Phonon transport in Janus monolayer MoSSe: a first-principles study
Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 2; no. 1; pp. 7236 - 7242 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS
2
with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (
κ
L
) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the
κ
L
of MoSSe monolayers is much lower than that of MoS
2
monolayers, and higher than that of MoSe
2
monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K
−1
at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS
2
monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower
κ
L
. The larger group velocities of MoSSe compared to those of MoSe
2
monolayers are the main reason for the higher
κ
L
. The elastic properties of MoS
2
, MoSSe and MoSe
2
monolayers are also calculated, and the order of the Young's modulus is identical to that of the
κ
L
. The calculated results show that isotope scattering leads to a 5.8% reduction of the
κ
L
. The size effects on the
κ
L
are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the
κ
L
reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.
First principles investigation of the phonon transport and lattice thermal conductivity (
κ
L
) in MoSSe, MoS
2
and MoSe
2
monolayers. |
---|---|
AbstractList | Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS
with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κ
) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ
of MoSSe monolayers is much lower than that of MoS
monolayers, and higher than that of MoSe
monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K
at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS
monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ
. The larger group velocities of MoSSe compared to those of MoSe
monolayers are the main reason for the higher κ
. The elastic properties of MoS
, MoSSe and MoSe
monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ
. The calculated results show that isotope scattering leads to a 5.8% reduction of the κ
. The size effects on the κ
are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ
reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S–Mo–Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ L of MoSSe monolayers is much lower than that of MoS 2 monolayers, and higher than that of MoSe 2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K −1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS 2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ L . The larger group velocities of MoSSe compared to those of MoSe 2 monolayers are the main reason for the higher κ L . The elastic properties of MoS 2 , MoSSe and MoSe 2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ L . The calculated results show that isotope scattering leads to a 5.8% reduction of the κ L . The size effects on the κ L are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ L reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS 2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κ L of MoSSe monolayers is much lower than that of MoS 2 monolayers, and higher than that of MoSe 2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K −1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS 2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κ L . The larger group velocities of MoSSe compared to those of MoSe 2 monolayers are the main reason for the higher κ L . The elastic properties of MoS 2 , MoSSe and MoSe 2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κ L . The calculated results show that isotope scattering leads to a 5.8% reduction of the κ L . The size effects on the κ L are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κ L reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. First principles investigation of the phonon transport and lattice thermal conductivity ( κ L ) in MoSSe, MoS 2 and MoSe 2 monolayers. Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κL) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κL of MoSSe monolayers is much lower than that of MoS2 monolayers, and higher than that of MoSe2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K-1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κL. The larger group velocities of MoSSe compared to those of MoSe2 monolayers are the main reason for the higher κL. The elastic properties of MoS2, MoSSe and MoSe2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κL. The calculated results show that isotope scattering leads to a 5.8% reduction of the κL. The size effects on the κL are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κL reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers.Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S-Mo-Se structure, has been synthesized by replacing the top S atomic layer in MoS2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κL) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κL of MoSSe monolayers is much lower than that of MoS2 monolayers, and higher than that of MoSe2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K-1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κL. The larger group velocities of MoSSe compared to those of MoSe2 monolayers are the main reason for the higher κL. The elastic properties of MoS2, MoSSe and MoSe2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κL. The calculated results show that isotope scattering leads to a 5.8% reduction of the κL. The size effects on the κL are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κL reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a sandwiched S–Mo–Se structure, has been synthesized by replacing the top S atomic layer in MoS2 with Se atoms. In this work, we systematically investigate the phonon transport and lattice thermal conductivity (κL) in MoSSe monolayers using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated results show that the κL of MoSSe monolayers is much lower than that of MoS2 monolayers, and higher than that of MoSe2 monolayers. The corresponding thermal sheet conductance of MoSSe monolayers is 342.50 W K−1 at room temperature. This can be understood by studying the phonon group velocities and lifetimes. Compared to MoS2 monolayers, the smaller group velocities and shorter phonon lifetimes of MoSSe monolayers give rise to a lower κL. The larger group velocities of MoSSe compared to those of MoSe2 monolayers are the main reason for the higher κL. The elastic properties of MoS2, MoSSe and MoSe2 monolayers are also calculated, and the order of the Young's modulus is identical to that of the κL. The calculated results show that isotope scattering leads to a 5.8% reduction of the κL. The size effects on the κL are also considered, and are usually used in device implementation. When the characteristic length of the MoSSe monolayer is about 110 nm, the κL reduces to half. These results may offer perspectives on thermal management of MoSSe monolayers, for applications in thermoelectrics, thermal circuits and nanoelectronics, and may motivate further theoretical or experimental efforts to investigate thermal transport in Janus TMD monolayers. |
Author | Guo, San-Dong |
AuthorAffiliation | Xi'an University of Posts and Telecommunications School of Electronic Engineering |
AuthorAffiliation_xml | – sequence: 0 name: School of Electronic Engineering – sequence: 0 name: Xi'an University of Posts and Telecommunications |
Author_xml | – sequence: 1 givenname: San-Dong surname: Guo fullname: Guo, San-Dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29484328$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c1LwzAYBvAgE-emF-9KwYsI1TdNmyXepMwvJg6m55KlKXZ0SU3Sw_57MzcnDE8J5Pc-JE8GqKeNVgidYbjBQPitZLIFIBmoA3SMU0piDizt7fYj2kcD5xYAgDNMjlA_4SlLScKOUT79NCEu8lZo1xrro1pHL0J3LlqGg0aslI1ezWym7iIRVbV1Pm5trWXdNspFznfl6gQdVqJx6nS7DtHHw_g9f4onb4_P-f0klkmW-JhiRlKMSVJKkcpSVXOeiTQps7lIKaaEQ8mAMuAVz3glMK1KRaVgI0JoAgEM0dUmt7Xmq1POF8vaSdU0QivTuSIBYIyvZaCXe3RhOqvD7YLCmI4oJuvAi63q5ktVFuFhS2FXxW89AVxvgLTGOauqHcFQrLsvcpZPf7ofBwx7WNZe-NroUG7d_D9yvhmxTu6i_76TfAMJhY0q |
CitedBy_id | crossref_primary_10_1063_5_0190799 crossref_primary_10_1016_j_cplett_2022_139913 crossref_primary_10_1002_pssb_202300352 crossref_primary_10_1103_PhysRevMaterials_3_125402 crossref_primary_10_1039_D4DT02909G crossref_primary_10_1016_j_vacuum_2024_113143 crossref_primary_10_1063_5_0231503 crossref_primary_10_1021_acsnano_1c05583 crossref_primary_10_1016_j_jallcom_2022_166581 crossref_primary_10_1039_C8CP02006J crossref_primary_10_1016_j_renene_2021_09_035 crossref_primary_10_1016_j_surfin_2023_103649 crossref_primary_10_1021_acsami_4c11547 crossref_primary_10_1021_acs_jpcc_3c06529 crossref_primary_10_35848_1347_4065_ad27a3 crossref_primary_10_1002_pssb_201900106 crossref_primary_10_1063_5_0088593 crossref_primary_10_2139_ssrn_4116069 crossref_primary_10_1016_j_spmi_2019_05_027 crossref_primary_10_1021_acs_jpcc_0c03414 crossref_primary_10_1016_j_apsusc_2019_06_049 crossref_primary_10_1039_D3CP05107B crossref_primary_10_1088_1361_648X_acfa56 crossref_primary_10_1039_C9CP03639C crossref_primary_10_1039_D4TC04616A crossref_primary_10_1002_qua_26906 crossref_primary_10_1016_j_sna_2020_112049 crossref_primary_10_1002_smll_202306569 crossref_primary_10_1016_j_rinp_2021_104810 crossref_primary_10_1063_5_0164674 crossref_primary_10_1134_S1063783424600535 crossref_primary_10_1016_j_mssp_2022_107115 crossref_primary_10_1016_j_apsusc_2023_157139 crossref_primary_10_1021_acsami_4c18479 crossref_primary_10_1039_D1RA09458K crossref_primary_10_1016_j_matpr_2021_02_314 crossref_primary_10_1051_epjap_2021210007 crossref_primary_10_1063_1_5124677 crossref_primary_10_3788_gzxb20235208_0816002 crossref_primary_10_1016_j_cocom_2021_e00623 crossref_primary_10_1007_s11664_023_10305_0 crossref_primary_10_1088_1361_648X_ab347a crossref_primary_10_1063_5_0244130 crossref_primary_10_1021_acsami_1c04759 crossref_primary_10_1021_acsomega_1c00457 crossref_primary_10_1016_j_chemphys_2021_111440 crossref_primary_10_1016_j_apsusc_2021_151660 crossref_primary_10_1016_j_jpcs_2023_111573 crossref_primary_10_1039_D3CP05613A crossref_primary_10_1007_s11664_024_11721_6 crossref_primary_10_7498_aps_70_20201406 crossref_primary_10_7498_aps_70_20201888 crossref_primary_10_1109_LPT_2019_2891066 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122099 crossref_primary_10_1088_1361_648X_ab2dca crossref_primary_10_1103_PhysRevB_100_165425 crossref_primary_10_1007_s10853_022_07065_3 crossref_primary_10_1016_j_matchemphys_2023_127375 crossref_primary_10_1088_1361_648X_aafd58 crossref_primary_10_1007_s11082_022_04069_w crossref_primary_10_1016_j_mtcomm_2021_102735 crossref_primary_10_1016_j_mssp_2022_106791 crossref_primary_10_1103_PhysRevMaterials_5_104001 crossref_primary_10_1088_1402_4896_ad033b crossref_primary_10_1016_j_physb_2021_413057 crossref_primary_10_1103_PhysRevB_106_125410 crossref_primary_10_3390_nano10122554 crossref_primary_10_1016_j_ssc_2019_02_004 crossref_primary_10_3390_cryst12060772 crossref_primary_10_1021_acsanm_4c05475 crossref_primary_10_1088_1361_6528_ac6c37 crossref_primary_10_1109_JPHOTOV_2020_2999881 crossref_primary_10_1103_PhysRevB_104_115410 crossref_primary_10_2139_ssrn_3972698 crossref_primary_10_1039_C8CP04208J crossref_primary_10_1016_j_solener_2024_112848 crossref_primary_10_1007_s11664_024_11134_5 crossref_primary_10_1039_D4TC01745E crossref_primary_10_1039_D3CP06004G crossref_primary_10_1016_j_apsusc_2019_143692 crossref_primary_10_1103_PhysRevB_103_165404 crossref_primary_10_1103_PhysRevB_107_125147 crossref_primary_10_1088_1361_6463_ab747f crossref_primary_10_1103_PhysRevMaterials_6_084005 crossref_primary_10_1021_acsomega_3c06786 crossref_primary_10_1038_s41524_022_00944_y crossref_primary_10_1016_j_mtphys_2022_100923 crossref_primary_10_3390_nano11123442 crossref_primary_10_1016_j_micrna_2022_207313 crossref_primary_10_1016_j_chemphys_2020_110679 crossref_primary_10_1039_D1CP04749C crossref_primary_10_1039_D2CP01692C crossref_primary_10_1021_acsaem_4c01768 crossref_primary_10_1088_1361_648X_acf6ea crossref_primary_10_1016_j_chemphys_2024_112229 crossref_primary_10_1039_D0NR07027K crossref_primary_10_1016_j_physe_2023_115704 crossref_primary_10_1039_D2TC01755E crossref_primary_10_1016_j_spmi_2020_106445 crossref_primary_10_1103_PhysRevApplied_21_054026 crossref_primary_10_1063_5_0059671 crossref_primary_10_1088_1367_2630_aaf664 crossref_primary_10_1016_j_rinp_2022_105422 crossref_primary_10_1039_D1CP05337J crossref_primary_10_1021_acs_jpcc_1c00714 crossref_primary_10_1039_D4CP01184H crossref_primary_10_1007_s00339_024_07542_3 crossref_primary_10_1016_j_ijleo_2020_165503 crossref_primary_10_1016_j_surfin_2024_105513 crossref_primary_10_1021_acs_jpclett_3c00058 crossref_primary_10_1016_j_mtcomm_2020_101995 crossref_primary_10_1016_j_micrna_2022_207204 crossref_primary_10_1007_s42247_023_00573_1 crossref_primary_10_1021_acs_jpcc_3c00695 crossref_primary_10_1039_C9CP01702J crossref_primary_10_1016_j_physe_2024_115936 crossref_primary_10_1016_j_jpcs_2021_110049 crossref_primary_10_1016_j_cplett_2018_11_013 crossref_primary_10_1016_j_ssc_2021_114579 crossref_primary_10_1142_S021963361950024X crossref_primary_10_1039_C9CP04590B crossref_primary_10_1039_D4CP00940A crossref_primary_10_1016_j_physb_2020_412715 crossref_primary_10_1021_acsaem_2c01204 crossref_primary_10_1002_adfm_202110846 crossref_primary_10_1016_j_csite_2024_104377 crossref_primary_10_1039_D2RA06337A crossref_primary_10_1039_D3CP03580H crossref_primary_10_1039_D0CP06333A crossref_primary_10_1063_5_0218830 crossref_primary_10_1016_j_isci_2023_106731 crossref_primary_10_1007_s11433_022_1949_9 crossref_primary_10_1016_j_vacuum_2023_112075 crossref_primary_10_1063_5_0130350 crossref_primary_10_1103_PhysRevApplied_18_054062 crossref_primary_10_1039_D2RA08100H crossref_primary_10_1088_1361_648X_ab2e7d crossref_primary_10_1103_PhysRevB_109_035417 crossref_primary_10_1088_1402_4896_adb8a8 crossref_primary_10_1016_j_jallcom_2020_157215 crossref_primary_10_1039_D2CP04002F crossref_primary_10_1007_s12598_022_02187_8 crossref_primary_10_1016_j_apsusc_2020_146730 crossref_primary_10_1016_j_cjph_2024_02_045 crossref_primary_10_1007_s11696_024_03696_9 crossref_primary_10_1016_j_cplett_2019_136777 crossref_primary_10_1016_j_commatsci_2022_111993 crossref_primary_10_1016_j_apsusc_2023_157817 crossref_primary_10_1088_1361_6641_aacb11 crossref_primary_10_1002_pssb_202300533 crossref_primary_10_1016_j_solidstatesciences_2024_107707 crossref_primary_10_1039_D2CP03659B crossref_primary_10_1039_D4RA00767K crossref_primary_10_1016_j_ssc_2025_115922 crossref_primary_10_1103_PhysRevMaterials_4_124006 crossref_primary_10_1002_er_5902 crossref_primary_10_1088_1361_6463_aca9db crossref_primary_10_1021_acs_jpcc_4c07381 crossref_primary_10_1016_j_yofte_2021_102798 crossref_primary_10_1063_1_5051067 crossref_primary_10_1039_D2CP03973G crossref_primary_10_1039_D0CP01939A crossref_primary_10_1002_bkcs_12440 crossref_primary_10_1016_j_ijhydene_2021_09_141 crossref_primary_10_1039_D2TC01613C crossref_primary_10_1088_0256_307X_40_8_086301 crossref_primary_10_1016_j_jallcom_2021_159704 crossref_primary_10_1039_C9CP03395E crossref_primary_10_1016_j_physe_2021_115023 crossref_primary_10_1021_acs_jpcc_8b07478 crossref_primary_10_1088_1402_4896_ad3ca0 crossref_primary_10_1016_j_apsusc_2022_153962 crossref_primary_10_1088_1742_6596_2866_1_012051 crossref_primary_10_1088_1674_1056_abca24 crossref_primary_10_1088_1674_4926_44_1_012701 |
Cites_doi | 10.1021/acsnano.7b03313 10.1016/0022-3093(95)00355-X 10.1016/j.cplett.2016.12.054 10.1039/C5RA19747C 10.1103/PhysRevLett.111.025901 10.1039/C6TC03074B 10.1103/PhysRevB.78.134106 10.1038/nnano.2017.100 10.1103/PhysRevB.85.125428 10.1103/PhysRevB.27.858 10.1039/C5NR08231E 10.1063/1.4896685 10.1038/ncomms13352 10.1039/C7CP06065C 10.1002/ange.201507568 10.1039/C5TC01670C 10.1039/C7NR00838D 10.1039/C4CS00282B 10.1103/PhysRevLett.107.095901 10.1103/PhysRevB.89.155426 10.1016/0927-0256(96)00008-0 10.1039/C7CP05579J 10.1021/jz3012436 10.1002/smll.201402041 10.1103/PhysRevB.91.094306 10.1063/1.4934750 10.1038/nchem.1589 10.1103/PhysRevB.59.1758 10.1039/C7CP02486J 10.1103/PhysRevB.94.155448 10.1002/cphc.201400020 10.1021/acsnano.5b03394 10.1088/1361-6528/aa8741 10.1021/acs.nanolett.6b01311 10.1039/C6CP05908B 10.1103/PhysRevB.87.165201 10.1039/C7NR01271C 10.1039/C6TC01135G 10.1021/acs.jpclett.7b02841 10.1039/C6CP06088A 10.1103/PhysRevLett.77.3865 10.1126/science.1102896 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c8cp00350e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 7242 |
ExternalDocumentID | 29484328 10_1039_C8CP00350E c8cp00350e |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT 0UZ 1TJ 6TJ 71~ 9M8 AAYXX ACHDF ACRPL ADNMO AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ALUYA ANBJS ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC FEDTE HVGLF H~9 IDY J3H L-8 MVM NDZJH R56 RCLXC RIG ROL XJT XOL ZCG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c252t-618341132dca4cdefb95a42d5ba4616390d806809f959fa16fde6ca8733620163 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 04:20:51 EDT 2025 Mon Jun 30 02:26:32 EDT 2025 Thu Apr 03 06:59:23 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Tue Jul 01 01:55:18 EDT 2025 Tue Dec 17 20:58:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c252t-618341132dca4cdefb95a42d5ba4616390d806809f959fa16fde6ca8733620163 |
Notes | PACS numbers: 72.15.Jf, 71.20.-b, 71.70.Ej, 79.10.-n. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4894-1585 |
PMID | 29484328 |
PQID | 2011676136 |
PQPubID | 2047499 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_C8CP00350E proquest_miscellaneous_2008890163 pubmed_primary_29484328 crossref_citationtrail_10_1039_C8CP00350E rsc_primary_c8cp00350e proquest_journals_2011676136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180307 |
PublicationDateYYYYMMDD | 2018-03-07 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180307 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Late (C8CP00350E-(cit37)/*[position()=1]) 2014; 15 Guo (C8CP00350E-(cit10)/*[position()=1]) Perdew (C8CP00350E-(cit32)/*[position()=1]) 1996; 77 Lu (C8CP00350E-(cit7)/*[position()=1]) 2017; 12 Gu (C8CP00350E-(cit39)/*[position()=1]) 2014; 105 Liu (C8CP00350E-(cit24)/*[position()=1]) 2016; 16 Guo (C8CP00350E-(cit20)/*[position()=1]) 2016; 4 Wu (C8CP00350E-(cit35)/*[position()=1]) 2017; 669 Shafique (C8CP00350E-(cit19)/*[position()=1]) 2017; 19 Lv (C8CP00350E-(cit22)/*[position()=1]) 2016; 4 Fei (C8CP00350E-(cit5)/*[position()=1]) 2015; 107 Lindsay (C8CP00350E-(cit26)/*[position()=1]) 2014; 89 Ji (C8CP00350E-(cit4)/*[position()=1]) 2016; 7 Kim (C8CP00350E-(cit28)/*[position()=1]) 2015; 3 Guo (C8CP00350E-(cit12)/*[position()=1]) 2017; 19 Dong (C8CP00350E-(cit8)/*[position()=1]) 2017; 11 Guo (C8CP00350E-(cit18)/*[position()=1]) 2017; 28 Zhang (C8CP00350E-(cit25)/*[position()=1]) 2017; 19 Tamura (C8CP00350E-(cit42)/*[position()=1]) 1983; 27 Kresse (C8CP00350E-(cit29)/*[position()=1]) 1995; 193 Zhang (C8CP00350E-(cit36)/*[position()=1]) 2015; 44 Minnich (C8CP00350E-(cit43)/*[position()=1]) 2011; 107 Blonsky (C8CP00350E-(cit46)/*[position()=1]) 2015; 9 Peng (C8CP00350E-(cit16)/*[position()=1]) 2016; 6 Zhang (C8CP00350E-(cit17)/*[position()=1]) 2016; 18 Peng (C8CP00350E-(cit21)/*[position()=1]) 2017; 9 Togo (C8CP00350E-(cit34)/*[position()=1]) 2008; 78 Balendhran (C8CP00350E-(cit6)/*[position()=1]) 2015; 11 Lindsay (C8CP00350E-(cit38)/*[position()=1]) 2013; 111 Qin (C8CP00350E-(cit15)/*[position()=1]) 2017; 9 Li (C8CP00350E-(cit23)/*[position()=1]) 2017; 29 Chhowalla (C8CP00350E-(cit2)/*[position()=1]) 2013; 5 Kresse (C8CP00350E-(cit30)/*[position()=1]) 1996; 6 Gu (C8CP00350E-(cit11)/*[position()=1]) 2014; 105 Kresse (C8CP00350E-(cit31)/*[position()=1]) 1999; 59 Zhang (C8CP00350E-(cit3)/*[position()=1]) 2016; 128 Andrew (C8CP00350E-(cit44)/*[position()=1]) 2012; 85 Zheng (C8CP00350E-(cit13)/*[position()=1]) 2016; 94 Togo (C8CP00350E-(cit33)/*[position()=1]) 2015; 91 Lindsay (C8CP00350E-(cit41)/*[position()=1]) 2013; 87 Novoselov (C8CP00350E-(cit1)/*[position()=1]) 2004; 306 Li (C8CP00350E-(cit9)/*[position()=1]) 2017; 8 Kuang (C8CP00350E-(cit27)/*[position()=1]) 2016; 8 Duerloo (C8CP00350E-(cit45)/*[position()=1]) 2012; 3 Wang (C8CP00350E-(cit14)/*[position()=1]) 2016; 18 Lindsay (C8CP00350E-(cit40)/*[position()=1]) 2013; 111 |
References_xml | – doi: Guo – volume: 11 start-page: 8242 year: 2017 ident: C8CP00350E-(cit8)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03313 – volume: 193 start-page: 222 year: 1995 ident: C8CP00350E-(cit29)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00355-X – volume: 669 start-page: 233 year: 2017 ident: C8CP00350E-(cit35)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.12.054 – volume: 6 start-page: 5767 year: 2016 ident: C8CP00350E-(cit16)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA19747C – volume: 111 start-page: 025901 year: 2013 ident: C8CP00350E-(cit38)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.025901 – volume: 4 start-page: 9366 year: 2016 ident: C8CP00350E-(cit20)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03074B – volume: 78 start-page: 134106 year: 2008 ident: C8CP00350E-(cit34)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.78.134106 – volume: 12 start-page: 744 year: 2017 ident: C8CP00350E-(cit7)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 – volume: 85 start-page: 125428 year: 2012 ident: C8CP00350E-(cit44)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.125428 – volume: 27 start-page: 858 year: 1983 ident: C8CP00350E-(cit42)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.27.858 – volume: 8 start-page: 3760 year: 2016 ident: C8CP00350E-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR08231E – volume: 29 start-page: 015001 year: 2017 ident: C8CP00350E-(cit23)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 105 start-page: 131903 year: 2014 ident: C8CP00350E-(cit39)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896685 – volume: 7 start-page: 13352 year: 2016 ident: C8CP00350E-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13352 – volume: 19 start-page: 32072 year: 2017 ident: C8CP00350E-(cit19)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06065C – volume: 111 start-page: 025901 year: 2013 ident: C8CP00350E-(cit40)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.025901 – volume: 128 start-page: 1698 year: 2016 ident: C8CP00350E-(cit3)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201507568 – volume: 3 start-page: 10336 year: 2015 ident: C8CP00350E-(cit28)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01670C – volume: 9 start-page: 7397 year: 2017 ident: C8CP00350E-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR00838D – volume: 44 start-page: 2757 year: 2015 ident: C8CP00350E-(cit36)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00282B – volume: 107 start-page: 095901 year: 2011 ident: C8CP00350E-(cit43)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.095901 – volume: 89 start-page: 155426 year: 2014 ident: C8CP00350E-(cit26)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.155426 – volume: 6 start-page: 15 year: 1996 ident: C8CP00350E-(cit30)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 19 start-page: 31982 year: 2017 ident: C8CP00350E-(cit12)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP05579J – volume: 3 start-page: 2871 year: 2012 ident: C8CP00350E-(cit45)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3012436 – volume: 11 start-page: 640 year: 2015 ident: C8CP00350E-(cit6)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402041 – volume: 91 start-page: 094306 year: 2015 ident: C8CP00350E-(cit33)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.91.094306 – volume: 107 start-page: 173104 year: 2015 ident: C8CP00350E-(cit5)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4934750 – volume: 5 start-page: 263 year: 2013 ident: C8CP00350E-(cit2)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 105 start-page: 131903 year: 2014 ident: C8CP00350E-(cit11)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896685 – volume: 59 start-page: 1758 year: 1999 ident: C8CP00350E-(cit31)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 19 start-page: 14520 year: 2017 ident: C8CP00350E-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP02486J – volume: 94 start-page: 155448 year: 2016 ident: C8CP00350E-(cit13)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.155448 – volume: 15 start-page: 1592 year: 2014 ident: C8CP00350E-(cit37)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201400020 – volume: 9 start-page: 9885 year: 2015 ident: C8CP00350E-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b03394 – volume: 28 start-page: 445702 year: 2017 ident: C8CP00350E-(cit18)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aa8741 – volume: 16 start-page: 3831 year: 2016 ident: C8CP00350E-(cit24)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01311 – ident: C8CP00350E-(cit10)/*[position()=1] – volume: 18 start-page: 30061 year: 2016 ident: C8CP00350E-(cit17)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05908B – volume: 87 start-page: 165201 year: 2013 ident: C8CP00350E-(cit41)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.165201 – volume: 9 start-page: 4295 year: 2017 ident: C8CP00350E-(cit15)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR01271C – volume: 4 start-page: 4538 year: 2016 ident: C8CP00350E-(cit22)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01135G – volume: 8 start-page: 5959 year: 2017 ident: C8CP00350E-(cit9)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02841 – volume: 18 start-page: 31217 year: 2016 ident: C8CP00350E-(cit14)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06088A – volume: 77 start-page: 3865 year: 1996 ident: C8CP00350E-(cit32)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 306 start-page: 666 year: 2004 ident: C8CP00350E-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 |
SSID | ssj0001513 |
Score | 2.58898 |
Snippet | Transition Metal Dichalcogenide (TMD) monolayers are very widely studied due to their unique physical properties. Recently, Janus TMD monolayer MoSSe, with a... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7236 |
SubjectTerms | Atomic structure Boltzmann transport equation Elastic properties First principles Mathematical analysis Modulus of elasticity Molybdenum disulfide Monolayers Nanoelectronics Physical properties Relaxation time Resistance Size effects Thermal conductivity Thermal management |
Title | Phonon transport in Janus monolayer MoSSe: a first-principles study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29484328 https://www.proquest.com/docview/2011676136 https://www.proquest.com/docview/2008890163 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8Bl4muQMZARXDhkJLaT2dym0DGmMiotlXqLEscWQyit1vbCX8_zV1JYD4NLFDmRY72fP35-zns_hN7JjCetUHXcap3FTHBpckCmcdrUhDYnbaOZCU7-epmfz9jFPJsPkpc2umTdHMtfO-NK_gdVKANcTZTsPyDbVwoFcA_4whUQhuudMJ5-X3TG2R8SlBvnxUXdbYzATQd7VqDTMGivrpQLadbXQPXiZXCvr7Zyy_4IFXrUZNCBc3emyPlAVtaHMC2KPi7s82bhXMtd_Gnh10HvRkhtXJ3Tm_UzH8tpLBKn13asdpT56ZIk290i2Zr8TojLZXJrVk6oSWoquVzag0w1rD3hvP3yW3U2m0yqcjwv76M9ApyfjNDe6bj8MukXViAn1AWLuVaFbLNUfBjq_pNf3No0AIW4CdIulkKUj9C-5_741AH5GN1T3RP0oAimfooKByjuAcXXHbaA4h5QbAH9iGv8N5zYwvkMzc7GZXEee5WLWJKMrGHvzoFJpJS0smayVboRWc1ImzU1y4Eti6TlRiBFaJEJXae5blUua27yWAKQOT1AI2iaeoEwlUAoG8K1VikjwO1hFErSiiwjMFRzHaH3wTaV9CngjRLJz8r-ikBFVfBiau04jtDb_t2lS3yy862jYOLKD4xVRezhHvDEPEJv-sdgSnMWVXdqsVlZ9VMuTPMj9NxB03-GCMYZJTxCB4BVXzxgfHiHal-ih0M3P0Kj9c1GvQL-uG5e-371G-r7bxQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonon+transport+in+Janus+monolayer+MoSSe%3A+a+first-principles+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Guo%2C+San-Dong&rft.date=2018-03-07&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=20&rft.issue=10&rft.spage=7236&rft_id=info:doi/10.1039%2Fc8cp00350e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |