CR116) 2019; 2
Lu, Liu, Sun (CR22) 2024; 36
Khalid, Bai, Abraham (CR55) 2020; 12
Zhang, Li, Dai (CR144) 2012; 10
Bhardwaj, Kundu (CR14) 2010; 28
Pignatelli, Perotto, Nardini (CR92) 2018; 73
Xie, Fan, Chen (CR125) 2016; 103
Forouzideh, Nadri, Fattahi (CR143) 2020; 56
Jin, Chen, Karageorgiou (CR61) 2004; 25
Iqbal, Shi, Kumar (CR168) 2023; 16
Yi, Zhang, Yu (CR77) 2018; 6
Zhang, Zheng, Chen (CR103) 2023; 81
Safdari, Shakiba, Kiaie (CR141) 2016; 17
Chen, Li, Li (CR80) 2023; 23
Shao, He, Han (CR124) 2016; 67
Dos Santos, Siqueira, de Morais (CR83) 2024; 254
Wu, Wang, Liang (CR97) 2024; 34
Wang, Wu, Jian (CR163) 2016; 9
Luraghi, Peri, Moroni (CR16) 2021; 334
Comroe, Dripps (CR6) 1976; 192
Yao, Chen, Liu (CR171) 2022; 34
Cao, Liu, Ren (CR54) 2021; 33
Xu, Zhang, Li (CR172) 2024; 481
Zhao, Zhou, Song (CR2) 2024; 23
Li, Xia (CR58) 2004; 16
Kirillova, Yeazel, Asheghali (CR20) 2021; 121
Yin, Jian, Wang (CR50) 2018; 18
Gil, Panilaitis, Bellas (CR119) 2013; 2
Gao, Gou, Zhang (CR158) 2018; 8
Holland, Numata, Rnjak-Kovacina (CR42) 2019; 8
Biagiotti, Bassani, Chiarini (CR132) 2022; 10
Peng, Jiang, Seuß (CR78) 2016; 301
Singh, Panda, Pramanik (CR74) 2016; 87
Ha, Park, Hudson (CR70) 2003; 4
Wang, Jin, Kaplan (CR45) 2004; 37
Li, Zhu, Chen (CR137) 2017; 7
Li, Hang, Ding (CR79) 2020; 6
Yang, Wang, Xiong (CR95) 2024; 14
Gu, Xu, Wang (CR153) 2023; 17
Zarei, Lee, Lee (CR182) 2023; 35
Vepari, Kaplan (CR38) 2007; 32
Zhou, Cao, Ma (CR128) 2009; 45
Ling, Kaplan, Buehler (CR66) 2018; 3
Ha, Tonelli, Hudson (CR72) 2005; 6
CR149
Li, Chen, Qian (CR37) 2021; 11
Li, Vepari, Jin (CR93) 2006; 27
Gore, Naebe, Wang (CR164) 2019; 374
Si, Shi, Hu (CR148) 2023; 48
Elakkiya, Malarvizhi, Rajiv (CR136) 2014; 63
Sabarees, Tamilarasi, Velmurugan (CR84) 2023; 79
Zhang, Peng, Li (CR81) 2023; 253
Guo, Zhang, Wang (CR106) 2018; 48
Sridhar, Lakshminarayanan, Madhaiyan (CR25) 2015; 44
Xue, Wu, Dai (CR32) 2019; 119
Shi, Zheng, Zhou (CR180) 2019; 6
Yucel, Lovett, Kaplan (CR121) 2014; 190
Humenik, Lang, Scheibel (CR43) 2018; 10
Karatepe, Ozdemir (CR57) 2020; 5
Agarwal, Wendorff, Greiner (CR86) 2009; 21
He, Zhang, Wu (CR147) 2023; 466
Solanas, Herrero, Dasari (CR101) 2014; 60
Fathi, Khanmohammadi, Goodarzi (CR120) 2020; 14
Libanori, Chen, Zhao (CR3) 2022; 5
Zou, Fan, Oliveira (CR30) 2022; 4
Tsai, Chang, Chen (CR167) 2023; 48
Wharram, Zhang, Kaplan (CR98) 2010; 10
Li, Zhu, Cheng (CR13) 2021; 6
Aigner, DeSimone, Scheibel (CR87) 2018; 30
Zhang, Qi, Wang (CR46) 2024; 1
Zhou, Cao, Ma (CR89) 2010; 47
Dadras Chomachayi, Solouk, Akbari (CR138) 2018; 106
Farokhi, Mottaghitalab, Samani (CR48) 2018; 36
Rahmati, Mills, Urbanska (CR31) 2021; 117
Gholipourmalekabadi, Sapru, Samadikuchaksaraei (CR82) 2020; 153
Zou, Wang, Fan (CR94) 2021; 9
CR117
Shabbirahmed, Sekar, Gomez (CR110) 2023; 8
CR118
Opálková Šišková, Mosnáčková, Hrůza (CR157) 2021; 13
Lu, Wang, Liu (CR23) 2024; 10
Shi, Hu, Wu (CR88) 2021; 33
Kopp, Smeets, Gosau (CR27) 2020; 5
Meinel, Kubow, Klotzsch (CR60) 2009; 30
Zhou, He, Cui (CR166) 2011; 12
Li, Li, Chen (CR39) 2015; 4
Kundu, Kurland, Bano (CR99) 2014; 39
Zhang, Yu (CR18) 2014; 43
Wanwong, Sangkhun, Jiamboonsri (CR155) 2023; 13
Liu, Li, Zhou (CR129) 2011; 32
Qian, Xin, Xiao (CR179) 2020; 12
Zhang, Baughman, Kaplan (CR91) 2008; 29
Li, Li, Qian (CR135) 2011; 49
Dang, Shan, Tian (CR161) 2024; 2
Kishan, Cosgriff-Hernandez (CR109) 2017; 105
Wang, Li, Lu (CR176) 2023; 7
Zhu, Huang, Zhang (CR75) 2016; 9
Agarwal, Greiner, Wendorff (CR26) 2013; 38
Liu, Li, Zhang (CR96) 2022; 14
Chen, Chuanbao, Xilan (CR51) 2006; 47
Zhao, Zhang, Gao (CR9) 2022; 10
Jin, Fridrikh, Rutledge (CR53) 2002; 3
Rockwood, Preda, Yucel (CR65) 2011; 6
Wenk, Merkle, Meinel (CR140) 2011; 150
Belbéoch, Lejeune, Vroman (CR59) 2021; 19
Bhattacharjee, Kundu, Naskar (CR47) 2017; 63
Kim, Kim, Lee (CR67) 2017; 104
Schneider, Wang, Kaplan (CR90) 2009; 5
Luo, Stoyanov, Stride (CR10) 2012; 41
Liu, Wang, Zhang (CR108) 2022; 14
Kennedy, Bhaw-Luximon, Jhurry (CR111) 2017; 50
Zhang, Zuo, Fan (CR127) 2012; 13
Wang, Fan, Li (CR29) 2022; 5
Shao, Ying, Ping (CR175) 2020; 49
Deitzel, Kleinmeyer, Harris (CR85) 2001; 42
Xu, Shi, Tang (CR133) 2020; 6
Jokisch, Neuenfeldt, Scheibel (CR160) 2017; 1
Feng, Jupei, Dong (CR122) 2023; 62
Xia, Kong, Li (CR152) 2024; 16
Cao, Chen, Huang (CR52) 2009; 29
Tao, Hwang, Marelli (CR178) 2014; 111
Taskin, Ahmad, Wistlich (CR19) 2021; 121
Min, Tu, Xu (CR102) 2023; 123
Liang, Hsiao, Chu (CR12) 2007; 59
Wang, Cui, Feng (CR146) 2021; 426
Sarkar, Gomez, Zambrano (CR15) 2010; 13
Wu, Ma, Liu (CR21) 2022; 9
Rashid, Gorga, Krause (CR34) 2021; 23
Fan, Zhang, Long (CR173) 2023; 33
Ye, Kuang, You (CR145) 2019; 11
Pakdel, Wang (CR169) 2023; 231
CR24
Yin, Lu, Gan (CR181) 2023; 8
Fadil, Affandi, Misnon (CR17) 2021; 13
Chen, Xiao, Zhao (CR1) 2022; 122
Müller, Zainuddin, Scheibel (CR156) 2020; 25
Wade, Burdick (CR11) 2014; 9
Hwang, Tao, Kim (CR177) 2012; 337
Supaphol, Suwantong, Sangsanoh (CR35) 2012; 246
Tian, Prabhakaran, Ramakrishna (CR134) 2015; 2
Lv, Cheng (CR8) 2021; 50
Wu, Hong (CR114) 2016; 1
Lang, Jokisch, Scheibel (CR159) 2013; 75
Gogurla, Kim (CR107) 2021; 11
DM Phillips (38_CR73) 2004; 126
C Pignatelli (38_CR92) 2018; 73
T Yucel (38_CR121) 2014; 190
J Zhou (38_CR130) 2010; 95
RJ Wade (38_CR11) 2014; 9
K Zhang (38_CR126) 2010; 93
C Qian (38_CR179) 2020; 12
Y Zhou (38_CR4) 2021; 20
S Lin (38_CR64) 2016; 139
Y Xu (38_CR154) 2024; 24
KM Kennedy (38_CR111) 2017; 50
M Zarei (38_CR182) 2023; 35
G Chen (38_CR1) 2022; 122
A Keirouz (38_CR36) 2023; 8
K Chen (38_CR80) 2023; 23
AP Kishan (38_CR109) 2017; 105
R Rajasekaran (38_CR56) 2023; 475
G Lang (38_CR159) 2013; 75
X Gao (38_CR158) 2018; 8
M Gholipourmalekabadi (38_CR82) 2020; 153
J Wang (38_CR29) 2022; 5
SR Jang (38_CR123) 2020; 111
Y Li (38_CR13) 2021; 6
C-L Zhang (38_CR18) 2014; 43
C Chen (38_CR51) 2006; 47
HJ Kim (38_CR67) 2017; 104
B Yi (38_CR77) 2018; 6
K Ye (38_CR145) 2019; 11
C Wang (38_CR163) 2016; 9
J Yao (38_CR71) 2002; 35
K Sarkar (38_CR15) 2010; 13
DN Rockwood (38_CR65) 2011; 6
S Agarwal (38_CR86) 2009; 21
H Li (38_CR137) 2017; 7
L Cao (38_CR54) 2021; 33
X Liang (38_CR105) 2022; 32
B Gu (38_CR153) 2023; 17
HJ Jin (38_CR53) 2002; 3
M Rahmati (38_CR31) 2021; 117
L Yang (38_CR95) 2024; 14
J He (38_CR147) 2023; 466
F Fadil (38_CR17) 2021; 13
K Min (38_CR162) 2018; 8
Y Feng (38_CR122) 2023; 62
PM Gore (38_CR164) 2019; 374
A Libanori (38_CR3) 2022; 5
H Zhang (38_CR144) 2012; 10
J Min (38_CR102) 2023; 123
P Yao (38_CR171) 2022; 34
SC Kundu (38_CR41) 2008; 33
IC Um (38_CR69) 2003; 33
Q Zhang (38_CR46) 2024; 1
M Farokhi (38_CR48) 2018; 36
FV Dos Santos (38_CR83) 2024; 254
S Jokisch (38_CR160) 2017; 1
38_CR24
H Tao (38_CR178) 2014; 111
MI Iqbal (38_CR168) 2023; 16
F Müller (38_CR156) 2020; 25
D Li (38_CR58) 2004; 16
C Dang (38_CR161) 2024; 2
Y Zhang (38_CR170) 2022; 14
H-J Jin (38_CR61) 2004; 25
C Belbéoch (38_CR59) 2021; 19
S-W Hwang (38_CR177) 2012; 337
R Wu (38_CR21) 2022; 9
C Shi (38_CR88) 2021; 33
M Zhu (38_CR104) 2021; 10
T Elakkiya (38_CR136) 2014; 63
L Peng (38_CR78) 2016; 301
E Wenk (38_CR140) 2011; 150
X Zhao (38_CR2) 2024; 23
B Kundu (38_CR99) 2014; 39
38_CR149
N Bhardwaj (38_CR14) 2010; 28
R Sridhar (38_CR25) 2015; 44
M Xie (38_CR125) 2016; 103
Z Wang (38_CR142) 2021; 593
S Li (38_CR79) 2020; 6
M Hajiabbas (38_CR131) 2020; 245
X Li (38_CR37) 2021; 11
G Li (38_CR39) 2015; 4
C Solanas (38_CR101) 2014; 60
E Pakdel (38_CR169) 2023; 231
A Kirillova (38_CR20) 2021; 121
S-W Ha (38_CR72) 2005; 6
N Forouzideh (38_CR143) 2020; 56
A Memic (38_CR116) 2019; 2
H Wang (38_CR176) 2023; 7
N Aslam (38_CR7) 2023; 5
J Wu (38_CR150) 2022; 10
M-T Tsai (38_CR167) 2023; 48
L Tian (38_CR134) 2015; 2
AJ Meinel (38_CR60) 2009; 30
Y Zhang (38_CR103) 2023; 81
M Puerta (38_CR76) 2022; 57
ES Gil (38_CR119) 2013; 2
J Zhu (38_CR75) 2016; 9
C Lu (38_CR23) 2024; 10
M Wang (38_CR45) 2004; 37
A Luraghi (38_CR16) 2021; 334
P Supaphol (38_CR35) 2012; 246
D Liang (38_CR12) 2007; 59
Z Li (38_CR165) 2018; 6
A Kopp (38_CR27) 2020; 5
H Cao (38_CR52) 2009; 29
L Lu (38_CR22) 2024; 36
A Fathi (38_CR120) 2020; 14
JK Sahoo (38_CR63) 2023; 7
A Magaz (38_CR115) 2018; 7
Y Shao (38_CR175) 2020; 49
A Schneider (38_CR90) 2009; 5
A Vasudevan (38_CR113) 2022; 7
S Ling (38_CR66) 2018; 3
X Zhang (38_CR91) 2008; 29
M Farokhi (38_CR44) 2020; 321
Z Liu (38_CR108) 2022; 14
F Zhang (38_CR127) 2012; 13
CJ Luo (38_CR10) 2012; 41
UY Karatepe (38_CR57) 2020; 5
SE Wharram (38_CR98) 2010; 10
Y Zhang (38_CR81) 2023; 253
Z Yin (38_CR181) 2023; 8
T Zhao (38_CR9) 2022; 10
J Zhou (38_CR89) 2010; 47
K Chaloupka (38_CR5) 2010; 28
M Humenik (38_CR43) 2018; 10
T Xing (38_CR174) 2023; 474
C Li (38_CR93) 2006; 27
AM Shabbirahmed (38_CR110) 2023; 8
S Zou (38_CR30) 2022; 4
Z Yin (38_CR50) 2018; 18
P Bhattacharjee (38_CR47) 2017; 63
B-M Min (38_CR62) 2004; 25
Z Wang (38_CR146) 2021; 426
D Ji (38_CR33) 2024; 4
TU Rashid (38_CR34) 2021; 23
G Sabarees (38_CR84) 2023; 79
N Gogurla (38_CR107) 2021; 11
TB Aigner (38_CR87) 2018; 30
M Biagiotti (38_CR132) 2022; 10
R Zhang (38_CR151) 2024; 12
JH Comroe Jr (38_CR6) 1976; 192
38_CR118
J Lv (38_CR8) 2021; 50
38_CR117
C Fan (38_CR173) 2023; 33
W Shao (38_CR124) 2016; 67
S Wanwong (38_CR155) 2023; 13
S-W Ha (38_CR70) 2003; 4
S Zou (38_CR94) 2021; 9
L Mehraz (38_CR139) 2018; 4
J Zhou (38_CR128) 2009; 45
H Liu (38_CR129) 2011; 32
B Biswal (38_CR40) 2022; 30
L Li (38_CR135) 2011; 49
W Zhou (38_CR166) 2011; 12
JM Deitzel (38_CR85) 2001; 42
Y Xu (38_CR172) 2024; 481
MB Taskin (38_CR19) 2021; 121
Z Shi (38_CR180) 2019; 6
J Xue (38_CR32) 2019; 119
S Agarwal (38_CR26) 2013; 38
Y Xu (38_CR133) 2020; 6
J Wu (38_CR114) 2016; 1
M Farokhi (38_CR49) 2018; 36
N Panda (38_CR100) 2014; 174
H Lu (38_CR68) 2024; 15
X Zhang (38_CR28) 2009; 61
Y Guo (38_CR106) 2018; 48
Y Si (38_CR148) 2023; 48
X Yao (38_CR112) 2022; 16
M Dadras Chomachayi (38_CR138) 2018; 106
M Safdari (38_CR141) 2016; 17
C Vepari (38_CR38) 2007; 32
BN Singh (38_CR74) 2016; 87
C Holland (38_CR42) 2019; 8
X Wu (38_CR97) 2024; 34
A Khalid (38_CR55) 2020; 12
J Liu (38_CR96) 2022; 14
A Opálková Šišková (38_CR157) 2021; 13
J Xia (38_CR152) 2024; 16
References_xml – volume: 39
  start-page: 251
  year: 2014
  end-page: 267
  ident: CR99
  article-title: Silk proteins for biomedical applications: Bioengineering perspectives
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2013.09.002
– volume: 1
  start-page: 301
  year: 2024
  end-page: 310
  ident: CR46
  article-title: Daytime radiative cooling dressings for accelerating wound healing under sunlight
  publication-title: Nat Chem Eng
  doi: 10.1038/s44286-024-00050-4
– volume: 4
  start-page: 211
  year: 2018
  end-page: 221
  ident: CR139
  article-title: Electrospun silk fibroin/β-cyclodextrin citrate nanofibers as a novel biomaterial for application in controlled drug release
  publication-title: Int J Polym Mater Po
  doi: 10.1080/00914037.2018.1552865
– volume: 73
  start-page: 365
  year: 2018
  end-page: 376
  ident: CR92
  article-title: Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.04.025
– volume: 56
  start-page: 101498
  year: 2020
  ident: CR143
  article-title: Epigallocatechin gallate loaded electrospun silk fibroin scaffold with anti-angiogenic properties for corneal tissue engineering
  publication-title: J Drug Delivery Sci Technol
  doi: 10.1016/j.jddst.2020.101498
– volume: 24
  start-page: 4462
  year: 2024
  end-page: 4470
  ident: CR154
  article-title: Radiative thermal management in face masks with a micro/nanofibrous filter
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.4c00308
– volume: 246
  start-page: 213
  year: 2012
  end-page: 239
  ident: CR35
  article-title: Electrospinning of biocompatible polymers and their potentials in biomedical applications
  publication-title: Biomedical applications of polymeric nanofibers
  doi: 10.1007/12_2011_143
– volume: 2
  start-page: 206
  year: 2013
  end-page: 217
  ident: CR119
  article-title: Functionalized silk biomaterials for wound healing
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201200192
– volume: 12
  start-page: 39
  year: 2020
  ident: CR179
  article-title: Vascularized silk electrospun fiber for promoting oral mucosa regeneration
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-020-0221-z
– volume: 23
  start-page: 2100153
  year: 2021
  ident: CR34
  article-title: Mechanical properties of electrospun fibers—a critical review
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.202100153
– volume: 33
  start-page: 2005910
  year: 2021
  ident: CR88
  article-title: New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials
  publication-title: Adv Mater
  doi: 10.1002/adma.202005910
– volume: 174
  start-page: 2403
  year: 2014
  end-page: 2412
  ident: CR100
  article-title: Degradation mechanism and control of blended eri and tasar silk nanofiber
  publication-title: Biotechnol Appl Biochem
  doi: 10.1007/s12010-014-1151-4
– volume: 60
  start-page: 123
  year: 2014
  end-page: 134
  ident: CR101
  article-title: Insights into the production and characterization of electrospun fibers from regenerated silk fibroin
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2014.08.030
– volume: 33
  start-page: 203
  year: 2003
  end-page: 213
  ident: CR69
  article-title: The role of formic acid in solution stability and crystallization of silk protein polymer
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2003.08.004
– volume: 13
  start-page: 2087
  year: 2021
  ident: CR17
  article-title: Review on electrospun nanofiber-applied products
  publication-title: Polymers
  doi: 10.3390/polym13132087
– volume: 14
  start-page: 100243
  year: 2022
  ident: CR96
  article-title: Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2022.100243
– volume: 75
  year: 2013
  ident: CR159
  article-title: Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins
  publication-title: Jove-j Vis Exp
  doi: 10.3791/50492
– volume: 93
  start-page: 976
  year: 2010
  end-page: 983
  ident: CR126
  article-title: Electrospun scaffolds from silk fibroin and their cellular compatibility
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.32497
– volume: 44
  start-page: 790
  year: 2015
  end-page: 814
  ident: CR25
  article-title: Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00226A
– volume: 321
  start-page: 324
  year: 2020
  end-page: 347
  ident: CR44
  article-title: Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2020.02.022
– volume: 245
  start-page: 116465
  year: 2020
  ident: CR131
  article-title: A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.116465
– volume: 67
  start-page: 599
  year: 2016
  end-page: 610
  ident: CR124
  article-title: A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering
  publication-title: Mat Sci Eng C-mater
  doi: 10.1016/j.msec.2016.05.081
– volume: 7
  start-page: e2201340
  year: 2023
  ident: CR176
  article-title: Carbon-based flexible devices for comprehensive health monitoring
  publication-title: Small Methods
  doi: 10.1002/smtd.202201340
– volume: 20
  start-page: 1670
  year: 2021
  end-page: 1676
  ident: CR4
  article-title: Giant magnetoelastic effect in soft systems for bioelectronics
  publication-title: Nat Mater
  doi: 10.1038/s41563-021-01093-1
– volume: 231
  start-page: 112006
  year: 2023
  ident: CR169
  article-title: Thermoregulating textiles and fibrous materials for passive radiative cooling functionality
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2023.112006
– volume: 50
  start-page: 5435
  year: 2021
  end-page: 5467
  ident: CR8
  article-title: Fluoropolymers in biomedical applications: State-of-the-art and future perspectives
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00258E
– volume: 33
  start-page: e2102500
  year: 2021
  ident: CR54
  article-title: Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm
  publication-title: Adv Mater
  doi: 10.1002/adma.202102500
– volume: 111
  start-page: 110776
  year: 2020
  ident: CR123
  article-title: The controlled design of electrospun PCL/silk/quercetin fibrous tubular scaffold using a modified wound coil collector and L-shaped ground design for neural repair
  publication-title: Mat Sci Eng C-mater
  doi: 10.1016/j.msec.2020.110776
– volume: 466
  start-page: 143127
  year: 2023
  ident: CR147
  article-title: Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.143127
– volume: 4
  start-page: 557
  year: 2024
  end-page: 569
  ident: CR33
  article-title: Electrospinning of nanofibres
  publication-title: Nat Rev Methods Primers
  doi: 10.1038/s43586-023-00278-z
– volume: 23
  start-page: 703
  year: 2024
  end-page: 710
  ident: CR2
  article-title: Permanent fluidic magnets for liquid bioelectronics
  publication-title: Nat Mater
  doi: 10.1038/s41563-024-01802-6
– volume: 14
  start-page: 27
  year: 2020
  ident: CR120
  article-title: Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model
  publication-title: J Biol Eng
  doi: 10.1186/s13036-020-00249-y
– volume: 34
  start-page: 2208236
  year: 2022
  ident: CR171
  article-title: Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling
  publication-title: Adv Mater
  doi: 10.1002/adma.202208236
– volume: 7
  start-page: 149
  year: 2022
  ident: CR113
  article-title: Evolution of electrospinning in liver tissue engineering
  publication-title: Biomimetics
  doi: 10.3390/biomimetics7040149
– volume: 5
  start-page: 2570
  year: 2009
  end-page: 2578
  ident: CR90
  article-title: Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2008.12.013
– volume: 1
  start-page: 56
  year: 2016
  end-page: 64
  ident: CR114
  article-title: Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2016.07.001
– volume: 59
  start-page: 1392
  year: 2007
  end-page: 1412
  ident: CR12
  article-title: Functional electrospun nanofibrous scaffolds for biomedical applications
  publication-title: Adv Drug Delivery Rev
  doi: 10.1016/j.addr.2007.04.021
– volume: 7
  start-page: 302
  year: 2023
  end-page: 318
  ident: CR63
  article-title: Silk chemistry and biomedical material designs
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-023-00486-x
– volume: 103
  start-page: 33
  year: 2016
  end-page: 43
  ident: CR125
  article-title: An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.049
– volume: 48
  start-page: 152
  year: 2018
  end-page: 160
  ident: CR106
  article-title: All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.033
– volume: 190
  start-page: 381
  year: 2014
  end-page: 397
  ident: CR121
  article-title: Silk-based biomaterials for sustained drug delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.05.059
– volume: 8
  start-page: 8181
  year: 2018
  end-page: 8189
  ident: CR158
  article-title: A silk fibroin based green nano-filter for air filtration
  publication-title: Rsc Adv
  doi: 10.1039/C7RA12879G
– volume: 49
  start-page: 4405
  year: 2020
  end-page: 4465
  ident: CR175
  article-title: Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends
  publication-title: Chem Soc Rev
  doi: 10.1039/c9cs00587k
– volume: 81
  start-page: 1402
  year: 2023
  end-page: 1419
  ident: CR103
  article-title: Flexible electrochemical sensors and their applications in noninvasive medical detection
  publication-title: Acta Chim Sin
  doi: 10.6023/a23060289
– volume: 48
  start-page: 101745
  year: 2023
  ident: CR167
  article-title: Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101745
– volume: 9
  start-page: 2103981
  year: 2022
  ident: CR21
  article-title: From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics
  publication-title: Adv Sci
  doi: 10.1002/advs.202103981
– volume: 35
  start-page: 2203193
  year: 2023
  ident: CR182
  article-title: Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human–machine interfaces
  publication-title: Adv Mater
  doi: 10.1002/adma.202203193
– volume: 5
  start-page: 142
  year: 2022
  end-page: 156
  ident: CR3
  article-title: Smart textiles for personalized healthcare
  publication-title: Nat Electron
  doi: 10.1038/s41928-022-00723-z
– volume: 10
  start-page: 246
  year: 2010
  end-page: 257
  ident: CR98
  article-title: Electrospun silk material systems for wound healing
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200900274
– volume: 50
  start-page: 41
  year: 2017
  end-page: 55
  ident: CR111
  article-title: Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.12.034
– volume: 6
  start-page: 2847
  year: 2020
  end-page: 2854
  ident: CR79
  article-title: Microfluidic silk fibers with aligned hierarchical microstructures
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.0c00060
– volume: 9
  start-page: 722
  year: 2014
  end-page: 742
  ident: CR11
  article-title: Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2014.10.002
– volume: 32
  start-page: 3784
  year: 2011
  end-page: 3793
  ident: CR129
  article-title: Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.02.002
– volume: 192
  start-page: 105
  year: 1976
  end-page: 111
  ident: CR6
  article-title: Scientific basis for the support of biomedical science
  publication-title: Science
  doi: 10.1126/science.769161
– volume: 33
  start-page: 2300794
  year: 2023
  ident: CR173
  article-title: Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202300794
– volume: 10
  start-page: 833157
  year: 2022
  ident: CR132
  article-title: Electrospun silk fibroin scaffolds for tissue regeneration: chemical, structural, and toxicological implications of the formic acid-silk fibroin interaction
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2022.833157
– volume: 7
  start-page: 56550
  year: 2017
  end-page: 56558
  ident: CR137
  article-title: Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release
  publication-title: Rsc Adv
  doi: 10.1039/C7RA12394A
– volume: 18
  start-page: 7085
  year: 2018
  end-page: 7091
  ident: CR50
  article-title: Splash-resistant and light-weight silk-sheathed wires for textile electronics
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b03085
– volume: 43
  start-page: 4423
  year: 2014
  end-page: 4448
  ident: CR18
  article-title: Nanoparticles meet electrospinning: recent advances and future prospects
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60426H
– volume: 16
  start-page: 2563
  year: 2023
  end-page: 2571
  ident: CR168
  article-title: Evaporative/radiative electrospun membrane for personal cooling
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4987-x
– volume: 253
  start-page: 126863
  year: 2023
  ident: CR81
  article-title: Design and function of lignin/silk fibroin-based multilayer water purification membranes for dye adsorption
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.126863
– volume: 36
  start-page: 2308748
  year: 2024
  ident: CR22
  article-title: Silk-fabric reinforced silk for artificial bones
  publication-title: Adv Mater
  doi: 10.1002/adma.202308748
– volume: 36
  start-page: 68
  year: 2018
  end-page: 91
  ident: CR48
  article-title: Silk fibroin/hydroxyapatite composites for bone tissue engineering
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2017.10.001
– ident: CR117
– volume: 45
  start-page: 504
  year: 2009
  end-page: 510
  ident: CR128
  article-title: A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2009.09.006
– volume: 49
  start-page: 223
  year: 2011
  end-page: 232
  ident: CR135
  article-title: Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2011.04.018
– volume: 28
  start-page: 580
  year: 2010
  end-page: 588
  ident: CR5
  article-title: Nanosilver as a new generation of nanoproduct in biomedical applications
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2010.07.006
– volume: 481
  start-page: 148722
  year: 2024
  ident: CR172
  article-title: Radiative cooling face mask based on mixed micro-and nanofibrous fabric
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2024.148722
– volume: 23
  start-page: 2200380
  year: 2023
  ident: CR80
  article-title: Silk fibroin combined with electrospinning as a promising strategy for tissue regeneration
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.202200380
– volume: 47
  start-page: 6322
  year: 2006
  end-page: 6327
  ident: CR51
  article-title: Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.07.009
– volume: 374
  start-page: 437
  year: 2019
  end-page: 470
  ident: CR164
  article-title: Progress in silk materials for integrated water treatments: Fabrication, modification and applications
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.05.163
– volume: 123
  start-page: 5049
  year: 2023
  end-page: 5138
  ident: CR102
  article-title: Skin-interfaced wearable sweat sensors for precision medicine
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.2c00823
– volume: 17
  start-page: 744
  year: 2016
  end-page: 750
  ident: CR141
  article-title: Preparation and characterization of Ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing
  publication-title: Fiber Polym
  doi: 10.1007/s12221-016-5822-3
– volume: 57
  start-page: 3842
  year: 2022
  end-page: 3854
  ident: CR76
  article-title: Effect of processing and storage time of aqueous solutions on silk fibroin structure and methanol post-treatment of electrospun fibers
  publication-title: J Mater Sci
  doi: 10.1007/s10853-022-06873-x
– volume: 111
  start-page: 17385
  year: 2014
  end-page: 17389
  ident: CR178
  article-title: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1407743111
– volume: 36
  start-page: 907
  year: 2018
  end-page: 922
  ident: CR49
  article-title: Overview of silk fibroin use in wound dressings
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2018.04.004
– volume: 10
  start-page: 2784
  year: 2024
  end-page: 2804
  ident: CR23
  article-title: Flexible meso electronics and photonics based on cocoon silk and applications
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.4c00254
– volume: 32
  start-page: 991
  year: 2007
  end-page: 1007
  ident: CR38
  article-title: Silk as a biomaterial
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2007.05.013
– volume: 11
  start-page: 182
  year: 2019
  ident: CR145
  article-title: Electrospun nanofibers for tissue engineering with drug loading and release
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11040182
– volume: 8
  start-page: 2200654
  year: 2023
  ident: CR181
  article-title: Electronic fibers/textiles for health-monitoring: Fabrication and application
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202200654
– volume: 29
  start-page: 2270
  year: 2009
  end-page: 2274
  ident: CR52
  article-title: Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution
  publication-title: Mat Sci Eng C-mater
  doi: 10.1016/j.msec.2009.05.012
– volume: 6
  start-page: 3402
  year: 2018
  end-page: 3413
  ident: CR165
  article-title: Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal–organic frameworks grown on silk nanofibers for hazard collection in water
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA06924C
– volume: 153
  start-page: 28
  year: 2020
  end-page: 53
  ident: CR82
  article-title: Silk fibroin for skin injury repair: where do things stand?
  publication-title: Adv Drug Delivery Rev
  doi: 10.1002/adhm.201700121
– volume: 8
  start-page: 1800465
  year: 2019
  ident: CR42
  article-title: The biomedical use of silk: past, present, future
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201800465
– volume: 10
  start-page: e1509
  year: 2018
  ident: CR43
  article-title: Silk nanofibril self-assembly versus electrospinning
  publication-title: WIRES Nanomed Nanobio
  doi: 10.1002/wnan.1509
– volume: 5
  start-page: 241
  year: 2020
  end-page: 252
  ident: CR27
  article-title: Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.01.010
– volume: 6
  start-page: 1801617
  year: 2019
  ident: CR180
  article-title: Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding
  publication-title: Adv Sci
  doi: 10.1002/advs.201801617
– volume: 41
  start-page: 4708
  year: 2012
  end-page: 4735
  ident: CR10
  article-title: Electrospinning versus fibre production methods: from specifics to technological convergence
  publication-title: Chem Soc Rev
  doi: 10.1039/C2CS35083A
– volume: 121
  start-page: 11194
  year: 2021
  end-page: 11237
  ident: CR19
  article-title: Bioactive electrospun fibers: Fabrication strategies and a critical review of surface-sensitive characterization and quantification
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00816
– volume: 38
  start-page: 963
  year: 2013
  end-page: 991
  ident: CR26
  article-title: Functional materials by electrospinning of polymers
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2013.02.001
– volume: 8
  start-page: 2201723
  year: 2023
  ident: CR36
  article-title: The history of electrospinning: past, present, and future developments
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202201723
– volume: 11
  start-page: 2000845
  year: 2021
  ident: CR37
  article-title: Electrospinning-based strategies for battery materials
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202000845
– volume: 334
  start-page: 463
  year: 2021
  end-page: 484
  ident: CR16
  article-title: Electrospinning for drug delivery applications: a review
  publication-title: J Control Release
  doi: 10.1080/25740881.2024.2346314
– volume: 10
  start-page: 1
  year: 2012
  end-page: 9
  ident: CR144
  article-title: Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery
  publication-title: J Transl Med.
  doi: 10.1186/1479-5876-10-117
– ident: CR24
– volume: 30
  start-page: 3058
  year: 2009
  end-page: 3067
  ident: CR60
  article-title: Optimization strategies for electrospun silk fibroin tissue engineering scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.01.054
– volume: 48
  start-page: 101723
  year: 2023
  ident: CR148
  article-title: Applications of electrospinning in human health: from detection, protection, regulation to reconstruction
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101723
– volume: 28
  start-page: 325
  year: 2010
  end-page: 347
  ident: CR14
  article-title: Electrospinning: A fascinating fiber fabrication technique
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2010.01.004
– volume: 4
  start-page: 488
  year: 2003
  end-page: 496
  ident: CR70
  article-title: Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution
  publication-title: Biomacromol
  doi: 10.1021/bm0255948
– volume: 42
  start-page: 261
  year: 2001
  end-page: 272
  ident: CR85
  article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00250-0
– volume: 139
  start-page: 156
  year: 2016
  end-page: 163
  ident: CR64
  article-title: Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect
  publication-title: Colloid Surface B
  doi: 10.1016/j.colsurfb.2015.12.001
– volume: 12
  start-page: 431
  year: 2011
  end-page: 437
  ident: CR166
  article-title: Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption
  publication-title: Fiber Polym
  doi: 10.1007/s12221-011-0431-7
– volume: 4
  start-page: 758
  year: 2022
  end-page: 773
  ident: CR30
  article-title: 3D printed gelatin scaffold with improved shape fidelity and cytocompatibility by using antheraea pernyi silk fibroin nanofibers
  publication-title: Adv Fiber Mater
  doi: 10.1007/s42765-022-00135-w
– volume: 29
  start-page: 2217
  year: 2008
  end-page: 2227
  ident: CR91
  article-title: In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.01.022
– volume: 8
  start-page: 9598
  year: 2018
  ident: CR162
  article-title: Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27917-w
– volume: 106
  start-page: 1092
  year: 2018
  end-page: 1103
  ident: CR138
  article-title: Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study
  publication-title: J Biomed Mate Res Part A
  doi: 10.1002/jbm.a.36303
– volume: 122
  start-page: 3259
  year: 2022
  end-page: 3291
  ident: CR1
  article-title: Electronic textiles for wearable point-of-care systems
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00502
– volume: 475
  start-page: 146245
  year: 2023
  ident: CR56
  article-title: Polyaniline doped silk fibroin-PCL electrospunfiber: an electroactive fibrous sheet for full-thickness wound healing study
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.146245
– volume: 117
  year: 2021
  ident: CR31
  article-title: Electrospinning for tissue engineering applications
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100721
– volume: 11
  start-page: 2100801
  year: 2021
  ident: CR107
  article-title: Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202100801
– volume: 3
  start-page: 1233
  year: 2002
  end-page: 1239
  ident: CR53
  article-title: Electrospinning Bombyx mori silk with poly(ethylene oxide)
  publication-title: Biomacromol
  doi: 10.1021/bm025581u
– volume: 79
  start-page: 103994
  year: 2023
  ident: CR84
  article-title: Emerging trends in silk fibroin based nanofibers for impaired wound healing
  publication-title: J Drug Delivery Sci Technol
  doi: 10.1016/j.jddst.2022.103994
– volume: 32
  start-page: 2200162
  year: 2022
  ident: CR105
  article-title: Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202200162
– volume: 119
  start-page: 5298
  year: 2019
  end-page: 5415
  ident: CR32
  article-title: Electrospinning and electrospun nanofibers: methods, materials, and applications
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00593
– volume: 12
  start-page: 48408
  year: 2020
  end-page: 48419
  ident: CR55
  article-title: Electrospun nanodiamond–silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1039/D2TB01890J
– volume: 5
  start-page: 510
  year: 2020
  end-page: 515
  ident: CR57
  article-title: Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.04.005
– volume: 87
  start-page: 201
  year: 2016
  end-page: 207
  ident: CR74
  article-title: A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2016.01.120
– volume: 15
  start-page: 3289
  year: 2024
  ident: CR68
  article-title: Intelligent perceptual textiles based on ionic-conductive and strong silk fibers
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-47665-y
– volume: 21
  start-page: 3343
  year: 2009
  end-page: 3351
  ident: CR86
  article-title: Progress in the field of electrospinning for tissue engineering applications
  publication-title: Adv Mater
  doi: 10.1002/adma.200803092
– volume: 17
  start-page: 18308
  year: 2023
  end-page: 18317
  ident: CR153
  article-title: A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05460
– volume: 10
  start-page: 2100646
  year: 2021
  ident: CR104
  article-title: Flexible electrodes for in vivo and in vitro electrophysiological signal recording
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.202100646
– volume: 14
  start-page: 45707
  year: 2022
  end-page: 45715
  ident: CR170
  article-title: Scalable and high-performance radiative cooling fabrics through an electrospinning method
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c13727
– volume: 9
  start-page: 2590
  year: 2016
  end-page: 2597
  ident: CR163
  article-title: Silk nanofibers as high efficient and lightweight air filter
  publication-title: Nano Res
  doi: 10.1007/s12274-016-1145-3
– volume: 16
  start-page: 1151
  year: 2004
  end-page: 1170
  ident: CR58
  article-title: Electrospinning of nanofibers: Reinventing the wheel?
  publication-title: Adv Mater
  doi: 10.1002/adma.200400719
– volume: 25
  start-page: 1039
  year: 2004
  end-page: 1047
  ident: CR61
  article-title: Human bone marrow stromal cell responses on electrospun silk fibroin mats
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00609-4
– volume: 4
  start-page: 1134
  year: 2015
  end-page: 1151
  ident: CR39
  article-title: Silk-based biomaterials in biomedical textiles and fiber-based implants
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201500002
– volume: 27
  start-page: 3115
  year: 2006
  end-page: 3124
  ident: CR93
  article-title: Electrospun silk-BMP-2 scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.022
– volume: 37
  start-page: 6856
  year: 2004
  end-page: 6864
  ident: CR45
  article-title: Mechanical properties of electrospun silk fibers
  publication-title: Macromolecules
  doi: 10.1021/ma048988v
– volume: 7
  start-page: 1800308
  year: 2018
  ident: CR115
  article-title: Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201800308
– volume: 13
  start-page: 25729
  year: 2023
  end-page: 25737
  ident: CR155
  article-title: Electrospun silk nanofiber loaded with Ag-doped TiO with high-reactive facet as multifunctional air filter
  publication-title: Rsc Adv
  doi: 10.1039/d3ra04621d
– volume: 104
  start-page: 294
  year: 2017
  end-page: 302
  ident: CR67
  article-title: Effect of degumming methods on structural characteristics and properties of regenerated silk
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2017.06.019
– volume: 25
  start-page: 5540
  year: 2020
  ident: CR156
  article-title: Roll-to-roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration applications
  publication-title: Molecules
  doi: 10.3390/molecules25235540
– volume: 95
  start-page: 1679
  year: 2010
  end-page: 1685
  ident: CR130
  article-title: In vitro and in vivo degradation behavior of aqueous-derived electrospun silk fibroin scaffolds
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2010.05.025
– volume: 593
  start-page: 142
  year: 2021
  end-page: 151
  ident: CR142
  article-title: Silk fibroin H-fibroin/poly (ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.02.099
– volume: 30
  start-page: 2222
  year: 2022
  end-page: 2253
  ident: CR40
  article-title: Extraction of silk fibroin with several sericin removal processes and its importance in tissue engineering: a review
  publication-title: J Polym Environ
  doi: 10.1007/s10924-022-02381-w
– volume: 8
  start-page: 16
  year: 2023
  ident: CR110
  article-title: Recent developments of silk-based scaffolds for tissue engineering and regenerative medicine applications: a special focus on the advancement of 3D printing
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8010016
– volume: 14
  start-page: 3942
  year: 2024
  ident: CR95
  article-title: Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-54638-0
– volume: 63
  start-page: 100
  year: 2014
  end-page: 105
  ident: CR136
  article-title: Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery
  publication-title: Polym Int
  doi: 10.1002/pi.4499
– volume: 1
  start-page: 1700079
  year: 2017
  ident: CR160
  article-title: Silk-based fine dust filters for air filtration
  publication-title: Adv Sustainable Syst
  doi: 10.1002/adsu.201700079
– volume: 6
  start-page: eabc2036
  year: 2020
  ident: CR133
  article-title: ECM-inspired micro/nanofibers for modulating cell function and tissue generation
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.abc2036
– volume: 126
  start-page: 14350
  year: 2004
  end-page: 14351
  ident: CR73
  article-title: Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids
  publication-title: J Am Chem Soc
  doi: 10.1021/ja046079f
– volume: 47
  start-page: 514
  year: 2010
  end-page: 519
  ident: CR89
  article-title: Electrospinning of silk fibroin and collagen for vascular tissue engineering
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2010.07.010
– volume: 13
  start-page: 12
  year: 2010
  end-page: 14
  ident: CR15
  article-title: Electrospinning to forcespinning
  publication-title: Mater Today
  doi: 10.1016/S1369-7021(10)70199-1
– volume: 33
  start-page: 998
  year: 2008
  end-page: 1012
  ident: CR41
  article-title: Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2008.08.002
– volume: 16
  start-page: 100381
  year: 2022
  ident: CR112
  article-title: Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2022.100381
– volume: 150
  start-page: 128
  year: 2011
  end-page: 141
  ident: CR140
  article-title: Silk fibroin as a vehicle for drug delivery applications
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2010.11.007
– volume: 19
  start-page: 1737
  year: 2021
  end-page: 1763
  ident: CR59
  article-title: Silkworm and spider silk electrospinning: a review
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-020-01147-x
– volume: 3
  start-page: 18016
  year: 2018
  ident: CR66
  article-title: Nanofibrils in nature and materials engineering
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2018.16
– volume: 9
  start-page: 221
  year: 2016
  ident: CR75
  article-title: Aqueous-based coaxial electrospinning of genetically engineered silk elastin core-shell nanofibers
  publication-title: Materials
  doi: 10.3390/ma9040221
– volume: 105
  start-page: 2892
  year: 2017
  end-page: 2905
  ident: CR109
  article-title: Recent advancements in electrospinning design for tissue engineering applications: a review
  publication-title: J Biomed Mate Res Part A
  doi: 10.1002/jbm.a.36124
– volume: 12
  start-page: 1377
  year: 2024
  end-page: 1385
  ident: CR151
  article-title: A hierarchical metafabric with dynamically thermochromic property for subambient daytime radiative cooling
  publication-title: J Mater Chem C
  doi: 10.1039/D3TC03769J
– volume: 5
  start-page: 157
  year: 2023
  end-page: 169
  ident: CR7
  article-title: Quantum sensors for biomedical applications
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-023-00558-3
– volume: 35
  start-page: 6
  year: 2002
  end-page: 9
  ident: CR71
  article-title: Artificial spinning and characterization of silk fiber from bombyx m ori silk fibroin in hexafluoroacetone hydrate
  publication-title: Macromolecules
  doi: 10.1021/ma011335j
– volume: 10
  start-page: 7873
  year: 2022
  end-page: 7882
  ident: CR150
  article-title: Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management
  publication-title: ACS Sustainable Chem Eng
  doi: 10.1021/acssuschemeng.2c00189
– volume: 10
  start-page: 6078
  year: 2022
  end-page: 6106
  ident: CR9
  article-title: Electrospun nanofibers for bone regeneration: from biomimetic composition, structure to function
  publication-title: J Mater Chem B
  doi: 10.1039/D2TB01182D
– volume: 62
  start-page: 20220333
  year: 2023
  ident: CR122
  article-title: Characterization, biocompatibility, and optimization of electrospun SF/PCL composite nanofiber films
  publication-title: Rev Adv Mater Sci
  doi: 10.1515/rams-2022-0333
– volume: 2
  start-page: 100323
  year: 2024
  ident: CR161
  article-title: Silk-crosslinked polyester fibrous air filters with electrostatic interfacial mediation for high-efficiency and low-resistance air purification
  publication-title: Device
  doi: 10.1016/j.device.2024.100323
– volume: 30
  start-page: 1704636
  year: 2018
  ident: CR87
  article-title: Biomedical applications of recombinant silk-based materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201704636
– volume: 25
  start-page: 1289
  year: 2004
  end-page: 1297
  ident: CR62
  article-title: Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.08.045
– volume: 61
  start-page: 988
  year: 2009
  end-page: 1006
  ident: CR28
  article-title: Electrospun silk biomaterial scaffolds for regenerative medicine
  publication-title: Adv Drug Delivery Rev
  doi: 10.1016/j.addr.2009.07.005
– volume: 6
  start-page: 1612
  year: 2011
  end-page: 1631
  ident: CR65
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.379
– volume: 5
  start-page: 4396
  year: 2022
  end-page: 4406
  ident: CR29
  article-title: Artificial superstrong silkworm silk surpasses natural spider silks
  publication-title: Matter
  doi: 10.1016/j.matt.2022.08.028
– volume: 13
  start-page: 2499
  year: 2021
  ident: CR157
  article-title: Electrospun poly (ethylene terephthalate)/silk fibroin composite for filtration application
  publication-title: Polymers
  doi: 10.3390/polym13152499
– volume: 16
  start-page: 7732
  year: 2024
  end-page: 7741
  ident: CR152
  article-title: High thermal conductivity and radiative cooling designed boron nitride nanosheets/silk fibroin films for personal thermal management
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.3c16602
– ident: CR149
– volume: 301
  start-page: 48
  year: 2016
  end-page: 55
  ident: CR78
  article-title: Two-in-one composite fibers with side-by-side arrangement of silk fibroin and poly (l-lactide) by electrospinning
  publication-title: Macromol Mater Eng
  doi: 10.1002/mame.201500217
– volume: 254
  start-page: 127641
  year: 2024
  ident: CR83
  article-title: Silk fibroin-derived electrospun materials for biomedical applications: a review
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.127641
– volume: 337
  start-page: 1640
  year: 2012
  end-page: 1644
  ident: CR177
  article-title: A physically transient form of silicon electronics
  publication-title: Science
  doi: 10.1126/science.1226325
– ident: CR118
– volume: 121
  start-page: 11238
  year: 2021
  end-page: 11304
  ident: CR20
  article-title: Fabrication of biomedical scaffolds using biodegradable polymers
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01200
– volume: 6
  start-page: 2100410
  year: 2021
  ident: CR13
  article-title: Developments of advanced electrospinning techniques: a critical review
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202100410
– volume: 14
  start-page: 3875
  year: 2022
  ident: CR108
  article-title: Electrospinning silk fibroin/graphene nanofiber membrane used for 3D wearable pressure sensor
  publication-title: Polymers
  doi: 10.3390/polym14183875
– volume: 474
  start-page: 145534
  year: 2023
  ident: CR174
  article-title: Silk-based flexible electronics and smart wearable textiles: Progress and beyond
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.145534
– volume: 2
  start-page: 952
  year: 2019
  end-page: 969
  ident: CR116
  article-title: Latest progress in electrospun nanofibers for wound healing applications
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.8b00637
– volume: 426
  start-page: 131947
  year: 2021
  ident: CR146
  article-title: A versatile silk fibroin based filtration membrane with enhanced mechanical property, disinfection and biodegradability
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131947
– volume: 13
  start-page: 798
  year: 2012
  end-page: 804
  ident: CR127
  article-title: Mechanisms and control of silk-based electrospinning
  publication-title: Biomacromol
  doi: 10.1021/bm201719s
– volume: 2
  start-page: 31
  year: 2015
  end-page: 45
  ident: CR134
  article-title: Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules
  publication-title: Regen Biomater
  doi: 10.1093/rb/rbu017
– volume: 34
  start-page: 2313539
  year: 2024
  ident: CR97
  article-title: Durable radiative cooling multilayer silk textile with excellent comprehensive performance
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202313539
– volume: 6
  start-page: 3934
  year: 2018
  end-page: 3945
  ident: CR77
  article-title: Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration
  publication-title: J Mater Chem B
  doi: 10.1039/C8TB00535D
– volume: 6
  start-page: 1722
  year: 2005
  end-page: 1731
  ident: CR72
  article-title: Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning
  publication-title: Biomacromol
  doi: 10.1021/bm050010y
– volume: 63
  start-page: 1
  year: 2017
  end-page: 17
  ident: CR47
  article-title: Silk scaffolds in bone tissue engineering: an overview
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2017.09.027
– volume: 9
  start-page: 5514
  year: 2021
  end-page: 5527
  ident: CR94
  article-title: Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors
  publication-title: J Mater Chem B
  doi: 10.1039/D1TB00944C
– volume: 63
  start-page: 100
  year: 2014
  ident: 38_CR136
  publication-title: Polym Int
  doi: 10.1002/pi.4499
– volume: 12
  start-page: 39
  year: 2020
  ident: 38_CR179
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-020-0221-z
– volume: 35
  start-page: 2203193
  year: 2023
  ident: 38_CR182
  publication-title: Adv Mater
  doi: 10.1002/adma.202203193
– volume: 17
  start-page: 744
  year: 2016
  ident: 38_CR141
  publication-title: Fiber Polym
  doi: 10.1007/s12221-016-5822-3
– volume: 21
  start-page: 3343
  year: 2009
  ident: 38_CR86
  publication-title: Adv Mater
  doi: 10.1002/adma.200803092
– volume: 67
  start-page: 599
  year: 2016
  ident: 38_CR124
  publication-title: Mat Sci Eng C-mater
  doi: 10.1016/j.msec.2016.05.081
– volume: 6
  start-page: 3402
  year: 2018
  ident: 38_CR165
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA06924C
– volume: 2
  start-page: 100323
  year: 2024
  ident: 38_CR161
  publication-title: Device
  doi: 10.1016/j.device.2024.100323
– volume: 47
  start-page: 514
  year: 2010
  ident: 38_CR89
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2010.07.010
– volume: 25
  start-page: 1039
  year: 2004
  ident: 38_CR61
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00609-4
– volume: 6
  start-page: 2847
  year: 2020
  ident: 38_CR79
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.0c00060
– volume: 25
  start-page: 1289
  year: 2004
  ident: 38_CR62
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.08.045
– volume: 2
  start-page: 31
  year: 2015
  ident: 38_CR134
  publication-title: Regen Biomater
  doi: 10.1093/rb/rbu017
– volume: 466
  start-page: 143127
  year: 2023
  ident: 38_CR147
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.143127
– volume: 13
  start-page: 12
  year: 2010
  ident: 38_CR15
  publication-title: Mater Today
  doi: 10.1016/S1369-7021(10)70199-1
– volume: 14
  start-page: 3942
  year: 2024
  ident: 38_CR95
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-54638-0
– volume: 36
  start-page: 68
  year: 2018
  ident: 38_CR48
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2017.10.001
– volume: 1
  start-page: 301
  year: 2024
  ident: 38_CR46
  publication-title: Nat Chem Eng
  doi: 10.1038/s44286-024-00050-4
– volume: 48
  start-page: 101723
  year: 2023
  ident: 38_CR148
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101723
– volume: 474
  start-page: 145534
  year: 2023
  ident: 38_CR174
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.145534
– volume: 153
  start-page: 28
  year: 2020
  ident: 38_CR82
  publication-title: Adv Drug Delivery Rev
  doi: 10.1002/adhm.201700121
– volume: 11
  start-page: 182
  year: 2019
  ident: 38_CR145
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11040182
– volume: 8
  start-page: 2200654
  year: 2023
  ident: 38_CR181
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202200654
– volume: 13
  start-page: 798
  year: 2012
  ident: 38_CR127
  publication-title: Biomacromol
  doi: 10.1021/bm201719s
– volume: 15
  start-page: 3289
  year: 2024
  ident: 38_CR68
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-47665-y
– volume: 41
  start-page: 4708
  year: 2012
  ident: 38_CR10
  publication-title: Chem Soc Rev
  doi: 10.1039/C2CS35083A
– volume: 23
  start-page: 703
  year: 2024
  ident: 38_CR2
  publication-title: Nat Mater
  doi: 10.1038/s41563-024-01802-6
– volume: 20
  start-page: 1670
  year: 2021
  ident: 38_CR4
  publication-title: Nat Mater
  doi: 10.1038/s41563-021-01093-1
– volume: 254
  start-page: 127641
  year: 2024
  ident: 38_CR83
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.127641
– volume: 30
  start-page: 1704636
  year: 2018
  ident: 38_CR87
  publication-title: Adv Mater
  doi: 10.1002/adma.201704636
– volume: 33
  start-page: 2005910
  year: 2021
  ident: 38_CR88
  publication-title: Adv Mater
  doi: 10.1002/adma.202005910
– volume: 60
  start-page: 123
  year: 2014
  ident: 38_CR101
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2014.08.030
– volume: 59
  start-page: 1392
  year: 2007
  ident: 38_CR12
  publication-title: Adv Drug Delivery Rev
  doi: 10.1016/j.addr.2007.04.021
– volume: 104
  start-page: 294
  year: 2017
  ident: 38_CR67
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2017.06.019
– volume: 14
  start-page: 27
  year: 2020
  ident: 38_CR120
  publication-title: J Biol Eng
  doi: 10.1186/s13036-020-00249-y
– volume: 29
  start-page: 2270
  year: 2009
  ident: 38_CR52
  publication-title: Mat Sci Eng C-mater
  doi: 10.1016/j.msec.2009.05.012
– volume: 9
  start-page: 221
  year: 2016
  ident: 38_CR75
  publication-title: Materials
  doi: 10.3390/ma9040221
– volume: 475
  start-page: 146245
  year: 2023
  ident: 38_CR56
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.146245
– volume: 150
  start-page: 128
  year: 2011
  ident: 38_CR140
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2010.11.007
– volume: 7
  start-page: e2201340
  year: 2023
  ident: 38_CR176
  publication-title: Small Methods
  doi: 10.1002/smtd.202201340
– volume: 13
  start-page: 2087
  year: 2021
  ident: 38_CR17
  publication-title: Polymers
  doi: 10.3390/polym13132087
– volume: 3
  start-page: 1233
  year: 2002
  ident: 38_CR53
  publication-title: Biomacromol
  doi: 10.1021/bm025581u
– volume: 12
  start-page: 1377
  year: 2024
  ident: 38_CR151
  publication-title: J Mater Chem C
  doi: 10.1039/D3TC03769J
– volume: 23
  start-page: 2100153
  year: 2021
  ident: 38_CR34
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.202100153
– volume: 12
  start-page: 48408
  year: 2020
  ident: 38_CR55
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1039/D2TB01890J
– volume: 62
  start-page: 20220333
  year: 2023
  ident: 38_CR122
  publication-title: Rev Adv Mater Sci
  doi: 10.1515/rams-2022-0333
– volume: 16
  start-page: 7732
  year: 2024
  ident: 38_CR152
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.3c16602
– volume: 1
  start-page: 56
  year: 2016
  ident: 38_CR114
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2016.07.001
– volume: 16
  start-page: 100381
  year: 2022
  ident: 38_CR112
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2022.100381
– volume: 6
  start-page: 1801617
  year: 2019
  ident: 38_CR180
  publication-title: Adv Sci
  doi: 10.1002/advs.201801617
– volume: 4
  start-page: 758
  year: 2022
  ident: 38_CR30
  publication-title: Adv Fiber Mater
  doi: 10.1007/s42765-022-00135-w
– volume: 95
  start-page: 1679
  year: 2010
  ident: 38_CR130
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2010.05.025
– volume: 11
  start-page: 2100801
  year: 2021
  ident: 38_CR107
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202100801
– volume: 117
  year: 2021
  ident: 38_CR31
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100721
– volume: 47
  start-page: 6322
  year: 2006
  ident: 38_CR51
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.07.009
– volume: 334
  start-page: 463
  year: 2021
  ident: 38_CR16
  publication-title: J Control Release
  doi: 10.1080/25740881.2024.2346314
– volume: 7
  start-page: 149
  year: 2022
  ident: 38_CR113
  publication-title: Biomimetics
  doi: 10.3390/biomimetics7040149
– volume: 121
  start-page: 11238
  year: 2021
  ident: 38_CR20
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01200
– volume: 87
  start-page: 201
  year: 2016
  ident: 38_CR74
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2016.01.120
– volume: 73
  start-page: 365
  year: 2018
  ident: 38_CR92
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.04.025
– volume: 32
  start-page: 2200162
  year: 2022
  ident: 38_CR105
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202200162
– volume: 253
  start-page: 126863
  year: 2023
  ident: 38_CR81
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.126863
– volume: 42
  start-page: 261
  year: 2001
  ident: 38_CR85
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00250-0
– volume: 27
  start-page: 3115
  year: 2006
  ident: 38_CR93
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.022
– volume: 13
  start-page: 2499
  year: 2021
  ident: 38_CR157
  publication-title: Polymers
  doi: 10.3390/polym13152499
– volume: 28
  start-page: 325
  year: 2010
  ident: 38_CR14
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2010.01.004
– volume: 10
  start-page: 2100646
  year: 2021
  ident: 38_CR104
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.202100646
– volume: 6
  start-page: 1722
  year: 2005
  ident: 38_CR72
  publication-title: Biomacromol
  doi: 10.1021/bm050010y
– volume: 4
  start-page: 1134
  year: 2015
  ident: 38_CR39
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201500002
– volume: 7
  start-page: 1800308
  year: 2018
  ident: 38_CR115
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201800308
– volume: 16
  start-page: 2563
  year: 2023
  ident: 38_CR168
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4987-x
– volume: 245
  start-page: 116465
  year: 2020
  ident: 38_CR131
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.116465
– volume: 48
  start-page: 101745
  year: 2023
  ident: 38_CR167
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101745
– volume: 8
  start-page: 2201723
  year: 2023
  ident: 38_CR36
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202201723
– volume: 6
  start-page: 3934
  year: 2018
  ident: 38_CR77
  publication-title: J Mater Chem B
  doi: 10.1039/C8TB00535D
– volume: 61
  start-page: 988
  year: 2009
  ident: 38_CR28
  publication-title: Adv Drug Delivery Rev
  doi: 10.1016/j.addr.2009.07.005
– volume: 36
  start-page: 2308748
  year: 2024
  ident: 38_CR22
  publication-title: Adv Mater
  doi: 10.1002/adma.202308748
– volume: 33
  start-page: 203
  year: 2003
  ident: 38_CR69
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2003.08.004
– volume: 246
  start-page: 213
  year: 2012
  ident: 38_CR35
  publication-title: Biomedical applications of polymeric nanofibers
  doi: 10.1007/12_2011_143
– volume: 5
  start-page: 142
  year: 2022
  ident: 38_CR3
  publication-title: Nat Electron
  doi: 10.1038/s41928-022-00723-z
– volume: 43
  start-page: 4423
  year: 2014
  ident: 38_CR18
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60426H
– volume: 63
  start-page: 1
  year: 2017
  ident: 38_CR47
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2017.09.027
– volume: 481
  start-page: 148722
  year: 2024
  ident: 38_CR172
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2024.148722
– volume: 139
  start-page: 156
  year: 2016
  ident: 38_CR64
  publication-title: Colloid Surface B
  doi: 10.1016/j.colsurfb.2015.12.001
– volume: 56
  start-page: 101498
  year: 2020
  ident: 38_CR143
  publication-title: J Drug Delivery Sci Technol
  doi: 10.1016/j.jddst.2020.101498
– volume: 30
  start-page: 3058
  year: 2009
  ident: 38_CR60
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.01.054
– volume: 79
  start-page: 103994
  year: 2023
  ident: 38_CR84
  publication-title: J Drug Delivery Sci Technol
  doi: 10.1016/j.jddst.2022.103994
– volume: 57
  start-page: 3842
  year: 2022
  ident: 38_CR76
  publication-title: J Mater Sci
  doi: 10.1007/s10853-022-06873-x
– volume: 4
  start-page: 488
  year: 2003
  ident: 38_CR70
  publication-title: Biomacromol
  doi: 10.1021/bm0255948
– volume: 3
  start-page: 18016
  year: 2018
  ident: 38_CR66
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2018.16
– volume: 5
  start-page: 4396
  year: 2022
  ident: 38_CR29
  publication-title: Matter
  doi: 10.1016/j.matt.2022.08.028
– volume: 14
  start-page: 3875
  year: 2022
  ident: 38_CR108
  publication-title: Polymers
  doi: 10.3390/polym14183875
– volume: 23
  start-page: 2200380
  year: 2023
  ident: 38_CR80
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.202200380
– volume: 50
  start-page: 41
  year: 2017
  ident: 38_CR111
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.12.034
– volume: 10
  start-page: 7873
  year: 2022
  ident: 38_CR150
  publication-title: ACS Sustainable Chem Eng
  doi: 10.1021/acssuschemeng.2c00189
– volume: 9
  start-page: 722
  year: 2014
  ident: 38_CR11
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2014.10.002
– volume: 374
  start-page: 437
  year: 2019
  ident: 38_CR164
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.05.163
– volume: 32
  start-page: 991
  year: 2007
  ident: 38_CR38
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2007.05.013
– volume: 10
  start-page: 6078
  year: 2022
  ident: 38_CR9
  publication-title: J Mater Chem B
  doi: 10.1039/D2TB01182D
– volume: 34
  start-page: 2313539
  year: 2024
  ident: 38_CR97
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202313539
– volume: 30
  start-page: 2222
  year: 2022
  ident: 38_CR40
  publication-title: J Polym Environ
  doi: 10.1007/s10924-022-02381-w
– volume: 32
  start-page: 3784
  year: 2011
  ident: 38_CR129
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.02.002
– volume: 8
  start-page: 16
  year: 2023
  ident: 38_CR110
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8010016
– volume: 301
  start-page: 48
  year: 2016
  ident: 38_CR78
  publication-title: Macromol Mater Eng
  doi: 10.1002/mame.201500217
– ident: 38_CR117
  doi: 10.1016/j.msec.2021.112235
– volume: 2
  start-page: 952
  year: 2019
  ident: 38_CR116
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.8b00637
– volume: 119
  start-page: 5298
  year: 2019
  ident: 38_CR32
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00593
– volume: 39
  start-page: 251
  year: 2014
  ident: 38_CR99
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2013.09.002
– volume: 105
  start-page: 2892
  year: 2017
  ident: 38_CR109
  publication-title: J Biomed Mate Res Part A
  doi: 10.1002/jbm.a.36124
– volume: 9
  start-page: 5514
  year: 2021
  ident: 38_CR94
  publication-title: J Mater Chem B
  doi: 10.1039/D1TB00944C
– volume: 106
  start-page: 1092
  year: 2018
  ident: 38_CR138
  publication-title: J Biomed Mate Res Part A
  doi: 10.1002/jbm.a.36303
– volume: 2
  start-page: 206
  year: 2013
  ident: 38_CR119
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201200192
– volume: 111
  start-page: 110776
  year: 2020
  ident: 38_CR123
  publication-title: Mat Sci Eng C-mater
  doi: 10.1016/j.msec.2020.110776
– volume: 103
  start-page: 33
  year: 2016
  ident: 38_CR125
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.049
– volume: 49
  start-page: 4405
  year: 2020
  ident: 38_CR175
  publication-title: Chem Soc Rev
  doi: 10.1039/c9cs00587k
– volume: 126
  start-page: 14350
  year: 2004
  ident: 38_CR73
  publication-title: J Am Chem Soc
  doi: 10.1021/ja046079f
– ident: 38_CR149
  doi: 10.1016/j.mtphys.2024.101334
– ident: 38_CR24
  doi: 10.1002/adfm.201909616
– volume: 36
  start-page: 907
  year: 2018
  ident: 38_CR49
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2018.04.004
– volume: 44
  start-page: 790
  year: 2015
  ident: 38_CR25
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00226A
– volume: 11
  start-page: 2000845
  year: 2021
  ident: 38_CR37
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202000845
– volume: 48
  start-page: 152
  year: 2018
  ident: 38_CR106
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.033
– volume: 4
  start-page: 211
  year: 2018
  ident: 38_CR139
  publication-title: Int J Polym Mater Po
  doi: 10.1080/00914037.2018.1552865
– volume: 1
  start-page: 1700079
  year: 2017
  ident: 38_CR160
  publication-title: Adv Sustainable Syst
  doi: 10.1002/adsu.201700079
– volume: 121
  start-page: 11194
  year: 2021
  ident: 38_CR19
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00816
– volume: 5
  start-page: 157
  year: 2023
  ident: 38_CR7
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-023-00558-3
– volume: 5
  start-page: 241
  year: 2020
  ident: 38_CR27
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.01.010
– volume: 17
  start-page: 18308
  year: 2023
  ident: 38_CR153
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05460
– volume: 10
  start-page: 2784
  year: 2024
  ident: 38_CR23
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.4c00254
– volume: 6
  start-page: 2100410
  year: 2021
  ident: 38_CR13
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202100410
– volume: 14
  start-page: 100243
  year: 2022
  ident: 38_CR96
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2022.100243
– volume: 9
  start-page: 2103981
  year: 2022
  ident: 38_CR21
  publication-title: Adv Sci
  doi: 10.1002/advs.202103981
– volume: 37
  start-page: 6856
  year: 2004
  ident: 38_CR45
  publication-title: Macromolecules
  doi: 10.1021/ma048988v
– volume: 7
  start-page: 302
  year: 2023
  ident: 38_CR63
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-023-00486-x
– volume: 6
  start-page: eabc2036
  year: 2020
  ident: 38_CR133
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.abc2036
– volume: 75
  year: 2013
  ident: 38_CR159
  publication-title: Jove-j Vis Exp
  doi: 10.3791/50492
– volume: 10
  start-page: e1509
  year: 2018
  ident: 38_CR43
  publication-title: WIRES Nanomed Nanobio
  doi: 10.1002/wnan.1509
– volume: 19
  start-page: 1737
  year: 2021
  ident: 38_CR59
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-020-01147-x
– volume: 5
  start-page: 2570
  year: 2009
  ident: 38_CR90
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2008.12.013
– volume: 7
  start-page: 56550
  year: 2017
  ident: 38_CR137
  publication-title: Rsc Adv
  doi: 10.1039/C7RA12394A
– volume: 13
  start-page: 25729
  year: 2023
  ident: 38_CR155
  publication-title: Rsc Adv
  doi: 10.1039/d3ra04621d
– volume: 49
  start-page: 223
  year: 2011
  ident: 38_CR135
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2011.04.018
– volume: 10
  start-page: 1
  year: 2012
  ident: 38_CR144
  publication-title: J Transl Med.
  doi: 10.1186/1479-5876-10-117
– volume: 123
  start-page: 5049
  year: 2023
  ident: 38_CR102
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.2c00823
– volume: 25
  start-page: 5540
  year: 2020
  ident: 38_CR156
  publication-title: Molecules
  doi: 10.3390/molecules25235540
– volume: 231
  start-page: 112006
  year: 2023
  ident: 38_CR169
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2023.112006
– volume: 33
  start-page: 998
  year: 2008
  ident: 38_CR41
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2008.08.002
– volume: 10
  start-page: 833157
  year: 2022
  ident: 38_CR132
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2022.833157
– volume: 50
  start-page: 5435
  year: 2021
  ident: 38_CR8
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00258E
– volume: 5
  start-page: 510
  year: 2020
  ident: 38_CR57
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.04.005
– volume: 14
  start-page: 45707
  year: 2022
  ident: 38_CR170
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c13727
– volume: 4
  start-page: 557
  year: 2024
  ident: 38_CR33
  publication-title: Nat Rev Methods Primers
  doi: 10.1038/s43586-023-00278-z
– volume: 12
  start-page: 431
  year: 2011
  ident: 38_CR166
  publication-title: Fiber Polym
  doi: 10.1007/s12221-011-0431-7
– volume: 34
  start-page: 2208236
  year: 2022
  ident: 38_CR171
  publication-title: Adv Mater
  doi: 10.1002/adma.202208236
– volume: 593
  start-page: 142
  year: 2021
  ident: 38_CR142
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.02.099
– volume: 29
  start-page: 2217
  year: 2008
  ident: 38_CR91
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.01.022
– volume: 33
  start-page: 2300794
  year: 2023
  ident: 38_CR173
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202300794
– volume: 321
  start-page: 324
  year: 2020
  ident: 38_CR44
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2020.02.022
– volume: 8
  start-page: 8181
  year: 2018
  ident: 38_CR158
  publication-title: Rsc Adv
  doi: 10.1039/C7RA12879G
– volume: 6
  start-page: 1612
  year: 2011
  ident: 38_CR65
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.379
– volume: 93
  start-page: 976
  year: 2010
  ident: 38_CR126
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.32497
– volume: 8
  start-page: 1800465
  year: 2019
  ident: 38_CR42
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201800465
– volume: 18
  start-page: 7085
  year: 2018
  ident: 38_CR50
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b03085
– volume: 16
  start-page: 1151
  year: 2004
  ident: 38_CR58
  publication-title: Adv Mater
  doi: 10.1002/adma.200400719
– volume: 426
  start-page: 131947
  year: 2021
  ident: 38_CR146
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131947
– volume: 122
  start-page: 3259
  year: 2022
  ident: 38_CR1
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00502
– volume: 81
  start-page: 1402
  year: 2023
  ident: 38_CR103
  publication-title: Acta Chim Sin
  doi: 10.6023/a23060289
– volume: 9
  start-page: 2590
  year: 2016
  ident: 38_CR163
  publication-title: Nano Res
  doi: 10.1007/s12274-016-1145-3
– volume: 174
  start-page: 2403
  year: 2014
  ident: 38_CR100
  publication-title: Biotechnol Appl Biochem
  doi: 10.1007/s12010-014-1151-4
– volume: 45
  start-page: 504
  year: 2009
  ident: 38_CR128
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2009.09.006
– volume: 10
  start-page: 246
  year: 2010
  ident: 38_CR98
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200900274
– volume: 192
  start-page: 105
  year: 1976
  ident: 38_CR6
  publication-title: Science
  doi: 10.1126/science.769161
– volume: 111
  start-page: 17385
  year: 2014
  ident: 38_CR178
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1407743111
– ident: 38_CR118
  doi: 10.1016/j.msec.2016.06.019
– volume: 38
  start-page: 963
  year: 2013
  ident: 38_CR26
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2013.02.001
– volume: 8
  start-page: 9598
  year: 2018
  ident: 38_CR162
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27917-w
– volume: 28
  start-page: 580
  year: 2010
  ident: 38_CR5
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2010.07.006
– volume: 33
  start-page: e2102500
  year: 2021
  ident: 38_CR54
  publication-title: Adv Mater
  doi: 10.1002/adma.202102500
– volume: 190
  start-page: 381
  year: 2014
  ident: 38_CR121
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.05.059
– volume: 24
  start-page: 4462
  year: 2024
  ident: 38_CR154
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.4c00308
– volume: 337
  start-page: 1640
  year: 2012
  ident: 38_CR177
  publication-title: Science
  doi: 10.1126/science.1226325
– volume: 35
  start-page: 6
  year: 2002
  ident: 38_CR71
  publication-title: Macromolecules
  doi: 10.1021/ma011335j
SSID ssj0003212238
Score 2.2947974
SecondaryResourceType review_article
Snippet Electrospinning technology, capable of creating nanofiber-based materials with large specific surface areas and exceptional breathability, has become an...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Biomaterials
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Computational Biology/Bioinformatics
Regenerative Medicine/Tissue Engineering
Review
Title Electrospun silk for biomedical applications
URI https://link.springer.com/article/10.1007/s44258-024-00038-y
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovHgRRcX5RQ_eXGBp89EcpWwMD54c7FaSNAFx1GG3Q_97kzQtDmTgJaeXQn4vfb8X3hfAU8WziikiUGqkRCTXGuVWWoSFJv7RzKUK2RZvbLEkryu6ikVhTZ_t3ockg6Ueit2Iu145cpyCQjwLtcdwQt3b3d_rItY4ePubOWvsiChWyPy9dZ-F9kOggVnm53AWXcLkpdPhBRyZ-hIms24-TbPZ1Unzsf5MnHeZdMXyHtfkd-T5Cpbz2XuxQHGyAdIpTVtkjcaWSlYJ4yjYSFr5TmBWpNjgaSU551RgI3EmieE6cz4LVb6T3dQonltrs2sY1V-1uYGEcS6NVO4TMiWZpMIqwSpqc8GIVkqNAfcnLXVs--2nT6zLoWFxQKd06JQBnbIdw_OwZ9M1vTgoPekBLOMP0BwQv_2f-B2cpl5xPvMuv4fR9ntnHpwfsFWPQe1-ZcUP01Csdg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20HvQiior1cw_ebLDZzcfmKKWlau2phd5Ckk1ALGvptof-e5PdbbEiBe-TwL4M-yaZmTcADxlPMqaJQLFVCpHUGJQ65RAWhoRLM1e6rLYYsv6YvE7opJbJCb0wv_L3TwXxTpUizySozGKh1T4cEH9TDuV7HdbZvKck_h_s6afui_l76Tb3bCc-Sz7pncBxHQhGz9XJncKezc-g1a2m0hSzZR4VH9PPyMeUUdUiH9CMfuabz2Hc6446fVTPM0AmpvEKOWuwo4plwnritYpmQf_LiRhb3M4U55wKbBVOFLHcJD5SoTro17Wt5qlzLrmARv6V20uIGOfKKu23UDFJFBVOC5ZRlwpGjNa6CXj9pdLUYt9h5sRUbmSKS3SkR0eW6MhVEx43a2aV1MVO69YaQFm7fbHD_Op_5vdw2B-9D-TgZfh2DUdxOMRQe5feQGMxX9pbHwks9F3pAt-fQKqq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIomJ97sGbDW1289gcpbbUB8WDhd5CniCWbbHtof_eJLtdWpCC90lgJ8l-k8x83wDwYFhmqMIcplZKiHOtYe6kg4hrHC7NTKpYbTGkgxF-HZPxBos_VruvU5IlpyGoNBWL9sy4dk18w36r5dDjC4y5LbjaBwf-phITtV3arV9ZMv9n9qBUsWX-HrqNSNvp0Igy_RNwXIWHyVO5nqdgzxZnoNUre9XMZ8simX9NvhMfaSYlcT74ONnMQp-DUb_32R3AqssB1ClJV9BZjRyR1HDr4dhKYoIqmOMpsqhjJGOMcGQlyiS2TGc-fiEqqNp1rGK5cy67AI1iWthLkFDGpJXKTyFTnEnCneLUEJdzirVSqgnQ-kuFriTAQyeKiajFi6N3hPeOiN4RqyZ4rMfMSgGMndattQNFdRjmO8yv_md-Dw4_nvvi_WX4dg2O0rCGoSAvvwGNxc_S3vrwYKHu4g74BalKsvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+silk+for+biomedical+applications&rft.jtitle=Med-X&rft.au=Dai%2C+Shufen&rft.au=Liang%2C+Huarun&rft.au=Zhu%2C+Mengjia&rft.au=Zhang%2C+Yingying&rft.date=2024-11-18&rft.issn=2731-8710&rft.eissn=2731-8710&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1007%2Fs44258-024-00038-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44258_024_00038_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-8710&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-8710&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-8710&client=summon