Forbidden Subgraphs of Power Graphs
The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$. A number of important grap...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 28; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
02.07.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$.
A number of important graph classes, including perfect graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. We examine each of these five classes and attempt to determine for which groups $G$ the power graph $P(G)$ lies in the class under consideration. We give complete results in the case of nilpotent groups, and partial results in greater generality. In particular, the power graph is always perfect; and we determine completely the groups whose power graph is a threshold or split graph (the answer is the same for both classes). We give a number of open problems. |
---|---|
AbstractList | The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$.
A number of important graph classes, including perfect graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. We examine each of these five classes and attempt to determine for which groups $G$ the power graph $P(G)$ lies in the class under consideration. We give complete results in the case of nilpotent groups, and partial results in greater generality. In particular, the power graph is always perfect; and we determine completely the groups whose power graph is a threshold or split graph (the answer is the same for both classes). We give a number of open problems. |
Author | Mehatari, Ranjit Manna, Pallabi Cameron, Peter J. |
Author_xml | – sequence: 1 givenname: Pallabi surname: Manna fullname: Manna, Pallabi – sequence: 2 givenname: Peter J. surname: Cameron fullname: Cameron, Peter J. – sequence: 3 givenname: Ranjit surname: Mehatari fullname: Mehatari, Ranjit |
BookMark | eNpdj81KAzEYRYNUsK19hwFxJWPzN_kmSym2CoUK6nrI36eROinJiPj22upCurr3wuHCmZBRn_pAyIzRawFcqLnWip2QMaMAdau5Gv3rZ2RSyhuljGvdjMnFMmUbvQ999fhhX7LZvZYqYfWQPkOuVod9Tk7RbEuY_eWUPC9vnxZ39Xqzul_crGvHGz7UPrTBUU1dYwJy65GBpcJ6LUBZDQCGSRBIgYGRTqKVrJUIYCUq36AWU3L1--tyKiUH7FwczBBTP2QTtx2j3cGv2_v90JdH9C7Hd5O_jrhvhXhO_g |
CitedBy_id | crossref_primary_10_1080_09728600_2023_2234956 crossref_primary_10_1007_s13226_025_00751_3 crossref_primary_10_3934_era_2024222 crossref_primary_10_1515_jgth_2022_0081 crossref_primary_10_1007_s10801_023_01262_2 crossref_primary_10_1080_00927872_2022_2069793 crossref_primary_10_2989_16073606_2023_2278078 crossref_primary_10_1007_s13398_024_01611_1 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/9961 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_9961 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 OVT P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c252t-de8ec090c5aef2bdf17b03bd9376b9777a1473f0717a4c4fb4184f77b4f6d5f93 |
ISSN | 1077-8926 |
IngestDate | Tue Jul 01 03:48:42 EDT 2025 Thu Apr 24 23:01:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c252t-de8ec090c5aef2bdf17b03bd9376b9777a1473f0717a4c4fb4184f77b4f6d5f93 |
OpenAccessLink | https://www.combinatorics.org/ojs/index.php/eljc/article/download/v28i3p4/pdf |
ParticipantIDs | crossref_citationtrail_10_37236_9961 crossref_primary_10_37236_9961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-02 |
PublicationDateYYYYMMDD | 2021-07-02 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2021 |
SSID | ssj0012995 |
Score | 2.419565 |
Snippet | The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Forbidden Subgraphs of Power Graphs |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QRQRrzgvo-DepLNN0tujyOYYzAfZYG8jSRNUpJNZX3zwt3uSdmknAy8voQ1JmvZLc76TnJyDUJuQkNBUAXNTXurSRBI3hqnYjQJBSMBVHAu9NDC8D_tjOpgEkyqknzldkvOO-Fh5ruQ_qEIe4KpPyf4BWdsoZMA14AspIAzprzDuzeZcuwDJ9P9vXE-XNm3a8v3O3NfJpx4S3SrsTc1pBHQONGRmHIZYkq3jJ7OCZeqx8lTbrpDzYrPeWPdeDTq2inxkOSsOrz-w7Pkpr68qYN9YoNYWGkErBOmV4NJN9Yq8cvbEcW2UkFWTMomwCRsDmpVfSZ3FTvs3YWRNBEE5MRWnuto62sCgBugIFcPPrt0lAlEaFDalRb820c7iede6Wo1r1EjDaA_tlmzfuSmg20drMjtA20PrKvftEF1aEB0LojNTjgHRKUA8QuNed3Tbd8vIFa7AAc7dVMZSeIknAiYV5qnyI-4RngIXDDkw7oj5NCJK69KMCqo4BUVbRRGnKkwDlZBj1MhmmTxBTsAjppvh3GeUcxGTlAjsSyB6WMW-30TtxTtORenWXUcXeZkufcEmatlir4Ufk-UCpz8VOENb1UA5R418_i4vgJDlvGUWMloGmy8aEzcg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forbidden+Subgraphs+of+Power+Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Manna%2C+Pallabi&rft.au=Cameron%2C+Peter+J.&rft.au=Mehatari%2C+Ranjit&rft.date=2021-07-02&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=28&rft.issue=3&rft_id=info:doi/10.37236%2F9961&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_9961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |