Accelerating Multiphase Simulations With Denoising Diffusion Model Driven Initializations
This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our underst...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Geophysical Union (AGU)
01.12.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and CO2 ${\text{CO}}_{2}$ storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations.
Plain Language Summary
Pore‐scale simulations enhance our understanding of how fluid moves in the subsurface, they have recently been used for evaluating hydrogen storage and carbon dioxide sequestration projects in underground reservoirs. However, these simulations are often limited by their high demand for computational resources, posing a challenge to efficient execution. To address this, we propose a method that integrates artificial intelligence (AI) with physics‐based simulators. After training our AI model with synthetic data, we tested our approach using a real reservoir sample obtained through X‐ray imaging. This allowed us to showcase the computational efficiency of our method.
Key Points
We introduce a method that integrates generative AI with multiphase simulations improving efficiency while maintaining physical accuracy
We propose simulation metrics to evaluate model performance, ensuring alignment with the targeted physical phenomena
We demonstrate a significant speed‐up over traditional initialization methods in synthetic and real (x‐ray) fracture data sets |
---|---|
AbstractList | This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations.
Pore‐scale simulations enhance our understanding of how fluid moves in the subsurface, they have recently been used for evaluating hydrogen storage and carbon dioxide sequestration projects in underground reservoirs. However, these simulations are often limited by their high demand for computational resources, posing a challenge to efficient execution. To address this, we propose a method that integrates artificial intelligence (AI) with physics‐based simulators. After training our AI model with synthetic data, we tested our approach using a real reservoir sample obtained through X‐ray imaging. This allowed us to showcase the computational efficiency of our method.
We introduce a method that integrates generative AI with multiphase simulations improving efficiency while maintaining physical accuracy We propose simulation metrics to evaluate model performance, ensuring alignment with the targeted physical phenomena We demonstrate a significant speed‐up over traditional initialization methods in synthetic and real (x‐ray) fracture data sets Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations. This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and CO2 ${\text{CO}}_{2}$ storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations. Plain Language Summary Pore‐scale simulations enhance our understanding of how fluid moves in the subsurface, they have recently been used for evaluating hydrogen storage and carbon dioxide sequestration projects in underground reservoirs. However, these simulations are often limited by their high demand for computational resources, posing a challenge to efficient execution. To address this, we propose a method that integrates artificial intelligence (AI) with physics‐based simulators. After training our AI model with synthetic data, we tested our approach using a real reservoir sample obtained through X‐ray imaging. This allowed us to showcase the computational efficiency of our method. Key Points We introduce a method that integrates generative AI with multiphase simulations improving efficiency while maintaining physical accuracy We propose simulation metrics to evaluate model performance, ensuring alignment with the targeted physical phenomena We demonstrate a significant speed‐up over traditional initialization methods in synthetic and real (x‐ray) fracture data sets Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and CO2 storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations. |
Author | Lin, Yen Ting Santos, Javier E. Chung, Jaehong Viswanathan, Hari Guiltinan, Eric J. Marcato, Agnese Mukerji, Tapan |
Author_xml | – sequence: 1 givenname: Jaehong surname: Chung fullname: Chung, Jaehong email: jhchung1@stanford.edu organization: Computational Earth Science Group (EES‐16) – sequence: 2 givenname: Agnese orcidid: 0000-0002-9934-9004 surname: Marcato fullname: Marcato, Agnese organization: Computational Earth Science Group (EES‐16) – sequence: 3 givenname: Eric J. orcidid: 0000-0002-0763-0625 surname: Guiltinan fullname: Guiltinan, Eric J. organization: Computational Earth Science Group (EES‐16) – sequence: 4 givenname: Tapan orcidid: 0000-0003-1711-1850 surname: Mukerji fullname: Mukerji, Tapan organization: Stanford University – sequence: 5 givenname: Hari orcidid: 0000-0002-1178-9647 surname: Viswanathan fullname: Viswanathan, Hari organization: Computational Earth Science Group (EES‐16) – sequence: 6 givenname: Yen Ting surname: Lin fullname: Lin, Yen Ting organization: Information Science Group (CCS‐3) – sequence: 7 givenname: Javier E. orcidid: 0000-0002-2404-3975 surname: Santos fullname: Santos, Javier E. organization: Computational Earth Science Group (EES‐16) |
BackLink | https://www.osti.gov/biblio/2478173$$D View this record in Osti.gov |
BookMark | eNp9kV1LHDEUhoNYUFfv-gOGXrttPmZ2kktx_VhRhGopvQqZM4l7JCaSZC321zc6pUihXuXNyfO-55CzR7ZDDJaQj4x-ZpSrL5zy9uKc0qrFFtnlSol5xxndfqN3yEHO95URglNJ-13y4wjAeptMwXDXXG18wce1yba5wYeNr9UYcvMdy7pZ2hAxv1BLdG6T60tzFUfrm2XCJxuaVcCCxuOvybVPPjjjsz34c87It9OT2-Pz-eX12er46HIOvI40H61S_eCALTrLzEJKaiR1FICPqmPGDYZK1tmua6XpqFLtwBUTw8KwsR_YwMWMrKbcMZp7_ZjwwaRnHQ3q10JMd9qkguCtbtsOnAAOQrqqhXLCciGhHR1jUG8z8mnKirmgzoDFwhpiCBaK5m0vWS8qdDhBkGLOybq_TRnVL6vQb1dRcf4PXmNfv6gkg_5_JjqZfqK3z-820BdnX5lk4jdrBZsN |
CitedBy_id | crossref_primary_10_1029_2024JH000293 |
Cites_doi | 10.1016/j.epsl.2005.11.041 10.1029/97jb02836 10.1016/j.jcis.2006.10.082 10.1016/j.cageo.2024.105665 10.1109/CVPR.2018.00577 10.1016/j.camwa.2020.03.022 10.1039/c2ee03227a 10.1021/acs.jpcc.0c07427 10.1109/CVPR.2017.728 10.1063/5.0160984 10.1021/acs.est.6b01744 10.1016/j.softx.2022.101097 10.1016/j.fuel.2021.122693 10.2118/1275‐g 10.1029/94jb03262 10.1016/s1359‐0294(01)00084‐x 10.1017/9781316145098 10.1029/2024JH000293 10.15530/urtec-2020-3048 10.3390/en15238871 10.1007/bf01341754 10.1088/2632‐2153/ad45af 10.1103/physreve.47.1815 10.1103/physrev.94.511 10.1002/wrcr.20334 10.5281/zenodo.14047107 10.1029/2021rg000744 10.2118/210456-MS 10.1007/978-3-319-24574-4_28 10.1007/s11242‐021‐01590‐6 10.2138/rmg.2013.77.13 10.1016/j.jcp.2022.111277 10.1029/rg027i003p00311 10.1109/tpami.2022.3204461 10.1103/physreve.76.066701 10.1016/j.ijggc.2013.06.017 10.1063/5.0133054 10.1038/s43017‐022‐00376‐8 10.1029/2023gl104958 10.1029/2020wr027943 10.1016/j.ces.2021.117315 10.17612/P7J012 10.1016/j.advwatres.2012.03.003 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION OTOTI DOA |
DOI | 10.1029/2024JH000293 |
DatabaseName | Wiley Online Library Open Access CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: WRHA-DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_445cf3c2c38f44539f3e238c4df11c9f 2478173 10_1029_2024JH000293 JGR181 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Los Alamos National Laboratory – fundername: Diffusion Modeling with Physical Constraints for Scientific Data funderid: 20240074ER – fundername: Laboratory Directed Research and Development (LDRD) – fundername: Applied Machine Learning Summer School – fundername: Center for Non‐Linear Studies |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION GROUPED_DOAJ M~E WIN OTOTI |
ID | FETCH-LOGICAL-c2521-de997bfc165e1a6880a80f0cc2d951afba0815e5548a50994b2913b6a1d7b1b23 |
IEDL.DBID | DOA |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:27:36 EDT 2025 Mon Apr 21 02:20:37 EDT 2025 Wed Aug 20 07:45:19 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Wed Jan 22 17:11:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2521-de997bfc165e1a6880a80f0cc2d951afba0815e5548a50994b2913b6a1d7b1b23 |
Notes | USDOE |
ORCID | 0000-0002-0763-0625 0000-0002-2404-3975 0000-0002-9934-9004 0000-0003-1711-1850 0000-0002-1178-9647 0000000317111850 0000000211789647 0000000299349004 0000000207630625 0000000224043975 |
OpenAccessLink | https://doaj.org/article/445cf3c2c38f44539f3e238c4df11c9f |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_445cf3c2c38f44539f3e238c4df11c9f osti_scitechconnect_2478173 crossref_primary_10_1029_2024JH000293 crossref_citationtrail_10_1029_2024JH000293 wiley_primary_10_1029_2024JH000293_JGR181 |
PublicationCentury | 2000 |
PublicationDate | December 2024 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
Publisher | American Geophysical Union (AGU) Wiley |
Publisher_xml | – name: American Geophysical Union (AGU) – name: Wiley |
References | 1993; 47 2023; 35 2013; 49 2015; 18 2023; 4 2022; 45 2008; 9 2016; 50 2020; 33 2020; 124 2024 2007; 76 1989; 27 2007; 307 2021; 57 2013; 18 1954; 94 2022b; 313 2013; 77 2023 2001; 6 2022 2024; 5 2022; 60 2021 2020 2013; 51 2021; 138 2022; 34 2018 2017 2006; 241 2022; 15 1992; 68 2016 1998; 103 2015 1995; 100 2022; 249 2012; 5 2024; 191 1959; 11 2023; 50 2022a; 463 2021; 81 2022; 18 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Santos J. (e_1_2_8_33_1) 2023 Ho J. (e_1_2_8_20_1) 2020; 33 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Nichol A. Q. (e_1_2_8_28_1) 2021 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Van der Maaten L. (e_1_2_8_42_1) 2008; 9 e_1_2_8_15_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 Goodfellow I. (e_1_2_8_16_1) 2016 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 Sohl‐Dickstein J. (e_1_2_8_38_1) 2015 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_50_1 |
References_xml | – year: 2016 article-title: Induced rough fracture in Berea sandstone core publication-title: Digital Rocks Portal – year: 2024 – volume: 249 year: 2022 article-title: Use of CFD for pressure drop, liquid saturation and wetting predictions in trickle bed reactors for different catalyst particle shapes publication-title: Chemical Engineering Science – volume: 68 start-page: 379 issue: 3–4 year: 1992 end-page: 400 article-title: Lattice Boltzmann computational fluid dynamics in three dimensions publication-title: Journal of Statistical Physics – volume: 35 issue: 8 year: 2023 article-title: Fast prediction method of displacement front in heterogeneous porous media using deep learning and orthogonal design publication-title: Physics of Fluids – volume: 77 start-page: 459 issue: 1 year: 2013 end-page: 479 article-title: Caprock fracture dissolution and CO leakage publication-title: Reviews in Mineralogy and Geochemistry – volume: 100 start-page: 5941 issue: B4 year: 1995 end-page: 5952 article-title: Simple mathematical model of a rough fracture publication-title: Journal of Geophysical Research – volume: 5 issue: 2 year: 2024 article-title: Learning a general model of Single phase flow in complex 3d porous media publication-title: Machine Learning: Science and Technology – volume: 11 start-page: 71 issue: 10 year: 1959 end-page: 76 article-title: Effect of fractional wettability on multiphase flow through porous media publication-title: Journal of Petroleum Technology – start-page: 8162 year: 2021 end-page: 8171 – year: 2022 – volume: 6 start-page: 197 issue: 3 year: 2001 end-page: 207 article-title: Flow in porous media—Pore‐network models and multiphase flow publication-title: Current Opinion in Colloid & Interface Science – volume: 18 start-page: 128 year: 2013 end-page: 138 article-title: Evaluation of potential fracture‐sealing materials for remediating CO leakage pathways during CO sequestration publication-title: International Journal of Greenhouse Gas Control – volume: 81 start-page: 334 year: 2021 end-page: 350 article-title: Palabos: Parallel Lattice Boltzmann Solver publication-title: Computers & Mathematics with Applications – volume: 463 year: 2022a article-title: A gradient‐based deep neural network model for simulating multiphase flow in porous media publication-title: Journal of Computational Physics – volume: 5 start-page: 7328 issue: 6 year: 2012 end-page: 7345 article-title: The cross‐scale science of CO capture and storage: From pore scale to regional scale publication-title: Energy & Environmental Science – year: 2024 article-title: Code for fracture generation and multiphase flow simulation used for training Denoising diffusion model‐driven initializations publication-title: Zenodo – volume: 18 start-page: 234 year: 2015 end-page: 241 – volume: 94 start-page: 511 issue: 3 year: 1954 end-page: 525 article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one‐component systems publication-title: Physical Review – volume: 103 start-page: 9609 issue: B5 year: 1998 end-page: 9620 article-title: Synthetic rough fractures in rocks publication-title: Journal of Geophysical Research – volume: 76 issue: 6 year: 2007 article-title: Proposed approximation for contact angles in Shan‐and‐Chen‐type multicomponent multiphase lattice Boltzmann models publication-title: Physical Review E – volume: 49 start-page: 4645 issue: 8 year: 2013 end-page: 4661 article-title: A level set method for simulating capillary‐controlled displacements at the pore scale with nonzero contact angles publication-title: Water Resources Research – volume: 33 start-page: 6840 year: 2020 end-page: 6851 article-title: Denoising diffusion probabilistic models publication-title: Advances in Neural Information Processing Systems – volume: 50 start-page: 7546 issue: 14 year: 2016 end-page: 7554 article-title: CO accounting and risk analysis for CO sequestration at enhanced oil recovery sites publication-title: Environmental science & technology – volume: 57 issue: 1 year: 2021 article-title: Two‐phase fluid flow properties of rough fractures with heterogeneous wettability: Analysis with lattice Boltzmann simulations publication-title: Water Resources Research – start-page: 5505 year: 2018 end-page: 5514 – volume: 50 issue: 21 year: 2023 article-title: Characterizing the impacts of multi‐scale heterogeneity on solute transport in fracture networks publication-title: Geophysical Research Letters – volume: 60 issue: 1 year: 2022 article-title: From fluid flow to coupled processes in fractured rock: Recent advances and new frontiers publication-title: Reviews of Geophysics – volume: 34 issue: 12 year: 2022 article-title: Pore‐scale Modeling of multiphase flow in porous media using a Conditional Generative Adversarial Network (CGAN) publication-title: Physics of Fluids – volume: 15 issue: 23 year: 2022 article-title: Using machine learning to predict multiphase flow through complex fractures publication-title: Energies – volume: 4 start-page: 102 issue: 2 year: 2023 end-page: 118 article-title: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future publication-title: Nature Reviews Earth & Environment – year: 2016 – volume: 27 start-page: 311 issue: 3 year: 1989 end-page: 328 article-title: Multiphase flow and transport in porous media publication-title: Reviews of Geophysics – volume: 9 issue: 11 year: 2008 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – volume: 51 start-page: 197 year: 2013 end-page: 216 article-title: Pore‐scale imaging and modelling publication-title: Advances in Water Resources – volume: 307 start-page: 181 issue: 1 year: 2007 end-page: 187 article-title: Visualization of fluid occupancy in a rough fracture using micro‐tomography publication-title: Journal of Colloid and Interface Science – volume: 191 year: 2024 article-title: Pysimfrac: A python library for synthetic fracture generation and analysis publication-title: Computers & Geosciences – volume: 124 start-page: 22200 issue: 40 year: 2020 end-page: 22211 article-title: Modeling nanoconfinement effects using active learning publication-title: Journal of Physical Chemistry C – start-page: 3147 year: 2020 end-page: 3152 – volume: 138 start-page: 49 issue: 1 year: 2021 end-page: 75 article-title: Ml‐LBM: Predicting and accelerating steady state flow simulation in porous media with convolutional neural networks publication-title: Transport in Porous Media – start-page: 5485 year: 2017 end-page: 5493 – volume: 18 year: 2022 article-title: MPLBM‐UT: Multiphase LBM library for permeable media analysis publication-title: SoftwareX – start-page: 2256 year: 2015 end-page: 2265 – year: 2023 – volume: 45 start-page: 4713 issue: 4 year: 2022 end-page: 4726 article-title: Image super‐resolution via iterative refinement publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 241 start-page: 454 issue: 3–4 year: 2006 end-page: 465 article-title: Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures publication-title: Earth and Planetary Science Letters – volume: 47 start-page: 1815 issue: 3 year: 1993 end-page: 1819 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Physical Review – year: 2017 – volume: 313 year: 2022b article-title: A physics‐constrained deep learning model for simulating multiphase flow in 3d heterogeneous porous media publication-title: Fuel – ident: e_1_2_8_29_1 doi: 10.1016/j.epsl.2005.11.041 – ident: e_1_2_8_15_1 doi: 10.1029/97jb02836 – ident: e_1_2_8_23_1 doi: 10.1016/j.jcis.2006.10.082 – ident: e_1_2_8_18_1 doi: 10.1016/j.cageo.2024.105665 – ident: e_1_2_8_49_1 doi: 10.1109/CVPR.2018.00577 – ident: e_1_2_8_26_1 doi: 10.1016/j.camwa.2020.03.022 – ident: e_1_2_8_27_1 doi: 10.1039/c2ee03227a – ident: e_1_2_8_36_1 doi: 10.1021/acs.jpcc.0c07427 – volume: 9 issue: 11 year: 2008 ident: e_1_2_8_42_1 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – ident: e_1_2_8_48_1 doi: 10.1109/CVPR.2017.728 – volume-title: Neurips 2023 workshop on diffusion Models year: 2023 ident: e_1_2_8_33_1 – ident: e_1_2_8_50_1 doi: 10.1063/5.0160984 – ident: e_1_2_8_12_1 doi: 10.1021/acs.est.6b01744 – ident: e_1_2_8_34_1 doi: 10.1016/j.softx.2022.101097 – ident: e_1_2_8_47_1 doi: 10.1016/j.fuel.2021.122693 – ident: e_1_2_8_13_1 doi: 10.2118/1275‐g – ident: e_1_2_8_7_1 doi: 10.1029/94jb03262 – ident: e_1_2_8_3_1 doi: 10.1016/s1359‐0294(01)00084‐x – ident: e_1_2_8_4_1 doi: 10.1017/9781316145098 – ident: e_1_2_8_10_1 doi: 10.1029/2024JH000293 – ident: e_1_2_8_17_1 doi: 10.15530/urtec-2020-3048 – ident: e_1_2_8_40_1 doi: 10.3390/en15238871 – ident: e_1_2_8_9_1 doi: 10.1007/bf01341754 – ident: e_1_2_8_35_1 doi: 10.1088/2632‐2153/ad45af – ident: e_1_2_8_37_1 doi: 10.1103/physreve.47.1815 – ident: e_1_2_8_2_1 doi: 10.1103/physrev.94.511 – volume-title: Deep learning year: 2016 ident: e_1_2_8_16_1 – ident: e_1_2_8_22_1 doi: 10.1002/wrcr.20334 – start-page: 8162 volume-title: International conference on machine learning year: 2021 ident: e_1_2_8_28_1 – ident: e_1_2_8_11_1 doi: 10.5281/zenodo.14047107 – ident: e_1_2_8_43_1 doi: 10.1029/2021rg000744 – ident: e_1_2_8_8_1 doi: 10.2118/210456-MS – ident: e_1_2_8_31_1 doi: 10.1007/978-3-319-24574-4_28 – start-page: 2256 volume-title: International conference on machine learning year: 2015 ident: e_1_2_8_38_1 – ident: e_1_2_8_44_1 doi: 10.1007/s11242‐021‐01590‐6 – ident: e_1_2_8_14_1 doi: 10.2138/rmg.2013.77.13 – ident: e_1_2_8_46_1 doi: 10.1016/j.jcp.2022.111277 – ident: e_1_2_8_30_1 doi: 10.1029/rg027i003p00311 – ident: e_1_2_8_32_1 doi: 10.1109/tpami.2022.3204461 – ident: e_1_2_8_21_1 doi: 10.1103/physreve.76.066701 – ident: e_1_2_8_41_1 doi: 10.1016/j.ijggc.2013.06.017 – ident: e_1_2_8_45_1 doi: 10.1063/5.0133054 – ident: e_1_2_8_25_1 doi: 10.1038/s43017‐022‐00376‐8 – volume: 33 start-page: 6840 year: 2020 ident: e_1_2_8_20_1 article-title: Denoising diffusion probabilistic models publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_39_1 doi: 10.1029/2023gl104958 – ident: e_1_2_8_19_1 doi: 10.1029/2020wr027943 – ident: e_1_2_8_6_1 doi: 10.1016/j.ces.2021.117315 – ident: e_1_2_8_24_1 doi: 10.17612/P7J012 – ident: e_1_2_8_5_1 doi: 10.1016/j.advwatres.2012.03.003 |
SSID | ssj0003320807 |
Score | 2.2757826 |
Snippet | This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the... Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at... Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at... |
SourceID | doaj osti crossref wiley |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | diffusion models generative modeling lattice‐Boltzmann physics pore‐scale |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA-nh-CL6J3iN3k4H46j2Hy02zyqq64LiuiJ-lSSaaILa1d21__fmbQu-qDgU0tI2zTTyfwynfkNY38qxMjeB9ydWErJCdolDpsScCI1hQDpI5XS-UXeu9H9u-yudbhRLkzDDzFzuJFmxPWaFNy6SUs2QByZuGvX_R5ptFFz7Cdl1xJ3vtSXMx-LUjJtMqYlhamhpUrb2He8aP_9DT5YpUjej4cRKtlHzBqNzskyW2rRIj9oxLvCfvj6F1uIUZsw-c3uDwDQbJAQ6wcec2mfH9Es8evBU1uWa8JvB9NH3vX1aEBuAd4dhPBCLjJOZdCGvDum9Y6fURCRHb5lZa6ym5Pj_0e9pK2VkIDE90oqb0zHBRB55nHaUSttkYYUQFaIoWxwFm1_5hE8FBYxgtFOGqFcbkXVccJJtcbm61Ht1xlXUrnCVi6tiAhGZFYLVwDokCkp8jxssH9vc1VCSyRO9SyGZfyhLU35fmY32N6s93NDoPFJv0Oa9lkfor2ODaPxQ9lqUal1BkGBBFUEPFcmKI-YA3QVhACDQ9sioZWIHogCFyhWCKalpHzaDj7ib5Tll-Mo-6dXiHo2v9F3iy1SaxPkss3mp-MXv4NQZep24_f4Ckcl3XM priority: 102 providerName: Wiley-Blackwell |
Title | Accelerating Multiphase Simulations With Denoising Diffusion Model Driven Initializations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000293 https://www.osti.gov/biblio/2478173 https://doaj.org/article/445cf3c2c38f44539f3e238c4df11c9f |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZgJaReEI9W3fKQD-0BoajxI9n4CCywXWkRoiDoKbInNqy0zaLd5cpvZ8YJaDm0vfSSRJaVWDOJv8_OzDeMfa2QI3sfcHViKSUnaJc4bErAidQUAqSPUkqji3xwo4d32d1SqS-KCWvkgRvDfdc6g6BAgioCXisTlEeYAV0FIcAEmn0R85YWUzQHKyWRCvXaSPdUGlrk6-GAJgCj3mFQlOrH0xQ_qfcMNULM2QZbb7khP2rGtMlWfL3F1mKMJsy32a8jAAQJcll9z2Pm7OMDghD_Of7dFuGa89vx4oH3fT0d0yYA749DeKINMU5Fzya8P6PZjf-gkCE7ec3B_Mhuzk6vTwZJWxkhAYl4m1TemJ4LIPLMo5HxG7RFGlIAWSFjssFZRPrMI1UoLDICo500QrnciqrnhJPqE-vU09p_ZlxJ5QpbubQi2ReRWS1cAaBDpqTI89Blh6-2KqGVDafqFZMy_r6Wply2bJd9e-v92Mhl_KHfMZn9rQ-JXMcGdH3Zur78l-u7bIecViJXIMFboMggWJSSsmd7-IiD6Mu_jqMcnl8hx_nyP4azwz7QrZtYl13WWcye_B4yloXbZ6tSX-7HVxSPo-fTF0Hx5o0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYEBovaHxMK9vAD_CAUET8kTR-HJTRla1CsInxZNkXe61U0qnr_v_dOVm1PoC0p0TWJXHsnO_ny93vGHtXI0YOIeLuxFFKTtQ-89iUgRe5qQTIkKiUTsfl8FyPLoqLrs4p5cK0_BArhxtpRlqvScHJId2xDRBJJm7b9WhIKm3UBnusS9knzZT6x8rJopTM25RpSXFqaKryLvgdL_p0_wZrZimx9-Nhjlq2DlqT1TnaZs86uMgP2_l9zh6F5gV7ksI24fol-3MIgHaDZrG55CmZ9mqCdon_mv7t6nJd89_T5YQPQjOfkl-AD6Yx3pCPjFMdtBkfLGjB48cUReRmd2mZr9j50dezL8OsK5aQgcT3yupgTN9HEGURcNxRLV2VxxxA1giiXPQOjX8RED1UDkGC0V4aoXzpRN33wku1wzabeRN2GVdS-crVPq-JCUYUTgtfAehYKCnKMvbYx7uxstAxiVNBi5lNf7SlsfdHtsfer6SvWgaNf8h9pmFfyRDvdWqYLy5tp0ZW6wKiAgmqiniuTFQBQQfoOgoBBru2R5NmET4QBy5QsBAsraSE2j4-4kOay__2w46-_UTY8_oBsm_Z1vDs9MSeHI-_77GnJNFGvOyzzeXiJhwgbln6N-nbvAVN_eDf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELY2pk17mTa2CQbb_MAeJhQR_0gaPwJdVwpDaAwBT5Z9saFSl1al_P_cOaGCBybtKVF0SZxzzvf5fPeZsa0aMXIIEWcnjkpyovaZx0sZeJGbSoAMiUrp13E5PNOji-KiC7hRLUzLD7EMuJFlpPGaDHxWx45sgDgycdauR0OyaKOesxdpvY-YnfXJMsailMzbimlJaWroqfIu9x1v2nn4gEdeKZH342GKRvYYsyanM3jL3nRoke-23fuOPQvNKnuZsjbh5j273AVAt0Gd2FzxVEs7u0a3xE_Hf7ttuW74-XhxzfuhmY4pLMD74xhvKUTGaRu0Ce_PabzjB5RE5Cb3VZkf2Nngx5_9YdbtlZCBxO_K6mBMz0cQZRFQ7WiVrspjDiBrxFAueoe-vwgIHiqHGMFoL41QvnSi7nnhpfrIVpppE9YYV1L5ytU-r4kIRhROC18B6FgoKcoyrrPte11Z6IjEaT-LiU0L2tLYh5pdZ9-W0rOWQOMJuT1S-1KGaK_Then8ynZWZLUuICqQoKqI58pEFRBzgK6jEGCwaRvUaRbRA1HgAuUKwcJKqqft4Su-p778Zzvs6OdvRD2f_kP2K3t10h_Yo4Pjww32mgTafJdNtrKY34bPiFoW_kv6Ne8AEMHgEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Multiphase+Simulations+With+Denoising+Diffusion+Model+Driven+Initializations&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Chung%2C+Jaehong&rft.au=Marcato%2C+Agnese&rft.au=Guiltinan%2C+Eric+J.&rft.au=Mukerji%2C+Tapan&rft.date=2024-12-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1029%2F2024JH000293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |