Effect of rudder efficiency of high-speed aircraft subject to high-energy jet

High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects such as weak control ability and long response time. In this paper, numerical simulations analyze the ability of high-energy jet to improve the...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 36; no. 12
Main Authors Zhou, Yi, Luo, Zhenbing, Liu, Qiang, Zhou, Yan, Xie, Wei
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects such as weak control ability and long response time. In this paper, numerical simulations analyze the ability of high-energy jet to improve the control efficiency of X-51A aircraft. The deflection angle of the rudder is 0°–18°, and the high-energy jet is applied to the head of the aircraft and the windward side of the rudder surface. The control effects of the two control methods are compared and analyzed. The results show that within the range of the rudder deflection angle mentioned in this paper, applying high-energy jet control on the head of the aircraft will weaken the rudder surface control efficiency of the X-51A-like aircraft, while applying high-energy jet control on the wind-side of the rudder surface can enhance the rudder surface control efficiency of the aircraft by 13.78%. In this study, numerical simulations were used to analyze the effect of applying high-energy jets at different positions to enhance the efficiency of the rudder surface of a high-speed aircraft. This paper offers a novel concept for employing active flow control methods to enhance the efficiency of high-speed aircraft's rudder surfaces, thereby improving the application potential of such aircraft. These findings can serve as a reference for future research on the efficiency of rudder surfaces in high-speed aircraft.
AbstractList High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects such as weak control ability and long response time. In this paper, numerical simulations analyze the ability of high-energy jet to improve the control efficiency of X-51A aircraft. The deflection angle of the rudder is 0°–18°, and the high-energy jet is applied to the head of the aircraft and the windward side of the rudder surface. The control effects of the two control methods are compared and analyzed. The results show that within the range of the rudder deflection angle mentioned in this paper, applying high-energy jet control on the head of the aircraft will weaken the rudder surface control efficiency of the X-51A-like aircraft, while applying high-energy jet control on the wind-side of the rudder surface can enhance the rudder surface control efficiency of the aircraft by 13.78%. In this study, numerical simulations were used to analyze the effect of applying high-energy jets at different positions to enhance the efficiency of the rudder surface of a high-speed aircraft. This paper offers a novel concept for employing active flow control methods to enhance the efficiency of high-speed aircraft's rudder surfaces, thereby improving the application potential of such aircraft. These findings can serve as a reference for future research on the efficiency of rudder surfaces in high-speed aircraft.
Author Xie, Wei
Zhou, Yan
Zhou, Yi
Liu, Qiang
Luo, Zhenbing
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0009-0003-7793-9809
  surname: Zhou
  fullname: Zhou, Yi
– sequence: 2
  givenname: Zhenbing
  orcidid: 0000-0003-1009-2706
  surname: Luo
  fullname: Luo, Zhenbing
– sequence: 3
  givenname: Qiang
  orcidid: 0000-0001-9831-5999
  surname: Liu
  fullname: Liu, Qiang
– sequence: 4
  givenname: Yan
  orcidid: 0000-0003-4757-7539
  surname: Zhou
  fullname: Zhou, Yan
– sequence: 5
  givenname: Wei
  orcidid: 0000-0002-3288-5718
  surname: Xie
  fullname: Xie, Wei
BookMark eNp9kM1OwzAQhC1UJNrCgTeIxAmkFK8dO_ERVeVHKuICZ8tx1m0iSILtHPr2JErPnHa1882sNCuyaLsWCbkFugEq-aPYUJZxyfgFWQItVJpLKRfTntNUSg5XZBVCQynliskled85hzYmnUv8UFXoE3SutjW29jQdj_XhmIYesUpM7a03LiZhKJvJE7tZxhb94ZQ0GK_JpTPfAW_Oc02-nnef29d0__Hytn3ap5YJFtPcVsI4LLmqWJYDQ1rI0grIpKyME4rTwuUKQChXiLIAx4uKgxBKlgbKUV-Tuzm3993vgCHqpht8O77UHDIAyTIlR-p-pqzvQvDodO_rH-NPGqie2tJCn9sa2YeZDbaOJtZd-w_8B6NTabI
CODEN PHFLE6
Cites_doi 10.1063/5.0018763
10.1016/j.ast.2022.107665
10.1063/5.0101439
10.1063/5.0097938
10.1063/5.0123541
10.1063/5.0148943
10.1063/5.0180268
10.1063/5.0140098
10.1063/5.0100630
10.1063/5.0102562
10.1016/j.actaastro.2020.08.012
10.2514/1.J060799
10.1016/j.cja.2022.06.005
10.1063/5.0141784
10.1016/j.cja.2024.01.008
10.1016/j.cja.2020.07.020
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0243623
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0243623
GrantInformation_xml – fundername: Natural Science Program of National University of Defense Technology
  sequence: 0
  grantid: ZK22-30
– fundername: the National Postdoctoral Researcher Program
  sequence: 0
  grantid: GZB20230985
– fundername: National Natural Science Foundation of China
  sequence: 0
  grantid: 12202488
  funderid: 10.13039/501100001809
– fundername: the Independent Innovation Science Fund of National University of Defense Technology
  sequence: 0
  grantid: 24-ZZCX-BC-05
– fundername: National Natural Science Foundation of China
  sequence: 0
  grantid: 12072352
  funderid: 10.13039/501100001809
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c252t-7cd5afeb39d24712e086bc51466daf59308f791159f85b81f38d315596ba1b593
ISSN 1070-6631
IngestDate Mon Jun 30 13:51:47 EDT 2025
Tue Jul 01 01:53:30 EDT 2025
Fri Dec 06 03:56:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-7cd5afeb39d24712e086bc51466daf59308f791159f85b81f38d315596ba1b593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-7793-9809
0000-0003-1009-2706
0000-0001-9831-5999
0000-0002-3288-5718
0000-0003-4757-7539
PQID 3141162496
PQPubID 2050667
PageCount 15
ParticipantIDs scitation_primary_10_1063_5_0243623
proquest_journals_3141162496
crossref_primary_10_1063_5_0243623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-01
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Mu, Zhou, Xu, Gao (c8) 2022
Sun, Miao, Jagadeesh (c5) 2020
Xie, Liu, Zhou, Luo, Xie, Bai, Luo, Wang, Wu (c17) 2024
Luo, Li, Xu (c3) 2015
Zhao, Luo, Deng, Liu, Li (c14) 2021
Luo, Xia, Deng, Wang, Li, Ma, Wang, Peng, Jiang, Yang, Yang (c20) 2017
Yu, Liu, Chen, Yan (c21) 2019
Yang, Zong, Liang, Wu, Zhang, Kong, Li (c15) 2022
Bagheri, Mirjalily, Oloomi (c7) 2021
Zhai, Zhang, Wang (c9) 2022
Ma, Fan, Wu, Zhu, Xue (c18) 2023
Zhao, Deng, Luo, Wang, Zhang, Dong (c13) 2023
Jin, Liang, Sun, Wang (c23) 2008
Schülein, Schnepf, Weiss (c4) 2022
Tang, Wu (c16) 2023
Yoshiaki, Taku, Kozo (c11) 2023
Li, Luo, Deng, Liu, Gao, Zhao (c12) 2022
Wu, Huang, Zhong, Du (c6) 2022
Bhapkar, Mishra, Yadav, Agrawal (c10) 2022
He, Luo, Deng, Cheng, Peng, Zhou, Li, Gao (c19) 2022
(2024120512574602500_c23) 2008; 30
(2024120512574602500_c16) 2023; 35
(2024120512574602500_c18) 2023; 35
(2024120512574602500_c11) 2023; 35
(2024120512574602500_c8) 2022; 34
(2024120512574602500_c15) 2022; 34
(2024120512574602500_c2) 2008
(2024120512574602500_c22) 1998
(2024120512574602500_c13) 2023; 35
(2024120512574602500_c6) 2022; 34
(2024120512574602500_c20) 2017; 35
(2024120512574602500_c5) 2020; 32
(2024120512574602500_c14) 2021; 34
(2024120512574602500_c12) 2022; 35
(2024120512574602500_c7) 2021; 178
(2024120512574602500_c19) 2022; 34
2024120512574602500_c25
(2024120512574602500_c10) 2022; 34
(2024120512574602500_c3) 2015; 36
(2024120512574602500_c4) 2022; 60
(2024120512574602500_c1) 2005
(2024120512574602500_c21) 2019; 45
(2024120512574602500_c9) 2022; 126
(2024120512574602500_c24) 1985
(2024120512574602500_c17) 2024; 37
References_xml – start-page: 085111
  year: 2022
  ident: c10
  article-title: Effect of orifice shape on impinging synthetic jet
  publication-title: Phys. Fluids
– start-page: 087119
  year: 2022
  ident: c15
  article-title: Swept shock wave/boundary layer interaction control based on surface arc plasma
  publication-title: Phys. Fluids
– start-page: 151
  year: 2024
  ident: c17
  article-title: Experimental study on shock interaction control of double wedge in high-enthalpy hypersonic flow subject to plasma synthetic jet
  publication-title: Chin. J. Aeronaut.
– start-page: 057110
  year: 2023
  ident: c13
  article-title: Numerical investigation of aerodynamic characteristics of a flying wing aircraft controlled by reverse dual synthetic jets
  publication-title: Phys. Fluids
– start-page: 065114
  year: 2023
  ident: c11
  article-title: Flow instability and momentum exchange in separation control by a synthetic jet
  publication-title: Phys. Fluids
– start-page: 117
  year: 2022
  ident: c12
  article-title: Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator
  publication-title: Chin. J. Aeronaut.
– start-page: 106102
  year: 2020
  ident: c5
  article-title: Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump
  publication-title: Phys. Fluids
– start-page: 107665
  year: 2022
  ident: c9
  article-title: Control of shock-wave/boundary-layer interaction using a backward-facing step
  publication-title: Aerosp. Sci. Technol.
– start-page: 11
  year: 2008
  ident: c23
  article-title: CFD analysis for crossing shock wave/turbulent boundary layer interactions
  publication-title: J. Nat. Univ. Defense Technol.
– start-page: 036110
  year: 2023
  ident: c18
  article-title: Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction
  publication-title: Phys. Fluids
– start-page: 097108
  year: 2022
  ident: c19
  article-title: Alleviation of self-support in dual synthetic jet and its self-similarity of streamwise momentum flux
  publication-title: Phys. Fluids
– start-page: 081702
  year: 2022
  ident: c8
  article-title: Control reattachment of backward-facing step flow using a row of mini-jets in recirculation bubble
  publication-title: Phys. Fluids
– start-page: 624
  year: 2019
  ident: c21
  article-title: High-resolution unsteady turbulence simulation of an X-51A-like aircraft
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– start-page: 116115
  year: 2022
  ident: c6
  article-title: Study of the streamwise location of a micro vortex generator for a separation-control mechanism in supersonic flow
  publication-title: Phys. Fluids
– start-page: 39
  year: 2015
  ident: c3
  article-title: Inspiration of hypersonic vehicle with airframe/propulsion integrated design
  publication-title: Acta Aeronaut. Astronaut. Sin.
– start-page: 616
  year: 2021
  ident: c7
  article-title: Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation
  publication-title: Acta Astronaut.
– start-page: 1
  year: 2021
  ident: c14
  article-title: Theoretical modeling of vectoring dual synthetic jet based on regression analysis
  publication-title: Chin. J. Aeronaut.
– start-page: 2749
  year: 2022
  ident: c4
  article-title: Concave bump for imping-shock control in supersonic flows
  publication-title: AIAA J.
– start-page: 252
  year: 2017
  ident: c20
  article-title: Research progress of dual synthetic jets and its flow control technology
  publication-title: Acta Aerodyn. Sin.
– start-page: 126118
  year: 2023
  ident: c16
  article-title: Direct numerical simulation of compression ramp shock wave/boundary layer interaction controlled by plasma actuator array
  publication-title: Phys. Fluids
– volume: 32
  start-page: 106102
  issue: 10
  year: 2020
  ident: 2024120512574602500_c5
  article-title: Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump
  publication-title: Phys. Fluids
  doi: 10.1063/5.0018763
– volume: 126
  start-page: 107665
  year: 2022
  ident: 2024120512574602500_c9
  article-title: Control of shock-wave/boundary-layer interaction using a backward-facing step
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107665
– volume: 34
  start-page: 097108
  issue: 9
  year: 2022
  ident: 2024120512574602500_c19
  article-title: Alleviation of self-support in dual synthetic jet and its self-similarity of streamwise momentum flux
  publication-title: Phys. Fluids
  doi: 10.1063/5.0101439
– volume: 34
  start-page: 085111
  issue: 8
  year: 2022
  ident: 2024120512574602500_c10
  article-title: Effect of orifice shape on impinging synthetic jet
  publication-title: Phys. Fluids
  doi: 10.1063/5.0097938
– year: 2005
  ident: 2024120512574602500_c1
  article-title: The hyper-X launch vehicle - challenges and design considerations for hypersonic flight testing
– volume: 36
  start-page: 39
  issue: 1
  year: 2015
  ident: 2024120512574602500_c3
  article-title: Inspiration of hypersonic vehicle with airframe/propulsion integrated design
  publication-title: Acta Aeronaut. Astronaut. Sin.
– volume: 34
  start-page: 116115
  issue: 11
  year: 2022
  ident: 2024120512574602500_c6
  article-title: Study of the streamwise location of a micro vortex generator for a separation-control mechanism in supersonic flow
  publication-title: Phys. Fluids
  doi: 10.1063/5.0123541
– volume: 35
  start-page: 065114
  issue: 6
  year: 2023
  ident: 2024120512574602500_c11
  article-title: Flow instability and momentum exchange in separation control by a synthetic jet
  publication-title: Phys. Fluids
  doi: 10.1063/5.0148943
– volume: 35
  start-page: 126118
  issue: 12
  year: 2023
  ident: 2024120512574602500_c16
  article-title: Direct numerical simulation of compression ramp shock wave/boundary layer interaction controlled by plasma actuator array
  publication-title: Phys. Fluids
  doi: 10.1063/5.0180268
– volume: 30
  start-page: 11
  issue: 3
  year: 2008
  ident: 2024120512574602500_c23
  article-title: CFD analysis for crossing shock wave/turbulent boundary layer interactions
  publication-title: J. Nat. Univ. Defense Technol.
– year: 1998
  ident: 2024120512574602500_c22
  article-title: Development of experimental methods for the hypersonic flows studies in Ludwieg tube
– volume: 35
  start-page: 036110
  issue: 3
  year: 2023
  ident: 2024120512574602500_c18
  article-title: Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction
  publication-title: Phys. Fluids
  doi: 10.1063/5.0140098
– year: 2008
  ident: 2024120512574602500_c2
  article-title: The X-51A scramjet engine flight demonstration program
– volume: 34
  start-page: 087119
  issue: 8
  year: 2022
  ident: 2024120512574602500_c15
  article-title: Swept shock wave/boundary layer interaction control based on surface arc plasma
  publication-title: Phys. Fluids
  doi: 10.1063/5.0100630
– ident: 2024120512574602500_c25
– volume: 34
  start-page: 081702
  issue: 8
  year: 2022
  ident: 2024120512574602500_c8
  article-title: Control reattachment of backward-facing step flow using a row of mini-jets in recirculation bubble
  publication-title: Phys. Fluids
  doi: 10.1063/5.0102562
– volume: 45
  start-page: 624
  issue: 3
  year: 2019
  ident: 2024120512574602500_c21
  article-title: High-resolution unsteady turbulence simulation of an X-51A-like aircraft
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– volume: 178
  start-page: 616
  year: 2021
  ident: 2024120512574602500_c7
  article-title: Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.08.012
– volume: 35
  start-page: 252
  issue: 2
  year: 2017
  ident: 2024120512574602500_c20
  article-title: Research progress of dual synthetic jets and its flow control technology
  publication-title: Acta Aerodyn. Sin.
– volume: 60
  start-page: 2749
  issue: 5
  year: 2022
  ident: 2024120512574602500_c4
  article-title: Concave bump for imping-shock control in supersonic flows
  publication-title: AIAA J.
  doi: 10.2514/1.J060799
– year: 1985
  ident: 2024120512574602500_c24
  article-title: Graphics and flow visualization in computational fluid dynamics
– volume: 35
  start-page: 117
  issue: 12
  year: 2022
  ident: 2024120512574602500_c12
  article-title: Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2022.06.005
– volume: 35
  start-page: 057110
  issue: 5
  year: 2023
  ident: 2024120512574602500_c13
  article-title: Numerical investigation of aerodynamic characteristics of a flying wing aircraft controlled by reverse dual synthetic jets
  publication-title: Phys. Fluids
  doi: 10.1063/5.0141784
– volume: 37
  start-page: 151
  issue: 4
  year: 2024
  ident: 2024120512574602500_c17
  article-title: Experimental study on shock interaction control of double wedge in high-enthalpy hypersonic flow subject to plasma synthetic jet
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2024.01.008
– volume: 34
  start-page: 1
  issue: 3
  year: 2021
  ident: 2024120512574602500_c14
  article-title: Theoretical modeling of vectoring dual synthetic jet based on regression analysis
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.07.020
SSID ssj0003926
Score 2.4489236
Snippet High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aircraft
Aircraft control
Control methods
Deflection
Efficiency
Energy
Flow control
High speed
Jet aircraft
Jet control
Rudders
Wind effects
Title Effect of rudder efficiency of high-speed aircraft subject to high-energy jet
URI http://dx.doi.org/10.1063/5.0243623
https://www.proquest.com/docview/3141162496
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5rRfTFS1VcrRLUt5LaZCbZmUcRpQoVhBZKX4bJSWJHZLfszrz46z25zGVtherLsJzZuZDz5eQ7yZczhLwFbgCsLhkmyzXLNQCrc66ZKcwCCXqJebPfnHz8VR2d5l_O5Nls9nmiWupafQC_rt1X8j9eRRv61e-S_QfPDjdFA_5G_-IRPYzHG_k4lR5GvrfufCUQr85oQmcN6-a-FDHbXOL4tF83a1jXrt3fdNrPvHjKGU7buPfvh92aow-6UAgqD_eza0ys51SW-WTi4Pxi1YUA3gyini7Mu5571Vg_InpzE_73DYH4_crFCZxp3kHkEw1HDJUYLBjylWiyyVaUbKHid1T6-BoLnPQ4EtfGbSRK2NjywNdHVHED8nZt7D_GrEFJGNbQVVbJKl16i9wWmDGIoOIc1T5IA1WUn8aX7otMqezd8NRtajLmG3eRjERdxIR6nDwk91POQN9HADwiM7vcJQ9S_kBTdN7skjvJbY_JcUQGXTkakUFHZHjjiAzaI4MmZNB2RSfIoIiMJ-T008eTD0csfTiDgZCiZQswsnZWZ6URSD6ExbxVA1JjpUztZJkdFg67ITJZV0hdcJcVJvPr00rXXOP5p2RnuVraZ4RK0EJJMODAIPOGwpWlOQTpuHYcbD0nr_s2qy5jfZTqik_mZK9vzSp1n02V8Zxzhdm_mpM3Qwv__SbPb_KkF-TeiNU9stOuO_sSWWOrXwU8_AZaGWhE
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+rudder+efficiency+of+high-speed+aircraft+subject+to+high-energy+jet&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhou%2C+Yi&rft.au=Luo%2C+Zhenbing&rft.au=Liu%2C+Qiang&rft.au=Zhou%2C+Yan&rft.date=2024-12-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=36&rft.issue=12&rft_id=info:doi/10.1063%2F5.0243623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0243623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon