The effect of excitation frequency on the flow structure of a plane jet subject to acoustic excitation using particle image velocimetry

The flow field of plane jets has been studied experimentally under both no-excitation and excitation conditions. The jet pulsation intensity and jet Reynolds number were fixed at 1.0 and 500, respectively, while the excitation frequency increased gradually from 40, 60, and 100 Hz. Acoustic excitatio...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 37; no. 1
Main Authors Kumar, Sanjay, Murugan, Sudharson, Brohi, Ali Anwar, Ahmed, Zaheer
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The flow field of plane jets has been studied experimentally under both no-excitation and excitation conditions. The jet pulsation intensity and jet Reynolds number were fixed at 1.0 and 500, respectively, while the excitation frequency increased gradually from 40, 60, and 100 Hz. Acoustic excitation characteristics were determined using hotwire anemometry. Laser-assisted smoke flow visualization techniques were used to render flow features, and an edge detection technique was employed to quantify jet spreading characteristics. The velocity fields were measured using particle image velocimetry. The results show that the velocity pulsation near jet exits exhibited hump-like periodic oscillation signals. Kármán vortex street is generated periodically downstream of plane jet on flow in natural jet flow. These instabilities are replaced with mushroom-shaped coherent vortex structure when jet is under excitation. Higher excitation frequencies intensified these mushroom-shaped structures, which then became puff-like structures and eventually led to vortex breakdown resulting in turbulence eddies. Lagrangian integral time scales and length scales attribute strong vortex stretching effect to vortices breakup phenomenon, which was strong in near field in cases of excitation. In addition, small-length scales of fine turbulence eddies confirmed cascade of turbulent kinetic energy. Flow pulsation magnifies jet spread and vortex's strength. The streamline patterns revealed a two-counter rotating vortex structure in outer shear layers of plane jet flow. Turbulence intensities were significantly higher in near field due to the rapid roll-up of vortices and strong entrainment effect, leading to a higher momentum exchange rate and prominent mixing enhancement significantly during excitation.
AbstractList The flow field of plane jets has been studied experimentally under both no-excitation and excitation conditions. The jet pulsation intensity and jet Reynolds number were fixed at 1.0 and 500, respectively, while the excitation frequency increased gradually from 40, 60, and 100 Hz. Acoustic excitation characteristics were determined using hotwire anemometry. Laser-assisted smoke flow visualization techniques were used to render flow features, and an edge detection technique was employed to quantify jet spreading characteristics. The velocity fields were measured using particle image velocimetry. The results show that the velocity pulsation near jet exits exhibited hump-like periodic oscillation signals. Kármán vortex street is generated periodically downstream of plane jet on flow in natural jet flow. These instabilities are replaced with mushroom-shaped coherent vortex structure when jet is under excitation. Higher excitation frequencies intensified these mushroom-shaped structures, which then became puff-like structures and eventually led to vortex breakdown resulting in turbulence eddies. Lagrangian integral time scales and length scales attribute strong vortex stretching effect to vortices breakup phenomenon, which was strong in near field in cases of excitation. In addition, small-length scales of fine turbulence eddies confirmed cascade of turbulent kinetic energy. Flow pulsation magnifies jet spread and vortex's strength. The streamline patterns revealed a two-counter rotating vortex structure in outer shear layers of plane jet flow. Turbulence intensities were significantly higher in near field due to the rapid roll-up of vortices and strong entrainment effect, leading to a higher momentum exchange rate and prominent mixing enhancement significantly during excitation.
Author Ahmed, Zaheer
Kumar, Sanjay
Brohi, Ali Anwar
Murugan, Sudharson
Author_xml – sequence: 1
  givenname: Sanjay
  surname: Kumar
  fullname: Kumar, Sanjay
  organization: Mehran University of Engineering and Technology
– sequence: 2
  givenname: Sudharson
  surname: Murugan
  fullname: Murugan, Sudharson
  organization: Annasaheb Dange College of Engineering and Technology, Astha, Shivaji University
– sequence: 3
  givenname: Ali Anwar
  surname: Brohi
  fullname: Brohi, Ali Anwar
  organization: Mehran University of Engineering and Technology
– sequence: 4
  givenname: Zaheer
  surname: Ahmed
  fullname: Ahmed, Zaheer
  organization: Mehran University of Engineering and Technology
BookMark eNp9kMtOwzAQRS1UJNrCgj-wxAqkFDuJHWeJKl5SJTZlHbmTcUmUxsF2gH4Bv02iFokVq3kd3Zk7MzJpbYuEXHK24Ewmt2LB4jTN8uyETDlTeZRJKSdjnrFIyoSfkZn3NWMsyWM5Jd_rN6RoDEKg1lD8giroUNmWGofvPbawp0MRBso09pP64HoIvcOR1rRrdIu0xkB9v6lHkWCpBtv7UMFftd5X7ZZ22g39Bmm101ukH9hYqHYY3P6cnBrdeLw4xjl5fbhfL5-i1cvj8_JuFUEs4hCBNMrEqQE0OduUGUAmcpSSx6CVgtQkkpdK6BITIZhSbCNADzPGTclLUMmcXB10O2cHez4Ute1dO6wsEi54nMlMjNT1gQJnvXdois4NJ7t9wVkx_rkQxfHPA3tzYP2v2X_gH-PdgfM
CODEN PHFLE6
Cites_doi 10.1016/j.expthermflusci.2007.06.009
10.1063/1.2959171
10.1016/S1877-7058(14)00002-2
10.1088/0957-0233/8/12/002
10.1016/j.ijmecsci.2020.106182
10.1017/S0022112081000463
10.1007/BF03181927
10.1063/5.0181110
10.1063/5.0118025
10.1016/j.ijheatfluidflow.2022.109037
10.1017/S002211208400269X
10.1063/1.4788933
10.1016/j.scient.2013.02.022
10.2514/3.11864
10.29252/jafm.12.02.29113
10.1007/s00231-019-02696-w
10.1016/j.expthermflusci.2007.06.004
10.1139/tcsme-2023-0028
10.1007/BF01893300
10.1063/1.3678333
10.1063/1.2904994
10.1007/s003480050044
10.1007/s003480050263
10.1016/j.expthermflusci.2020.110039
10.1088/0957-0233/1/11/013
10.2514/3.9183
10.1007/BF00196484
10.1299/jsmeb.49.988
10.1146/annurev-fluid-120710-101204
10.1017/S0022112076001468
10.1016/j.euromechflu.2020.11.003
ContentType Journal Article
Copyright Author(s)
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0244797
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0244797
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c252t-c6f8f24fcef90bd7cc759e6612ca88c4f361d85ade3550880b5ca2ca01fd1dc83
ISSN 1070-6631
IngestDate Mon Jun 30 13:22:42 EDT 2025
Tue Jul 01 01:53:32 EDT 2025
Sat Jan 04 03:51:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-c6f8f24fcef90bd7cc759e6612ca88c4f361d85ade3550880b5ca2ca01fd1dc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5476-5293
0000-0003-0139-3179
0000-0003-3937-8396
PQID 3151276758
PQPubID 2050667
PageCount 14
ParticipantIDs scitation_primary_10_1063_5_0244797
crossref_primary_10_1063_5_0244797
proquest_journals_3151276758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-01
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Hsu, Jhan, Chang (c35) 2020
Zaman, Hussain (c38) 1981
Luff, Drouillard, Rompage, Linne, Hertzberg (c34) 1999
Nasr, Lai (c20) 1997
Namer, Otugen (c4) 1988
Kumar, Huang, Hsu (c21) 2021
Suresh, Srinivasan, Sundararajan, Das (c10) 2008
Deo, Mi, Nathan (c7) 2007
Steele, Taylor, Burrell, Coleman (c33) 1993
Hsu, Kumar (c22) 2022
Keane, Adrian (c30) 1990
Lemieux, Oosthuizen (c3) 1985
Nicholls, Chakravarthy, Tang, Williams, Bacic (c16) 2022
Westerweel (c31) 1997
Westerweel, Elsinga, Adrian (c32) 2013
Iio, Kawamura, Matsubara, Yoshida, Ikeda (c5) 2006
Kumar, Huang, Hsu (c19) 2021
Murugan, Huang, Hsu (c28) 2020
Huang, Hsu (c27) 2012
Browne, Antonia, Chambers (c2) 1984
Deo, Nathan, Mi (c8) 2007
Pratomo, Bremhorst (c12) 2012
Mei (c24) 1996
Chaparian, Amini, Sedaghat (c13) 2013
Kumar, Bilal, Sarwar, Ahmed, Soomro, Junejo, Abbasi, Harijan (c17) 2024
Li, Huang, Tu, Liu, Wang (c14) 2013
Deo, Mi, Nathan (c9) 2008
Marzouk, Hnaien (c15) 2019
Kumar, Murugan (c23) 2024
Iio, Kawamura, Matsubara, Yoshida, Ikeda (c6) 2008
Gutmark, Wygnanski (c1) 1976
(2025010313203036000_c15) 2019; 12
(2025010313203036000_c19) 2021; 193
(2025010313203036000_c29) 1990
(2025010313203036000_c9) 2008; 20
(2025010313203036000_c25) 1988
(2025010313203036000_c12) 2012; 50
(2025010313203036000_c35) 2020; 56
(2025010313203036000_c4) 1988; 6
(2025010313203036000_c7) 2007; 32
(2025010313203036000_c3) 1985; 23
(2025010313203036000_c17) 2024; 48
(2025010313203036000_c32) 2013; 45
(2025010313203036000_c2) 1984; 149
(2025010313203036000_c26) 2001
(2025010313203036000_c28) 2020; 114
(2025010313203036000_c31) 1997; 8
(2025010313203036000_c33) 1993; 31
(2025010313203036000_c6) 2008; 11
(2025010313203036000_c11) 2006
(2025010313203036000_c13) 2013; 20
(2025010313203036000_c10) 2008; 20
(2025010313203036000_c36) 1972
(2025010313203036000_c22) 2022; 97
(2025010313203036000_c1) 1976; 73
(2025010313203036000_c16) 2022; 34
(2025010313203036000_c23) 2024; 36
(2025010313203036000_c24) 1996; 22
(2025010313203036000_c30) 1990; 1
(2025010313203036000_c38) 1981; 112
(2025010313203036000_c8) 2007; 32
(2025010313203036000_c20) 1997; 22
(2025010313203036000_c21) 2021; 85
(2025010313203036000_c27) 2012; 24
(2025010313203036000_c5) 2006; 49
(2025010313203036000_c18) 1984
(2025010313203036000_c37) 2000
(2025010313203036000_c34) 1999; 26
(2025010313203036000_c14) 2013; 25
References_xml – start-page: 115106
  year: 2022
  ident: c16
  article-title: On acoustically modulated jet shear layers and the Nyquist–Shannon sampling theorem
  publication-title: Phys. Fluids
– start-page: 251
  year: 1997
  ident: c20
  article-title: Two parallel plane jets: Mean flow and effects of acoustic excitation
  publication-title: Exp. Fluids
– start-page: 379
  year: 1981
  ident: c38
  article-title: Taylor hypothesis and large-scale coherent structures
  publication-title: J. Fluid Mech.
– start-page: 596
  year: 2007
  ident: c8
  article-title: Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls
  publication-title: Exp. Therm. Fluid Sci.
– start-page: 143
  year: 2020
  ident: c35
  article-title: Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate
  publication-title: Heat Mass Transfer
– start-page: 174
  year: 2012
  ident: c12
  article-title: Experimental study on the propagation of a pulsed jet
  publication-title: Procedia Eng.
– start-page: 387
  year: 1988
  ident: c4
  article-title: Velocity measurement in a plane turbulent air jet at moderate Reynolds numbers
  publication-title: Exp. Fluids
– start-page: 106182
  year: 2021
  ident: c19
  article-title: Effects of pulsation intensity on the flow and dispersion of pulsed dual plane jets
  publication-title: Int. J. Mech. Sci.
– start-page: 1845
  year: 1985
  ident: c3
  article-title: Experimental study of the behavior of plane turbulent jets at low Reynolds numbers
  publication-title: AIAA J.
– start-page: 015142
  year: 2024
  ident: c23
  article-title: Investigation of flow characteristics and velocity fields of excited two parallel plane jets
  publication-title: Phys. Fluids
– start-page: 1379
  year: 1997
  ident: c31
  article-title: Fundamentals of digital particle image velocimetry
  publication-title: Meas. Sci. Technol.
– start-page: 110039
  year: 2020
  ident: c28
  article-title: Flow and mixing characteristics of double-concentric jets pulsed at annular flow
  publication-title: Exp. Therm. Fluid Sci.
– start-page: 355
  year: 1984
  ident: c2
  article-title: The interaction region of a turbulent plane jet
  publication-title: J. Fluid Mech.
– start-page: 527
  year: 2019
  ident: c15
  article-title: Experimental study of an acoustically excited plane jet at low Reynolds numbers
  publication-title: J. Appl. Fluid Mech.
– start-page: 84
  year: 2024
  ident: c17
  article-title: Numerical investigation of velocity and spreading characteristics of non-circular turbulent jets at different Reynolds numbers
  publication-title: Trans. Can. Soc. Mech. Eng.
– start-page: 1202
  year: 1990
  ident: c30
  article-title: Optimization of particle image velocimeters. I. Double pulsed systems
  publication-title: Meas. Sci. Technol.
– start-page: 545
  year: 2007
  ident: c7
  article-title: The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet
  publication-title: Exp. Therm. Fluid Sci.
– start-page: 988
  year: 2006
  ident: c5
  article-title: Vortex behavior of pulsating jets from a rectangular nozzle
  publication-title: JSME Int. J., Ser.-B
– start-page: 109037
  year: 2022
  ident: c22
  article-title: Effect of excitation Strouhal number on velocity field and mixing capability of acoustically excited dual jets
  publication-title: Int. J. Heat Fluid Flow
– start-page: 465
  year: 1976
  ident: c1
  article-title: The planar turbulent jet
  publication-title: J. Fluid Mech.
– start-page: 409
  year: 2013
  ident: c32
  article-title: Particle image velocimetry for complex and turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 1
  year: 1996
  ident: c24
  article-title: Velocity fidelity of flow tracer particles
  publication-title: Exp. Fluids
– start-page: 044105
  year: 2008
  ident: c10
  article-title: Reynolds number dependence of plane jet development in the transitional regime
  publication-title: Phys. Fluids
– start-page: 125
  year: 2008
  ident: c6
  article-title: Flow visualization of vortex structure in a pulsed rectangular jet
  publication-title: J. Vis.
– start-page: 1891
  year: 1993
  ident: c33
  article-title: Use of previous experience to estimate precision uncertainty of small sample experiments
  publication-title: AIAA J.
– start-page: 015104
  year: 2012
  ident: c27
  article-title: Flow and mixing characteristics of an elevated pulsating transverse jet
  publication-title: Phys. Fluids
– start-page: 444
  year: 2021
  ident: c21
  article-title: Flow and mixing characteristics of dual parallel plane jets subject to acoustic excitation
  publication-title: Eur. J. Mech. B
– start-page: 36
  year: 1999
  ident: c34
  article-title: Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms
  publication-title: Exp. Fluids
– start-page: 343
  year: 2013
  ident: c13
  article-title: Free turbulent flow emanating from a large plane square nozzle: A theoretical and experimental study
  publication-title: Sci. Iran., Trans. B
– start-page: 075108
  year: 2008
  ident: c9
  article-title: The influence of Reynolds number on a plane jet
  publication-title: Phys. Fluids
– start-page: 014108
  year: 2013
  ident: c14
  article-title: Experimental study of planar opposed jets with acoustic excitation
  publication-title: Phys. Fluids
– volume: 32
  start-page: 596
  year: 2007
  ident: 2025010313203036000_c8
  article-title: Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2007.06.009
– volume: 20
  start-page: 075108
  year: 2008
  ident: 2025010313203036000_c9
  article-title: The influence of Reynolds number on a plane jet
  publication-title: Phys. Fluids
  doi: 10.1063/1.2959171
– volume: 50
  start-page: 174
  year: 2012
  ident: 2025010313203036000_c12
  article-title: Experimental study on the propagation of a pulsed jet
  publication-title: Procedia Eng.
  doi: 10.1016/S1877-7058(14)00002-2
– volume: 8
  start-page: 1379
  issue: 12
  year: 1997
  ident: 2025010313203036000_c31
  article-title: Fundamentals of digital particle image velocimetry
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/8/12/002
– volume: 193
  start-page: 106182
  year: 2021
  ident: 2025010313203036000_c19
  article-title: Effects of pulsation intensity on the flow and dispersion of pulsed dual plane jets
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106182
– volume: 112
  start-page: 379
  issue: 279
  year: 1981
  ident: 2025010313203036000_c38
  article-title: Taylor hypothesis and large-scale coherent structures
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112081000463
– volume: 11
  start-page: 125
  issue: 2
  year: 2008
  ident: 2025010313203036000_c6
  article-title: Flow visualization of vortex structure in a pulsed rectangular jet
  publication-title: J. Vis.
  doi: 10.1007/BF03181927
– volume: 36
  start-page: 015142
  issue: 1
  year: 2024
  ident: 2025010313203036000_c23
  article-title: Investigation of flow characteristics and velocity fields of excited two parallel plane jets
  publication-title: Phys. Fluids
  doi: 10.1063/5.0181110
– volume: 34
  start-page: 115106
  issue: 11
  year: 2022
  ident: 2025010313203036000_c16
  article-title: On acoustically modulated jet shear layers and the Nyquist–Shannon sampling theorem
  publication-title: Phys. Fluids
  doi: 10.1063/5.0118025
– volume: 97
  start-page: 109037
  year: 2022
  ident: 2025010313203036000_c22
  article-title: Effect of excitation Strouhal number on velocity field and mixing capability of acoustically excited dual jets
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2022.109037
– volume: 149
  start-page: 355
  year: 1984
  ident: 2025010313203036000_c2
  article-title: The interaction region of a turbulent plane jet
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208400269X
– volume: 25
  start-page: 014108
  year: 2013
  ident: 2025010313203036000_c14
  article-title: Experimental study of planar opposed jets with acoustic excitation
  publication-title: Phys. Fluids
  doi: 10.1063/1.4788933
– volume: 20
  start-page: 343
  issue: 2
  year: 2013
  ident: 2025010313203036000_c13
  article-title: Free turbulent flow emanating from a large plane square nozzle: A theoretical and experimental study
  publication-title: Sci. Iran., Trans. B
  doi: 10.1016/j.scient.2013.02.022
– volume: 31
  start-page: 1891
  issue: 10
  year: 1993
  ident: 2025010313203036000_c33
  article-title: Use of previous experience to estimate precision uncertainty of small sample experiments
  publication-title: AIAA J.
  doi: 10.2514/3.11864
– volume: 12
  start-page: 527
  issue: 2
  year: 2019
  ident: 2025010313203036000_c15
  article-title: Experimental study of an acoustically excited plane jet at low Reynolds numbers
  publication-title: J. Appl. Fluid Mech.
  doi: 10.29252/jafm.12.02.29113
– start-page: 485
  volume-title: Turbulent Flows
  year: 2000
  ident: 2025010313203036000_c37
– volume: 56
  start-page: 143
  year: 2020
  ident: 2025010313203036000_c35
  article-title: Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-019-02696-w
– volume: 32
  start-page: 545
  issue: 2
  year: 2007
  ident: 2025010313203036000_c7
  article-title: The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2007.06.004
– volume: 48
  start-page: 84
  issue: 1
  year: 2024
  ident: 2025010313203036000_c17
  article-title: Numerical investigation of velocity and spreading characteristics of non-circular turbulent jets at different Reynolds numbers
  publication-title: Trans. Can. Soc. Mech. Eng.
  doi: 10.1139/tcsme-2023-0028
– volume: 22
  start-page: 1
  year: 1996
  ident: 2025010313203036000_c24
  article-title: Velocity fidelity of flow tracer particles
  publication-title: Exp. Fluids
  doi: 10.1007/BF01893300
– volume-title: A First Course in Turbulence
  year: 1972
  ident: 2025010313203036000_c36
– volume: 24
  start-page: 015104
  year: 2012
  ident: 2025010313203036000_c27
  article-title: Flow and mixing characteristics of an elevated pulsating transverse jet
  publication-title: Phys. Fluids
  doi: 10.1063/1.3678333
– volume: 20
  start-page: 044105
  year: 2008
  ident: 2025010313203036000_c10
  article-title: Reynolds number dependence of plane jet development in the transitional regime
  publication-title: Phys. Fluids
  doi: 10.1063/1.2904994
– volume: 22
  start-page: 251
  year: 1997
  ident: 2025010313203036000_c20
  article-title: Two parallel plane jets: Mean flow and effects of acoustic excitation
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050044
– volume: 26
  start-page: 36
  issue: 1–2
  year: 1999
  ident: 2025010313203036000_c34
  article-title: Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050263
– year: 2006
  ident: 2025010313203036000_c11
  article-title: A comparison between pulsed and continuous round jets
– volume: 114
  start-page: 110039
  year: 2020
  ident: 2025010313203036000_c28
  article-title: Flow and mixing characteristics of double-concentric jets pulsed at annular flow
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2020.110039
– volume: 1
  start-page: 1202
  issue: 11
  year: 1990
  ident: 2025010313203036000_c30
  article-title: Optimization of particle image velocimeters. I. Double pulsed systems
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/1/11/013
– volume: 23
  start-page: 1845
  issue: 12
  year: 1985
  ident: 2025010313203036000_c3
  article-title: Experimental study of the behavior of plane turbulent jets at low Reynolds numbers
  publication-title: AIAA J.
  doi: 10.2514/3.9183
– volume: 6
  start-page: 387
  year: 1988
  ident: 2025010313203036000_c4
  article-title: Velocity measurement in a plane turbulent air jet at moderate Reynolds numbers
  publication-title: Exp. Fluids
  doi: 10.1007/BF00196484
– volume: 49
  start-page: 988
  issue: 4
  year: 2006
  ident: 2025010313203036000_c5
  article-title: Vortex behavior of pulsating jets from a rectangular nozzle
  publication-title: JSME Int. J., Ser.-B
  doi: 10.1299/jsmeb.49.988
– volume: 45
  start-page: 409
  year: 2013
  ident: 2025010313203036000_c32
  article-title: Particle image velocimetry for complex and turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101204
– volume: 73
  start-page: 465
  issue: 3
  year: 1976
  ident: 2025010313203036000_c1
  article-title: The planar turbulent jet
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112076001468
– volume-title: Fundamentals of Air Pollution Engineering
  year: 1988
  ident: 2025010313203036000_c25
– volume-title: Fundamentals of Temperature, Pressure, and Flow Measurements
  year: 1984
  ident: 2025010313203036000_c18
– start-page: 91
  year: 1990
  ident: 2025010313203036000_c29
  article-title: Single exposure double frame particle image velocimeters
– volume-title: Computer Vision
  year: 2001
  ident: 2025010313203036000_c26
– volume: 85
  start-page: 444
  year: 2021
  ident: 2025010313203036000_c21
  article-title: Flow and mixing characteristics of dual parallel plane jets subject to acoustic excitation
  publication-title: Eur. J. Mech. B
  doi: 10.1016/j.euromechflu.2020.11.003
SSID ssj0003926
Score 2.45194
Snippet The flow field of plane jets has been studied experimentally under both no-excitation and excitation conditions. The jet pulsation intensity and jet Reynolds...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Acoustic excitation
Cascade flow
Edge detection
Entrainment
Flow visualization
Fluid dynamics
Fluid flow
Jet aircraft
Jet flow
Kinetic energy
Mushrooms
Near fields
Particle image velocimetry
Pulsation
Reynolds number
Shear layers
Turbulence
Turbulent flow
Velocity distribution
Velocity measurement
Vortex breakdown
Vortex streets
Vortices
Title The effect of excitation frequency on the flow structure of a plane jet subject to acoustic excitation using particle image velocimetry
URI http://dx.doi.org/10.1063/5.0244797
https://www.proquest.com/docview/3151276758
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLVgCLEXLgO0wkAW8BZl5GbHeawQaEKCFzZp4iVyfKGZ2rSiiXb5A_vbfL7kMgHS4CVq3dStco6d8305n43QuzjiKjXlZ5mORQgjMQq5VFUoRZIpqWmhhUnof_lKj06yz6fkdPTP2-qStjoUV3-sK_kfVKENcDVVsv-A7NApNMBrwBeOgDAcb42xM2QYzacuRN17B386h_SlfxYQ6OX6PHBrxZonBrYocmN8rsGZaoNtV5l0jNGhMEHa_b2mvXU2n7DxfyCoV8bnY7xGol6p9mZNtXWUCusP0cuulm4lqKLIJimHwdb9jTdno4kHMO9--HxsJxfchAKTbIHdfTiYL-tg3pzzwVM8X6xcvvY7XyhvNfZZjIRMshhu4oWpJwT145qUb2NFmFO3K0s_W7slYqas_O0mAKoLkCOHID-yvMjvonsJxBCJ9XWO_h8QhtQZUt0P98tO0fT98NWbYmWMQB5sewgmYuT4MXroowg8d4g8QXdUs4ce-YgC-_l6u4fuezieomvgCnZcwWuNR3TxwBUMb4Ar2HAFD1wxZ3NsuYKBK9hzBbdr3HNl2pvlCu65gi1X8IQrz9DJp4_HH45CvwlHKBKStKGgmukk00LpIqpkLkROCgWqLhGcMZHplMaSERjgoFzhlhVVRHD4LIq1jKVg6XO006wbtY8wlRDfU1LwhKZZxViVK0aElLGNSqJsht70V7vcuLVWSuuRoGlJSg_JDB30OJR-KG7L1OhWsywRm6G3AzZ_7-TFrc56iXZHqh6gHbjw6hVI0LZ6ban0CzKyiwU
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+excitation+frequency+on+the+flow+structure+of+a+plane+jet+subject+to+acoustic+excitation+using+particle+image+velocimetry&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Kumar%2C+Sanjay&rft.au=Murugan%2C+Sudharson&rft.au=Brohi%2C+Ali+Anwar&rft.au=Ahmed%2C+Zaheer&rft.date=2025-01-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1063%2F5.0244797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon