Optimizing Alzheimer's disease prediction using the nomadic people algorithm
The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most...
Saved in:
Published in | International journal of electrical and computer engineering (Malacca, Malacca) Vol. 13; no. 2; p. 2052 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2088-8708 2722-2578 2088-8708 |
DOI | 10.11591/ijece.v13i2.pp2052-2067 |
Cover
Abstract | The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods. |
---|---|
AbstractList | The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods. |
Author | Ahmed, Shaymaa Taha Kadhem, Suhad Malallah |
Author_xml | – sequence: 1 givenname: Shaymaa Taha orcidid: 0000-0002-4986-2475 surname: Ahmed fullname: Ahmed, Shaymaa Taha – sequence: 2 givenname: Suhad Malallah orcidid: 0000-0003-0471-8231 surname: Kadhem fullname: Kadhem, Suhad Malallah |
BookMark | eNqFkMFLwzAUxoNMcM79DwEPnjqTtGnaizCGTmGwi55Dkr5uGW0Tk05wf73t5smLp_fx-L7v8X63aNK5DhDClCwo5SV9tAcwsPiiqWUL7xnhLGEkF1doygQbNBfFZNCkKJJCkOIGzWO0mmSZyIjI-RRttr63rT3ZboeXzWkPtoXwEHFlI6gI2AeorOmt6_AxjqZ-D7hzrRq22IPzDWDV7Fyw_b69Q9e1aiLMf-cMfbw8v69ek812_bZabhLDOBNJypQWCjJSZYpwDkoZqnSdEl6WkEEOdam0NlpTKlJa5XlpaEl0lqq0pEBYOkP3l14f3OcRYi8P7hi64aRkIs_5kGOj6-niMsHFGKCWxvZqfKUPyjaSEnmGKM8Q5RmivECUI8ShoPhT4INtVfj-P_oDE-B9tQ |
CitedBy_id | crossref_primary_10_31642_JoKMC_2018_110105 crossref_primary_10_48084_etasr_9020 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science 2023 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science 2023 |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.11591/ijece.v13i2.pp2052-2067 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection East & South Asia Database (ProQuest) ProQuest One ProQuest Central ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2722-2578 2088-8708 |
ExternalDocumentID | 10_11591_ijece_v13i2_pp2052_2067 |
GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQQKQ PROAC PTHSS TUS AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c2527-32ab7ae40d4a055eaac1abf30599e4e6ef9abbcbb11731d669c190b43a391e023 |
IEDL.DBID | 8FG |
ISSN | 2088-8708 |
IngestDate | Fri Jul 25 12:14:12 EDT 2025 Tue Jul 01 01:21:48 EDT 2025 Thu Apr 24 23:13:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2527-32ab7ae40d4a055eaac1abf30599e4e6ef9abbcbb11731d669c190b43a391e023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0471-8231 0000-0002-4986-2475 |
OpenAccessLink | https://ijece.iaescore.com/index.php/IJECE/article/download/28427/16483 |
PQID | 2766511722 |
PQPubID | 1686344 |
ParticipantIDs | proquest_journals_2766511722 crossref_citationtrail_10_11591_ijece_v13i2_pp2052_2067 crossref_primary_10_11591_ijece_v13i2_pp2052_2067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
PublicationYear | 2023 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib044740765 ssj0000866295 |
Score | 2.2935927 |
Snippet | The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2052 |
SubjectTerms | Algorithms Alzheimer's disease Genes Heuristic methods Model accuracy Optimization Optimization techniques Support vector machines |
Title | Optimizing Alzheimer's disease prediction using the nomadic people algorithm |
URI | https://www.proquest.com/docview/2766511722 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagXWBAPEWhVB6QmEJrJ3bwhApqqRAtCFGpW-RXaFBftIWhA7-dc5IWuiCGKHIiD_nsu_t8d7lD6FyZwFjNQg-u2Au4Apmzgng6ZpZQVVMi_cu13eGtbnDfY73c4TbL0yqXOjFV1GasnY-8SkPOgRyElF5P3j3XNcpFV_MWGpuoSMDSuH1-1bxb-ViArnMq2DKBhwlSTd6stpefxE_gQDmhNUY9V8B83SqtK-XU0jR30U5OEXE9W9M9tGFH-2j7V-HAA_TwCJI-TBYwwPXBom-ToZ1ezHAebsGTqYu_OMyxS2x_xUDz8Gg8lPAUZ0njWA5e4fvm_eEh6jYbL7ctL--L4GnKKOgEKlUobVAzgawxZqXURKrYd6VWbGC5jYVUSisFcPnEcC40mH0V-NIXxIKRPkKF0XhkjxEG8kINd2XeuR-EmgtfwM3XsYFjhyGmhMIlLpHOi4a73hWDKD08AKJRimiUIhpliEYO0RIiq5mTrHDGP-aUl9BHuSjNop-FP_n79Snacr3gs7SaMirMpx_2DBjDXFXSbVFBxZtG5-kZRu2vxjeohsPx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwqHiK0gI-gDiFrh3bkQ8VaqHVlm4XhFqpN-PHpF20r-4uoPZH8RsZ51HoBXHpIYqSyIr0eTwPz_gbgFc-yohBFRldZSa1pzWHhmehVMiF73pTnXI9Gujeifx4qk5X4Fd7FiaVVbY6sVLUcRrSHvmWKLQm56AQ4t3sIktdo1J2tW2hUYvFIV7-pJBtsX3wgeb3tRD7e8fve1nTVSALQglaUcL5wqHsRum6SqFzgTtf5omoBCVqLI3zPnhPP8t51NoEMppe5i43HCuiA1L5qzKdaO3A6u7e4POX610dChC0MKotGVKGbw2_YcC3P3g-pBB2JrpKZIky_aYdvGkGKtu2fx_WGqeU7dRS9ABWcPIQ7v1FVfgI-p9It4yHV_TAdkZX5zgc4_zNgjUJHjabp4xPmmWWSunPGDmWbDIdO3rL6jJ15kZnhOjyfPwYTm4FsyfQmUwn-BQYuUsi6kQsr3NZBG1yQ7c8lJECncjjOhQtLjY0NOWpW8bIVuEKIWorRG2FqK0RtQnRdeDXI2c1Vcd_jNlsobfN4l3YP6L27N-fX8Kd3vFR3_YPBocbcDd1oq-Lejahs5x_x-fkryz9i0ZIGHy9bbn8DfUZAAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Alzheimer%27s+disease+prediction+using+the+nomadic+people+algorithm&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Ahmed%2C+Shaymaa+Taha&rft.au=Kadhem%2C+Suhad+Malallah&rft.date=2023-04-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=13&rft.issue=2&rft.spage=2052&rft_id=info:doi/10.11591%2Fijece.v13i2.pp2052-2067&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v13i2_pp2052_2067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |