Staircases to Analytic Sum-Sides for Many New Integer Partition Identities of Rogers-Ramanujan Type

We utilize the technique of staircases and jagged partitions to provide analytic sum-sides to some old and new partition identities of Rogers-Ramanujan type. Firstly, we conjecture a class of new partition identities related to the principally specialized characters of certain level $2$ modules for...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 26; no. 1
Main Authors Kanade, Shashank, Russell, Matthew C.
Format Journal Article
LanguageEnglish
Published 11.01.2019
Online AccessGet full text

Cover

Loading…
Abstract We utilize the technique of staircases and jagged partitions to provide analytic sum-sides to some old and new partition identities of Rogers-Ramanujan type. Firstly, we conjecture a class of new partition identities related to the principally specialized characters of certain level $2$ modules for the affine Lie algebra $A_9^{(2)}$. Secondly, we provide analytic sum-sides to some earlier conjectures of the authors. Next, we use these analytic sum-sides to discover a number of further generalizations. Lastly, we apply this technique to the well-known Capparelli identities and present analytic sum-sides which we believe to be new. All of the new conjectures presented in this article are supported by a strong mathematical evidence.  
AbstractList We utilize the technique of staircases and jagged partitions to provide analytic sum-sides to some old and new partition identities of Rogers-Ramanujan type. Firstly, we conjecture a class of new partition identities related to the principally specialized characters of certain level $2$ modules for the affine Lie algebra $A_9^{(2)}$. Secondly, we provide analytic sum-sides to some earlier conjectures of the authors. Next, we use these analytic sum-sides to discover a number of further generalizations. Lastly, we apply this technique to the well-known Capparelli identities and present analytic sum-sides which we believe to be new. All of the new conjectures presented in this article are supported by a strong mathematical evidence.  
Author Russell, Matthew C.
Kanade, Shashank
Author_xml – sequence: 1
  givenname: Shashank
  surname: Kanade
  fullname: Kanade, Shashank
– sequence: 2
  givenname: Matthew C.
  surname: Russell
  fullname: Russell, Matthew C.
BookMark eNpdkEtrAjEUhUOxULX-h2y6KtPm4UycpUgfgn2gdj3cSe6UiCaSRMr8-860XRRX93DPx-FwRmTgvENCJpzdSSVkca9mU3VBhpwplc1KUQz-6SsyinHHGBdlmQ-J3iSwQUPESJOncwf7NllNN6dDtrGm-zY-0BdwLX3FL7p0CT8x0HcIySbrHV0adL3sSN_Qte_cmK3hAO60A0e37RGvyWUD-4iTvzsmH48P28Vztnp7Wi7mq0yLXKQMOTcC6plWhVZlzgTnoE0hptMStW60lAxNjUZxUwPmhaxzKYoaTKMN5BzkmNz-5urgYwzYVNom6FumAHZfcVb97FP1-3T0zRl9DPYAoT3jvgFbWmeA
CitedBy_id crossref_primary_10_1007_s11139_024_00918_2
crossref_primary_10_1007_s11139_020_00327_1
crossref_primary_10_1007_s11139_024_00901_x
crossref_primary_10_1007_s11139_025_01033_6
crossref_primary_10_1515_crelle_2019_0012
crossref_primary_10_1007_s11139_024_00895_6
crossref_primary_10_1007_s11139_021_00389_9
crossref_primary_10_1007_s00026_022_00597_0
crossref_primary_10_1007_s00026_022_00586_3
crossref_primary_10_1007_s40687_024_00460_z
crossref_primary_10_1090_proc_16332
crossref_primary_10_1007_s00026_019_00470_7
crossref_primary_10_1007_s00026_019_00474_3
crossref_primary_10_1016_j_jcta_2019_02_001
crossref_primary_10_1007_s11139_022_00654_5
crossref_primary_10_1007_s00026_025_00745_2
crossref_primary_10_1007_s00026_019_00445_8
crossref_primary_10_5802_alco_311
crossref_primary_10_1016_j_disc_2020_111876
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/7847
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_7847
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c252t-e11d2ab8c76c7950211acd62449eccfc330edbed71dbae563b5326badfcda51a3
ISSN 1077-8926
IngestDate Thu Apr 24 22:58:37 EDT 2025
Tue Jul 01 03:48:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-e11d2ab8c76c7950211acd62449eccfc330edbed71dbae563b5326badfcda51a3
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v26i1p6/pdf
ParticipantIDs crossref_citationtrail_10_37236_7847
crossref_primary_10_37236_7847
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-11
PublicationDateYYYYMMDD 2019-01-11
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-11
  day: 11
PublicationDecade 2010
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2019
SSID ssj0012995
Score 2.376241
Snippet We utilize the technique of staircases and jagged partitions to provide analytic sum-sides to some old and new partition identities of Rogers-Ramanujan type....
SourceID crossref
SourceType Enrichment Source
Index Database
Title Staircases to Analytic Sum-Sides for Many New Integer Partition Identities of Rogers-Ramanujan Type
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-gCgifuLnyINvUl0_0naPIhMRJrJN2NtIk1QnrpWte9AH_3bv0qztxsCPh5UtJO22X3K5u9z9jpBzhZxTfiisOHbrlieZa4XcVmDzOKGsM-WxGP0drQf_7sm777FeWW1UZ5dk0aX4XJhX8h9UoQ1wxSzZPyBb3BQa4D3gC1dAGK6_whg0xcFIwD6kaRo0vwjyr3YmQ6szkEpTLWCAy4cOY0TnH-b4PuKdNOwmS3eQE8-202eMjm_zIU8mr7Du0UatKq84pZpl2ZwK6QT8OLCwuSYcKU-HMJ4s93C_8PELT4qkoPZkPDbnHabe-MXNZdX_gClPtmXkYy4y6wHscw3HEFovaDNy1nyqzKd58e0Gji4wE4Q5C-csPfbctlUEE4IZowf2cdgyWXXAYECJ1_pqFudJsOmyPPo0_15rZHP6vCscVtFKKupFd5tsGbuAXucg75AlleySjVZBqjveI6KEm2YpncJNC7gpwE0RbgpwUwM3LeCmJdw0jek83BTh3idPt83uzZ1lamRYwmFOZinblg6PQhH4Imgw0NhsLqQPSlsDFmcsXLeuZKRkYMuI48KMGCjsEZexkJzZ3D0gK0maqENCvUD6QjB4ycBrSD8KlQtrNfRtgc5K94icT_-jvjAE8ljH5K0_g8ARqRXd3nPGlNkOxz91OCHr5UQ7JSvZaKLOQPXLopp2mdQ0tt_yZV80
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staircases+to+Analytic+Sum-Sides+for+Many+New+Integer+Partition+Identities+of+Rogers-Ramanujan+Type&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Kanade%2C+Shashank&rft.au=Russell%2C+Matthew+C.&rft.date=2019-01-11&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=26&rft.issue=1&rft_id=info:doi/10.37236%2F7847&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_7847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon