Unsupervised feature selection regression model with nonnegative sparsity constraints
Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and algorithms whether for supervised or unsupervised learning. In this paper, a new unsupervised feature selection regression model with nonnegative...
Saved in:
Published in | Journal of intelligent & fuzzy systems Vol. 45; no. 1; pp. 637 - 648 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2023
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and algorithms whether for supervised or unsupervised learning. In this paper, a new unsupervised feature selection regression model with nonnegative sparse constraints (URNS) is proposed. The algorithm combines nonnegative orthogonal constraint, L2,1-norm minimum optimization and spectral clustering. Firstly, the linear regression model between the features and the pseudo labels is given, and the indicator matrix, which describes feature weight, is subject to nonnegative and orthogonal constraints to select better features. Secondly, in order to reduce redundant and even noisy features, L2,1-norm for indicator matrix is added to the regression model for exploring the correlation between pseudo labels and features by the row sparsity property of L2,1-norm. Finally, pseudo labels of all samples are established by spectral clustering. In order to solve the regression model efficiently and simply, the method of nonnegative matrix decomposition is used and the complexity of the given algorithm is analysed. Moreover, a large number of experiments and analyses have been carried out on several public datasets to verify the superiority of the given model. |
---|---|
AbstractList | Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and algorithms whether for supervised or unsupervised learning. In this paper, a new unsupervised feature selection regression model with nonnegative sparse constraints (URNS) is proposed. The algorithm combines nonnegative orthogonal constraint, L2,1-norm minimum optimization and spectral clustering. Firstly, the linear regression model between the features and the pseudo labels is given, and the indicator matrix, which describes feature weight, is subject to nonnegative and orthogonal constraints to select better features. Secondly, in order to reduce redundant and even noisy features, L2,1-norm for indicator matrix is added to the regression model for exploring the correlation between pseudo labels and features by the row sparsity property of L2,1-norm. Finally, pseudo labels of all samples are established by spectral clustering. In order to solve the regression model efficiently and simply, the method of nonnegative matrix decomposition is used and the complexity of the given algorithm is analysed. Moreover, a large number of experiments and analyses have been carried out on several public datasets to verify the superiority of the given model. |
Author | Xing, Zhiwei Li, Qiaoyan Zhao, Xue Dai, Xuezhen |
Author_xml | – sequence: 1 givenname: Xue surname: Zhao fullname: Zhao, Xue organization: The Public Sector – sequence: 2 givenname: Qiaoyan surname: Li fullname: Li, Qiaoyan email: liqiaoyan@xpu.edu.cn organization: The Public Sector – sequence: 3 givenname: Zhiwei surname: Xing fullname: Xing, Zhiwei organization: The Public Sector – sequence: 4 givenname: Xuezhen surname: Dai fullname: Dai, Xuezhen organization: The Public Sector |
BookMark | eNptkEFLw0AQhRepYFs9-QcCXgSJ7s4mm_QoxWql4EF7DpvNpKa0m7izqfTfuyWCF0_zDt-8B9-EjWxrkbFrwe8lSPnwuly8xwCJkHDGxiLP0jifqWwUMldJLCBRF2xCtOVcZCnwMVuvLfUdukNDWEU1at87jAh3aHzT2sjhxiHRKe7bCnfRd-M_ozBrcaN9cwhspx01_hiZ1pJ3urGeLtl5rXeEV793ytaLp4_5S7x6e17OH1exgRR8DLqWeVUiVFxgAtIInQshZSlUwkseoFRpWUpQCdSVyUqOMyW1rJCbzHApp-xm6O1c-9Uj-WLb9s6GyQJyCXl4nIlA3Q2UcS2Rw7roXLPX7lgIXpy8FSdvxeAt0LcDTXqDf33_oT9RJ2_C |
Cites_doi | 10.1016/j.patcog.2011.12.015 10.1017/CBO9780511804441 10.1109/TCSVT.2018.2799214 10.1038/44565 10.1016/j.knosys.2017.03.002 10.1016/j.patcog.2020.107663 10.1109/ICDM.2014.58 10.1145/2601434 10.1145/2623330.2623726 10.1007/s11432-022-3579-1 10.1109/TCYB.2018.2799862 10.1016/j.knosys.2016.09.006 10.1016/j.knosys.2019.105462 10.1145/1839490.1839495 10.1007/s11432-016-9021-9 10.1109/ICDM.2013.23 10.1609/aaai.v26i1.8289 10.1016/j.patcog.2022.108844 10.1145/1835804.1835848 10.1609/aaai.v24i1.7671 10.1109/TKDE.2020.3048678 10.1016/j.patcog.2021.107873 |
ContentType | Journal Article |
Copyright | 2023 – IOS Press. All rights reserved Copyright IOS Press BV 2023 |
Copyright_xml | – notice: 2023 – IOS Press. All rights reserved – notice: Copyright IOS Press BV 2023 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/JIFS-224132 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1875-8967 |
EndPage | 648 |
ExternalDocumentID | 10_3233_JIFS_224132 10.3233_JIFS-224132 |
GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX H13 HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c252t-2af38dbe2d01e423c1a81133b1640b0c2556a3b32642fdc7b0e963a3de0c7c033 |
ISSN | 1064-1246 |
IngestDate | Fri Jul 25 10:04:18 EDT 2025 Tue Jul 01 05:11:49 EDT 2025 Sun Jul 13 06:01:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Non-negative matrix factorization unsupervised feature selection spectral clustering L2,1-norm |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c252t-2af38dbe2d01e423c1a81133b1640b0c2556a3b32642fdc7b0e963a3de0c7c033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2832826491 |
PQPubID | 2046407 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2832826491 crossref_primary_10_3233_JIFS_224132 sage_journals_10_3233_JIFS_224132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London |
PublicationTitle | Journal of intelligent & fuzzy systems |
PublicationYear | 2023 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | 2010; 33 2018; 29 2022; 131 2013; 26 2017; 60 2011 2010 2019; 32 2020; 57 2004 1999; 401 2018; 49 2021; 34 2010; 24 2022 2021; 114 2020 2017; 11 2020; 193 2016; 112 2014 2021; 111 2012; 26 2013 2014; 8 2012; 45 2017; 124 2010; 4 2005; 18 2022; 17 Li (10.3233/JIFS-224132_ref6) 2012; 26 10.3233/JIFS-224132_ref19 Chen (10.3233/JIFS-224132_ref32) 2022; 17 Zhao (10.3233/JIFS-224132_ref3) 2010; 24 Nie (10.3233/JIFS-224132_ref28) 2017; 60 Tang (10.3233/JIFS-224132_ref21) 2019; 32 10.3233/JIFS-224132_ref16 Liu (10.3233/JIFS-224132_ref31) 2020; 193 Cai (10.3233/JIFS-224132_ref9) 2010; 33 Huang (10.3233/JIFS-224132_ref10) 2014; 8 Nie (10.3233/JIFS-224132_ref25) 2014 10.3233/JIFS-224132_ref7 Tang (10.3233/JIFS-224132_ref18) 2021; 34 10.3233/JIFS-224132_ref5 10.3233/JIFS-224132_ref4 Lee (10.3233/JIFS-224132_ref11) 1999; 401 Wang (10.3233/JIFS-224132_ref30) 2017; 124 Shi (10.3233/JIFS-224132_ref14) 2014 10.3233/JIFS-224132_ref24 10.3233/JIFS-224132_ref27 Zhang (10.3233/JIFS-224132_ref1) 2010; 4 10.3233/JIFS-224132_ref29 Wen (10.3233/JIFS-224132_ref22) 2018; 49 Cai (10.3233/JIFS-224132_ref2) 2010 Wen (10.3233/JIFS-224132_ref23) 2018; 29 Shang (10.3233/JIFS-224132_ref13) 2016; 112 Shang (10.3233/JIFS-224132_ref26) 2012; 45 10.3233/JIFS-224132_ref20 Liu (10.3233/JIFS-224132_ref33) 2020; 57 Li (10.3233/JIFS-224132_ref12) 2012; 26 Li (10.3233/JIFS-224132_ref15) 2013; 26 Cai (10.3233/JIFS-224132_ref17) 2017; 11 Du (10.3233/JIFS-224132_ref8) 2013 |
References_xml | – volume: 124 start-page: 70 year: 2017 end-page: 79 article-title: Unsupervised feature selection via low-rankapproximation and structure learning publication-title: Knowledge-Based Systems – year: 2011 article-title: L2, 1-normregularized discriminative feature selection for unsupervised learning publication-title: IJCAI international joint conference on artificial intelligence – volume: 26 start-page: 1026 issue: 1 year: 2012 end-page: 1032 article-title: Unsupervised feature selection using nonnegative spectral analysis publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2022 article-title: Unsupervised feature selection via multiple graph fusion and feature weight learning publication-title: Sci China Inf Sci – volume: 401 start-page: 788 issue: 6755 year: 1999 end-page: 791 article-title: Learning the parts of objects by nonnegative matrix factorization publication-title: Nature – volume: 112 start-page: 152 year: 2016 end-page: 165 article-title: Sub-spacelearning-based graph regularized feature selection publication-title: Knowledge-Based Systems – volume: 34 start-page: 4705 issue: 10 year: 2021 end-page: 4716 article-title: Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 977 year: 2014 end-page: 986 article-title: Clustering and projected clustering with adaptive neighbors publication-title: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 18 year: 2005 article-title: Laplacian score for feature selection publication-title: Advances in Neural Information Processing Systems – volume: 193 start-page: 105462 year: 2020 article-title: Robustneighborhood embedding for unsupervised feature selection publication-title: Knowledge-Based Systems – volume: 49 start-page: 1279 issue: 4 year: 2018 end-page: 1291 article-title: Low-rank preserving projection viagraph regularized reconstruction publication-title: IEEE Transactions oncybernetics – volume: 26 start-page: 2138 issue: 9 year: 2013 end-page: 2150 article-title: Clustering-guided sparse structural learning for unsupervised feature selection publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 32 start-page: 1747 issue: 9 year: 2019 end-page: 1760 article-title: Feature selective projection with low-rank embedding and dual Laplacian regularization publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2004 publication-title: Convex optimization – volume: 114 issue: 107873 year: 2021 article-title: Dual space latent representation learning for unsupervised feature selection publication-title: Pattern Recognition – year: 2020 article-title: Unsupervised feature selection viaadaptive graph learning and constraint publication-title: IEEE Transactions onNeural Networks and Learning Systems – start-page: 333 year: 2010 end-page: 342 article-title: Unsupervised feature selection formulti-cluster data publication-title: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 4 start-page: 1 issue: 3 year: 2010 end-page: 21 article-title: Multi label dimensionality reduction via dependence maximization publication-title: ACM Transactions on Knowledge Discovery from Data – year: 2011 article-title: Eigen value sensitive feature selection publication-title: ICML – volume: 26 start-page: 1026 year: 2012 end-page: 1032 article-title: Unsupervised feature selection using nonnegative spectral analysis publication-title: Proceedings of the AAAI conference on artificial intelligence – volume: 45 start-page: 2237 issue: 6 year: 2012 end-page: 2250 publication-title: Pattern Recognition – volume: 33 start-page: 1548 issue: 8 year: 2010 end-page: 1560 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 131 year: 2013 end-page: 140 article-title: Local and global discriminative learning for unsupervised feature selection publication-title: 2013 IEEE 13th International Conference on Data Mining – start-page: 977 year: 2014 end-page: 982 article-title: Robust spectral learning forun-supervised feature selection publication-title: 2014 IEEE International Conference on Data Mining – volume: 111 issue: 107663 year: 2021 article-title: Pair wise dependence-based unsupervised feature selection publication-title: Pattern Recognition – volume: 11 start-page: 1175 issue: 7 year: 2017 article-title: Multi-label feature selection via non-negative sparse representation publication-title: Journal of Frontiers of Computer Science and Technology – volume: 60 start-page: 1 issue: 11 year: 2017 end-page: 10 article-title: A generalized power iteration method for solving quadratic problem on the stiefel manifold publication-title: Science China Information Sciences – volume: 29 start-page: 390 issue: 2 year: 2018 end-page: 403 article-title: Robust sparse linear discriminant analysis publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 131 issue: 108844 year: 2022 article-title: Locality preserving projection with symmetric graph embedding for unsupervised dimensionality reduction publication-title: Pattern Recognition – volume: 17 start-page: 303 issue: 2 year: 2022 end-page: 313 article-title: Joint uncorrelated regression andnon-negative spectral analysis for unsupervised feature selection publication-title: CAAI Transactions on Intelligent Systems – volume: 24 start-page: 673 year: 2010 end-page: 678 article-title: Efficient spectral feature selection with minimum redundancy, In publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 8 start-page: 1 issue: 3 year: 2014 end-page: 21 article-title: Robust manifold nonnegative matrix factorization publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 57 start-page: 1639 issue: 8 year: 2020 end-page: 1649 article-title: Adaptive neighborhood embedding basedunsupervised feature selection publication-title: Journal of Computer Researchand Development – volume: 45 start-page: 2237 issue: 6 year: 2012 ident: 10.3233/JIFS-224132_ref26 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.12.015 – ident: 10.3233/JIFS-224132_ref4 – ident: 10.3233/JIFS-224132_ref27 doi: 10.1017/CBO9780511804441 – volume: 29 start-page: 390 issue: 2 year: 2018 ident: 10.3233/JIFS-224132_ref23 article-title: Robust sparse linear discriminant analysis publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2018.2799214 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.3233/JIFS-224132_ref11 article-title: Learning the parts of objects by nonnegative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 11 start-page: 1175 issue: 7 year: 2017 ident: 10.3233/JIFS-224132_ref17 article-title: Multi-label feature selection via non-negative sparse representation publication-title: Journal of Frontiers of Computer Science and Technology – volume: 124 start-page: 70 year: 2017 ident: 10.3233/JIFS-224132_ref30 article-title: Unsupervised feature selection via low-rankapproximation and structure learning publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.03.002 – volume: 26 start-page: 2138 issue: 9 year: 2013 ident: 10.3233/JIFS-224132_ref15 article-title: Clustering-guided sparse structural learning for unsupervised feature selection publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 33 start-page: 1548 issue: 8 year: 2010 ident: 10.3233/JIFS-224132_ref9 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: 10.3233/JIFS-224132_ref16 doi: 10.1016/j.patcog.2020.107663 – start-page: 977 year: 2014 ident: 10.3233/JIFS-224132_ref14 article-title: Robust spectral learning forun-supervised feature selection publication-title: 2014 IEEE International Conference on Data Mining doi: 10.1109/ICDM.2014.58 – volume: 8 start-page: 1 issue: 3 year: 2014 ident: 10.3233/JIFS-224132_ref10 article-title: Robust manifold nonnegative matrix factorization publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/2601434 – start-page: 977 year: 2014 ident: 10.3233/JIFS-224132_ref25 article-title: Clustering and projected clustering with adaptive neighbors publication-title: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining doi: 10.1145/2623330.2623726 – ident: 10.3233/JIFS-224132_ref20 doi: 10.1007/s11432-022-3579-1 – volume: 49 start-page: 1279 issue: 4 year: 2018 ident: 10.3233/JIFS-224132_ref22 article-title: Low-rank preserving projection viagraph regularized reconstruction publication-title: IEEE Transactions oncybernetics doi: 10.1109/TCYB.2018.2799862 – ident: 10.3233/JIFS-224132_ref29 – volume: 17 start-page: 303 issue: 2 year: 2022 ident: 10.3233/JIFS-224132_ref32 article-title: Joint uncorrelated regression andnon-negative spectral analysis for unsupervised feature selection publication-title: CAAI Transactions on Intelligent Systems – volume: 112 start-page: 152 year: 2016 ident: 10.3233/JIFS-224132_ref13 article-title: Sub-spacelearning-based graph regularized feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.09.006 – volume: 193 start-page: 105462 year: 2020 ident: 10.3233/JIFS-224132_ref31 article-title: Robustneighborhood embedding for unsupervised feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105462 – volume: 4 start-page: 1 issue: 3 year: 2010 ident: 10.3233/JIFS-224132_ref1 article-title: Multi label dimensionality reduction via dependence maximization publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/1839490.1839495 – ident: 10.3233/JIFS-224132_ref5 – volume: 32 start-page: 1747 issue: 9 year: 2019 ident: 10.3233/JIFS-224132_ref21 article-title: Feature selective projection with low-rank embedding and dual Laplacian regularization publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 60 start-page: 1 issue: 11 year: 2017 ident: 10.3233/JIFS-224132_ref28 article-title: A generalized power iteration method for solving quadratic problem on the stiefel manifold publication-title: Science China Information Sciences doi: 10.1007/s11432-016-9021-9 – start-page: 131 year: 2013 ident: 10.3233/JIFS-224132_ref8 article-title: Local and global discriminative learning for unsupervised feature selection publication-title: 2013 IEEE 13th International Conference on Data Mining doi: 10.1109/ICDM.2013.23 – ident: 10.3233/JIFS-224132_ref7 – volume: 26 start-page: 1026 issue: 1 year: 2012 ident: 10.3233/JIFS-224132_ref12 article-title: Unsupervised feature selection using nonnegative spectral analysis publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v26i1.8289 – ident: 10.3233/JIFS-224132_ref24 doi: 10.1016/j.patcog.2022.108844 – volume: 26 start-page: 1026 year: 2012 ident: 10.3233/JIFS-224132_ref6 article-title: Unsupervised feature selection using nonnegative spectral analysis publication-title: Proceedings of the AAAI conference on artificial intelligence doi: 10.1609/aaai.v26i1.8289 – volume: 57 start-page: 1639 issue: 8 year: 2020 ident: 10.3233/JIFS-224132_ref33 article-title: Adaptive neighborhood embedding basedunsupervised feature selection publication-title: Journal of Computer Researchand Development – start-page: 333 year: 2010 ident: 10.3233/JIFS-224132_ref2 article-title: Unsupervised feature selection formulti-cluster data publication-title: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining doi: 10.1145/1835804.1835848 – volume: 24 start-page: 673 year: 2010 ident: 10.3233/JIFS-224132_ref3 article-title: Efficient spectral feature selection with minimum redundancy, In publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v24i1.7671 – volume: 34 start-page: 4705 issue: 10 year: 2021 ident: 10.3233/JIFS-224132_ref18 article-title: Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2020.3048678 – ident: 10.3233/JIFS-224132_ref19 doi: 10.1016/j.patcog.2021.107873 |
SSID | ssj0017520 |
Score | 2.2839031 |
Snippet | Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 637 |
SubjectTerms | Algorithms Clustering Constraint modelling Feature selection Labels Matrices (mathematics) Optimization Regression models Sparsity Unsupervised learning |
Title | Unsupervised feature selection regression model with nonnegative sparsity constraints |
URI | https://journals.sagepub.com/doi/full/10.3233/JIFS-224132 https://www.proquest.com/docview/2832826491 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa2cGkPCPpQl0flStyqtI6d5xFBVxQBEoKVVlwi2-uwuSyITYTYEz-dccZ5gPYAvUSrrJwomS_jb8bjbwjZz3keRkomwNyS3AuM1YCEWcYLAB8pjxSPtd3gfHYeHY-Dk0k4GQyeelVLVal-6-XKfSX_Y1U4B3a1u2TfYdn2onACfoN94QgWhuObbDyeL6o7-7EvgDbmptbo_LWoO9tYq96bG6xynWPDG0y6zm1pyw3qfYM7waIMbWmi7RaBwk4r6GrRaneWNVzyarl8dELQLS-_nsk69TqpWryc1uUCF4W8feyAOHGdVK5nxYMpumx54QYvZ26HmstHcNHLR6ALBZLjAWtwAtd4DqIiL0mx8Ubjd1FG8gW-0IlGKAPj5uMIlThfu3rBbSp6dPJvdOnVi4O8m9GaVfxXE11bfgiBjx2e2cEZDv5A1jkEGuAp1w-Ozk4v25WoOOSoaOGeCvd42uF_evd-yWq6UKVXHVgTlqtNsuFMRw8QNltkYOafyaee_uQXMu4DiDoA0RZAtAMQrQFELYBoD0C0ARDtAegrGY_-Xh0ee67Phqd5yEuPy1wkU2X4lPkG6LX2ZeL7QigIpZli2qrUSaGA6Ac8n-pYMQNuW4qpYTrWTIhvZA1ubb4TynObP4gSP9RpkMpAGcnSWMeMSQj0ZTwk-817yu5QTiVbYY0h2W3eYea-t0Vmm2pBMByk_pD8tO-1-2vFJbbfdqcd8rED8S5ZK-8rswc0s1Q_HBKeAa20fqY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+feature+selection+regression+model+with+nonnegative+sparsity+constraints&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Zhao%2C+Xue&rft.au=Li%2C+Qiaoyan&rft.au=Xing%2C+Zhiwei&rft.au=Dai%2C+Xuezhen&rft.date=2023-01-01&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=45&rft.issue=1&rft.spage=637&rft.epage=648&rft_id=info:doi/10.3233%2FJIFS-224132&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_224132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |