Accelerating Multiphase Simulations With Denoising Diffusion Model Driven Initializations

This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our underst...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 4
Main Authors Chung, Jaehong, Marcato, Agnese, Guiltinan, Eric J., Mukerji, Tapan, Viswanathan, Hari, Lin, Yen Ting, Santos, Javier E.
Format Journal Article
LanguageEnglish
Published United States American Geophysical Union (AGU) 01.12.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and CO2 ${\text{CO}}_{2}$ storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations. Plain Language Summary Pore‐scale simulations enhance our understanding of how fluid moves in the subsurface, they have recently been used for evaluating hydrogen storage and carbon dioxide sequestration projects in underground reservoirs. However, these simulations are often limited by their high demand for computational resources, posing a challenge to efficient execution. To address this, we propose a method that integrates artificial intelligence (AI) with physics‐based simulators. After training our AI model with synthetic data, we tested our approach using a real reservoir sample obtained through X‐ray imaging. This allowed us to showcase the computational efficiency of our method. Key Points We introduce a method that integrates generative AI with multiphase simulations improving efficiency while maintaining physical accuracy We propose simulation metrics to evaluate model performance, ensuring alignment with the targeted physical phenomena We demonstrate a significant speed‐up over traditional initialization methods in synthetic and real (x‐ray) fracture data sets
AbstractList This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations. Pore‐scale simulations enhance our understanding of how fluid moves in the subsurface, they have recently been used for evaluating hydrogen storage and carbon dioxide sequestration projects in underground reservoirs. However, these simulations are often limited by their high demand for computational resources, posing a challenge to efficient execution. To address this, we propose a method that integrates artificial intelligence (AI) with physics‐based simulators. After training our AI model with synthetic data, we tested our approach using a real reservoir sample obtained through X‐ray imaging. This allowed us to showcase the computational efficiency of our method. We introduce a method that integrates generative AI with multiphase simulations improving efficiency while maintaining physical accuracy We propose simulation metrics to evaluate model performance, ensuring alignment with the targeted physical phenomena We demonstrate a significant speed‐up over traditional initialization methods in synthetic and real (x‐ray) fracture data sets
Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations.
This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and CO2 ${\text{CO}}_{2}$ storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations. Plain Language Summary Pore‐scale simulations enhance our understanding of how fluid moves in the subsurface, they have recently been used for evaluating hydrogen storage and carbon dioxide sequestration projects in underground reservoirs. However, these simulations are often limited by their high demand for computational resources, posing a challenge to efficient execution. To address this, we propose a method that integrates artificial intelligence (AI) with physics‐based simulators. After training our AI model with synthetic data, we tested our approach using a real reservoir sample obtained through X‐ray imaging. This allowed us to showcase the computational efficiency of our method. Key Points We introduce a method that integrates generative AI with multiphase simulations improving efficiency while maintaining physical accuracy We propose simulation metrics to evaluate model performance, ensuring alignment with the targeted physical phenomena We demonstrate a significant speed‐up over traditional initialization methods in synthetic and real (x‐ray) fracture data sets
Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the computational costs of flow simulations while still honoring all the physical properties of interest. Pore‐scale simulations enhance our understanding of applications such as assessing hydrogen and CO2 storage efficiency in underground reservoirs. Nevertheless, they are computationally expensive and the presence of non‐unique solutions can require multiple simulations within a single geometry. To overcome the computational cost hurdle, we propose a method that couples generative diffusion models and physics‐based simulations. While training the data‐driven model, we simultaneously generate initial conditions and perform physics‐based simulations using these. This integrated approach enables us to receive real‐time feedback on a single compute node equipped with both CPUs and GPUs. By efficiently managing these processes within a single compute node, we can continuously monitor performance and halt training once the model meets the specified criteria. To test our model, we generate realizations in a real Berea sandstone fracture which shows that our technique is up to 4.4 times faster than commonly used flow simulation initializations.
Author Lin, Yen Ting
Santos, Javier E.
Chung, Jaehong
Viswanathan, Hari
Guiltinan, Eric J.
Marcato, Agnese
Mukerji, Tapan
Author_xml – sequence: 1
  givenname: Jaehong
  surname: Chung
  fullname: Chung, Jaehong
  email: jhchung1@stanford.edu
  organization: Computational Earth Science Group (EES‐16)
– sequence: 2
  givenname: Agnese
  orcidid: 0000-0002-9934-9004
  surname: Marcato
  fullname: Marcato, Agnese
  organization: Computational Earth Science Group (EES‐16)
– sequence: 3
  givenname: Eric J.
  orcidid: 0000-0002-0763-0625
  surname: Guiltinan
  fullname: Guiltinan, Eric J.
  organization: Computational Earth Science Group (EES‐16)
– sequence: 4
  givenname: Tapan
  orcidid: 0000-0003-1711-1850
  surname: Mukerji
  fullname: Mukerji, Tapan
  organization: Stanford University
– sequence: 5
  givenname: Hari
  orcidid: 0000-0002-1178-9647
  surname: Viswanathan
  fullname: Viswanathan, Hari
  organization: Computational Earth Science Group (EES‐16)
– sequence: 6
  givenname: Yen Ting
  surname: Lin
  fullname: Lin, Yen Ting
  organization: Information Science Group (CCS‐3)
– sequence: 7
  givenname: Javier E.
  orcidid: 0000-0002-2404-3975
  surname: Santos
  fullname: Santos, Javier E.
  organization: Computational Earth Science Group (EES‐16)
BackLink https://www.osti.gov/biblio/2478173$$D View this record in Osti.gov
BookMark eNp9kV1LHDEUhoNYUFfv-gOGXrttPmZ2kktx_VhRhGopvQqZM4l7JCaSZC321zc6pUihXuXNyfO-55CzR7ZDDJaQj4x-ZpSrL5zy9uKc0qrFFtnlSol5xxndfqN3yEHO95URglNJ-13y4wjAeptMwXDXXG18wce1yba5wYeNr9UYcvMdy7pZ2hAxv1BLdG6T60tzFUfrm2XCJxuaVcCCxuOvybVPPjjjsz34c87It9OT2-Pz-eX12er46HIOvI40H61S_eCALTrLzEJKaiR1FICPqmPGDYZK1tmua6XpqFLtwBUTw8KwsR_YwMWMrKbcMZp7_ZjwwaRnHQ3q10JMd9qkguCtbtsOnAAOQrqqhXLCciGhHR1jUG8z8mnKirmgzoDFwhpiCBaK5m0vWS8qdDhBkGLOybq_TRnVL6vQb1dRcf4PXmNfv6gkg_5_JjqZfqK3z-820BdnX5lk4jdrBZsN
CitedBy_id crossref_primary_10_1029_2024JH000293
Cites_doi 10.1016/j.epsl.2005.11.041
10.1029/97jb02836
10.1016/j.jcis.2006.10.082
10.1016/j.cageo.2024.105665
10.1109/CVPR.2018.00577
10.1016/j.camwa.2020.03.022
10.1039/c2ee03227a
10.1021/acs.jpcc.0c07427
10.1109/CVPR.2017.728
10.1063/5.0160984
10.1021/acs.est.6b01744
10.1016/j.softx.2022.101097
10.1016/j.fuel.2021.122693
10.2118/1275‐g
10.1029/94jb03262
10.1016/s1359‐0294(01)00084‐x
10.1017/9781316145098
10.1029/2024JH000293
10.15530/urtec-2020-3048
10.3390/en15238871
10.1007/bf01341754
10.1088/2632‐2153/ad45af
10.1103/physreve.47.1815
10.1103/physrev.94.511
10.1002/wrcr.20334
10.5281/zenodo.14047107
10.1029/2021rg000744
10.2118/210456-MS
10.1007/978-3-319-24574-4_28
10.1007/s11242‐021‐01590‐6
10.2138/rmg.2013.77.13
10.1016/j.jcp.2022.111277
10.1029/rg027i003p00311
10.1109/tpami.2022.3204461
10.1103/physreve.76.066701
10.1016/j.ijggc.2013.06.017
10.1063/5.0133054
10.1038/s43017‐022‐00376‐8
10.1029/2023gl104958
10.1029/2020wr027943
10.1016/j.ces.2021.117315
10.17612/P7J012
10.1016/j.advwatres.2012.03.003
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
OTOTI
DOA
DOI 10.1029/2024JH000293
DatabaseName Wiley Online Library Open Access
CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: WRHA-DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_445cf3c2c38f44539f3e238c4df11c9f
2478173
10_1029_2024JH000293
JGR181
Genre researchArticle
GrantInformation_xml – fundername: Los Alamos National Laboratory
– fundername: Diffusion Modeling with Physical Constraints for Scientific Data
  funderid: 20240074ER
– fundername: Laboratory Directed Research and Development (LDRD)
– fundername: Applied Machine Learning Summer School
– fundername: Center for Non‐Linear Studies
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
GROUPED_DOAJ
M~E
WIN
OTOTI
ID FETCH-LOGICAL-c2521-de997bfc165e1a6880a80f0cc2d951afba0815e5548a50994b2913b6a1d7b1b23
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:27:36 EDT 2025
Mon Apr 21 02:20:37 EDT 2025
Wed Aug 20 07:45:19 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Wed Jan 22 17:11:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2521-de997bfc165e1a6880a80f0cc2d951afba0815e5548a50994b2913b6a1d7b1b23
Notes USDOE
ORCID 0000-0002-0763-0625
0000-0002-2404-3975
0000-0002-9934-9004
0000-0003-1711-1850
0000-0002-1178-9647
0000000317111850
0000000211789647
0000000299349004
0000000207630625
0000000224043975
OpenAccessLink https://doaj.org/article/445cf3c2c38f44539f3e238c4df11c9f
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_445cf3c2c38f44539f3e238c4df11c9f
osti_scitechconnect_2478173
crossref_primary_10_1029_2024JH000293
crossref_citationtrail_10_1029_2024JH000293
wiley_primary_10_1029_2024JH000293_JGR181
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher American Geophysical Union (AGU)
Wiley
Publisher_xml – name: American Geophysical Union (AGU)
– name: Wiley
References 1993; 47
2023; 35
2013; 49
2015; 18
2023; 4
2022; 45
2008; 9
2016; 50
2020; 33
2020; 124
2024
2007; 76
1989; 27
2007; 307
2021; 57
2013; 18
1954; 94
2022b; 313
2013; 77
2023
2001; 6
2022
2024; 5
2022; 60
2021
2020
2013; 51
2021; 138
2022; 34
2018
2017
2006; 241
2022; 15
1992; 68
2016
1998; 103
2015
1995; 100
2022; 249
2012; 5
2024; 191
1959; 11
2023; 50
2022a; 463
2021; 81
2022; 18
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Santos J. (e_1_2_8_33_1) 2023
Ho J. (e_1_2_8_20_1) 2020; 33
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Nichol A. Q. (e_1_2_8_28_1) 2021
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Van der Maaten L. (e_1_2_8_42_1) 2008; 9
e_1_2_8_15_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
Goodfellow I. (e_1_2_8_16_1) 2016
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
Sohl‐Dickstein J. (e_1_2_8_38_1) 2015
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_50_1
References_xml – year: 2016
  article-title: Induced rough fracture in Berea sandstone core
  publication-title: Digital Rocks Portal
– year: 2024
– volume: 249
  year: 2022
  article-title: Use of CFD for pressure drop, liquid saturation and wetting predictions in trickle bed reactors for different catalyst particle shapes
  publication-title: Chemical Engineering Science
– volume: 68
  start-page: 379
  issue: 3–4
  year: 1992
  end-page: 400
  article-title: Lattice Boltzmann computational fluid dynamics in three dimensions
  publication-title: Journal of Statistical Physics
– volume: 35
  issue: 8
  year: 2023
  article-title: Fast prediction method of displacement front in heterogeneous porous media using deep learning and orthogonal design
  publication-title: Physics of Fluids
– volume: 77
  start-page: 459
  issue: 1
  year: 2013
  end-page: 479
  article-title: Caprock fracture dissolution and CO leakage
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 100
  start-page: 5941
  issue: B4
  year: 1995
  end-page: 5952
  article-title: Simple mathematical model of a rough fracture
  publication-title: Journal of Geophysical Research
– volume: 5
  issue: 2
  year: 2024
  article-title: Learning a general model of Single phase flow in complex 3d porous media
  publication-title: Machine Learning: Science and Technology
– volume: 11
  start-page: 71
  issue: 10
  year: 1959
  end-page: 76
  article-title: Effect of fractional wettability on multiphase flow through porous media
  publication-title: Journal of Petroleum Technology
– start-page: 8162
  year: 2021
  end-page: 8171
– year: 2022
– volume: 6
  start-page: 197
  issue: 3
  year: 2001
  end-page: 207
  article-title: Flow in porous media—Pore‐network models and multiphase flow
  publication-title: Current Opinion in Colloid & Interface Science
– volume: 18
  start-page: 128
  year: 2013
  end-page: 138
  article-title: Evaluation of potential fracture‐sealing materials for remediating CO leakage pathways during CO sequestration
  publication-title: International Journal of Greenhouse Gas Control
– volume: 81
  start-page: 334
  year: 2021
  end-page: 350
  article-title: Palabos: Parallel Lattice Boltzmann Solver
  publication-title: Computers & Mathematics with Applications
– volume: 463
  year: 2022a
  article-title: A gradient‐based deep neural network model for simulating multiphase flow in porous media
  publication-title: Journal of Computational Physics
– volume: 5
  start-page: 7328
  issue: 6
  year: 2012
  end-page: 7345
  article-title: The cross‐scale science of CO capture and storage: From pore scale to regional scale
  publication-title: Energy & Environmental Science
– year: 2024
  article-title: Code for fracture generation and multiphase flow simulation used for training Denoising diffusion model‐driven initializations
  publication-title: Zenodo
– volume: 18
  start-page: 234
  year: 2015
  end-page: 241
– volume: 94
  start-page: 511
  issue: 3
  year: 1954
  end-page: 525
  article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one‐component systems
  publication-title: Physical Review
– volume: 103
  start-page: 9609
  issue: B5
  year: 1998
  end-page: 9620
  article-title: Synthetic rough fractures in rocks
  publication-title: Journal of Geophysical Research
– volume: 76
  issue: 6
  year: 2007
  article-title: Proposed approximation for contact angles in Shan‐and‐Chen‐type multicomponent multiphase lattice Boltzmann models
  publication-title: Physical Review E
– volume: 49
  start-page: 4645
  issue: 8
  year: 2013
  end-page: 4661
  article-title: A level set method for simulating capillary‐controlled displacements at the pore scale with nonzero contact angles
  publication-title: Water Resources Research
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– volume: 50
  start-page: 7546
  issue: 14
  year: 2016
  end-page: 7554
  article-title: CO accounting and risk analysis for CO sequestration at enhanced oil recovery sites
  publication-title: Environmental science & technology
– volume: 57
  issue: 1
  year: 2021
  article-title: Two‐phase fluid flow properties of rough fractures with heterogeneous wettability: Analysis with lattice Boltzmann simulations
  publication-title: Water Resources Research
– start-page: 5505
  year: 2018
  end-page: 5514
– volume: 50
  issue: 21
  year: 2023
  article-title: Characterizing the impacts of multi‐scale heterogeneity on solute transport in fracture networks
  publication-title: Geophysical Research Letters
– volume: 60
  issue: 1
  year: 2022
  article-title: From fluid flow to coupled processes in fractured rock: Recent advances and new frontiers
  publication-title: Reviews of Geophysics
– volume: 34
  issue: 12
  year: 2022
  article-title: Pore‐scale Modeling of multiphase flow in porous media using a Conditional Generative Adversarial Network (CGAN)
  publication-title: Physics of Fluids
– volume: 15
  issue: 23
  year: 2022
  article-title: Using machine learning to predict multiphase flow through complex fractures
  publication-title: Energies
– volume: 4
  start-page: 102
  issue: 2
  year: 2023
  end-page: 118
  article-title: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future
  publication-title: Nature Reviews Earth & Environment
– year: 2016
– volume: 27
  start-page: 311
  issue: 3
  year: 1989
  end-page: 328
  article-title: Multiphase flow and transport in porous media
  publication-title: Reviews of Geophysics
– volume: 9
  issue: 11
  year: 2008
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– volume: 51
  start-page: 197
  year: 2013
  end-page: 216
  article-title: Pore‐scale imaging and modelling
  publication-title: Advances in Water Resources
– volume: 307
  start-page: 181
  issue: 1
  year: 2007
  end-page: 187
  article-title: Visualization of fluid occupancy in a rough fracture using micro‐tomography
  publication-title: Journal of Colloid and Interface Science
– volume: 191
  year: 2024
  article-title: Pysimfrac: A python library for synthetic fracture generation and analysis
  publication-title: Computers & Geosciences
– volume: 124
  start-page: 22200
  issue: 40
  year: 2020
  end-page: 22211
  article-title: Modeling nanoconfinement effects using active learning
  publication-title: Journal of Physical Chemistry C
– start-page: 3147
  year: 2020
  end-page: 3152
– volume: 138
  start-page: 49
  issue: 1
  year: 2021
  end-page: 75
  article-title: Ml‐LBM: Predicting and accelerating steady state flow simulation in porous media with convolutional neural networks
  publication-title: Transport in Porous Media
– start-page: 5485
  year: 2017
  end-page: 5493
– volume: 18
  year: 2022
  article-title: MPLBM‐UT: Multiphase LBM library for permeable media analysis
  publication-title: SoftwareX
– start-page: 2256
  year: 2015
  end-page: 2265
– year: 2023
– volume: 45
  start-page: 4713
  issue: 4
  year: 2022
  end-page: 4726
  article-title: Image super‐resolution via iterative refinement
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 241
  start-page: 454
  issue: 3–4
  year: 2006
  end-page: 465
  article-title: Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures
  publication-title: Earth and Planetary Science Letters
– volume: 47
  start-page: 1815
  issue: 3
  year: 1993
  end-page: 1819
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Physical Review
– year: 2017
– volume: 313
  year: 2022b
  article-title: A physics‐constrained deep learning model for simulating multiphase flow in 3d heterogeneous porous media
  publication-title: Fuel
– ident: e_1_2_8_29_1
  doi: 10.1016/j.epsl.2005.11.041
– ident: e_1_2_8_15_1
  doi: 10.1029/97jb02836
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jcis.2006.10.082
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cageo.2024.105665
– ident: e_1_2_8_49_1
  doi: 10.1109/CVPR.2018.00577
– ident: e_1_2_8_26_1
  doi: 10.1016/j.camwa.2020.03.022
– ident: e_1_2_8_27_1
  doi: 10.1039/c2ee03227a
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.jpcc.0c07427
– volume: 9
  issue: 11
  year: 2008
  ident: e_1_2_8_42_1
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_48_1
  doi: 10.1109/CVPR.2017.728
– volume-title: Neurips 2023 workshop on diffusion Models
  year: 2023
  ident: e_1_2_8_33_1
– ident: e_1_2_8_50_1
  doi: 10.1063/5.0160984
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.est.6b01744
– ident: e_1_2_8_34_1
  doi: 10.1016/j.softx.2022.101097
– ident: e_1_2_8_47_1
  doi: 10.1016/j.fuel.2021.122693
– ident: e_1_2_8_13_1
  doi: 10.2118/1275‐g
– ident: e_1_2_8_7_1
  doi: 10.1029/94jb03262
– ident: e_1_2_8_3_1
  doi: 10.1016/s1359‐0294(01)00084‐x
– ident: e_1_2_8_4_1
  doi: 10.1017/9781316145098
– ident: e_1_2_8_10_1
  doi: 10.1029/2024JH000293
– ident: e_1_2_8_17_1
  doi: 10.15530/urtec-2020-3048
– ident: e_1_2_8_40_1
  doi: 10.3390/en15238871
– ident: e_1_2_8_9_1
  doi: 10.1007/bf01341754
– ident: e_1_2_8_35_1
  doi: 10.1088/2632‐2153/ad45af
– ident: e_1_2_8_37_1
  doi: 10.1103/physreve.47.1815
– ident: e_1_2_8_2_1
  doi: 10.1103/physrev.94.511
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_16_1
– ident: e_1_2_8_22_1
  doi: 10.1002/wrcr.20334
– start-page: 8162
  volume-title: International conference on machine learning
  year: 2021
  ident: e_1_2_8_28_1
– ident: e_1_2_8_11_1
  doi: 10.5281/zenodo.14047107
– ident: e_1_2_8_43_1
  doi: 10.1029/2021rg000744
– ident: e_1_2_8_8_1
  doi: 10.2118/210456-MS
– ident: e_1_2_8_31_1
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 2256
  volume-title: International conference on machine learning
  year: 2015
  ident: e_1_2_8_38_1
– ident: e_1_2_8_44_1
  doi: 10.1007/s11242‐021‐01590‐6
– ident: e_1_2_8_14_1
  doi: 10.2138/rmg.2013.77.13
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jcp.2022.111277
– ident: e_1_2_8_30_1
  doi: 10.1029/rg027i003p00311
– ident: e_1_2_8_32_1
  doi: 10.1109/tpami.2022.3204461
– ident: e_1_2_8_21_1
  doi: 10.1103/physreve.76.066701
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ijggc.2013.06.017
– ident: e_1_2_8_45_1
  doi: 10.1063/5.0133054
– ident: e_1_2_8_25_1
  doi: 10.1038/s43017‐022‐00376‐8
– volume: 33
  start-page: 6840
  year: 2020
  ident: e_1_2_8_20_1
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_39_1
  doi: 10.1029/2023gl104958
– ident: e_1_2_8_19_1
  doi: 10.1029/2020wr027943
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ces.2021.117315
– ident: e_1_2_8_24_1
  doi: 10.17612/P7J012
– ident: e_1_2_8_5_1
  doi: 10.1016/j.advwatres.2012.03.003
SSID ssj0003320807
Score 2.2757826
Snippet This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at reducing the...
Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at...
Abstract This study introduces a hybrid fluid simulation approach that integrates generative diffusion models with physics‐based simulations, aiming at...
SourceID doaj
osti
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms diffusion models
generative modeling
lattice‐Boltzmann
physics
pore‐scale
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA-nh-CL6J3iN3k4H46j2Hy02zyqq64LiuiJ-lSSaaILa1d21__fmbQu-qDgU0tI2zTTyfwynfkNY38qxMjeB9ydWErJCdolDpsScCI1hQDpI5XS-UXeu9H9u-yudbhRLkzDDzFzuJFmxPWaFNy6SUs2QByZuGvX_R5ptFFz7Cdl1xJ3vtSXMx-LUjJtMqYlhamhpUrb2He8aP_9DT5YpUjej4cRKtlHzBqNzskyW2rRIj9oxLvCfvj6F1uIUZsw-c3uDwDQbJAQ6wcec2mfH9Es8evBU1uWa8JvB9NH3vX1aEBuAd4dhPBCLjJOZdCGvDum9Y6fURCRHb5lZa6ym5Pj_0e9pK2VkIDE90oqb0zHBRB55nHaUSttkYYUQFaIoWxwFm1_5hE8FBYxgtFOGqFcbkXVccJJtcbm61Ht1xlXUrnCVi6tiAhGZFYLVwDokCkp8jxssH9vc1VCSyRO9SyGZfyhLU35fmY32N6s93NDoPFJv0Oa9lkfor2ODaPxQ9lqUal1BkGBBFUEPFcmKI-YA3QVhACDQ9sioZWIHogCFyhWCKalpHzaDj7ib5Tll-Mo-6dXiHo2v9F3iy1SaxPkss3mp-MXv4NQZep24_f4Ckcl3XM
  priority: 102
  providerName: Wiley-Blackwell
Title Accelerating Multiphase Simulations With Denoising Diffusion Model Driven Initializations
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000293
https://www.osti.gov/biblio/2478173
https://doaj.org/article/445cf3c2c38f44539f3e238c4df11c9f
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZgJaReEI9W3fKQD-0BoajxI9n4CCywXWkRoiDoKbInNqy0zaLd5cpvZ8YJaDm0vfSSRJaVWDOJv8_OzDeMfa2QI3sfcHViKSUnaJc4bErAidQUAqSPUkqji3xwo4d32d1SqS-KCWvkgRvDfdc6g6BAgioCXisTlEeYAV0FIcAEmn0R85YWUzQHKyWRCvXaSPdUGlrk6-GAJgCj3mFQlOrH0xQ_qfcMNULM2QZbb7khP2rGtMlWfL3F1mKMJsy32a8jAAQJcll9z2Pm7OMDghD_Of7dFuGa89vx4oH3fT0d0yYA749DeKINMU5Fzya8P6PZjf-gkCE7ec3B_Mhuzk6vTwZJWxkhAYl4m1TemJ4LIPLMo5HxG7RFGlIAWSFjssFZRPrMI1UoLDICo500QrnciqrnhJPqE-vU09p_ZlxJ5QpbubQi2ReRWS1cAaBDpqTI89Blh6-2KqGVDafqFZMy_r6Wply2bJd9e-v92Mhl_KHfMZn9rQ-JXMcGdH3Zur78l-u7bIecViJXIMFboMggWJSSsmd7-IiD6Mu_jqMcnl8hx_nyP4azwz7QrZtYl13WWcye_B4yloXbZ6tSX-7HVxSPo-fTF0Hx5o0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYEBovaHxMK9vAD_CAUET8kTR-HJTRla1CsInxZNkXe61U0qnr_v_dOVm1PoC0p0TWJXHsnO_ny93vGHtXI0YOIeLuxFFKTtQ-89iUgRe5qQTIkKiUTsfl8FyPLoqLrs4p5cK0_BArhxtpRlqvScHJId2xDRBJJm7b9WhIKm3UBnusS9knzZT6x8rJopTM25RpSXFqaKryLvgdL_p0_wZrZimx9-Nhjlq2DlqT1TnaZs86uMgP2_l9zh6F5gV7ksI24fol-3MIgHaDZrG55CmZ9mqCdon_mv7t6nJd89_T5YQPQjOfkl-AD6Yx3pCPjFMdtBkfLGjB48cUReRmd2mZr9j50dezL8OsK5aQgcT3yupgTN9HEGURcNxRLV2VxxxA1giiXPQOjX8RED1UDkGC0V4aoXzpRN33wku1wzabeRN2GVdS-crVPq-JCUYUTgtfAehYKCnKMvbYx7uxstAxiVNBi5lNf7SlsfdHtsfer6SvWgaNf8h9pmFfyRDvdWqYLy5tp0ZW6wKiAgmqiniuTFQBQQfoOgoBBru2R5NmET4QBy5QsBAsraSE2j4-4kOay__2w46-_UTY8_oBsm_Z1vDs9MSeHI-_77GnJNFGvOyzzeXiJhwgbln6N-nbvAVN_eDf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELY2pk17mTa2CQbb_MAeJhQR_0gaPwJdVwpDaAwBT5Z9saFSl1al_P_cOaGCBybtKVF0SZxzzvf5fPeZsa0aMXIIEWcnjkpyovaZx0sZeJGbSoAMiUrp13E5PNOji-KiC7hRLUzLD7EMuJFlpPGaDHxWx45sgDgycdauR0OyaKOesxdpvY-YnfXJMsailMzbimlJaWroqfIu9x1v2nn4gEdeKZH342GKRvYYsyanM3jL3nRoke-23fuOPQvNKnuZsjbh5j273AVAt0Gd2FzxVEs7u0a3xE_Hf7ttuW74-XhxzfuhmY4pLMD74xhvKUTGaRu0Ce_PabzjB5RE5Cb3VZkf2Nngx5_9YdbtlZCBxO_K6mBMz0cQZRFQ7WiVrspjDiBrxFAueoe-vwgIHiqHGMFoL41QvnSi7nnhpfrIVpppE9YYV1L5ytU-r4kIRhROC18B6FgoKcoyrrPte11Z6IjEaT-LiU0L2tLYh5pdZ9-W0rOWQOMJuT1S-1KGaK_Then8ynZWZLUuICqQoKqI58pEFRBzgK6jEGCwaRvUaRbRA1HgAuUKwcJKqqft4Su-p778Zzvs6OdvRD2f_kP2K3t10h_Yo4Pjww32mgTafJdNtrKY34bPiFoW_kv6Ne8AEMHgEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Multiphase+Simulations+With+Denoising+Diffusion+Model+Driven+Initializations&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Chung%2C+Jaehong&rft.au=Marcato%2C+Agnese&rft.au=Guiltinan%2C+Eric+J.&rft.au=Mukerji%2C+Tapan&rft.date=2024-12-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1029%2F2024JH000293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon