Forbidden Subgraphs of Power Graphs

The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$. A number of important grap...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 28; no. 3
Main Authors Manna, Pallabi, Cameron, Peter J., Mehatari, Ranjit
Format Journal Article
LanguageEnglish
Published 02.07.2021
Online AccessGet full text

Cover

Loading…
Abstract The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$. A number of important graph classes, including perfect graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. We examine each of these five classes and attempt to determine for which groups $G$ the power graph $P(G)$ lies in the class under consideration. We give complete results in the case of nilpotent groups, and partial results in greater generality. In particular, the power graph is always perfect; and we determine completely the groups whose power graph is a threshold or split graph (the answer is the same for both classes). We give a number of open problems.
AbstractList The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$. A number of important graph classes, including perfect graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. We examine each of these five classes and attempt to determine for which groups $G$ the power graph $P(G)$ lies in the class under consideration. We give complete results in the case of nilpotent groups, and partial results in greater generality. In particular, the power graph is always perfect; and we determine completely the groups whose power graph is a threshold or split graph (the answer is the same for both classes). We give a number of open problems.
Author Mehatari, Ranjit
Manna, Pallabi
Cameron, Peter J.
Author_xml – sequence: 1
  givenname: Pallabi
  surname: Manna
  fullname: Manna, Pallabi
– sequence: 2
  givenname: Peter J.
  surname: Cameron
  fullname: Cameron, Peter J.
– sequence: 3
  givenname: Ranjit
  surname: Mehatari
  fullname: Mehatari, Ranjit
BookMark eNpdj81KAzEYRYNUsK19hwFxJWPzN_kmSym2CoUK6nrI36eROinJiPj22upCurr3wuHCmZBRn_pAyIzRawFcqLnWip2QMaMAdau5Gv3rZ2RSyhuljGvdjMnFMmUbvQ999fhhX7LZvZYqYfWQPkOuVod9Tk7RbEuY_eWUPC9vnxZ39Xqzul_crGvHGz7UPrTBUU1dYwJy65GBpcJ6LUBZDQCGSRBIgYGRTqKVrJUIYCUq36AWU3L1--tyKiUH7FwczBBTP2QTtx2j3cGv2_v90JdH9C7Hd5O_jrhvhXhO_g
CitedBy_id crossref_primary_10_1080_09728600_2023_2234956
crossref_primary_10_1007_s13226_025_00751_3
crossref_primary_10_3934_era_2024222
crossref_primary_10_1515_jgth_2022_0081
crossref_primary_10_1007_s10801_023_01262_2
crossref_primary_10_1080_00927872_2022_2069793
crossref_primary_10_2989_16073606_2023_2278078
crossref_primary_10_1007_s13398_024_01611_1
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/9961
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_9961
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c252t-de8ec090c5aef2bdf17b03bd9376b9777a1473f0717a4c4fb4184f77b4f6d5f93
ISSN 1077-8926
IngestDate Tue Jul 01 03:48:42 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-de8ec090c5aef2bdf17b03bd9376b9777a1473f0717a4c4fb4184f77b4f6d5f93
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v28i3p4/pdf
ParticipantIDs crossref_citationtrail_10_37236_9961
crossref_primary_10_37236_9961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-02
PublicationDateYYYYMMDD 2021-07-02
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-02
  day: 02
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2021
SSID ssj0012995
Score 2.419565
Snippet The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Forbidden Subgraphs of Power Graphs
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QRQRrzgvo-DepLNN0tujyOYYzAfZYG8jSRNUpJNZX3zwt3uSdmknAy8voQ1JmvZLc76TnJyDUJuQkNBUAXNTXurSRBI3hqnYjQJBSMBVHAu9NDC8D_tjOpgEkyqknzldkvOO-Fh5ruQ_qEIe4KpPyf4BWdsoZMA14AspIAzprzDuzeZcuwDJ9P9vXE-XNm3a8v3O3NfJpx4S3SrsTc1pBHQONGRmHIZYkq3jJ7OCZeqx8lTbrpDzYrPeWPdeDTq2inxkOSsOrz-w7Pkpr68qYN9YoNYWGkErBOmV4NJN9Yq8cvbEcW2UkFWTMomwCRsDmpVfSZ3FTvs3YWRNBEE5MRWnuto62sCgBugIFcPPrt0lAlEaFDalRb820c7iede6Wo1r1EjDaA_tlmzfuSmg20drMjtA20PrKvftEF1aEB0LojNTjgHRKUA8QuNed3Tbd8vIFa7AAc7dVMZSeIknAiYV5qnyI-4RngIXDDkw7oj5NCJK69KMCqo4BUVbRRGnKkwDlZBj1MhmmTxBTsAjppvh3GeUcxGTlAjsSyB6WMW-30TtxTtORenWXUcXeZkufcEmatlir4Ufk-UCpz8VOENb1UA5R418_i4vgJDlvGUWMloGmy8aEzcg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forbidden+Subgraphs+of+Power+Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Manna%2C+Pallabi&rft.au=Cameron%2C+Peter+J.&rft.au=Mehatari%2C+Ranjit&rft.date=2021-07-02&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=28&rft.issue=3&rft_id=info:doi/10.37236%2F9961&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_9961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon