Implementation of deep neural networks (DNN) with batch normalization for batik pattern recognition

One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in a certain way. The diversity of motifs both in Indonesia and the allied countries raises new research topics in the field of information tec...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical and computer engineering (Malacca, Malacca) Vol. 10; no. 2; p. 2045
Main Authors Nurhaida, Ida, Ayumi, Vina, Fitrianah, Devi, Zen, Remmy A. M., Noprisson, Handrie, Wei, Hong
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.04.2020
Subjects
Online AccessGet full text
ISSN2088-8708
2088-8708
DOI10.11591/ijece.v10i2.pp2045-2053

Cover

Loading…
Abstract One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in a certain way. The diversity of motifs both in Indonesia and the allied countries raises new research topics in the field of information technology, both for conservation, storage, publication and the creation of new batik motifs. In computer science research area, studies about Batik pattern have been done by researchers and some algorithms have been successfully applied in Batik pattern recognition. This study was focused on Batik motif recognition using texture fusion feature which is Gabor, Log-Gabor, and GLCM; and using PCA feature reduction to improve the classification accuracy and reduce the computational time. To improve the accuracy, we proposed a Deep Neural Network model to recognise batik pattern and used batch normalisation as a regularises to generalise the model and to reduce time complexity. From the experiments, the feature extraction, selection, and reduction gave better accuracy than the raw dataset. The feature selection and reduction also reduce time complexity. The DNN+BN significantly improve the accuracy of the classification model from 65.36% to 83.15%. BN as a regularization has successfully made the model more general, hence improve the accuracy of the model. The parameters tuning also improved accuracy from 83.15% to 85.57%.
AbstractList One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in a certain way. The diversity of motifs both in Indonesia and the allied countries raises new research topics in the field of information technology, both for conservation, storage, publication and the creation of new batik motifs. In computer science research area, studies about Batik pattern have been done by researchers and some algorithms have been successfully applied in Batik pattern recognition. This study was focused on Batik motif recognition using texture fusion feature which is Gabor, Log-Gabor, and GLCM; and using PCA feature reduction to improve the classification accuracy and reduce the computational time. To improve the accuracy, we proposed a Deep Neural Network model to recognise batik pattern and used batch normalisation as a regularises to generalise the model and to reduce time complexity. From the experiments, the feature extraction, selection, and reduction gave better accuracy than the raw dataset. The feature selection and reduction also reduce time complexity. The DNN+BN significantly improve the accuracy of the classification model from 65.36% to 83.15%. BN as a regularization has successfully made the model more general, hence improve the accuracy of the model. The parameters tuning also improved accuracy from 83.15% to 85.57%.
Author Noprisson, Handrie
Fitrianah, Devi
Nurhaida, Ida
Ayumi, Vina
Wei, Hong
Zen, Remmy A. M.
Author_xml – sequence: 1
  givenname: Ida
  surname: Nurhaida
  fullname: Nurhaida, Ida
– sequence: 2
  givenname: Vina
  surname: Ayumi
  fullname: Ayumi, Vina
– sequence: 3
  givenname: Devi
  surname: Fitrianah
  fullname: Fitrianah, Devi
– sequence: 4
  givenname: Remmy A. M.
  surname: Zen
  fullname: Zen, Remmy A. M.
– sequence: 5
  givenname: Handrie
  surname: Noprisson
  fullname: Noprisson, Handrie
– sequence: 6
  givenname: Hong
  surname: Wei
  fullname: Wei, Hong
BookMark eNqFkMtOwzAQRS0EEqX0HyyxgUWKH3XibJBQeVWqygbWlutMqNvEDo5LBV9P2rBAbJjNHc3jjuacoWPnHSCEKRlTKnJ6bddgYPxBiWXjpmFkIhJGBD9CA0akTGRG5PGv_BSN2nZNupBpynIxQGZWNxXU4KKO1jvsS1wANNjBNuiqk7jzYdPiy7vF4grvbFzhpY5mhZ0Pta7sV79W-rCv2w1udIwQHA5g_Juz--45Oil11cLoR4fo9eH-ZfqUzJ8fZ9PbeWKYYDwxFLTJ9MRkBfAiFwVJNU-JyU0xkQayjC9zUkoCFAotRAmcsIxnKSy11iLL-RBd9L5N8O9baKNa-21w3UnFOKdpSgUh3dRNP2WCb9sApTK2fz4GbStFiTqwVQe26sBW9WzVnm1nIP8YNMHWOnz-v_oN-ouF9w
CitedBy_id crossref_primary_10_1016_j_jksuci_2021_04_002
crossref_primary_10_1155_int_1466655
crossref_primary_10_7717_peerj_cs_1053
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science Apr 2020
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science Apr 2020
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.11591/ijece.v10i2.pp2045-2053
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2088-8708
ExternalDocumentID 10_11591_ijece_v10i2_pp2045_2053
GeographicLocations Indonesia
GeographicLocations_xml – name: Indonesia
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c2523-c1eac7a4c7de3d95d06a360c9cd48ce773b90f80e1eda55fe3027376ebaaa5793
IEDL.DBID 8FG
ISSN 2088-8708
IngestDate Fri Jul 25 12:08:27 EDT 2025
Tue Jul 01 01:21:37 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2523-c1eac7a4c7de3d95d06a360c9cd48ce773b90f80e1eda55fe3027376ebaaa5793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://ijece.iaescore.com/index.php/IJECE/article/download/15467/13759
PQID 2331661500
PQPubID 1686344
ParticipantIDs proquest_journals_2331661500
crossref_citationtrail_10_11591_ijece_v10i2_pp2045_2053
crossref_primary_10_11591_ijece_v10i2_pp2045_2053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 20200401
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2020
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssj0000866295
Score 2.2966683
Snippet One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2045
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Cloth
Complexity
Computing time
Feature extraction
Feature recognition
Model accuracy
Neural networks
Pattern recognition
Reduction
Regularization
Texture recognition
Title Implementation of deep neural networks (DNN) with batch normalization for batik pattern recognition
URI https://www.proquest.com/docview/2331661500
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBArGKtfOAAh9A4jp3khNhKhUSFEEjcIi8TUZY0UOD7GbtuoRfENdFcxrO98fgNIfsVQgCt0ZEwueooZTlESgoWJdpIbpmolKdSuu7J7n169SAeQsNtGMYqxzHRB2o7MK5H3k44Z9Kxl8fHzVvktka529WwQmOWzDPMNM7O887lpMeC5bpMCjEe4BEFa_efwMDRF4v7CCgbx8WOdiL4dFaaDso-03SWyVIoEenJ6ExXyAzUq2TxF3HgGjGe1Pc1vBuq6aCiFqChjp0SRevRbPeQHpz3eofU9Vqpxpj7SGtXor6Et5cUC1b3vf9MG0-zWdPJPNGgXif3nYu7s24U1iVEJkE4GRmGQTRTqckscFsIG0vFZWwKY9PcQJZxXcRVHgMDq4SowF1ZYnwBrZQS6KcbZK4e1LBJKKjEIA5zaC5NBcgCLI8tryqQRidxvkWysbpKE7jE3UqLl9JjClR06RVdekWXI0WXTtFbhE0kmxGfxj9kdscnUgYPG5Y_9rD99-8dspA4jOynbXbJ3Mf7J-xhIfGhW95aWmT-9KJ3c_sNSz_LQw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWq7QE4ID5FoYAPIMEhNLZjZ3NACGirLW0jhFqpN-OPiVgo2cAWEH-K38iMkyz0grj0msiX5_HMPHvmDWOPGqQA3uNBwuDqs0JMIXNGi0z6YFQUunFJSumwNrPj4s2JPlljv8ZeGCqrHH1ictRxEeiOfEsqJQypl-cvui8ZTY2i19VxhEZvFvvw8wdStuXzvW3c38dS7u4cvZ5lw1SBLEhkXVkQ6GtKV4QygoqVjrlxyuShCrGYBihL5au8meYgIDqtG6CXPTyG4J1zuiTxJXT56wV1tE7Y-qud-u271a0OEgQjKz2WDOlKbM0_QoBn30U-Rwrbkfo7WqZW5-Pg-TCQYtvuNXZ1SEr5y96KrrM1aG-wK39JFd5kIckIfx46lVq-aHgE6DjpYeLStq8mX_In23X9lNPtLvfo5T_wlpLi06Hbk2OKTN_nn3iXhD1bvqpgWrS32PGFQHmbTdpFC3cYBycDMj_ij0WhwVQQVR5V04AJXubTDVaOcNkwqJfTEI1Tm1gMAm0T0DYBbXugLQG9wcRqZdcrePzHms1xR-xwppf2jwXe_ffvh-zS7OjwwB7s1fv32GVJDD3V-myyydnXb3Af05gz_2CwHc7eX7S5_gY9XAkr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+deep+neural+networks+%28DNN%29+with+batch+normalization+for+batik+pattern+recognition&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Nurhaida%2C+Ida&rft.au=Ayumi%2C+Vina&rft.au=Fitrianah%2C+Devi&rft.au=Zen%2C+Remmy+A.+M.&rft.date=2020-04-01&rft.issn=2088-8708&rft.eissn=2088-8708&rft.volume=10&rft.issue=2&rft.spage=2045&rft_id=info:doi/10.11591%2Fijece.v10i2.pp2045-2053&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v10i2_pp2045_2053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon