Phonon transport in Janus monolayer MoSSe: a first-principles study

Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 2; no. 1; pp. 7236 - 7242
Main Author Guo, San-Dong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ L of MoSSe monolayers is much lower than that of MoS 2 monolayers, and higher than that of MoSe 2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K −1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS 2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ L . The larger group velocities of MoSSe compared to those of MoSe 2 monolayers are the main reason for the higher κ L . The elastic properties of MoS 2 , MoSSe and MoSe 2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ L . The calculated results show that isotope scattering leads to a 5.8% reduction of the κ L . The size effects on the κ L are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ L reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. First principles investigation of the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe, MoS 2 and MoSe 2 monolayers.
AbstractList Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κ ) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ of MoSSe monolayers is much lower than that of MoS monolayers, and higher than that of MoSe monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ . The larger group velocities of MoSSe compared to those of MoSe monolayers are the main reason for the higher κ . The elastic properties of MoS , MoSSe and MoSe monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ . The calculated results show that isotope scattering leads to a 5.8% reduction of the κ . The size effects on the κ are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.
Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S–Mo–Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ L of MoSSe monolayers is much lower than that of MoS 2 monolayers, and higher than that of MoSe 2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K −1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS 2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ L . The larger group velocities of MoSSe compared to those of MoSe 2 monolayers are the main reason for the higher κ L . The elastic properties of MoS 2 , MoSSe and MoSe 2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ L . The calculated results show that isotope scattering leads to a 5.8% reduction of the κ L . The size effects on the κ L are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ L reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.
Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ L of MoSSe monolayers is much lower than that of MoS 2 monolayers, and higher than that of MoSe 2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K −1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS 2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ L . The larger group velocities of MoSSe compared to those of MoSe 2 monolayers are the main reason for the higher κ L . The elastic properties of MoS 2 , MoSSe and MoSe 2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ L . The calculated results show that isotope scattering leads to a 5.8% reduction of the κ L . The size effects on the κ L are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ L reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. First principles investigation of the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe, MoS 2 and MoSe 2 monolayers.
Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κL) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κL of MoSSe monolayers is much lower than that of MoS2 monolayers, and higher than that of MoSe2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K-1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κL. The larger group velocities of MoSSe compared to those of MoSe2 monolayers are the main reason for the higher κL. The elastic properties of MoS2, MoSSe and MoSe2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κL. The calculated results show that isotope scattering leads to a 5.8% reduction of the κL. The size effects on the κL are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κL reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κL) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κL of MoSSe monolayers is much lower than that of MoS2 monolayers, and higher than that of MoSe2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K-1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κL. The larger group velocities of MoSSe compared to those of MoSe2 monolayers are the main reason for the higher κL. The elastic properties of MoS2, MoSSe and MoSe2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κL. The calculated results show that isotope scattering leads to a 5.8% reduction of the κL. The size effects on the κL are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κL reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.
Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S–Mo–Se structure, has been synthesized by replacing the top S atomic layer in MoS2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κL) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κL of MoSSe monolayers is much lower than that of MoS2 monolayers, and higher than that of MoSe2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K−1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κL. The larger group velocities of MoSSe compared to those of MoSe2 monolayers are the main reason for the higher κL. The elastic properties of MoS2, MoSSe and MoSe2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κL. The calculated results show that isotope scattering leads to a 5.8% reduction of the κL. The size effects on the κL are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κL reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.
Author Guo, San-Dong
AuthorAffiliation Xi'an University of Posts and Telecommunications
School of Electronic Engineering
AuthorAffiliation_xml – sequence: 0
  name: School of Electronic Engineering
– sequence: 0
  name: Xi'an University of Posts and Telecommunications
Author_xml – sequence: 1
  givenname: San-Dong
  surname: Guo
  fullname: Guo, San-Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29484328$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1LwzAYBvAgE-emF-9KwYsI1TdNmyXepMwvJg6m55KlKXZ0SU3Sw_57MzcnDE8J5Pc-JE8GqKeNVgidYbjBQPitZLIFIBmoA3SMU0piDizt7fYj2kcD5xYAgDNMjlA_4SlLScKOUT79NCEu8lZo1xrro1pHL0J3LlqGg0aslI1ezWym7iIRVbV1Pm5trWXdNspFznfl6gQdVqJx6nS7DtHHw_g9f4onb4_P-f0klkmW-JhiRlKMSVJKkcpSVXOeiTQps7lIKaaEQ8mAMuAVz3glMK1KRaVgI0JoAgEM0dUmt7Xmq1POF8vaSdU0QivTuSIBYIyvZaCXe3RhOqvD7YLCmI4oJuvAi63q5ktVFuFhS2FXxW89AVxvgLTGOauqHcFQrLsvcpZPf7ofBwx7WNZe-NroUG7d_D9yvhmxTu6i_76TfAMJhY0q
CitedBy_id crossref_primary_10_1063_5_0190799
crossref_primary_10_1016_j_cplett_2022_139913
crossref_primary_10_1002_pssb_202300352
crossref_primary_10_1103_PhysRevMaterials_3_125402
crossref_primary_10_1039_D4DT02909G
crossref_primary_10_1016_j_vacuum_2024_113143
crossref_primary_10_1063_5_0231503
crossref_primary_10_1021_acsnano_1c05583
crossref_primary_10_1016_j_jallcom_2022_166581
crossref_primary_10_1039_C8CP02006J
crossref_primary_10_1016_j_renene_2021_09_035
crossref_primary_10_1016_j_surfin_2023_103649
crossref_primary_10_1021_acsami_4c11547
crossref_primary_10_1021_acs_jpcc_3c06529
crossref_primary_10_35848_1347_4065_ad27a3
crossref_primary_10_1002_pssb_201900106
crossref_primary_10_1063_5_0088593
crossref_primary_10_2139_ssrn_4116069
crossref_primary_10_1016_j_spmi_2019_05_027
crossref_primary_10_1021_acs_jpcc_0c03414
crossref_primary_10_1016_j_apsusc_2019_06_049
crossref_primary_10_1039_D3CP05107B
crossref_primary_10_1088_1361_648X_acfa56
crossref_primary_10_1039_C9CP03639C
crossref_primary_10_1039_D4TC04616A
crossref_primary_10_1002_qua_26906
crossref_primary_10_1016_j_sna_2020_112049
crossref_primary_10_1002_smll_202306569
crossref_primary_10_1016_j_rinp_2021_104810
crossref_primary_10_1063_5_0164674
crossref_primary_10_1134_S1063783424600535
crossref_primary_10_1016_j_mssp_2022_107115
crossref_primary_10_1016_j_apsusc_2023_157139
crossref_primary_10_1021_acsami_4c18479
crossref_primary_10_1039_D1RA09458K
crossref_primary_10_1016_j_matpr_2021_02_314
crossref_primary_10_1051_epjap_2021210007
crossref_primary_10_1063_1_5124677
crossref_primary_10_3788_gzxb20235208_0816002
crossref_primary_10_1016_j_cocom_2021_e00623
crossref_primary_10_1007_s11664_023_10305_0
crossref_primary_10_1088_1361_648X_ab347a
crossref_primary_10_1063_5_0244130
crossref_primary_10_1021_acsami_1c04759
crossref_primary_10_1021_acsomega_1c00457
crossref_primary_10_1016_j_chemphys_2021_111440
crossref_primary_10_1016_j_apsusc_2021_151660
crossref_primary_10_1016_j_jpcs_2023_111573
crossref_primary_10_1039_D3CP05613A
crossref_primary_10_1007_s11664_024_11721_6
crossref_primary_10_7498_aps_70_20201406
crossref_primary_10_7498_aps_70_20201888
crossref_primary_10_1109_LPT_2019_2891066
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122099
crossref_primary_10_1088_1361_648X_ab2dca
crossref_primary_10_1103_PhysRevB_100_165425
crossref_primary_10_1007_s10853_022_07065_3
crossref_primary_10_1016_j_matchemphys_2023_127375
crossref_primary_10_1088_1361_648X_aafd58
crossref_primary_10_1007_s11082_022_04069_w
crossref_primary_10_1016_j_mtcomm_2021_102735
crossref_primary_10_1016_j_mssp_2022_106791
crossref_primary_10_1103_PhysRevMaterials_5_104001
crossref_primary_10_1088_1402_4896_ad033b
crossref_primary_10_1016_j_physb_2021_413057
crossref_primary_10_1103_PhysRevB_106_125410
crossref_primary_10_3390_nano10122554
crossref_primary_10_1016_j_ssc_2019_02_004
crossref_primary_10_3390_cryst12060772
crossref_primary_10_1021_acsanm_4c05475
crossref_primary_10_1088_1361_6528_ac6c37
crossref_primary_10_1109_JPHOTOV_2020_2999881
crossref_primary_10_1103_PhysRevB_104_115410
crossref_primary_10_2139_ssrn_3972698
crossref_primary_10_1039_C8CP04208J
crossref_primary_10_1016_j_solener_2024_112848
crossref_primary_10_1007_s11664_024_11134_5
crossref_primary_10_1039_D4TC01745E
crossref_primary_10_1039_D3CP06004G
crossref_primary_10_1016_j_apsusc_2019_143692
crossref_primary_10_1103_PhysRevB_103_165404
crossref_primary_10_1103_PhysRevB_107_125147
crossref_primary_10_1088_1361_6463_ab747f
crossref_primary_10_1103_PhysRevMaterials_6_084005
crossref_primary_10_1021_acsomega_3c06786
crossref_primary_10_1038_s41524_022_00944_y
crossref_primary_10_1016_j_mtphys_2022_100923
crossref_primary_10_3390_nano11123442
crossref_primary_10_1016_j_micrna_2022_207313
crossref_primary_10_1016_j_chemphys_2020_110679
crossref_primary_10_1039_D1CP04749C
crossref_primary_10_1039_D2CP01692C
crossref_primary_10_1021_acsaem_4c01768
crossref_primary_10_1088_1361_648X_acf6ea
crossref_primary_10_1016_j_chemphys_2024_112229
crossref_primary_10_1039_D0NR07027K
crossref_primary_10_1016_j_physe_2023_115704
crossref_primary_10_1039_D2TC01755E
crossref_primary_10_1016_j_spmi_2020_106445
crossref_primary_10_1103_PhysRevApplied_21_054026
crossref_primary_10_1063_5_0059671
crossref_primary_10_1088_1367_2630_aaf664
crossref_primary_10_1016_j_rinp_2022_105422
crossref_primary_10_1039_D1CP05337J
crossref_primary_10_1021_acs_jpcc_1c00714
crossref_primary_10_1039_D4CP01184H
crossref_primary_10_1007_s00339_024_07542_3
crossref_primary_10_1016_j_ijleo_2020_165503
crossref_primary_10_1016_j_surfin_2024_105513
crossref_primary_10_1021_acs_jpclett_3c00058
crossref_primary_10_1016_j_mtcomm_2020_101995
crossref_primary_10_1016_j_micrna_2022_207204
crossref_primary_10_1007_s42247_023_00573_1
crossref_primary_10_1021_acs_jpcc_3c00695
crossref_primary_10_1039_C9CP01702J
crossref_primary_10_1016_j_physe_2024_115936
crossref_primary_10_1016_j_jpcs_2021_110049
crossref_primary_10_1016_j_cplett_2018_11_013
crossref_primary_10_1016_j_ssc_2021_114579
crossref_primary_10_1142_S021963361950024X
crossref_primary_10_1039_C9CP04590B
crossref_primary_10_1039_D4CP00940A
crossref_primary_10_1016_j_physb_2020_412715
crossref_primary_10_1021_acsaem_2c01204
crossref_primary_10_1002_adfm_202110846
crossref_primary_10_1016_j_csite_2024_104377
crossref_primary_10_1039_D2RA06337A
crossref_primary_10_1039_D3CP03580H
crossref_primary_10_1039_D0CP06333A
crossref_primary_10_1063_5_0218830
crossref_primary_10_1016_j_isci_2023_106731
crossref_primary_10_1007_s11433_022_1949_9
crossref_primary_10_1016_j_vacuum_2023_112075
crossref_primary_10_1063_5_0130350
crossref_primary_10_1103_PhysRevApplied_18_054062
crossref_primary_10_1039_D2RA08100H
crossref_primary_10_1088_1361_648X_ab2e7d
crossref_primary_10_1103_PhysRevB_109_035417
crossref_primary_10_1088_1402_4896_adb8a8
crossref_primary_10_1016_j_jallcom_2020_157215
crossref_primary_10_1039_D2CP04002F
crossref_primary_10_1007_s12598_022_02187_8
crossref_primary_10_1016_j_apsusc_2020_146730
crossref_primary_10_1016_j_cjph_2024_02_045
crossref_primary_10_1007_s11696_024_03696_9
crossref_primary_10_1016_j_cplett_2019_136777
crossref_primary_10_1016_j_commatsci_2022_111993
crossref_primary_10_1016_j_apsusc_2023_157817
crossref_primary_10_1088_1361_6641_aacb11
crossref_primary_10_1002_pssb_202300533
crossref_primary_10_1016_j_solidstatesciences_2024_107707
crossref_primary_10_1039_D2CP03659B
crossref_primary_10_1039_D4RA00767K
crossref_primary_10_1016_j_ssc_2025_115922
crossref_primary_10_1103_PhysRevMaterials_4_124006
crossref_primary_10_1002_er_5902
crossref_primary_10_1088_1361_6463_aca9db
crossref_primary_10_1021_acs_jpcc_4c07381
crossref_primary_10_1016_j_yofte_2021_102798
crossref_primary_10_1063_1_5051067
crossref_primary_10_1039_D2CP03973G
crossref_primary_10_1039_D0CP01939A
crossref_primary_10_1002_bkcs_12440
crossref_primary_10_1016_j_ijhydene_2021_09_141
crossref_primary_10_1039_D2TC01613C
crossref_primary_10_1088_0256_307X_40_8_086301
crossref_primary_10_1016_j_jallcom_2021_159704
crossref_primary_10_1039_C9CP03395E
crossref_primary_10_1016_j_physe_2021_115023
crossref_primary_10_1021_acs_jpcc_8b07478
crossref_primary_10_1088_1402_4896_ad3ca0
crossref_primary_10_1016_j_apsusc_2022_153962
crossref_primary_10_1088_1742_6596_2866_1_012051
crossref_primary_10_1088_1674_1056_abca24
crossref_primary_10_1088_1674_4926_44_1_012701
Cites_doi 10.1021/acsnano.7b03313
10.1016/0022-3093(95)00355-X
10.1016/j.cplett.2016.12.054
10.1039/C5RA19747C
10.1103/PhysRevLett.111.025901
10.1039/C6TC03074B
10.1103/PhysRevB.78.134106
10.1038/nnano.2017.100
10.1103/PhysRevB.85.125428
10.1103/PhysRevB.27.858
10.1039/C5NR08231E
10.1063/1.4896685
10.1038/ncomms13352
10.1039/C7CP06065C
10.1002/ange.201507568
10.1039/C5TC01670C
10.1039/C7NR00838D
10.1039/C4CS00282B
10.1103/PhysRevLett.107.095901
10.1103/PhysRevB.89.155426
10.1016/0927-0256(96)00008-0
10.1039/C7CP05579J
10.1021/jz3012436
10.1002/smll.201402041
10.1103/PhysRevB.91.094306
10.1063/1.4934750
10.1038/nchem.1589
10.1103/PhysRevB.59.1758
10.1039/C7CP02486J
10.1103/PhysRevB.94.155448
10.1002/cphc.201400020
10.1021/acsnano.5b03394
10.1088/1361-6528/aa8741
10.1021/acs.nanolett.6b01311
10.1039/C6CP05908B
10.1103/PhysRevB.87.165201
10.1039/C7NR01271C
10.1039/C6TC01135G
10.1021/acs.jpclett.7b02841
10.1039/C6CP06088A
10.1103/PhysRevLett.77.3865
10.1126/science.1102896
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c8cp00350e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 7242
ExternalDocumentID 29484328
10_1039_C8CP00350E
c8cp00350e
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
0UZ
1TJ
6TJ
71~
9M8
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ALUYA
ANBJS
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
L-8
MVM
NDZJH
R56
RCLXC
RIG
ROL
XJT
XOL
ZCG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c252t-618341132dca4cdefb95a42d5ba4616390d806809f959fa16fde6ca8733620163
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 04:20:51 EDT 2025
Mon Jun 30 02:26:32 EDT 2025
Thu Apr 03 06:59:23 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Tue Jul 01 01:55:18 EDT 2025
Tue Dec 17 20:58:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-618341132dca4cdefb95a42d5ba4616390d806809f959fa16fde6ca8733620163
Notes PACS numbers: 72.15.Jf, 71.20.-b, 71.70.Ej, 79.10.-n.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4894-1585
PMID 29484328
PQID 2011676136
PQPubID 2047499
PageCount 7
ParticipantIDs crossref_primary_10_1039_C8CP00350E
proquest_miscellaneous_2008890163
pubmed_primary_29484328
crossref_citationtrail_10_1039_C8CP00350E
rsc_primary_c8cp00350e
proquest_journals_2011676136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180307
PublicationDateYYYYMMDD 2018-03-07
PublicationDate_xml – month: 3
  year: 2018
  text: 20180307
  day: 7
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Late (C8CP00350E-(cit37)/*[position()=1]) 2014; 15
Guo (C8CP00350E-(cit10)/*[position()=1])
Perdew (C8CP00350E-(cit32)/*[position()=1]) 1996; 77
Lu (C8CP00350E-(cit7)/*[position()=1]) 2017; 12
Gu (C8CP00350E-(cit39)/*[position()=1]) 2014; 105
Liu (C8CP00350E-(cit24)/*[position()=1]) 2016; 16
Guo (C8CP00350E-(cit20)/*[position()=1]) 2016; 4
Wu (C8CP00350E-(cit35)/*[position()=1]) 2017; 669
Shafique (C8CP00350E-(cit19)/*[position()=1]) 2017; 19
Lv (C8CP00350E-(cit22)/*[position()=1]) 2016; 4
Fei (C8CP00350E-(cit5)/*[position()=1]) 2015; 107
Lindsay (C8CP00350E-(cit26)/*[position()=1]) 2014; 89
Ji (C8CP00350E-(cit4)/*[position()=1]) 2016; 7
Kim (C8CP00350E-(cit28)/*[position()=1]) 2015; 3
Guo (C8CP00350E-(cit12)/*[position()=1]) 2017; 19
Dong (C8CP00350E-(cit8)/*[position()=1]) 2017; 11
Guo (C8CP00350E-(cit18)/*[position()=1]) 2017; 28
Zhang (C8CP00350E-(cit25)/*[position()=1]) 2017; 19
Tamura (C8CP00350E-(cit42)/*[position()=1]) 1983; 27
Kresse (C8CP00350E-(cit29)/*[position()=1]) 1995; 193
Zhang (C8CP00350E-(cit36)/*[position()=1]) 2015; 44
Minnich (C8CP00350E-(cit43)/*[position()=1]) 2011; 107
Blonsky (C8CP00350E-(cit46)/*[position()=1]) 2015; 9
Peng (C8CP00350E-(cit16)/*[position()=1]) 2016; 6
Zhang (C8CP00350E-(cit17)/*[position()=1]) 2016; 18
Peng (C8CP00350E-(cit21)/*[position()=1]) 2017; 9
Togo (C8CP00350E-(cit34)/*[position()=1]) 2008; 78
Balendhran (C8CP00350E-(cit6)/*[position()=1]) 2015; 11
Lindsay (C8CP00350E-(cit38)/*[position()=1]) 2013; 111
Qin (C8CP00350E-(cit15)/*[position()=1]) 2017; 9
Li (C8CP00350E-(cit23)/*[position()=1]) 2017; 29
Chhowalla (C8CP00350E-(cit2)/*[position()=1]) 2013; 5
Kresse (C8CP00350E-(cit30)/*[position()=1]) 1996; 6
Gu (C8CP00350E-(cit11)/*[position()=1]) 2014; 105
Kresse (C8CP00350E-(cit31)/*[position()=1]) 1999; 59
Zhang (C8CP00350E-(cit3)/*[position()=1]) 2016; 128
Andrew (C8CP00350E-(cit44)/*[position()=1]) 2012; 85
Zheng (C8CP00350E-(cit13)/*[position()=1]) 2016; 94
Togo (C8CP00350E-(cit33)/*[position()=1]) 2015; 91
Lindsay (C8CP00350E-(cit41)/*[position()=1]) 2013; 87
Novoselov (C8CP00350E-(cit1)/*[position()=1]) 2004; 306
Li (C8CP00350E-(cit9)/*[position()=1]) 2017; 8
Kuang (C8CP00350E-(cit27)/*[position()=1]) 2016; 8
Duerloo (C8CP00350E-(cit45)/*[position()=1]) 2012; 3
Wang (C8CP00350E-(cit14)/*[position()=1]) 2016; 18
Lindsay (C8CP00350E-(cit40)/*[position()=1]) 2013; 111
References_xml – doi: Guo
– volume: 11
  start-page: 8242
  year: 2017
  ident: C8CP00350E-(cit8)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03313
– volume: 193
  start-page: 222
  year: 1995
  ident: C8CP00350E-(cit29)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00355-X
– volume: 669
  start-page: 233
  year: 2017
  ident: C8CP00350E-(cit35)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.12.054
– volume: 6
  start-page: 5767
  year: 2016
  ident: C8CP00350E-(cit16)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19747C
– volume: 111
  start-page: 025901
  year: 2013
  ident: C8CP00350E-(cit38)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.025901
– volume: 4
  start-page: 9366
  year: 2016
  ident: C8CP00350E-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03074B
– volume: 78
  start-page: 134106
  year: 2008
  ident: C8CP00350E-(cit34)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.78.134106
– volume: 12
  start-page: 744
  year: 2017
  ident: C8CP00350E-(cit7)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.100
– volume: 85
  start-page: 125428
  year: 2012
  ident: C8CP00350E-(cit44)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.125428
– volume: 27
  start-page: 858
  year: 1983
  ident: C8CP00350E-(cit42)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.27.858
– volume: 8
  start-page: 3760
  year: 2016
  ident: C8CP00350E-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR08231E
– volume: 29
  start-page: 015001
  year: 2017
  ident: C8CP00350E-(cit23)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 105
  start-page: 131903
  year: 2014
  ident: C8CP00350E-(cit39)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896685
– volume: 7
  start-page: 13352
  year: 2016
  ident: C8CP00350E-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13352
– volume: 19
  start-page: 32072
  year: 2017
  ident: C8CP00350E-(cit19)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06065C
– volume: 111
  start-page: 025901
  year: 2013
  ident: C8CP00350E-(cit40)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.025901
– volume: 128
  start-page: 1698
  year: 2016
  ident: C8CP00350E-(cit3)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201507568
– volume: 3
  start-page: 10336
  year: 2015
  ident: C8CP00350E-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01670C
– volume: 9
  start-page: 7397
  year: 2017
  ident: C8CP00350E-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR00838D
– volume: 44
  start-page: 2757
  year: 2015
  ident: C8CP00350E-(cit36)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00282B
– volume: 107
  start-page: 095901
  year: 2011
  ident: C8CP00350E-(cit43)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.095901
– volume: 89
  start-page: 155426
  year: 2014
  ident: C8CP00350E-(cit26)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.155426
– volume: 6
  start-page: 15
  year: 1996
  ident: C8CP00350E-(cit30)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 19
  start-page: 31982
  year: 2017
  ident: C8CP00350E-(cit12)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP05579J
– volume: 3
  start-page: 2871
  year: 2012
  ident: C8CP00350E-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3012436
– volume: 11
  start-page: 640
  year: 2015
  ident: C8CP00350E-(cit6)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201402041
– volume: 91
  start-page: 094306
  year: 2015
  ident: C8CP00350E-(cit33)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.91.094306
– volume: 107
  start-page: 173104
  year: 2015
  ident: C8CP00350E-(cit5)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4934750
– volume: 5
  start-page: 263
  year: 2013
  ident: C8CP00350E-(cit2)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 105
  start-page: 131903
  year: 2014
  ident: C8CP00350E-(cit11)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896685
– volume: 59
  start-page: 1758
  year: 1999
  ident: C8CP00350E-(cit31)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 19
  start-page: 14520
  year: 2017
  ident: C8CP00350E-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP02486J
– volume: 94
  start-page: 155448
  year: 2016
  ident: C8CP00350E-(cit13)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.155448
– volume: 15
  start-page: 1592
  year: 2014
  ident: C8CP00350E-(cit37)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201400020
– volume: 9
  start-page: 9885
  year: 2015
  ident: C8CP00350E-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03394
– volume: 28
  start-page: 445702
  year: 2017
  ident: C8CP00350E-(cit18)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa8741
– volume: 16
  start-page: 3831
  year: 2016
  ident: C8CP00350E-(cit24)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01311
– ident: C8CP00350E-(cit10)/*[position()=1]
– volume: 18
  start-page: 30061
  year: 2016
  ident: C8CP00350E-(cit17)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05908B
– volume: 87
  start-page: 165201
  year: 2013
  ident: C8CP00350E-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.165201
– volume: 9
  start-page: 4295
  year: 2017
  ident: C8CP00350E-(cit15)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR01271C
– volume: 4
  start-page: 4538
  year: 2016
  ident: C8CP00350E-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01135G
– volume: 8
  start-page: 5959
  year: 2017
  ident: C8CP00350E-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02841
– volume: 18
  start-page: 31217
  year: 2016
  ident: C8CP00350E-(cit14)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06088A
– volume: 77
  start-page: 3865
  year: 1996
  ident: C8CP00350E-(cit32)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 306
  start-page: 666
  year: 2004
  ident: C8CP00350E-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
SSID ssj0001513
Score 2.58898
Snippet Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7236
SubjectTerms Atomic structure
Boltzmann transport equation
Elastic properties
First principles
Mathematical analysis
Modulus of elasticity
Molybdenum disulfide
Monolayers
Nanoelectronics
Physical properties
Relaxation time
Resistance
Size effects
Thermal conductivity
Thermal management
Title Phonon transport in Janus monolayer MoSSe: a first-principles study
URI https://www.ncbi.nlm.nih.gov/pubmed/29484328
https://www.proquest.com/docview/2011676136
https://www.proquest.com/docview/2008890163
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8Bl4muQMZARXDhkJLaT2dym0DGmMiotlXqLEscWQyit1vbCX8_zV1JYD4NLFDmRY72fP35-zns_hN7JjCetUHXcap3FTHBpckCmcdrUhDYnbaOZCU7-epmfz9jFPJsPkpc2umTdHMtfO-NK_gdVKANcTZTsPyDbVwoFcA_4whUQhuudMJ5-X3TG2R8SlBvnxUXdbYzATQd7VqDTMGivrpQLadbXQPXiZXCvr7Zyy_4IFXrUZNCBc3emyPlAVtaHMC2KPi7s82bhXMtd_Gnh10HvRkhtXJ3Tm_UzH8tpLBKn13asdpT56ZIk290i2Zr8TojLZXJrVk6oSWoquVzag0w1rD3hvP3yW3U2m0yqcjwv76M9ApyfjNDe6bj8MukXViAn1AWLuVaFbLNUfBjq_pNf3No0AIW4CdIulkKUj9C-5_741AH5GN1T3RP0oAimfooKByjuAcXXHbaA4h5QbAH9iGv8N5zYwvkMzc7GZXEee5WLWJKMrGHvzoFJpJS0smayVboRWc1ImzU1y4Eti6TlRiBFaJEJXae5blUua27yWAKQOT1AI2iaeoEwlUAoG8K1VikjwO1hFErSiiwjMFRzHaH3wTaV9CngjRLJz8r-ikBFVfBiau04jtDb_t2lS3yy862jYOLKD4xVRezhHvDEPEJv-sdgSnMWVXdqsVlZ9VMuTPMj9NxB03-GCMYZJTxCB4BVXzxgfHiHal-ih0M3P0Kj9c1GvQL-uG5e-371G-r7bxQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonon+transport+in+Janus+monolayer+MoSSe%3A+a+first-principles+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Guo%2C+San-Dong&rft.date=2018-03-07&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=20&rft.issue=10&rft.spage=7236&rft_id=info:doi/10.1039%2Fc8cp00350e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon