Optimizing Alzheimer's disease prediction using the nomadic people algorithm

The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical and computer engineering (Malacca, Malacca) Vol. 13; no. 2; p. 2052
Main Authors Ahmed, Shaymaa Taha, Kadhem, Suhad Malallah
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.04.2023
Subjects
Online AccessGet full text
ISSN2088-8708
2722-2578
2088-8708
DOI10.11591/ijece.v13i2.pp2052-2067

Cover

Abstract The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods.
AbstractList The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods.
Author Ahmed, Shaymaa Taha
Kadhem, Suhad Malallah
Author_xml – sequence: 1
  givenname: Shaymaa Taha
  orcidid: 0000-0002-4986-2475
  surname: Ahmed
  fullname: Ahmed, Shaymaa Taha
– sequence: 2
  givenname: Suhad Malallah
  orcidid: 0000-0003-0471-8231
  surname: Kadhem
  fullname: Kadhem, Suhad Malallah
BookMark eNqFkMFLwzAUxoNMcM79DwEPnjqTtGnaizCGTmGwi55Dkr5uGW0Tk05wf73t5smLp_fx-L7v8X63aNK5DhDClCwo5SV9tAcwsPiiqWUL7xnhLGEkF1doygQbNBfFZNCkKJJCkOIGzWO0mmSZyIjI-RRttr63rT3ZboeXzWkPtoXwEHFlI6gI2AeorOmt6_AxjqZ-D7hzrRq22IPzDWDV7Fyw_b69Q9e1aiLMf-cMfbw8v69ek812_bZabhLDOBNJypQWCjJSZYpwDkoZqnSdEl6WkEEOdam0NlpTKlJa5XlpaEl0lqq0pEBYOkP3l14f3OcRYi8P7hi64aRkIs_5kGOj6-niMsHFGKCWxvZqfKUPyjaSEnmGKM8Q5RmivECUI8ShoPhT4INtVfj-P_oDE-B9tQ
CitedBy_id crossref_primary_10_31642_JoKMC_2018_110105
crossref_primary_10_48084_etasr_9020
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2023
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2023
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.11591/ijece.v13i2.pp2052-2067
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East & South Asia Database (ProQuest)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2722-2578
2088-8708
ExternalDocumentID 10_11591_ijece_v13i2_pp2052_2067
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c2527-32ab7ae40d4a055eaac1abf30599e4e6ef9abbcbb11731d669c190b43a391e023
IEDL.DBID 8FG
ISSN 2088-8708
IngestDate Fri Jul 25 12:14:12 EDT 2025
Tue Jul 01 01:21:48 EDT 2025
Thu Apr 24 23:13:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2527-32ab7ae40d4a055eaac1abf30599e4e6ef9abbcbb11731d669c190b43a391e023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0471-8231
0000-0002-4986-2475
OpenAccessLink https://ijece.iaescore.com/index.php/IJECE/article/download/28427/16483
PQID 2766511722
PQPubID 1686344
ParticipantIDs proquest_journals_2766511722
crossref_citationtrail_10_11591_ijece_v13i2_pp2052_2067
crossref_primary_10_11591_ijece_v13i2_pp2052_2067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2023
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib044740765
ssj0000866295
Score 2.2935927
Snippet The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2052
SubjectTerms Algorithms
Alzheimer's disease
Genes
Heuristic methods
Model accuracy
Optimization
Optimization techniques
Support vector machines
Title Optimizing Alzheimer's disease prediction using the nomadic people algorithm
URI https://www.proquest.com/docview/2766511722
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagXWBAPEWhVB6QmEJrJ3bwhApqqRAtCFGpW-RXaFBftIWhA7-dc5IWuiCGKHIiD_nsu_t8d7lD6FyZwFjNQg-u2Au4Apmzgng6ZpZQVVMi_cu13eGtbnDfY73c4TbL0yqXOjFV1GasnY-8SkPOgRyElF5P3j3XNcpFV_MWGpuoSMDSuH1-1bxb-ViArnMq2DKBhwlSTd6stpefxE_gQDmhNUY9V8B83SqtK-XU0jR30U5OEXE9W9M9tGFH-2j7V-HAA_TwCJI-TBYwwPXBom-ToZ1ezHAebsGTqYu_OMyxS2x_xUDz8Gg8lPAUZ0njWA5e4fvm_eEh6jYbL7ctL--L4GnKKOgEKlUobVAzgawxZqXURKrYd6VWbGC5jYVUSisFcPnEcC40mH0V-NIXxIKRPkKF0XhkjxEG8kINd2XeuR-EmgtfwM3XsYFjhyGmhMIlLpHOi4a73hWDKD08AKJRimiUIhpliEYO0RIiq5mTrHDGP-aUl9BHuSjNop-FP_n79Snacr3gs7SaMirMpx_2DBjDXFXSbVFBxZtG5-kZRu2vxjeohsPx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwqHiK0gI-gDiFrh3bkQ8VaqHVlm4XhFqpN-PHpF20r-4uoPZH8RsZ51HoBXHpIYqSyIr0eTwPz_gbgFc-yohBFRldZSa1pzWHhmehVMiF73pTnXI9Gujeifx4qk5X4Fd7FiaVVbY6sVLUcRrSHvmWKLQm56AQ4t3sIktdo1J2tW2hUYvFIV7-pJBtsX3wgeb3tRD7e8fve1nTVSALQglaUcL5wqHsRum6SqFzgTtf5omoBCVqLI3zPnhPP8t51NoEMppe5i43HCuiA1L5qzKdaO3A6u7e4POX610dChC0MKotGVKGbw2_YcC3P3g-pBB2JrpKZIky_aYdvGkGKtu2fx_WGqeU7dRS9ABWcPIQ7v1FVfgI-p9It4yHV_TAdkZX5zgc4_zNgjUJHjabp4xPmmWWSunPGDmWbDIdO3rL6jJ15kZnhOjyfPwYTm4FsyfQmUwn-BQYuUsi6kQsr3NZBG1yQ7c8lJECncjjOhQtLjY0NOWpW8bIVuEKIWorRG2FqK0RtQnRdeDXI2c1Vcd_jNlsobfN4l3YP6L27N-fX8Kd3vFR3_YPBocbcDd1oq-Lejahs5x_x-fkryz9i0ZIGHy9bbn8DfUZAAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Alzheimer%27s+disease+prediction+using+the+nomadic+people+algorithm&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Ahmed%2C+Shaymaa+Taha&rft.au=Kadhem%2C+Suhad+Malallah&rft.date=2023-04-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=13&rft.issue=2&rft.spage=2052&rft_id=info:doi/10.11591%2Fijece.v13i2.pp2052-2067&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v13i2_pp2052_2067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon