An efficient stacking based NSGA-II approach for predicting type 2 diabetes

Diabetes has been acknowledged as a well-known risk factor for renal and cardiovascular disorders, cardiac stroke and leads to a lot of morbidity in the society. Reducing the disease prevalence in the community will provide substantial benefits to the community and lessen the burden on the public he...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical and computer engineering (Malacca, Malacca) Vol. 13; no. 1; p. 1015
Main Authors Patil, Ratna Nitin, Rawandale, Shitalkumar, Rawandale, Nirmalkumar, Rawandale, Ujjwala, Patil, Shrishti
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.02.2023
Subjects
Online AccessGet full text
ISSN2088-8708
2722-2578
2088-8708
DOI10.11591/ijece.v13i1.pp1015-1023

Cover

Loading…
Abstract Diabetes has been acknowledged as a well-known risk factor for renal and cardiovascular disorders, cardiac stroke and leads to a lot of morbidity in the society. Reducing the disease prevalence in the community will provide substantial benefits to the community and lessen the burden on the public health care system. So far, to detect the disease innumerable data mining approaches have been used. These days, incorporation of machine learning is conducive for the construction of a faster, accurate and reliable model. Several methods based on ensemble classifiers are being used by researchers for the prediction of diabetes. The proposed framework of prediction of diabetes mellitus employs an approach called stacking based ensemble using non-dominated sorting genetic algorithm (NSGA-II) scheme. The primary objective of the work is to develop a more accurate prediction model that reduces the lead time i.e., the time between the onset of diabetes and clinical diagnosis. Proposed NSGA-II stacking approach has been compared with Boosting, Bagging, Random Forest and Random Subspace method. The performance of Stacking approach has eclipsed the other conventional ensemble methods. It has been noted that k-nearest neighbors (KNN) gives a better performance over decision tree as a stacking combiner.
AbstractList Diabetes has been acknowledged as a well-known risk factor for renal and cardiovascular disorders, cardiac stroke and leads to a lot of morbidity in the society. Reducing the disease prevalence in the community will provide substantial benefits to the community and lessen the burden on the public health care system. So far, to detect the disease innumerable data mining approaches have been used. These days, incorporation of machine learning is conducive for the construction of a faster, accurate and reliable model. Several methods based on ensemble classifiers are being used by researchers for the prediction of diabetes. The proposed framework of prediction of diabetes mellitus employs an approach called stacking based ensemble using non-dominated sorting genetic algorithm (NSGA-II) scheme. The primary objective of the work is to develop a more accurate prediction model that reduces the lead time i.e., the time between the onset of diabetes and clinical diagnosis. Proposed NSGA-II stacking approach has been compared with Boosting, Bagging, Random Forest and Random Subspace method. The performance of Stacking approach has eclipsed the other conventional ensemble methods. It has been noted that k-nearest neighbors (KNN) gives a better performance over decision tree as a stacking combiner.
Author Rawandale, Shitalkumar
Rawandale, Nirmalkumar
Patil, Ratna Nitin
Patil, Shrishti
Rawandale, Ujjwala
Author_xml – sequence: 1
  givenname: Ratna Nitin
  orcidid: 0000-0003-1854-3348
  surname: Patil
  fullname: Patil, Ratna Nitin
– sequence: 2
  givenname: Shitalkumar
  orcidid: 0000-0002-0322-286X
  surname: Rawandale
  fullname: Rawandale, Shitalkumar
– sequence: 3
  givenname: Nirmalkumar
  orcidid: 0000-0002-3340-4533
  surname: Rawandale
  fullname: Rawandale, Nirmalkumar
– sequence: 4
  givenname: Ujjwala
  orcidid: 0000-0001-5254-4956
  surname: Rawandale
  fullname: Rawandale, Ujjwala
– sequence: 5
  givenname: Shrishti
  orcidid: 0000-0001-6933-0006
  surname: Patil
  fullname: Patil, Shrishti
BookMark eNqFkMtOwzAQRS0EEqX0HyyxTvEj8WODVFVQKipYAGvLccbgUpJgu0j9e9KWFRtWM4tz74zOBTptuxYQwpRMKa00vQ5rcDD9pjzQad9TQquCEsZP0IhJxgpWSXU67ESpQkmiztEkpVCTspQlkaIaoYdZi8H74AK0Gads3Udo33BtEzT48XkxK5ZLbPs-dta9Y99F3Edogst7Ku96wAw3wdaQIV2iM283CSa_c4xe725f5vfF6mmxnM9WhWMV44WXAEJoUKJRQuoSKGNUWODCMq-tZw3ngmtfM6sor0vgzgMoJQSRNakJH6OrY-_w1dcWUjbrbhvb4aRhUgghhdZ6oNSRcrFLKYI3fQyfNu4MJeZgzxzsmYM9c7Rn9vaG6M2fqAvZ5tC1Odqw-b_gB6UBeuw
CitedBy_id crossref_primary_10_3390_biomimetics9030130
crossref_primary_10_35414_akufemubid_1411831
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2023
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2023
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.11591/ijece.v13i1.pp1015-1023
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2722-2578
2088-8708
ExternalDocumentID 10_11591_ijece_v13i1_pp1015_1023
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c2523-f7ee669e86d86794e12216ae36a2f9af2d33639fb2a813b4e3cfee886607b0b03
IEDL.DBID BENPR
ISSN 2088-8708
IngestDate Fri Jul 25 12:09:02 EDT 2025
Tue Jul 01 01:21:48 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2523-f7ee669e86d86794e12216ae36a2f9af2d33639fb2a813b4e3cfee886607b0b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1854-3348
0000-0002-3340-4533
0000-0001-6933-0006
0000-0002-0322-286X
0000-0001-5254-4956
OpenAccessLink https://ijece.iaescore.com/index.php/IJECE/article/download/27831/16269
PQID 2766676999
PQPubID 1686344
ParticipantIDs proquest_journals_2766676999
crossref_primary_10_11591_ijece_v13i1_pp1015_1023
crossref_citationtrail_10_11591_ijece_v13i1_pp1015_1023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2023
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib044740765
ssj0000866295
Score 2.2939746
Snippet Diabetes has been acknowledged as a well-known risk factor for renal and cardiovascular disorders, cardiac stroke and leads to a lot of morbidity in the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1015
SubjectTerms Data mining
Decision trees
Diabetes
Diabetes mellitus
Genetic algorithms
Lead time
Machine learning
Prediction models
Public health
Risk analysis
Sorting algorithms
Stacking
Subspace methods
Title An efficient stacking based NSGA-II approach for predicting type 2 diabetes
URI https://www.proquest.com/docview/2766676999
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL2CdgEhBAVEeckDq2lsJ048oYJaKKgVAiqxWfEjEgiV0hZGvh3bSXgsiDGK7OHYvo_j63MBjoURRivKsM8-cJzpFAtNBGaaUMU1jXl4JDYc8ctxfPWQPFSE27wqq6xtYjDU5kV7jrxDUx7KMYU4nb5i3zXK365WLTSWoelMcJY0oHnWG93cfrEsLmDnVCR1CU8iSOfxyWp78k7YozNSU7cjvRInZb_90m-zHHxNfwPWqyARdctV3YQlO2nB6g_pwBaslXwbKp8RbcF1d4JskINwXgS5kE97Dhx5J2XQ6O6iiwcDVAuIIxepounM39H4qmfkeVhEUc3DbsO437s_v8RVowSsqUskcZFay7mwGTdePy-2hFLCc8t4TguRF9Qw5iKRQtE8I0zFlunC2sxhE6UqUhHbgcbkZWJ3AVE3Sy6UyUykY50SFWWa-6tQwd3JNkkb0homqSsVcd_M4lmGbMIBLAPAMgAsS4ClB7gN5GvktFTS-MeYg3olZHW25vJ7J-z9_XsfVnxz-LLG-gAai9mbPXQhxEIdwXLWvziqdov7Gn70PgHxo8aH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LThRBFL2BYSHGqIDGUcRa4LKHrls91V0LF4MKMwzMRiCETdH16GSEDBNm0Oiv-Ct-nLf6gcLCuCFx3ambdNXJfZ46BbCpnHLWoIhC9RElmU0jZbmKhOVopMVElpfEDkayf5TsnXRPFuBHcxcm0Cobn1g6andpQ498C1NZ0jGVqhmUQ__tK9Vns3eDD3SYbxF3Ph6-70f1EwKRRSqxoiL1XkrlM-mCslziOSKXuRcyx0LlBTohKEYXBvOMC5N4YQvvs0zKODWxiQXZXYQlqioQW7C0fbx9enzTwqFqQKLqNvygruJb48_e-s4XLsbkAacE9yDzieJ20Lvt88tAtvMEfjZbUPFXzjvXc9Ox3--oQ_6ne_QUHtcJNOtViF-BBT9ZhYd_yCquwqOqF8mqK1ZrMOxNmC-lMijCMkqHbZgPsBDAHRt92u1FgwFrxNUZZfFsehXmV4ERzkKPmiFretTP4Ohe_u45tCaXE_8CGJKVXBmXudgmNuUmzqwMY2Ilyeu5bhvS5pS1rRXWw0MfF7qstAgfusSHLvGhK3zogI828JuV00pl5B_WrDcg0LXfmenfCHj5989v4EH_8GBf7w9Gw1ewjGSw4qKvQ2t-de1fU6o1Nxs15Bmc3TeCfgGeSzSj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+stacking+based+NSGA-II+approach+for+predicting+type+2+diabetes&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Patil%2C+Ratna+Nitin&rft.au=Rawandale%2C+Shitalkumar&rft.au=Rawandale%2C+Nirmalkumar&rft.au=Rawandale%2C+Ujjwala&rft.date=2023-02-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=13&rft.issue=1&rft.spage=1015&rft_id=info:doi/10.11591%2Fijece.v13i1.pp1015-1023&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v13i1_pp1015_1023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon