Effect of rudder efficiency of high-speed aircraft subject to high-energy jet
High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects such as weak control ability and long response time. In this paper, numerical simulations analyze the ability of high-energy jet to improve the...
Saved in:
Published in | Physics of fluids (1994) Vol. 36; no. 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects such as weak control ability and long response time. In this paper, numerical simulations analyze the ability of high-energy jet to improve the control efficiency of X-51A aircraft. The deflection angle of the rudder is 0°–18°, and the high-energy jet is applied to the head of the aircraft and the windward side of the rudder surface. The control effects of the two control methods are compared and analyzed. The results show that within the range of the rudder deflection angle mentioned in this paper, applying high-energy jet control on the head of the aircraft will weaken the rudder surface control efficiency of the X-51A-like aircraft, while applying high-energy jet control on the wind-side of the rudder surface can enhance the rudder surface control efficiency of the aircraft by 13.78%. In this study, numerical simulations were used to analyze the effect of applying high-energy jets at different positions to enhance the efficiency of the rudder surface of a high-speed aircraft. This paper offers a novel concept for employing active flow control methods to enhance the efficiency of high-speed aircraft's rudder surfaces, thereby improving the application potential of such aircraft. These findings can serve as a reference for future research on the efficiency of rudder surfaces in high-speed aircraft. |
---|---|
AbstractList | High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects such as weak control ability and long response time. In this paper, numerical simulations analyze the ability of high-energy jet to improve the control efficiency of X-51A aircraft. The deflection angle of the rudder is 0°–18°, and the high-energy jet is applied to the head of the aircraft and the windward side of the rudder surface. The control effects of the two control methods are compared and analyzed. The results show that within the range of the rudder deflection angle mentioned in this paper, applying high-energy jet control on the head of the aircraft will weaken the rudder surface control efficiency of the X-51A-like aircraft, while applying high-energy jet control on the wind-side of the rudder surface can enhance the rudder surface control efficiency of the aircraft by 13.78%. In this study, numerical simulations were used to analyze the effect of applying high-energy jets at different positions to enhance the efficiency of the rudder surface of a high-speed aircraft. This paper offers a novel concept for employing active flow control methods to enhance the efficiency of high-speed aircraft's rudder surfaces, thereby improving the application potential of such aircraft. These findings can serve as a reference for future research on the efficiency of rudder surfaces in high-speed aircraft. |
Author | Xie, Wei Zhou, Yan Zhou, Yi Liu, Qiang Luo, Zhenbing |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0009-0003-7793-9809 surname: Zhou fullname: Zhou, Yi – sequence: 2 givenname: Zhenbing orcidid: 0000-0003-1009-2706 surname: Luo fullname: Luo, Zhenbing – sequence: 3 givenname: Qiang orcidid: 0000-0001-9831-5999 surname: Liu fullname: Liu, Qiang – sequence: 4 givenname: Yan orcidid: 0000-0003-4757-7539 surname: Zhou fullname: Zhou, Yan – sequence: 5 givenname: Wei orcidid: 0000-0002-3288-5718 surname: Xie fullname: Xie, Wei |
BookMark | eNp9kM1OwzAQhC1UJNrCgTeIxAmkFK8dO_ERVeVHKuICZ8tx1m0iSILtHPr2JErPnHa1882sNCuyaLsWCbkFugEq-aPYUJZxyfgFWQItVJpLKRfTntNUSg5XZBVCQynliskled85hzYmnUv8UFXoE3SutjW29jQdj_XhmIYesUpM7a03LiZhKJvJE7tZxhb94ZQ0GK_JpTPfAW_Oc02-nnef29d0__Hytn3ap5YJFtPcVsI4LLmqWJYDQ1rI0grIpKyME4rTwuUKQChXiLIAx4uKgxBKlgbKUV-Tuzm3993vgCHqpht8O77UHDIAyTIlR-p-pqzvQvDodO_rH-NPGqie2tJCn9sa2YeZDbaOJtZd-w_8B6NTabI |
CODEN | PHFLE6 |
Cites_doi | 10.1063/5.0018763 10.1016/j.ast.2022.107665 10.1063/5.0101439 10.1063/5.0097938 10.1063/5.0123541 10.1063/5.0148943 10.1063/5.0180268 10.1063/5.0140098 10.1063/5.0100630 10.1063/5.0102562 10.1016/j.actaastro.2020.08.012 10.2514/1.J060799 10.1016/j.cja.2022.06.005 10.1063/5.0141784 10.1016/j.cja.2024.01.008 10.1016/j.cja.2020.07.020 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0243623 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0243623 |
GrantInformation_xml | – fundername: Natural Science Program of National University of Defense Technology sequence: 0 grantid: ZK22-30 – fundername: the National Postdoctoral Researcher Program sequence: 0 grantid: GZB20230985 – fundername: National Natural Science Foundation of China sequence: 0 grantid: 12202488 funderid: 10.13039/501100001809 – fundername: the Independent Innovation Science Fund of National University of Defense Technology sequence: 0 grantid: 24-ZZCX-BC-05 – fundername: National Natural Science Foundation of China sequence: 0 grantid: 12072352 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c252t-7cd5afeb39d24712e086bc51466daf59308f791159f85b81f38d315596ba1b593 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 13:51:47 EDT 2025 Tue Jul 01 01:53:30 EDT 2025 Fri Dec 06 03:56:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c252t-7cd5afeb39d24712e086bc51466daf59308f791159f85b81f38d315596ba1b593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-7793-9809 0000-0003-1009-2706 0000-0001-9831-5999 0000-0002-3288-5718 0000-0003-4757-7539 |
PQID | 3141162496 |
PQPubID | 2050667 |
PageCount | 15 |
ParticipantIDs | scitation_primary_10_1063_5_0243623 proquest_journals_3141162496 crossref_primary_10_1063_5_0243623 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-01 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Mu, Zhou, Xu, Gao (c8) 2022 Sun, Miao, Jagadeesh (c5) 2020 Xie, Liu, Zhou, Luo, Xie, Bai, Luo, Wang, Wu (c17) 2024 Luo, Li, Xu (c3) 2015 Zhao, Luo, Deng, Liu, Li (c14) 2021 Luo, Xia, Deng, Wang, Li, Ma, Wang, Peng, Jiang, Yang, Yang (c20) 2017 Yu, Liu, Chen, Yan (c21) 2019 Yang, Zong, Liang, Wu, Zhang, Kong, Li (c15) 2022 Bagheri, Mirjalily, Oloomi (c7) 2021 Zhai, Zhang, Wang (c9) 2022 Ma, Fan, Wu, Zhu, Xue (c18) 2023 Zhao, Deng, Luo, Wang, Zhang, Dong (c13) 2023 Jin, Liang, Sun, Wang (c23) 2008 Schülein, Schnepf, Weiss (c4) 2022 Tang, Wu (c16) 2023 Yoshiaki, Taku, Kozo (c11) 2023 Li, Luo, Deng, Liu, Gao, Zhao (c12) 2022 Wu, Huang, Zhong, Du (c6) 2022 Bhapkar, Mishra, Yadav, Agrawal (c10) 2022 He, Luo, Deng, Cheng, Peng, Zhou, Li, Gao (c19) 2022 (2024120512574602500_c23) 2008; 30 (2024120512574602500_c16) 2023; 35 (2024120512574602500_c18) 2023; 35 (2024120512574602500_c11) 2023; 35 (2024120512574602500_c8) 2022; 34 (2024120512574602500_c15) 2022; 34 (2024120512574602500_c2) 2008 (2024120512574602500_c22) 1998 (2024120512574602500_c13) 2023; 35 (2024120512574602500_c6) 2022; 34 (2024120512574602500_c20) 2017; 35 (2024120512574602500_c5) 2020; 32 (2024120512574602500_c14) 2021; 34 (2024120512574602500_c12) 2022; 35 (2024120512574602500_c7) 2021; 178 (2024120512574602500_c19) 2022; 34 2024120512574602500_c25 (2024120512574602500_c10) 2022; 34 (2024120512574602500_c3) 2015; 36 (2024120512574602500_c4) 2022; 60 (2024120512574602500_c1) 2005 (2024120512574602500_c21) 2019; 45 (2024120512574602500_c9) 2022; 126 (2024120512574602500_c24) 1985 (2024120512574602500_c17) 2024; 37 |
References_xml | – start-page: 085111 year: 2022 ident: c10 article-title: Effect of orifice shape on impinging synthetic jet publication-title: Phys. Fluids – start-page: 087119 year: 2022 ident: c15 article-title: Swept shock wave/boundary layer interaction control based on surface arc plasma publication-title: Phys. Fluids – start-page: 151 year: 2024 ident: c17 article-title: Experimental study on shock interaction control of double wedge in high-enthalpy hypersonic flow subject to plasma synthetic jet publication-title: Chin. J. Aeronaut. – start-page: 057110 year: 2023 ident: c13 article-title: Numerical investigation of aerodynamic characteristics of a flying wing aircraft controlled by reverse dual synthetic jets publication-title: Phys. Fluids – start-page: 065114 year: 2023 ident: c11 article-title: Flow instability and momentum exchange in separation control by a synthetic jet publication-title: Phys. Fluids – start-page: 117 year: 2022 ident: c12 article-title: Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator publication-title: Chin. J. Aeronaut. – start-page: 106102 year: 2020 ident: c5 article-title: Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump publication-title: Phys. Fluids – start-page: 107665 year: 2022 ident: c9 article-title: Control of shock-wave/boundary-layer interaction using a backward-facing step publication-title: Aerosp. Sci. Technol. – start-page: 11 year: 2008 ident: c23 article-title: CFD analysis for crossing shock wave/turbulent boundary layer interactions publication-title: J. Nat. Univ. Defense Technol. – start-page: 036110 year: 2023 ident: c18 article-title: Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction publication-title: Phys. Fluids – start-page: 097108 year: 2022 ident: c19 article-title: Alleviation of self-support in dual synthetic jet and its self-similarity of streamwise momentum flux publication-title: Phys. Fluids – start-page: 081702 year: 2022 ident: c8 article-title: Control reattachment of backward-facing step flow using a row of mini-jets in recirculation bubble publication-title: Phys. Fluids – start-page: 624 year: 2019 ident: c21 article-title: High-resolution unsteady turbulence simulation of an X-51A-like aircraft publication-title: J. Beijing Univ. Aeronaut. Astronaut. – start-page: 116115 year: 2022 ident: c6 article-title: Study of the streamwise location of a micro vortex generator for a separation-control mechanism in supersonic flow publication-title: Phys. Fluids – start-page: 39 year: 2015 ident: c3 article-title: Inspiration of hypersonic vehicle with airframe/propulsion integrated design publication-title: Acta Aeronaut. Astronaut. Sin. – start-page: 616 year: 2021 ident: c7 article-title: Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation publication-title: Acta Astronaut. – start-page: 1 year: 2021 ident: c14 article-title: Theoretical modeling of vectoring dual synthetic jet based on regression analysis publication-title: Chin. J. Aeronaut. – start-page: 2749 year: 2022 ident: c4 article-title: Concave bump for imping-shock control in supersonic flows publication-title: AIAA J. – start-page: 252 year: 2017 ident: c20 article-title: Research progress of dual synthetic jets and its flow control technology publication-title: Acta Aerodyn. Sin. – start-page: 126118 year: 2023 ident: c16 article-title: Direct numerical simulation of compression ramp shock wave/boundary layer interaction controlled by plasma actuator array publication-title: Phys. Fluids – volume: 32 start-page: 106102 issue: 10 year: 2020 ident: 2024120512574602500_c5 article-title: Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump publication-title: Phys. Fluids doi: 10.1063/5.0018763 – volume: 126 start-page: 107665 year: 2022 ident: 2024120512574602500_c9 article-title: Control of shock-wave/boundary-layer interaction using a backward-facing step publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107665 – volume: 34 start-page: 097108 issue: 9 year: 2022 ident: 2024120512574602500_c19 article-title: Alleviation of self-support in dual synthetic jet and its self-similarity of streamwise momentum flux publication-title: Phys. Fluids doi: 10.1063/5.0101439 – volume: 34 start-page: 085111 issue: 8 year: 2022 ident: 2024120512574602500_c10 article-title: Effect of orifice shape on impinging synthetic jet publication-title: Phys. Fluids doi: 10.1063/5.0097938 – year: 2005 ident: 2024120512574602500_c1 article-title: The hyper-X launch vehicle - challenges and design considerations for hypersonic flight testing – volume: 36 start-page: 39 issue: 1 year: 2015 ident: 2024120512574602500_c3 article-title: Inspiration of hypersonic vehicle with airframe/propulsion integrated design publication-title: Acta Aeronaut. Astronaut. Sin. – volume: 34 start-page: 116115 issue: 11 year: 2022 ident: 2024120512574602500_c6 article-title: Study of the streamwise location of a micro vortex generator for a separation-control mechanism in supersonic flow publication-title: Phys. Fluids doi: 10.1063/5.0123541 – volume: 35 start-page: 065114 issue: 6 year: 2023 ident: 2024120512574602500_c11 article-title: Flow instability and momentum exchange in separation control by a synthetic jet publication-title: Phys. Fluids doi: 10.1063/5.0148943 – volume: 35 start-page: 126118 issue: 12 year: 2023 ident: 2024120512574602500_c16 article-title: Direct numerical simulation of compression ramp shock wave/boundary layer interaction controlled by plasma actuator array publication-title: Phys. Fluids doi: 10.1063/5.0180268 – volume: 30 start-page: 11 issue: 3 year: 2008 ident: 2024120512574602500_c23 article-title: CFD analysis for crossing shock wave/turbulent boundary layer interactions publication-title: J. Nat. Univ. Defense Technol. – year: 1998 ident: 2024120512574602500_c22 article-title: Development of experimental methods for the hypersonic flows studies in Ludwieg tube – volume: 35 start-page: 036110 issue: 3 year: 2023 ident: 2024120512574602500_c18 article-title: Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction publication-title: Phys. Fluids doi: 10.1063/5.0140098 – year: 2008 ident: 2024120512574602500_c2 article-title: The X-51A scramjet engine flight demonstration program – volume: 34 start-page: 087119 issue: 8 year: 2022 ident: 2024120512574602500_c15 article-title: Swept shock wave/boundary layer interaction control based on surface arc plasma publication-title: Phys. Fluids doi: 10.1063/5.0100630 – ident: 2024120512574602500_c25 – volume: 34 start-page: 081702 issue: 8 year: 2022 ident: 2024120512574602500_c8 article-title: Control reattachment of backward-facing step flow using a row of mini-jets in recirculation bubble publication-title: Phys. Fluids doi: 10.1063/5.0102562 – volume: 45 start-page: 624 issue: 3 year: 2019 ident: 2024120512574602500_c21 article-title: High-resolution unsteady turbulence simulation of an X-51A-like aircraft publication-title: J. Beijing Univ. Aeronaut. Astronaut. – volume: 178 start-page: 616 year: 2021 ident: 2024120512574602500_c7 article-title: Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.08.012 – volume: 35 start-page: 252 issue: 2 year: 2017 ident: 2024120512574602500_c20 article-title: Research progress of dual synthetic jets and its flow control technology publication-title: Acta Aerodyn. Sin. – volume: 60 start-page: 2749 issue: 5 year: 2022 ident: 2024120512574602500_c4 article-title: Concave bump for imping-shock control in supersonic flows publication-title: AIAA J. doi: 10.2514/1.J060799 – year: 1985 ident: 2024120512574602500_c24 article-title: Graphics and flow visualization in computational fluid dynamics – volume: 35 start-page: 117 issue: 12 year: 2022 ident: 2024120512574602500_c12 article-title: Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2022.06.005 – volume: 35 start-page: 057110 issue: 5 year: 2023 ident: 2024120512574602500_c13 article-title: Numerical investigation of aerodynamic characteristics of a flying wing aircraft controlled by reverse dual synthetic jets publication-title: Phys. Fluids doi: 10.1063/5.0141784 – volume: 37 start-page: 151 issue: 4 year: 2024 ident: 2024120512574602500_c17 article-title: Experimental study on shock interaction control of double wedge in high-enthalpy hypersonic flow subject to plasma synthetic jet publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2024.01.008 – volume: 34 start-page: 1 issue: 3 year: 2021 ident: 2024120512574602500_c14 article-title: Theoretical modeling of vectoring dual synthetic jet based on regression analysis publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.07.020 |
SSID | ssj0003926 |
Score | 2.4489236 |
Snippet | High maneuverability is required for high-speed aircraft. However, the traditional control method with mechanical rudder surface deflection has some defects... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aircraft Aircraft control Control methods Deflection Efficiency Energy Flow control High speed Jet aircraft Jet control Rudders Wind effects |
Title | Effect of rudder efficiency of high-speed aircraft subject to high-energy jet |
URI | http://dx.doi.org/10.1063/5.0243623 https://www.proquest.com/docview/3141162496 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5rRfTFS1VcrRLUt5LaZCbZmUcRpQoVhBZKX4bJSWJHZLfszrz46z25zGVtherLsJzZuZDz5eQ7yZczhLwFbgCsLhkmyzXLNQCrc66ZKcwCCXqJebPfnHz8VR2d5l_O5Nls9nmiWupafQC_rt1X8j9eRRv61e-S_QfPDjdFA_5G_-IRPYzHG_k4lR5GvrfufCUQr85oQmcN6-a-FDHbXOL4tF83a1jXrt3fdNrPvHjKGU7buPfvh92aow-6UAgqD_eza0ys51SW-WTi4Pxi1YUA3gyini7Mu5571Vg_InpzE_73DYH4_crFCZxp3kHkEw1HDJUYLBjylWiyyVaUbKHid1T6-BoLnPQ4EtfGbSRK2NjywNdHVHED8nZt7D_GrEFJGNbQVVbJKl16i9wWmDGIoOIc1T5IA1WUn8aX7otMqezd8NRtajLmG3eRjERdxIR6nDwk91POQN9HADwiM7vcJQ9S_kBTdN7skjvJbY_JcUQGXTkakUFHZHjjiAzaI4MmZNB2RSfIoIiMJ-T008eTD0csfTiDgZCiZQswsnZWZ6URSD6ExbxVA1JjpUztZJkdFg67ITJZV0hdcJcVJvPr00rXXOP5p2RnuVraZ4RK0EJJMODAIPOGwpWlOQTpuHYcbD0nr_s2qy5jfZTqik_mZK9vzSp1n02V8Zxzhdm_mpM3Qwv__SbPb_KkF-TeiNU9stOuO_sSWWOrXwU8_AZaGWhE |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+rudder+efficiency+of+high-speed+aircraft+subject+to+high-energy+jet&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhou%2C+Yi&rft.au=Luo%2C+Zhenbing&rft.au=Liu%2C+Qiang&rft.au=Zhou%2C+Yan&rft.date=2024-12-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=36&rft.issue=12&rft_id=info:doi/10.1063%2F5.0243623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0243623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |