Unsupervised feature selection regression model with nonnegative sparsity constraints

Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and algorithms whether for supervised or unsupervised learning. In this paper, a new unsupervised feature selection regression model with nonnegative...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 45; no. 1; pp. 637 - 648
Main Authors Zhao, Xue, Li, Qiaoyan, Xing, Zhiwei, Dai, Xuezhen
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2023
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and algorithms whether for supervised or unsupervised learning. In this paper, a new unsupervised feature selection regression model with nonnegative sparse constraints (URNS) is proposed. The algorithm combines nonnegative orthogonal constraint, L2,1-norm minimum optimization and spectral clustering. Firstly, the linear regression model between the features and the pseudo labels is given, and the indicator matrix, which describes feature weight, is subject to nonnegative and orthogonal constraints to select better features. Secondly, in order to reduce redundant and even noisy features, L2,1-norm for indicator matrix is added to the regression model for exploring the correlation between pseudo labels and features by the row sparsity property of L2,1-norm. Finally, pseudo labels of all samples are established by spectral clustering. In order to solve the regression model efficiently and simply, the method of nonnegative matrix decomposition is used and the complexity of the given algorithm is analysed. Moreover, a large number of experiments and analyses have been carried out on several public datasets to verify the superiority of the given model.
AbstractList Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and algorithms whether for supervised or unsupervised learning. In this paper, a new unsupervised feature selection regression model with nonnegative sparse constraints (URNS) is proposed. The algorithm combines nonnegative orthogonal constraint, L2,1-norm minimum optimization and spectral clustering. Firstly, the linear regression model between the features and the pseudo labels is given, and the indicator matrix, which describes feature weight, is subject to nonnegative and orthogonal constraints to select better features. Secondly, in order to reduce redundant and even noisy features, L2,1-norm for indicator matrix is added to the regression model for exploring the correlation between pseudo labels and features by the row sparsity property of L2,1-norm. Finally, pseudo labels of all samples are established by spectral clustering. In order to solve the regression model efficiently and simply, the method of nonnegative matrix decomposition is used and the complexity of the given algorithm is analysed. Moreover, a large number of experiments and analyses have been carried out on several public datasets to verify the superiority of the given model.
Author Xing, Zhiwei
Li, Qiaoyan
Zhao, Xue
Dai, Xuezhen
Author_xml – sequence: 1
  givenname: Xue
  surname: Zhao
  fullname: Zhao, Xue
  organization: The Public Sector
– sequence: 2
  givenname: Qiaoyan
  surname: Li
  fullname: Li, Qiaoyan
  email: liqiaoyan@xpu.edu.cn
  organization: The Public Sector
– sequence: 3
  givenname: Zhiwei
  surname: Xing
  fullname: Xing, Zhiwei
  organization: The Public Sector
– sequence: 4
  givenname: Xuezhen
  surname: Dai
  fullname: Dai, Xuezhen
  organization: The Public Sector
BookMark eNptkEFLw0AQhRepYFs9-QcCXgSJ7s4mm_QoxWql4EF7DpvNpKa0m7izqfTfuyWCF0_zDt-8B9-EjWxrkbFrwe8lSPnwuly8xwCJkHDGxiLP0jifqWwUMldJLCBRF2xCtOVcZCnwMVuvLfUdukNDWEU1at87jAh3aHzT2sjhxiHRKe7bCnfRd-M_ozBrcaN9cwhspx01_hiZ1pJ3urGeLtl5rXeEV793ytaLp4_5S7x6e17OH1exgRR8DLqWeVUiVFxgAtIInQshZSlUwkseoFRpWUpQCdSVyUqOMyW1rJCbzHApp-xm6O1c-9Uj-WLb9s6GyQJyCXl4nIlA3Q2UcS2Rw7roXLPX7lgIXpy8FSdvxeAt0LcDTXqDf33_oT9RJ2_C
Cites_doi 10.1016/j.patcog.2011.12.015
10.1017/CBO9780511804441
10.1109/TCSVT.2018.2799214
10.1038/44565
10.1016/j.knosys.2017.03.002
10.1016/j.patcog.2020.107663
10.1109/ICDM.2014.58
10.1145/2601434
10.1145/2623330.2623726
10.1007/s11432-022-3579-1
10.1109/TCYB.2018.2799862
10.1016/j.knosys.2016.09.006
10.1016/j.knosys.2019.105462
10.1145/1839490.1839495
10.1007/s11432-016-9021-9
10.1109/ICDM.2013.23
10.1609/aaai.v26i1.8289
10.1016/j.patcog.2022.108844
10.1145/1835804.1835848
10.1609/aaai.v24i1.7671
10.1109/TKDE.2020.3048678
10.1016/j.patcog.2021.107873
ContentType Journal Article
Copyright 2023 – IOS Press. All rights reserved
Copyright IOS Press BV 2023
Copyright_xml – notice: 2023 – IOS Press. All rights reserved
– notice: Copyright IOS Press BV 2023
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-224132
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 648
ExternalDocumentID 10_3233_JIFS_224132
10.3233_JIFS-224132
GroupedDBID .4S
.DC
4.4
5GY
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c252t-2af38dbe2d01e423c1a81133b1640b0c2556a3b32642fdc7b0e963a3de0c7c033
ISSN 1064-1246
IngestDate Fri Jul 25 10:04:18 EDT 2025
Tue Jul 01 05:11:49 EDT 2025
Sun Jul 13 06:01:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Non-negative matrix factorization
unsupervised
feature selection
spectral clustering
L2,1-norm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-2af38dbe2d01e423c1a81133b1640b0c2556a3b32642fdc7b0e963a3de0c7c033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2832826491
PQPubID 2046407
PageCount 12
ParticipantIDs proquest_journals_2832826491
crossref_primary_10_3233_JIFS_224132
sage_journals_10_3233_JIFS_224132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 2010; 33
2018; 29
2022; 131
2013; 26
2017; 60
2011
2010
2019; 32
2020; 57
2004
1999; 401
2018; 49
2021; 34
2010; 24
2022
2021; 114
2020
2017; 11
2020; 193
2016; 112
2014
2021; 111
2012; 26
2013
2014; 8
2012; 45
2017; 124
2010; 4
2005; 18
2022; 17
Li (10.3233/JIFS-224132_ref6) 2012; 26
10.3233/JIFS-224132_ref19
Chen (10.3233/JIFS-224132_ref32) 2022; 17
Zhao (10.3233/JIFS-224132_ref3) 2010; 24
Nie (10.3233/JIFS-224132_ref28) 2017; 60
Tang (10.3233/JIFS-224132_ref21) 2019; 32
10.3233/JIFS-224132_ref16
Liu (10.3233/JIFS-224132_ref31) 2020; 193
Cai (10.3233/JIFS-224132_ref9) 2010; 33
Huang (10.3233/JIFS-224132_ref10) 2014; 8
Nie (10.3233/JIFS-224132_ref25) 2014
10.3233/JIFS-224132_ref7
Tang (10.3233/JIFS-224132_ref18) 2021; 34
10.3233/JIFS-224132_ref5
10.3233/JIFS-224132_ref4
Lee (10.3233/JIFS-224132_ref11) 1999; 401
Wang (10.3233/JIFS-224132_ref30) 2017; 124
Shi (10.3233/JIFS-224132_ref14) 2014
10.3233/JIFS-224132_ref24
10.3233/JIFS-224132_ref27
Zhang (10.3233/JIFS-224132_ref1) 2010; 4
10.3233/JIFS-224132_ref29
Wen (10.3233/JIFS-224132_ref22) 2018; 49
Cai (10.3233/JIFS-224132_ref2) 2010
Wen (10.3233/JIFS-224132_ref23) 2018; 29
Shang (10.3233/JIFS-224132_ref13) 2016; 112
Shang (10.3233/JIFS-224132_ref26) 2012; 45
10.3233/JIFS-224132_ref20
Liu (10.3233/JIFS-224132_ref33) 2020; 57
Li (10.3233/JIFS-224132_ref12) 2012; 26
Li (10.3233/JIFS-224132_ref15) 2013; 26
Cai (10.3233/JIFS-224132_ref17) 2017; 11
Du (10.3233/JIFS-224132_ref8) 2013
References_xml – volume: 124
  start-page: 70
  year: 2017
  end-page: 79
  article-title: Unsupervised feature selection via low-rankapproximation and structure learning
  publication-title: Knowledge-Based Systems
– year: 2011
  article-title: L2, 1-normregularized discriminative feature selection for unsupervised learning
  publication-title: IJCAI international joint conference on artificial intelligence
– volume: 26
  start-page: 1026
  issue: 1
  year: 2012
  end-page: 1032
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2022
  article-title: Unsupervised feature selection via multiple graph fusion and feature weight learning
  publication-title: Sci China Inf Sci
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
– volume: 112
  start-page: 152
  year: 2016
  end-page: 165
  article-title: Sub-spacelearning-based graph regularized feature selection
  publication-title: Knowledge-Based Systems
– volume: 34
  start-page: 4705
  issue: 10
  year: 2021
  end-page: 4716
  article-title: Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 977
  year: 2014
  end-page: 986
  article-title: Clustering and projected clustering with adaptive neighbors
  publication-title: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 18
  year: 2005
  article-title: Laplacian score for feature selection
  publication-title: Advances in Neural Information Processing Systems
– volume: 193
  start-page: 105462
  year: 2020
  article-title: Robustneighborhood embedding for unsupervised feature selection
  publication-title: Knowledge-Based Systems
– volume: 49
  start-page: 1279
  issue: 4
  year: 2018
  end-page: 1291
  article-title: Low-rank preserving projection viagraph regularized reconstruction
  publication-title: IEEE Transactions oncybernetics
– volume: 26
  start-page: 2138
  issue: 9
  year: 2013
  end-page: 2150
  article-title: Clustering-guided sparse structural learning for unsupervised feature selection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 32
  start-page: 1747
  issue: 9
  year: 2019
  end-page: 1760
  article-title: Feature selective projection with low-rank embedding and dual Laplacian regularization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2004
  publication-title: Convex optimization
– volume: 114
  issue: 107873
  year: 2021
  article-title: Dual space latent representation learning for unsupervised feature selection
  publication-title: Pattern Recognition
– year: 2020
  article-title: Unsupervised feature selection viaadaptive graph learning and constraint
  publication-title: IEEE Transactions onNeural Networks and Learning Systems
– start-page: 333
  year: 2010
  end-page: 342
  article-title: Unsupervised feature selection formulti-cluster data
  publication-title: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 4
  start-page: 1
  issue: 3
  year: 2010
  end-page: 21
  article-title: Multi label dimensionality reduction via dependence maximization
  publication-title: ACM Transactions on Knowledge Discovery from Data
– year: 2011
  article-title: Eigen value sensitive feature selection
  publication-title: ICML
– volume: 26
  start-page: 1026
  year: 2012
  end-page: 1032
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– volume: 45
  start-page: 2237
  issue: 6
  year: 2012
  end-page: 2250
  publication-title: Pattern Recognition
– volume: 33
  start-page: 1548
  issue: 8
  year: 2010
  end-page: 1560
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 131
  year: 2013
  end-page: 140
  article-title: Local and global discriminative learning for unsupervised feature selection
  publication-title: 2013 IEEE 13th International Conference on Data Mining
– start-page: 977
  year: 2014
  end-page: 982
  article-title: Robust spectral learning forun-supervised feature selection
  publication-title: 2014 IEEE International Conference on Data Mining
– volume: 111
  issue: 107663
  year: 2021
  article-title: Pair wise dependence-based unsupervised feature selection
  publication-title: Pattern Recognition
– volume: 11
  start-page: 1175
  issue: 7
  year: 2017
  article-title: Multi-label feature selection via non-negative sparse representation
  publication-title: Journal of Frontiers of Computer Science and Technology
– volume: 60
  start-page: 1
  issue: 11
  year: 2017
  end-page: 10
  article-title: A generalized power iteration method for solving quadratic problem on the stiefel manifold
  publication-title: Science China Information Sciences
– volume: 29
  start-page: 390
  issue: 2
  year: 2018
  end-page: 403
  article-title: Robust sparse linear discriminant analysis
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 131
  issue: 108844
  year: 2022
  article-title: Locality preserving projection with symmetric graph embedding for unsupervised dimensionality reduction
  publication-title: Pattern Recognition
– volume: 17
  start-page: 303
  issue: 2
  year: 2022
  end-page: 313
  article-title: Joint uncorrelated regression andnon-negative spectral analysis for unsupervised feature selection
  publication-title: CAAI Transactions on Intelligent Systems
– volume: 24
  start-page: 673
  year: 2010
  end-page: 678
  article-title: Efficient spectral feature selection with minimum redundancy, In
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 8
  start-page: 1
  issue: 3
  year: 2014
  end-page: 21
  article-title: Robust manifold nonnegative matrix factorization
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 57
  start-page: 1639
  issue: 8
  year: 2020
  end-page: 1649
  article-title: Adaptive neighborhood embedding basedunsupervised feature selection
  publication-title: Journal of Computer Researchand Development
– volume: 45
  start-page: 2237
  issue: 6
  year: 2012
  ident: 10.3233/JIFS-224132_ref26
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.12.015
– ident: 10.3233/JIFS-224132_ref4
– ident: 10.3233/JIFS-224132_ref27
  doi: 10.1017/CBO9780511804441
– volume: 29
  start-page: 390
  issue: 2
  year: 2018
  ident: 10.3233/JIFS-224132_ref23
  article-title: Robust sparse linear discriminant analysis
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2018.2799214
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.3233/JIFS-224132_ref11
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 11
  start-page: 1175
  issue: 7
  year: 2017
  ident: 10.3233/JIFS-224132_ref17
  article-title: Multi-label feature selection via non-negative sparse representation
  publication-title: Journal of Frontiers of Computer Science and Technology
– volume: 124
  start-page: 70
  year: 2017
  ident: 10.3233/JIFS-224132_ref30
  article-title: Unsupervised feature selection via low-rankapproximation and structure learning
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.03.002
– volume: 26
  start-page: 2138
  issue: 9
  year: 2013
  ident: 10.3233/JIFS-224132_ref15
  article-title: Clustering-guided sparse structural learning for unsupervised feature selection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 33
  start-page: 1548
  issue: 8
  year: 2010
  ident: 10.3233/JIFS-224132_ref9
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.3233/JIFS-224132_ref16
  doi: 10.1016/j.patcog.2020.107663
– start-page: 977
  year: 2014
  ident: 10.3233/JIFS-224132_ref14
  article-title: Robust spectral learning forun-supervised feature selection
  publication-title: 2014 IEEE International Conference on Data Mining
  doi: 10.1109/ICDM.2014.58
– volume: 8
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.3233/JIFS-224132_ref10
  article-title: Robust manifold nonnegative matrix factorization
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/2601434
– start-page: 977
  year: 2014
  ident: 10.3233/JIFS-224132_ref25
  article-title: Clustering and projected clustering with adaptive neighbors
  publication-title: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
  doi: 10.1145/2623330.2623726
– ident: 10.3233/JIFS-224132_ref20
  doi: 10.1007/s11432-022-3579-1
– volume: 49
  start-page: 1279
  issue: 4
  year: 2018
  ident: 10.3233/JIFS-224132_ref22
  article-title: Low-rank preserving projection viagraph regularized reconstruction
  publication-title: IEEE Transactions oncybernetics
  doi: 10.1109/TCYB.2018.2799862
– ident: 10.3233/JIFS-224132_ref29
– volume: 17
  start-page: 303
  issue: 2
  year: 2022
  ident: 10.3233/JIFS-224132_ref32
  article-title: Joint uncorrelated regression andnon-negative spectral analysis for unsupervised feature selection
  publication-title: CAAI Transactions on Intelligent Systems
– volume: 112
  start-page: 152
  year: 2016
  ident: 10.3233/JIFS-224132_ref13
  article-title: Sub-spacelearning-based graph regularized feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.09.006
– volume: 193
  start-page: 105462
  year: 2020
  ident: 10.3233/JIFS-224132_ref31
  article-title: Robustneighborhood embedding for unsupervised feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105462
– volume: 4
  start-page: 1
  issue: 3
  year: 2010
  ident: 10.3233/JIFS-224132_ref1
  article-title: Multi label dimensionality reduction via dependence maximization
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/1839490.1839495
– ident: 10.3233/JIFS-224132_ref5
– volume: 32
  start-page: 1747
  issue: 9
  year: 2019
  ident: 10.3233/JIFS-224132_ref21
  article-title: Feature selective projection with low-rank embedding and dual Laplacian regularization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 60
  start-page: 1
  issue: 11
  year: 2017
  ident: 10.3233/JIFS-224132_ref28
  article-title: A generalized power iteration method for solving quadratic problem on the stiefel manifold
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-016-9021-9
– start-page: 131
  year: 2013
  ident: 10.3233/JIFS-224132_ref8
  article-title: Local and global discriminative learning for unsupervised feature selection
  publication-title: 2013 IEEE 13th International Conference on Data Mining
  doi: 10.1109/ICDM.2013.23
– ident: 10.3233/JIFS-224132_ref7
– volume: 26
  start-page: 1026
  issue: 1
  year: 2012
  ident: 10.3233/JIFS-224132_ref12
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v26i1.8289
– ident: 10.3233/JIFS-224132_ref24
  doi: 10.1016/j.patcog.2022.108844
– volume: 26
  start-page: 1026
  year: 2012
  ident: 10.3233/JIFS-224132_ref6
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proceedings of the AAAI conference on artificial intelligence
  doi: 10.1609/aaai.v26i1.8289
– volume: 57
  start-page: 1639
  issue: 8
  year: 2020
  ident: 10.3233/JIFS-224132_ref33
  article-title: Adaptive neighborhood embedding basedunsupervised feature selection
  publication-title: Journal of Computer Researchand Development
– start-page: 333
  year: 2010
  ident: 10.3233/JIFS-224132_ref2
  article-title: Unsupervised feature selection formulti-cluster data
  publication-title: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining
  doi: 10.1145/1835804.1835848
– volume: 24
  start-page: 673
  year: 2010
  ident: 10.3233/JIFS-224132_ref3
  article-title: Efficient spectral feature selection with minimum redundancy, In
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v24i1.7671
– volume: 34
  start-page: 4705
  issue: 10
  year: 2021
  ident: 10.3233/JIFS-224132_ref18
  article-title: Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.3048678
– ident: 10.3233/JIFS-224132_ref19
  doi: 10.1016/j.patcog.2021.107873
SSID ssj0017520
Score 2.2839031
Snippet Selecting appropriate features can better describe the characteristics and structure of data, which play an important role in further improving models and...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 637
SubjectTerms Algorithms
Clustering
Constraint modelling
Feature selection
Labels
Matrices (mathematics)
Optimization
Regression models
Sparsity
Unsupervised learning
Title Unsupervised feature selection regression model with nonnegative sparsity constraints
URI https://journals.sagepub.com/doi/full/10.3233/JIFS-224132
https://www.proquest.com/docview/2832826491
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa2cGkPCPpQl0flStyqtI6d5xFBVxQBEoKVVlwi2-uwuSyITYTYEz-dccZ5gPYAvUSrrJwomS_jb8bjbwjZz3keRkomwNyS3AuM1YCEWcYLAB8pjxSPtd3gfHYeHY-Dk0k4GQyeelVLVal-6-XKfSX_Y1U4B3a1u2TfYdn2onACfoN94QgWhuObbDyeL6o7-7EvgDbmptbo_LWoO9tYq96bG6xynWPDG0y6zm1pyw3qfYM7waIMbWmi7RaBwk4r6GrRaneWNVzyarl8dELQLS-_nsk69TqpWryc1uUCF4W8feyAOHGdVK5nxYMpumx54QYvZ26HmstHcNHLR6ALBZLjAWtwAtd4DqIiL0mx8Ubjd1FG8gW-0IlGKAPj5uMIlThfu3rBbSp6dPJvdOnVi4O8m9GaVfxXE11bfgiBjx2e2cEZDv5A1jkEGuAp1w-Ozk4v25WoOOSoaOGeCvd42uF_evd-yWq6UKVXHVgTlqtNsuFMRw8QNltkYOafyaee_uQXMu4DiDoA0RZAtAMQrQFELYBoD0C0ARDtAegrGY_-Xh0ee67Phqd5yEuPy1wkU2X4lPkG6LX2ZeL7QigIpZli2qrUSaGA6Ac8n-pYMQNuW4qpYTrWTIhvZA1ubb4TynObP4gSP9RpkMpAGcnSWMeMSQj0ZTwk-817yu5QTiVbYY0h2W3eYea-t0Vmm2pBMByk_pD8tO-1-2vFJbbfdqcd8rED8S5ZK-8rswc0s1Q_HBKeAa20fqY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+feature+selection+regression+model+with+nonnegative+sparsity+constraints&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Zhao%2C+Xue&rft.au=Li%2C+Qiaoyan&rft.au=Xing%2C+Zhiwei&rft.au=Dai%2C+Xuezhen&rft.date=2023-01-01&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=45&rft.issue=1&rft.spage=637&rft.epage=648&rft_id=info:doi/10.3233%2FJIFS-224132&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_224132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon