Exploit the visual sentiment of the item images to fuse with textual sentiment in context aware collaborative filtering
Recommendation systems (RS) are widely used to predict users’ preferences for items in many research areas. Context-aware recommendation systems (CARS) exploit different contextual circumstances to predict changes in user preferences and improve RS performance. However, conventional CARS focuses on...
Saved in:
Published in | Expert systems with applications Vol. 265; p. 125970 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recommendation systems (RS) are widely used to predict users’ preferences for items in many research areas. Context-aware recommendation systems (CARS) exploit different contextual circumstances to predict changes in user preferences and improve RS performance. However, conventional CARS focuses on user context and neglects item context despite item images’ rich textual and visual sentiment information. We bridge the gap between sentiment analysis and conventional CARS by using sentiment as item context and applying Factorization Machines to fuse different modal information. Our ablation study shows the essential role of visual sentiment in CARS, particularly in scenarios with numerous item images, such as movie recommendations. With carefully selected baselines and datasets, our proposed IC-CARS demonstrates superior performance across selected metrics, particularly in movie recommendation scenarios.
[Display omitted]
•Integrated sentiment analysis with collaborative filtering CARS.•Treated textual and visual sentiment as context.•Proposed multi-modal sentiment fusion technique.•Developed sentiment-aware recommendation system model. |
---|---|
AbstractList | Recommendation systems (RS) are widely used to predict users’ preferences for items in many research areas. Context-aware recommendation systems (CARS) exploit different contextual circumstances to predict changes in user preferences and improve RS performance. However, conventional CARS focuses on user context and neglects item context despite item images’ rich textual and visual sentiment information. We bridge the gap between sentiment analysis and conventional CARS by using sentiment as item context and applying Factorization Machines to fuse different modal information. Our ablation study shows the essential role of visual sentiment in CARS, particularly in scenarios with numerous item images, such as movie recommendations. With carefully selected baselines and datasets, our proposed IC-CARS demonstrates superior performance across selected metrics, particularly in movie recommendation scenarios.
[Display omitted]
•Integrated sentiment analysis with collaborative filtering CARS.•Treated textual and visual sentiment as context.•Proposed multi-modal sentiment fusion technique.•Developed sentiment-aware recommendation system model. |
ArticleNumber | 125970 |
Author | Wu, Liang-Hong |
Author_xml | – sequence: 1 givenname: Liang-Hong orcidid: 0000-0002-6665-1709 surname: Wu fullname: Wu, Liang-Hong email: lhwu@fcu.edu.tw organization: Department of Statistics, Feng Chia University, 100, Wenhua Rd., Taichung City, 407, Taiwan, ROC |
BookMark | eNp9kMtOwzAQRb0oEm3hB1j5BxJs5-FGYoOq8pCQ2MDamtjj1lUaV7bblL8npWzYsJnRXOmMZs6MTHrfIyF3nOWc8fp-m2McIBdMlDkXVSPZhExZU8ms5LK8JrMYt4xxyZickmF12nfeJZo2SI8uHqCjEfvkdmOh3v7kLuGOuh2sMdLkqT1EpINLG5rwlP4Srqfa9-ecwgABx6nroPUBkjsita5LGFy_viFXFrqIt799Tj6fVh_Ll-zt_fl1-fiWaVHxlNnWFFUhWkCBZSvqmhV1yw0IaQvQDDmCqU2DuGgqxqBeAFpTCWlqqXkBZTEn4rJXBx9jQKv2YfwkfCnO1FmX2qqzLnXWpS66RujhAuF42dFhUFE77DUaF1AnZbz7D_8Gd5x7Zw |
Cites_doi | 10.1007/s11042-016-4310-5 10.1007/s00521-020-05676-y 10.1016/j.inffus.2018.06.004 10.1609/aaai.v31i1.10485 10.1145/1864708.1864727 10.1145/2502081.2502282 10.1049/iet-ipr.2019.1270 10.1145/1873951.1873965 10.1109/ICCVW.2017.45 10.1016/j.compeleceng.2021.107020 10.1016/j.neucom.2018.05.104 10.1109/TKDE.2005.99 10.1016/j.cosrev.2020.100255 10.1609/aaai.v28i1.8740 10.1007/BF02289464 10.1007/s11063-019-10027-7 10.1145/223904.223929 10.1109/TAFFC.2019.2926724 10.1145/2009916.2010002 10.1145/1363686.1364052 10.1016/j.ipm.2022.103166 10.5829/IJE.2023.36.01A.15 10.1016/j.comcom.2021.10.022 10.1109/TIP.2021.3106813 10.1007/s13042-017-0734-0 10.1016/j.eswa.2022.118535 10.1016/j.eswa.2023.121930 10.1007/s40547-017-0084-9 10.1016/j.aei.2021.101419 10.1016/j.chb.2022.107438 10.1016/j.jbi.2020.103399 10.1016/j.dss.2022.113795 10.1080/08874417.2003.11647517 10.1145/1873951.1874060 10.1609/aaai.v29i1.9179 10.1016/j.knosys.2017.11.003 10.1109/TCSS.2020.2998092 10.1109/CVPR.2015.7298687 10.1016/j.artint.2021.103589 10.1016/j.simpat.2021.102375 10.1177/0265407521998460 10.1037/0022-3514.53.4.712 10.1145/192844.192905 10.1145/3298689.3347043 10.1109/TAFFC.2017.2740923 10.1016/j.knosys.2022.109934 10.1016/j.ijar.2022.08.015 10.1007/s00530-012-0265-1 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.125970 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2024_125970 S0957417424028379 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET WUQ XPP ZMT |
ID | FETCH-LOGICAL-c251t-fbd3532bae2e4b266036b1da27f3ac0e1ead6d9ee89500a68aefd527d67c13a43 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:59:55 EDT 2025 Sat Apr 05 15:39:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Factorization Machines Tensor decomposition Unsupervised deep learning Multi-modal sentiment fusion Context aware recommendation system (CARS) Visual sentiment analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-fbd3532bae2e4b266036b1da27f3ac0e1ead6d9ee89500a68aefd527d67c13a43 |
ORCID | 0000-0002-6665-1709 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_125970 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (pp. 83–92). (pp. 1556–1560). Singh, Dev, Singh, Kumar, Kolhe (b40) 2023 (pp. 194–201). Villegas (b50) 2013 Patra, Maroufy, Soltanalizadeh, Deng, Zheng, Roberts (b31) 2020; 104 Wu, Qi, Jian, Zhang (b54) 2020; 51 Yang, Li, Wang, Ding, Gao (b56) 2021; 30 Wu (b53) 2024; 238 (pp. 860–868). Liu, Chen, Ding, Yang, Zhang (b23) 2021; 90 Müller, Schischke, Graf, Antoni (b27) 2023; 138 Pereira, Moura, Costa, Vieira, Landim, Bazaki (b33) 2022; 158 Huet, Segonds, Pinquie, Veron, Guegan, Mallet (b15) 2021; 50 Corchs, Fersini, Gasparini (b8) 2019; 10 Adomavicius, Tuzhilin (b2) 2005; 17 Li, Fan, Liu, Wang (b20) 2018; 77 Tu, Liang, Jiang, Xu (b47) 2022 Kumar, Hariharasitaraman, Narayanasamy, Thinakaran, Mahalakshmi, Pandimurugan (b19) 2022; 51 Zhan, Xu (b61) 2023; 60 Chen, Wang, Ren, Wang, de Rijke (b7) 2022; 302 Sultana, Nahar, Tasnim, Hossain, Andersson (b44) 2023 Mohan, Seal, Krejcar, Yazidi (b25) 2021; 33 Zhu, Cao, Xu, Liu, Cao (b64) 2019 Rendle, S., Gantner, Z., Freudenthaler, C., & Schmidt-Thieme, L. (2011). Fast context-aware recommendations with factorization machines. In Santos, Santos, Vogado, Ito, Bianchi, Tavares (b38) 2022 Abowd, Dey, Brown, Davies, Smith, Steggles (b1) 1999 Peng, K.-C., Chen, T., Sadovnik, A., & Gallagher, A. C. (2015). A mixed bag of emotions: Model, predict, and transfer emotion distributions. In Strapparava, C., & Mihalcea, R. (2008). Learning to identify emotions in text. In Zhao, Wang, Liang, Chen (b63) 2023; 211 Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010). Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open architecture for collaborative filtering of netnews. In Ottaway, Bruneau, Evans (b30) 2003; 43 . Thanh Hung (b45) 2023 Spoorthy, Sanjeevi (b42) 2023; 36 Siersdorfer, S., Minack, E., Deng, F., & Hare, J. (2010). Analyzing and predicting sentiment of images on the social web. In (pp. 169–177). Song, Yao, Ling, Mei (b41) 2018; 312 Li, Wang, Tang, Zhao (b21) 2013; 19 Villegas, Sánchez, Díaz-Cely, Tamura (b51) 2018; 140 In Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. In Mollahosseini, Hasani, Mahoor (b26) 2017; 10 Wang, Wang, Su (b52) 2022; 181 Yang, She, Sun (b57) 2017 Ebrahimi (b10) 2012 (pp. 79–86). Yang, J., Sun, M., & Sun, X. (2017). Learning visual sentiment distributions via augmented conditional probability neural network. In Akhtar, Ghosal, Ekbal, Bhattacharyya, Kurohashi (b5) 2019; 13 Ortis, Farinella, Battiato (b28) 2020; 14 Yang, Y., Jia, J., Zhang, S., Wu, B., Chen, Q., Li, J., et al. (2014). How do your friends on social media disclose your emotions?. Do, Nguyen (b9) 2022; 257 Yera, Alzahrani, Martínez (b59) 2022; 150 You, Q., Luo, J., Jin, H., & Yang, J. (2015). Robust image sentiment analysis using progressively trained and domain transferred deep networks. In (pp. 635–644). (pp. 223–232). Ekman, Friesen, O’sullivan, Chan, Diacoyanni-Tarlatzis, Heider (b11) 1987; 53 Qian, Zhang, Ma, Yu, Peng (b34) 2019; 46 (pp. 715–718). Vadicamo, L., Carrara, F., Cimino, A., Cresci, S., Dell’Orletta, F., Falchi, F., et al. (2017). Cross-media learning for image sentiment analysis in the wild. In Adomavicius, Tuzhilin (b3) 2011 Huang, T., Zhang, Z., & Zhang, J. (2019). Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction. In Kulkarni, Rodd (b18) 2020; 37 Keltner, Lerner (b17) 2010 Machajdik, J., & Hanbury, A. (2010). Affective image classification using features inspired by psychology and art theory. In Thomadsen, Rooderkerk, Amir, Arora, Bollinger, Hansen (b46) 2018; 5 Borth, D., Ji, R., Chen, T., Breuel, T., & Chang, S.-F. (2013). Large-scale visual sentiment ontology and detectors using adjective noun pairs. In Ling, Chen, Sun, Jia (b22) 2020; 7 Zhang, Xue, Zhang, Zheng, Ouyang (b62) 2020; 44 Ortis, Farinella, Torrisi, Battiato (b29) 2018 Hipson, Kiritchenko, Mohammad, Coplan (b13) 2021; 38 Tucker (b48) 1966; 31 Ratchford, Soysal, Zentner (b35) 2022 (pp. 308–317). Afoudi, Lazaar, Al Achhab (b4) 2021; 113 (pp. 175–186). 10.1016/j.eswa.2024.125970_b24 Ebrahimi (10.1016/j.eswa.2024.125970_b10) 2012 Kulkarni (10.1016/j.eswa.2024.125970_b18) 2020; 37 Spoorthy (10.1016/j.eswa.2024.125970_b42) 2023; 36 10.1016/j.eswa.2024.125970_b60 Ling (10.1016/j.eswa.2024.125970_b22) 2020; 7 Tucker (10.1016/j.eswa.2024.125970_b48) 1966; 31 Villegas (10.1016/j.eswa.2024.125970_b50) 2013 Müller (10.1016/j.eswa.2024.125970_b27) 2023; 138 Pereira (10.1016/j.eswa.2024.125970_b33) 2022; 158 Singh (10.1016/j.eswa.2024.125970_b40) 2023 Do (10.1016/j.eswa.2024.125970_b9) 2022; 257 Wu (10.1016/j.eswa.2024.125970_b53) 2024; 238 10.1016/j.eswa.2024.125970_b32 Corchs (10.1016/j.eswa.2024.125970_b8) 2019; 10 Santos (10.1016/j.eswa.2024.125970_b38) 2022 Thanh Hung (10.1016/j.eswa.2024.125970_b45) 2023 Hipson (10.1016/j.eswa.2024.125970_b13) 2021; 38 Liu (10.1016/j.eswa.2024.125970_b23) 2021; 90 10.1016/j.eswa.2024.125970_b37 10.1016/j.eswa.2024.125970_b36 10.1016/j.eswa.2024.125970_b39 Chen (10.1016/j.eswa.2024.125970_b7) 2022; 302 Wu (10.1016/j.eswa.2024.125970_b54) 2020; 51 Kumar (10.1016/j.eswa.2024.125970_b19) 2022; 51 Wang (10.1016/j.eswa.2024.125970_b52) 2022; 181 Abowd (10.1016/j.eswa.2024.125970_b1) 1999 Yang (10.1016/j.eswa.2024.125970_b57) 2017 Zhang (10.1016/j.eswa.2024.125970_b62) 2020; 44 10.1016/j.eswa.2024.125970_b43 Mohan (10.1016/j.eswa.2024.125970_b25) 2021; 33 Patra (10.1016/j.eswa.2024.125970_b31) 2020; 104 Li (10.1016/j.eswa.2024.125970_b20) 2018; 77 10.1016/j.eswa.2024.125970_b49 Adomavicius (10.1016/j.eswa.2024.125970_b3) 2011 10.1016/j.eswa.2024.125970_b6 Ratchford (10.1016/j.eswa.2024.125970_b35) 2022 Afoudi (10.1016/j.eswa.2024.125970_b4) 2021; 113 Adomavicius (10.1016/j.eswa.2024.125970_b2) 2005; 17 Li (10.1016/j.eswa.2024.125970_b21) 2013; 19 Ekman (10.1016/j.eswa.2024.125970_b11) 1987; 53 Zhu (10.1016/j.eswa.2024.125970_b64) 2019 Zhan (10.1016/j.eswa.2024.125970_b61) 2023; 60 Akhtar (10.1016/j.eswa.2024.125970_b5) 2019; 13 Mollahosseini (10.1016/j.eswa.2024.125970_b26) 2017; 10 10.1016/j.eswa.2024.125970_b55 Ottaway (10.1016/j.eswa.2024.125970_b30) 2003; 43 Yang (10.1016/j.eswa.2024.125970_b56) 2021; 30 10.1016/j.eswa.2024.125970_b12 10.1016/j.eswa.2024.125970_b14 10.1016/j.eswa.2024.125970_b58 Huet (10.1016/j.eswa.2024.125970_b15) 2021; 50 10.1016/j.eswa.2024.125970_b16 Ortis (10.1016/j.eswa.2024.125970_b29) 2018 Yera (10.1016/j.eswa.2024.125970_b59) 2022; 150 Zhao (10.1016/j.eswa.2024.125970_b63) 2023; 211 Keltner (10.1016/j.eswa.2024.125970_b17) 2010 Thomadsen (10.1016/j.eswa.2024.125970_b46) 2018; 5 Qian (10.1016/j.eswa.2024.125970_b34) 2019; 46 Villegas (10.1016/j.eswa.2024.125970_b51) 2018; 140 Tu (10.1016/j.eswa.2024.125970_b47) 2022 Sultana (10.1016/j.eswa.2024.125970_b44) 2023 Song (10.1016/j.eswa.2024.125970_b41) 2018; 312 Ortis (10.1016/j.eswa.2024.125970_b28) 2020; 14 |
References_xml | – start-page: 304 year: 1999 end-page: 307 ident: b1 article-title: Towards a better understanding of context and context-awareness publication-title: International symposium on handheld and ubiquitous computing – reference: (pp. 1556–1560). – volume: 238 year: 2024 ident: b53 article-title: Bayessentirs: Bayesian sentiment analysis for addressing cold start and sparsity in ranking-based recommender systems publication-title: Expert Systems with Applications – volume: 138 year: 2023 ident: b27 article-title: How can we avoid information overload and techno-frustration as a virtual team? the effect of shared mental models of information and communication technology on information overload and techno-frustration publication-title: Computers in Human Behavior – volume: 140 start-page: 173 year: 2018 end-page: 200 ident: b51 article-title: Characterizing context-aware recommender systems: A systematic literature review publication-title: Knowledge-Based Systems – reference: (pp. 223–232). – reference: Peng, K.-C., Chen, T., Sadovnik, A., & Gallagher, A. C. (2015). A mixed bag of emotions: Model, predict, and transfer emotion distributions. In – volume: 17 start-page: 734 year: 2005 end-page: 749 ident: b2 article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Yang, J., Sun, M., & Sun, X. (2017). Learning visual sentiment distributions via augmented conditional probability neural network. In – reference: (pp. 83–92). – volume: 37 year: 2020 ident: b18 article-title: Context aware recommendation systems: A review of the state of the art techniques publication-title: Computer Science Review – volume: 14 start-page: 1440 year: 2020 end-page: 1456 ident: b28 article-title: Survey on visual sentiment analysis publication-title: IET Image Processing – volume: 181 start-page: 320 year: 2022 end-page: 328 ident: b52 article-title: Learning compatibility knowledge for outfit recommendation with complementary clothing matching publication-title: Computer Communications – start-page: 1159 year: 2023 end-page: 1167 ident: b44 article-title: Lossy compression effect on color and texture based image retrieval performance publication-title: International conference on intelligent computing & optimization – volume: 150 start-page: 273 year: 2022 end-page: 296 ident: b59 article-title: A fuzzy content-based group recommender system with dynamic selection of the aggregation functions publication-title: International Journal of Approximate Reasoning – reference: You, Q., Luo, J., Jin, H., & Yang, J. (2015). Robust image sentiment analysis using progressively trained and domain transferred deep networks. In – volume: 53 start-page: 712 year: 1987 ident: b11 article-title: Universals and cultural differences in the judgments of facial expressions of emotion publication-title: Journal of Personality and Social Psychology – volume: 13 start-page: 285 year: 2019 end-page: 297 ident: b5 article-title: All-in-one: Emotion, sentiment and intensity prediction using a multi-task ensemble framework publication-title: IEEE Transactions on Affective Computing – volume: 36 start-page: 130 year: 2023 end-page: 138 ident: b42 article-title: Multi-criteria–recommendations using autoencoder and deep neural networks with weight optimization using firefly algorithm publication-title: International Journal of Engineering – volume: 302 year: 2022 ident: b7 article-title: Bayesian feature interaction selection for factorization machines publication-title: Artificial Intelligence – reference: Vadicamo, L., Carrara, F., Cimino, A., Cresci, S., Dell’Orletta, F., Falchi, F., et al. (2017). Cross-media learning for image sentiment analysis in the wild. In – start-page: 1 year: 2022 end-page: 4 ident: b38 article-title: Dfu-vgg, a novel and improved vgg-19 network for diabetic foot ulcer classification publication-title: 2022 29th international conference on systems, signals and image processing – reference: Siersdorfer, S., Minack, E., Deng, F., & Hare, J. (2010). Analyzing and predicting sentiment of images on the social web. In – volume: 113 year: 2021 ident: b4 article-title: Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network publication-title: Simulation Modelling Practice and Theory – reference: Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010). Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In – volume: 51 start-page: 58 year: 2022 end-page: 65 ident: b19 article-title: Alexnet approach for early stage alzheimer’s disease detection from mri brain images publication-title: Materials Today: Proceedings – volume: 50 year: 2021 ident: b15 article-title: Context-aware cognitive design assistant: Implementation and study of design rules recommendations publication-title: Advanced Engineering Informatics – volume: 5 start-page: 3 year: 2018 end-page: 14 ident: b46 article-title: How context affects choice publication-title: Customer Needs and Solutions – volume: 31 start-page: 279 year: 1966 end-page: 311 ident: b48 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika. – volume: 30 start-page: 7432 year: 2021 end-page: 7445 ident: b56 article-title: Stimuli-aware visual emotion analysis publication-title: IEEE Transactions on Image Processing – start-page: 3266 year: 2017 end-page: 3272 ident: b57 article-title: Joint image emotion classification and distribution learning via deep convolutional neural network publication-title: IJCAI – reference: (pp. 860–868). – reference: (pp. 79–86). – reference: (pp. 169–177). – volume: 46 start-page: 141 year: 2019 end-page: 146 ident: b34 article-title: Ears: Emotion-aware recommender system based on hybrid information fusion publication-title: Information Fusion – start-page: 9 year: 2013 ident: b50 article-title: Context management and self-adaptivity for situation-aware smart software systems – volume: 51 start-page: 2063 year: 2020 end-page: 2075 ident: b54 article-title: Visual sentiment analysis by combining global and local information publication-title: Neural Processing Letters – reference: (pp. 175–186). – start-page: 347 year: 2023 end-page: 357 ident: b45 article-title: Content-based image retrieval using multi-deep learning models publication-title: Next generation of internet of things – volume: 104 year: 2020 ident: b31 article-title: A content-based literature recommendation system for datasets to improve data reusability–a case study on gene expression omnibus (geo) datasets publication-title: Journal of Biomedical Informatics – volume: 38 start-page: 1596 year: 2021 end-page: 1610 ident: b13 article-title: Examining the language of solitude versus loneliness in tweets publication-title: Journal of Social and Personal Relationships – reference: Huang, T., Zhang, Z., & Zhang, J. (2019). Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction. In – volume: 312 start-page: 218 year: 2018 end-page: 228 ident: b41 article-title: Boosting image sentiment analysis with visual attention publication-title: Neurocomputing – reference: Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open architecture for collaborative filtering of netnews. In – volume: 60 year: 2023 ident: b61 article-title: Analyzing review sentiments and product images by parallel deep nets for personalized recommendation publication-title: Information Processing & Management – reference: Strapparava, C., & Mihalcea, R. (2008). Learning to identify emotions in text. In – start-page: 264 year: 2019 end-page: 276 ident: b64 article-title: Joint visual-textual sentiment analysis based on cross-modality attention mechanism publication-title: International conference on multimedia modeling – year: 2022 ident: b35 article-title: Multichannel customer purchase behavior and long tail effects in the fashion goods market publication-title: Journal of Retailing – volume: 90 year: 2021 ident: b23 article-title: A face attribute based recommendation system via integrating denoising autoencoder and hash coding publication-title: Computers & Electrical Engineering – volume: 43 start-page: 56 year: 2003 end-page: 60 ident: b30 article-title: The impact of auction item image and buyer/seller feedback rating on electronic auctions publication-title: Journal of Computer Information Systems – volume: 19 start-page: 37 year: 2013 end-page: 49 ident: b21 article-title: Combining global and local matching of multiple features for precise item image retrieval publication-title: Multimedia Systems – year: 2012 ident: b10 article-title: Smarterdeals: a context-aware deal recommendation system based on the smartercontext engine – reference: (pp. 715–718). – volume: 10 start-page: 2057 year: 2019 end-page: 2070 ident: b8 article-title: Ensemble learning on visual and textual data for social image emotion classification publication-title: International Journal of Machine Learning and Cybernetics – year: 2010 ident: b17 article-title: Emotion – volume: 44 start-page: 2742 year: 2020 end-page: 2759 ident: b62 article-title: Social-aware pedestrian trajectory prediction via states refinement lstm publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 7 start-page: 983 year: 2020 end-page: 990 ident: b22 article-title: Hybrid neural network for sina weibo sentiment analysis publication-title: IEEE Transactions on Computational Social Systems – reference: Yang, Y., Jia, J., Zhang, S., Wu, B., Chen, Q., Li, J., et al. (2014). How do your friends on social media disclose your emotions?. – volume: 211 year: 2023 ident: b63 article-title: A recommendation system for effective learning strategies: An integrated approach using context-dependent dea publication-title: Expert Systems with Applications – year: 2022 ident: b47 article-title: Sentiment-emotion-and context-guided knowledge selection framework for emotion recognition in conversations publication-title: IEEE Transactions on Affective Computing – volume: 158 year: 2022 ident: b33 article-title: Customer models for artificial intelligence-based decision support in fashion online retail supply chains publication-title: Decision Support Systems – reference: Rendle, S., Gantner, Z., Freudenthaler, C., & Schmidt-Thieme, L. (2011). Fast context-aware recommendations with factorization machines. In – reference: (pp. 194–201). – reference: Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. In – start-page: 217 year: 2011 end-page: 253 ident: b3 article-title: Context-aware recommender systems publication-title: Recommender systems handbook – volume: 257 year: 2022 ident: b9 article-title: Semantic-enhanced neural collaborative filtering models in recommender systems publication-title: Knowledge-Based Systems – reference: Machajdik, J., & Hanbury, A. (2010). Affective image classification using features inspired by psychology and art theory. In – reference: , In – volume: 33 start-page: 9125 year: 2021 end-page: 9136 ident: b25 article-title: Fer-net: facial expression recognition using deep neural net publication-title: Neural Computing and Applications – volume: 10 start-page: 18 year: 2017 end-page: 31 ident: b26 article-title: Affectnet: A database for facial expression, valence, and arousal computing in the wild publication-title: IEEE Transactions on Affective Computing – reference: . – reference: Borth, D., Ji, R., Chen, T., Breuel, T., & Chang, S.-F. (2013). Large-scale visual sentiment ontology and detectors using adjective noun pairs. In – start-page: 1 year: 2018 end-page: 6 ident: b29 article-title: Visual sentiment analysis based on on objective text description of images publication-title: 2018 international conference on content-based multimedia indexing – reference: (pp. 635–644). – start-page: 303 year: 2023 end-page: 313 ident: b40 article-title: A review of content-based image retrieval based on hybrid feature extraction techniques publication-title: Advances in Data and Information Sciences – reference: (pp. 308–317). – volume: 77 start-page: 1115 year: 2018 end-page: 1132 ident: b20 article-title: Image sentiment prediction based on textual descriptions with adjective noun pairs publication-title: Multimedia Tools and Applications – volume: 77 start-page: 1115 issue: 1 year: 2018 ident: 10.1016/j.eswa.2024.125970_b20 article-title: Image sentiment prediction based on textual descriptions with adjective noun pairs publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4310-5 – volume: 33 start-page: 9125 issue: 15 year: 2021 ident: 10.1016/j.eswa.2024.125970_b25 article-title: Fer-net: facial expression recognition using deep neural net publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05676-y – volume: 46 start-page: 141 year: 2019 ident: 10.1016/j.eswa.2024.125970_b34 article-title: Ears: Emotion-aware recommender system based on hybrid information fusion publication-title: Information Fusion doi: 10.1016/j.inffus.2018.06.004 – ident: 10.1016/j.eswa.2024.125970_b58 doi: 10.1609/aaai.v31i1.10485 – ident: 10.1016/j.eswa.2024.125970_b16 doi: 10.1145/1864708.1864727 – ident: 10.1016/j.eswa.2024.125970_b6 doi: 10.1145/2502081.2502282 – volume: 14 start-page: 1440 issue: 8 year: 2020 ident: 10.1016/j.eswa.2024.125970_b28 article-title: Survey on visual sentiment analysis publication-title: IET Image Processing doi: 10.1049/iet-ipr.2019.1270 – start-page: 3266 year: 2017 ident: 10.1016/j.eswa.2024.125970_b57 article-title: Joint image emotion classification and distribution learning via deep convolutional neural network – ident: 10.1016/j.eswa.2024.125970_b24 doi: 10.1145/1873951.1873965 – ident: 10.1016/j.eswa.2024.125970_b49 doi: 10.1109/ICCVW.2017.45 – volume: 90 year: 2021 ident: 10.1016/j.eswa.2024.125970_b23 article-title: A face attribute based recommendation system via integrating denoising autoencoder and hash coding publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2021.107020 – volume: 312 start-page: 218 year: 2018 ident: 10.1016/j.eswa.2024.125970_b41 article-title: Boosting image sentiment analysis with visual attention publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.104 – start-page: 347 year: 2023 ident: 10.1016/j.eswa.2024.125970_b45 article-title: Content-based image retrieval using multi-deep learning models – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 10.1016/j.eswa.2024.125970_b2 article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.99 – volume: 37 year: 2020 ident: 10.1016/j.eswa.2024.125970_b18 article-title: Context aware recommendation systems: A review of the state of the art techniques publication-title: Computer Science Review doi: 10.1016/j.cosrev.2020.100255 – volume: 51 start-page: 58 year: 2022 ident: 10.1016/j.eswa.2024.125970_b19 article-title: Alexnet approach for early stage alzheimer’s disease detection from mri brain images publication-title: Materials Today: Proceedings – ident: 10.1016/j.eswa.2024.125970_b55 doi: 10.1609/aaai.v28i1.8740 – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 10.1016/j.eswa.2024.125970_b48 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika. doi: 10.1007/BF02289464 – volume: 51 start-page: 2063 issue: 3 year: 2020 ident: 10.1016/j.eswa.2024.125970_b54 article-title: Visual sentiment analysis by combining global and local information publication-title: Neural Processing Letters doi: 10.1007/s11063-019-10027-7 – ident: 10.1016/j.eswa.2024.125970_b12 doi: 10.1145/223904.223929 – volume: 13 start-page: 285 issue: 1 year: 2019 ident: 10.1016/j.eswa.2024.125970_b5 article-title: All-in-one: Emotion, sentiment and intensity prediction using a multi-task ensemble framework publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2019.2926724 – ident: 10.1016/j.eswa.2024.125970_b36 doi: 10.1145/2009916.2010002 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2024.125970_b38 article-title: Dfu-vgg, a novel and improved vgg-19 network for diabetic foot ulcer classification – ident: 10.1016/j.eswa.2024.125970_b43 doi: 10.1145/1363686.1364052 – volume: 60 issue: 1 year: 2023 ident: 10.1016/j.eswa.2024.125970_b61 article-title: Analyzing review sentiments and product images by parallel deep nets for personalized recommendation publication-title: Information Processing & Management doi: 10.1016/j.ipm.2022.103166 – start-page: 303 year: 2023 ident: 10.1016/j.eswa.2024.125970_b40 article-title: A review of content-based image retrieval based on hybrid feature extraction techniques publication-title: Advances in Data and Information Sciences – start-page: 217 year: 2011 ident: 10.1016/j.eswa.2024.125970_b3 article-title: Context-aware recommender systems – volume: 36 start-page: 130 issue: 1 year: 2023 ident: 10.1016/j.eswa.2024.125970_b42 article-title: Multi-criteria–recommendations using autoencoder and deep neural networks with weight optimization using firefly algorithm publication-title: International Journal of Engineering doi: 10.5829/IJE.2023.36.01A.15 – volume: 44 start-page: 2742 issue: 5 year: 2020 ident: 10.1016/j.eswa.2024.125970_b62 article-title: Social-aware pedestrian trajectory prediction via states refinement lstm publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2022 ident: 10.1016/j.eswa.2024.125970_b47 article-title: Sentiment-emotion-and context-guided knowledge selection framework for emotion recognition in conversations publication-title: IEEE Transactions on Affective Computing – year: 2010 ident: 10.1016/j.eswa.2024.125970_b17 – volume: 181 start-page: 320 year: 2022 ident: 10.1016/j.eswa.2024.125970_b52 article-title: Learning compatibility knowledge for outfit recommendation with complementary clothing matching publication-title: Computer Communications doi: 10.1016/j.comcom.2021.10.022 – volume: 30 start-page: 7432 year: 2021 ident: 10.1016/j.eswa.2024.125970_b56 article-title: Stimuli-aware visual emotion analysis publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3106813 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2024.125970_b29 article-title: Visual sentiment analysis based on on objective text description of images – start-page: 1159 year: 2023 ident: 10.1016/j.eswa.2024.125970_b44 article-title: Lossy compression effect on color and texture based image retrieval performance – volume: 10 start-page: 2057 issue: 8 year: 2019 ident: 10.1016/j.eswa.2024.125970_b8 article-title: Ensemble learning on visual and textual data for social image emotion classification publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-017-0734-0 – volume: 211 year: 2023 ident: 10.1016/j.eswa.2024.125970_b63 article-title: A recommendation system for effective learning strategies: An integrated approach using context-dependent dea publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118535 – volume: 238 year: 2024 ident: 10.1016/j.eswa.2024.125970_b53 article-title: Bayessentirs: Bayesian sentiment analysis for addressing cold start and sparsity in ranking-based recommender systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121930 – volume: 5 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.eswa.2024.125970_b46 article-title: How context affects choice publication-title: Customer Needs and Solutions doi: 10.1007/s40547-017-0084-9 – year: 2012 ident: 10.1016/j.eswa.2024.125970_b10 – volume: 50 year: 2021 ident: 10.1016/j.eswa.2024.125970_b15 article-title: Context-aware cognitive design assistant: Implementation and study of design rules recommendations publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2021.101419 – volume: 138 year: 2023 ident: 10.1016/j.eswa.2024.125970_b27 article-title: How can we avoid information overload and techno-frustration as a virtual team? the effect of shared mental models of information and communication technology on information overload and techno-frustration publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2022.107438 – volume: 104 year: 2020 ident: 10.1016/j.eswa.2024.125970_b31 article-title: A content-based literature recommendation system for datasets to improve data reusability–a case study on gene expression omnibus (geo) datasets publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2020.103399 – volume: 158 year: 2022 ident: 10.1016/j.eswa.2024.125970_b33 article-title: Customer models for artificial intelligence-based decision support in fashion online retail supply chains publication-title: Decision Support Systems doi: 10.1016/j.dss.2022.113795 – volume: 43 start-page: 56 issue: 3 year: 2003 ident: 10.1016/j.eswa.2024.125970_b30 article-title: The impact of auction item image and buyer/seller feedback rating on electronic auctions publication-title: Journal of Computer Information Systems doi: 10.1080/08874417.2003.11647517 – year: 2022 ident: 10.1016/j.eswa.2024.125970_b35 article-title: Multichannel customer purchase behavior and long tail effects in the fashion goods market publication-title: Journal of Retailing – ident: 10.1016/j.eswa.2024.125970_b39 doi: 10.1145/1873951.1874060 – ident: 10.1016/j.eswa.2024.125970_b60 doi: 10.1609/aaai.v29i1.9179 – volume: 140 start-page: 173 year: 2018 ident: 10.1016/j.eswa.2024.125970_b51 article-title: Characterizing context-aware recommender systems: A systematic literature review publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.11.003 – start-page: 304 year: 1999 ident: 10.1016/j.eswa.2024.125970_b1 article-title: Towards a better understanding of context and context-awareness – volume: 7 start-page: 983 issue: 4 year: 2020 ident: 10.1016/j.eswa.2024.125970_b22 article-title: Hybrid neural network for sina weibo sentiment analysis publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2020.2998092 – ident: 10.1016/j.eswa.2024.125970_b32 doi: 10.1109/CVPR.2015.7298687 – volume: 302 year: 2022 ident: 10.1016/j.eswa.2024.125970_b7 article-title: Bayesian feature interaction selection for factorization machines publication-title: Artificial Intelligence doi: 10.1016/j.artint.2021.103589 – volume: 113 year: 2021 ident: 10.1016/j.eswa.2024.125970_b4 article-title: Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network publication-title: Simulation Modelling Practice and Theory doi: 10.1016/j.simpat.2021.102375 – volume: 38 start-page: 1596 issue: 5 year: 2021 ident: 10.1016/j.eswa.2024.125970_b13 article-title: Examining the language of solitude versus loneliness in tweets publication-title: Journal of Social and Personal Relationships doi: 10.1177/0265407521998460 – start-page: 9 year: 2013 ident: 10.1016/j.eswa.2024.125970_b50 – volume: 53 start-page: 712 issue: 4 year: 1987 ident: 10.1016/j.eswa.2024.125970_b11 article-title: Universals and cultural differences in the judgments of facial expressions of emotion publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.53.4.712 – ident: 10.1016/j.eswa.2024.125970_b37 doi: 10.1145/192844.192905 – ident: 10.1016/j.eswa.2024.125970_b14 doi: 10.1145/3298689.3347043 – volume: 10 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.eswa.2024.125970_b26 article-title: Affectnet: A database for facial expression, valence, and arousal computing in the wild publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2017.2740923 – volume: 257 year: 2022 ident: 10.1016/j.eswa.2024.125970_b9 article-title: Semantic-enhanced neural collaborative filtering models in recommender systems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109934 – volume: 150 start-page: 273 year: 2022 ident: 10.1016/j.eswa.2024.125970_b59 article-title: A fuzzy content-based group recommender system with dynamic selection of the aggregation functions publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2022.08.015 – volume: 19 start-page: 37 issue: 1 year: 2013 ident: 10.1016/j.eswa.2024.125970_b21 article-title: Combining global and local matching of multiple features for precise item image retrieval publication-title: Multimedia Systems doi: 10.1007/s00530-012-0265-1 – start-page: 264 year: 2019 ident: 10.1016/j.eswa.2024.125970_b64 article-title: Joint visual-textual sentiment analysis based on cross-modality attention mechanism |
SSID | ssj0017007 |
Score | 2.4562645 |
Snippet | Recommendation systems (RS) are widely used to predict users’ preferences for items in many research areas. Context-aware recommendation systems (CARS) exploit... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 125970 |
SubjectTerms | Context aware recommendation system (CARS) Factorization Machines Multi-modal sentiment fusion Tensor decomposition Unsupervised deep learning Visual sentiment analysis |
Title | Exploit the visual sentiment of the item images to fuse with textual sentiment in context aware collaborative filtering |
URI | https://dx.doi.org/10.1016/j.eswa.2024.125970 |
Volume | 265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu9Q-ZA-9lWhemzVHkYptqZdW8BZ23VlIoSom6q2_vTN5FIXSQ69DBsJkMt-XzTczjN0rjaDsSeMgF3ed0DOeo6wMHBeUh_VSWw3U4Pw6jkaT8Hkqpg02qHthSFZZ1f6yphfVurJ0q2h2l2nafUNygHCIn3YhYaSkJr4wlJTlna8fmQeNn5PlvD3p0NVV40yp8YJsS7OH_LCDOB_TwuLfwGkHcIYn7Khiirxf3swpa8D8jB3XWxh49VKes20ho0tzjlSOb9JsjU7UUVSM7ecLW9jpiJann1g8Mp4vuF1nwOkIlpPwY98jnXPSr6Odq61aAd9JlQ1wm9L_dQS8CzYZPr4PRk61TsGZIYnJHatNIAJfK_Ah1AjMCF7aM8qXNlAzFzxMqsjEAL1YuK6KegqsEb40kZx5gQqDS9acL-Zwxbi2VikbCQOKNvpFsVQ9F6SYiUAaBW6LPdRxTJbl1IyklpN9JBT1hKKelFFvMVGHOtl79gmW9T_8rv_pd8MOfdriS6o8ccua-WoNd0gtct0ucqfNDvpPL6PxN7Uy0Zk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woNC_HzYgQqEDLQit1i-z6LAWJtmrSduO3c5cHohJiYD3lJOti33dxvruPsWulEZQ9aRysxV0n9IznKCsDxwXlYb7UVgM1OPdfo-4wfB6JUYPd170wRKuscn-Z04tsXVnaVTTbszRtv2FxgHCIn3YhYaSMN9hmiMeXZAxuP795HjR_TpYD96RDj1edMyXJC7IVDR_yw1sE-pgUi39Dpx-I87jHdqpSkd-Vq9lnDZgcsN1ahoFXp_KQrQoeXZpzrOX4Ms0W6EQtRcXcfj61hZ3uaHn6gdkj4_mU20UGnO5gOTE_1j3SCScCO9q5Wqk58B97ZQncpvSDHRHviA0fHwb3XafSU3DGWMXkjtUmEIGvFfgQakRmRC_tGeVLG6ixCx7uqsjEAJ1YuK6KOgqsEb40kRx7gQqDY9acTCdwwri2VikbCQOKJP2iWKqOC1KMRSCNArfFbuo4JrNybEZS88neE4p6QlFPyqi3mKhDnay9_ATz-h9-p__0u2Jb3UG_l_SeXl_O2LZPkr5E0RPnrJnPF3CBdUauL4t99AWoqtMn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploit+the+visual+sentiment+of+the+item+images+to+fuse+with+textual+sentiment+in+context+aware+collaborative+filtering&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Liang-Hong&rft.date=2025-03-15&rft.issn=0957-4174&rft.volume=265&rft.spage=125970&rft_id=info:doi/10.1016%2Fj.eswa.2024.125970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |