Analysis of Stroop Color Word Test-Based Human Stress Detection using Electrocardiography and Heart Rate Variability Signals
A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by th...
Saved in:
Published in | Arabian Journal for Science and Engineering Vol. 39; no. 3; pp. 1835 - 1847 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by this stressor. A total of 10 female subjects (aged 20–25 years) participated in this study. A time and frequency domain analysis of the HRV and ECG signals was done to extract the stress-related features. A total of five frequency bands and ratios of the HRV signal were used to analyze the new and existing statistical features. The results indicate that significant changes between the normal and stressed states are more evident with a classification accuracy of 79.17 %. Alternatively, the low frequency range (0.04–0.5 Hz) of the ECG signal (0–100 Hz) was used to identify the effect of stress instead of the usual frequency domain analysis of the HRV signal (0.04–0.5 Hz). To extract the stress-related features of the ECG signal, a discrete wavelet transform based feature extraction was performed using the “
db4
” and “
coif5
” wavelet functions. A set of eight statistical features was extracted from the two different frequency bands and the three frequency band ratios. All of the extracted features were classified into two states (stress and normal) using the simple non-linear K-nearest neighbor classifier. The experimental results gave the maximum average accuracy of 94.58 and 94.22 % with the “
db4
” and “
coif5
” wavelet functions, respectively. Remarkably, the classification results obtained with the features of the ECG and HRV signals were completely independent of the post-task questionnaire. The outcome of this work was helpful to develop the multiple physiological signal based stress system using optimal features in these two signals. |
---|---|
AbstractList | A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by this stressor. A total of 10 female subjects (aged 20-25 years) participated in this study. A time and frequency domain analysis of the HRV and ECG signals was done to extract the stress-related features. A total of five frequency bands and ratios of the HRV signal were used to analyze the new and existing statistical features. The results indicate that significant changes between the normal and stressed states are more evident with a classification accuracy of 79.17 %. Alternatively, the low frequency range (0.04-0.5 Hz) of the ECG signal (0-100 Hz) was used to identify the effect of stress instead of the usual frequency domain analysis of the HRV signal (0.04-0.5 Hz). To extract the stress-related features of the ECG signal, a discrete wavelet transform based feature extraction was performed using the "db4" and "coif5" wavelet functions. A set of eight statistical features was extracted from the two different frequency bands and the three frequency band ratios. All of the extracted features were classified into two states (stress and normal) using the simple non-linear K-nearest neighbor classifier. The experimental results gave the maximum average accuracy of 94.58 and 94.22 % with the "db4" and "coif5" wavelet functions, respectively. Remarkably, the classification results obtained with the features of the ECG and HRV signals were completely independent of the post-task questionnaire. The outcome of this work was helpful to develop the multiple physiological signal based stress system using optimal features in these two signals. A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by this stressor. A total of 10 female subjects (aged 20–25 years) participated in this study. A time and frequency domain analysis of the HRV and ECG signals was done to extract the stress-related features. A total of five frequency bands and ratios of the HRV signal were used to analyze the new and existing statistical features. The results indicate that significant changes between the normal and stressed states are more evident with a classification accuracy of 79.17 %. Alternatively, the low frequency range (0.04–0.5 Hz) of the ECG signal (0–100 Hz) was used to identify the effect of stress instead of the usual frequency domain analysis of the HRV signal (0.04–0.5 Hz). To extract the stress-related features of the ECG signal, a discrete wavelet transform based feature extraction was performed using the “ db4 ” and “ coif5 ” wavelet functions. A set of eight statistical features was extracted from the two different frequency bands and the three frequency band ratios. All of the extracted features were classified into two states (stress and normal) using the simple non-linear K-nearest neighbor classifier. The experimental results gave the maximum average accuracy of 94.58 and 94.22 % with the “ db4 ” and “ coif5 ” wavelet functions, respectively. Remarkably, the classification results obtained with the features of the ECG and HRV signals were completely independent of the post-task questionnaire. The outcome of this work was helpful to develop the multiple physiological signal based stress system using optimal features in these two signals. |
Author | Karthikeyan, P. Yaacob, S. Murugappan, M. |
Author_xml | – sequence: 1 givenname: P. surname: Karthikeyan fullname: Karthikeyan, P. email: karthi_209170@yahoo.com organization: School of Mechatronics Engineering, Universiti Malaysia Perlis – sequence: 2 givenname: M. surname: Murugappan fullname: Murugappan, M. organization: School of Mechatronics Engineering, Universiti Malaysia Perlis – sequence: 3 givenname: S. surname: Yaacob fullname: Yaacob, S. organization: School of Mechatronics Engineering, Universiti Malaysia Perlis |
BookMark | eNp9kLFuFDEQhi0UJC6BB6BzSWPwrGOvtwxHIEiRIiUnKK1Zr3042rMP21ucxMPj1VFRpBqN9H_za75LchFTdIS8B_4ROO8_FRBCDYyDYLzXiulXZNPBAOy603BBNiBgYJp38g25LOWZcwW6Fxvy5ybifCqh0OTpU80pHek2zSnTnylPdOdKZZ-xuIneLQeMa8SVQr-46mwNKdKlhLint3Nbc7KYp5D2GY-_ThRjgxzmSh-xOvoDc8AxzKGe6FPYt9rylrz2bbh3_-YV2X293W3v2P3Dt-_bm3tmOwmVeeWdQDGhRcthsL20XrpRKA1CjkpyqfthVBYAvXZoVWev_Tg5jcoPwosr8uF89pjT76V9ZA6hWDfPGF1aigEpB9VLgK5F4Ry1OZWSnTfHHA6YTwa4WUWbs2jTRJtVtNGN6f9jbKi4yqkZw_wi2Z3J0lri3mXznJa8mnkB-guZbZb6 |
CitedBy_id | crossref_primary_10_1016_j_autcon_2019_102851 crossref_primary_10_3390_s20143905 crossref_primary_10_1016_j_cmpb_2020_105408 crossref_primary_10_1109_TVCG_2024_3385637 crossref_primary_10_1109_MCE_2020_2993427 crossref_primary_10_1155_2021_6631616 crossref_primary_10_1016_j_cmpb_2020_105482 crossref_primary_10_1016_j_bspc_2024_106379 crossref_primary_10_3390_s19030455 crossref_primary_10_1007_s13246_016_0476_4 crossref_primary_10_1109_TAFFC_2021_3055294 crossref_primary_10_1016_j_buildenv_2021_108697 crossref_primary_10_1016_j_compbiomed_2021_104377 crossref_primary_10_1109_JBHI_2018_2883751 crossref_primary_10_1007_s12559_022_10042_2 crossref_primary_10_1007_s12008_021_00765_1 crossref_primary_10_1186_s12938_021_00911_6 crossref_primary_10_3390_bios12070465 crossref_primary_10_1109_TAFFC_2019_2946829 crossref_primary_10_1155_2016_5136705 crossref_primary_10_1088_1361_6501_ac3aae crossref_primary_10_3390_app12168052 crossref_primary_10_1016_j_sna_2017_02_023 crossref_primary_10_1007_s11517_019_01958_3 crossref_primary_10_2196_32656 crossref_primary_10_4236_ojpsych_2022_123017 crossref_primary_10_1007_s12652_020_02650_3 crossref_primary_10_31436_iiumej_v25i2_3017 crossref_primary_10_1016_j_bspc_2019_101736 crossref_primary_10_3390_app14209527 crossref_primary_10_1080_13811118_2020_1841052 crossref_primary_10_1109_ACCESS_2019_2916147 crossref_primary_10_1109_JSEN_2022_3157795 crossref_primary_10_1109_JSEN_2024_3506984 crossref_primary_10_1044_2017_AJSLP_16_0172 |
Cites_doi | 10.1109/TITS.2005.848368 10.1109/NEBC.2009.4967756 10.1109/ICBBE.2010.5516360 10.1007/978-3-540-89859-7_5 10.1109/ICCSCE.2011.6190533 10.1007/s11235-010-9286-2 10.1037/t39835-000 10.1093/oxfordjournals.eurheartj.a014868 10.1109/IEMBS.2006.259421 10.1017/S0263574702004484 10.1109/STUDENT.2012.6408369 10.1109/TBME.2005.844028 10.1016/j.autneu.2009.10.003 10.1016/S0167-8760(97)00049-4 10.1109/CSPA.2011.5759914 10.15676/ijeei.2012.4.2.9 10.1109/TFUZZ.2006.889825 10.1016/S0161-6420(00)00649-7 10.1006/nimg.2000.0662 10.1007/s13369-012-0288-0 10.1016/j.psyneuen.2010.08.004 10.1589/jpts.24.1341 10.1109/IVS.2007.4290190 10.1159/000119004 10.1109/TSMCA.2008.918624 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum and Minerals 2013 |
Copyright_xml | – notice: King Fahd University of Petroleum and Minerals 2013 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s13369-013-0786-8 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 1847 |
ExternalDocumentID | 10_1007_s13369_013_0786_8 |
GroupedDBID | 06D 0VY 23M 29~ 2KM 30V 4.4 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ABULA ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR ANMIH AYJHY BGNMA C1A ESBYG ESX FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HF~ HMJXF HRMNR HZ~ I0C IXD J9A KOV M4Y NU0 O9- O93 OK1 P9P R9I RLLFE S1Z S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 AAYXX CITATION OVT 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c251t-f6fe3a3dacac019c75cf5eb368135b6505879b6c11af8eac62c4fbde8a6f93f3 |
IEDL.DBID | U2A |
ISSN | 1319-8025 |
IngestDate | Thu Jul 10 23:10:37 EDT 2025 Tue Jul 01 01:33:51 EDT 2025 Thu Apr 24 23:07:03 EDT 2025 Fri Feb 21 02:40:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Heart rate variability (HRV) Discrete wavelet transform (DWT) K nearest neighbor (KNN) Human stress Stroop colour word test Electrocardiogram (ECG) |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-f6fe3a3dacac019c75cf5eb368135b6505879b6c11af8eac62c4fbde8a6f93f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1559675112 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1559675112 crossref_primary_10_1007_s13369_013_0786_8 crossref_citationtrail_10_1007_s13369_013_0786_8 springer_journals_10_1007_s13369_013_0786_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140300 2014-3-00 20140301 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 3 year: 2014 text: 20140300 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Arabian Journal for Science and Engineering |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | El-DahshanE.-S.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst201046320921510.1007/s11235-010-9286-2 Zhai, J.; Barreto, A.: Stress detection in computer users based on digital signal processing of noninvasive physiological variables. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 06), pp. 1355–1358 (2006) MalikM.Heart rate variability, standards of measurement, physiological interpretation, and clinical useEur. Heart J.1996173354381 Jeong, I.C.; Park, S.W.; Ko, J.; Yoon, H.R.: Automobile driver’s stress index provision system that utilizes electrocardiogram. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey 2007, pp. 652–656. IEEE Mahesh, C.; RA, A.; MD, U.: Suppression of noise in the ECG signal using digital IIR filter. In: Paper presented at the 8th WSEAS International Conference on Multimedia Systems and Signal Processing, Hangzhou, China Karthikeyan, P.; Murugappan, M.; Yaacob, S.: Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. J. Phys. Therapy Sci. 24(12), (2012) LundbergU.MelinB.Psychophysiological stress and emg activity of the trapezius muscleInt. J. Behav. Med.199414354370 Rani, P.; Sims, J.; Brackin, R.; Sarkar, N.: Online stress detection using psychophysiological signals for implicit human-robot cooperation. 20(06), 673–685 (2002). doi:10.1017/S0263574702004484 IversR.Q.MacaskillP.CummingR.G.MitchellP.Sensitivity and specificity of tests to detect eye disease in an older populationOphthalmology20011085968975 Smith, M.; Sega, R.; Segal, J.: Understanding Stress-Signs, Symptoms, Causes, and Effects. http://www.helpguide.org/mental/stress_signs.htm (2011) HolmesT.RaheR.The social readjustment rating scaleJ. Psychosom. Res.1967112213218 KarthikeyanP.MurugappanM.YaacobS.ECG signal denoising using wavelet thresholding technique in human stress assessmentInt. J. Electr. Eng. Inform.201242306319 SeraganianP.SzaboA.BrownT.G.The Effect of Vocalization on the Heart Rate Response to Mental ArithmeticPhysiol. Behav.1997622221224 De Santos Sierra, A.; Sanchez Avila, C.; Casanova, J.; Del Pozo, G.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Indus. Electron. 58(10), 4857–4865 (2011) KarthikeyanP.MurugappanM.YaacobS.Detection of Human stress using Short-Term ECG and HRV signalsJ. Mech. Med. Biol.2013133129 Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A study on mental arithmetic task based human stress level classification using discrete wavelet transform. In: Third IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE STUDENT 2012), Kuala Lumpur, Malaysia, 6–9 (2012) DawansB.KirschbaumC.HeinrichsM.The trier social stress test for groups (TSST-G): a new research tool for controlled simultaneous social stress exposure in a group formatPsychoneuroendocrinology2010364514522 PujolJ.VendrellP.DeusJ.JunquéC.BelloJ.Martí-VilaltaJ.CapdevilaA.The effect of medial frontal and posterior parietal demyelinating lesions on Stroop interferenceNeuroimage20011316875 OmarH.AbidoM.Enhancement of integrated fuzzy-based guidance law by tabu searchArab. J. Sci. Eng.20123772035204610.1007/s13369-012-0288-0 KirschbaumC.PirkeK.M.HellhammerD.H.The trier social stress test—a tool for investigating psychobiological stress responses in a laboratory settingNeuropsychobiology1993281–27681 HealeyJ.PicardR.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.20056215616610.1109/TITS.2005.848368 Ranganathan, G.; Bindhu, V.; Rangarajan, R.: ECG signal processing using dyadic wavelet for mental stress assessment. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 18-20 June 2010, pp. 1–4 (2010) RenaudP.BlondinJ.P.The stress of Stroop performance: physiological and emotional responses to color word interference, task pacing, and pacing speedInt. J. Psychophysiol.199727879710.1016/S0167-8760(97)00049-4 Kim, J.; André, E.: Fusion of multichannel biosignals towards automatic emotion recognition multisensor fusion and integration for intelligent systems. In: Hahn, H.; Ko, H.; Lee, S. (eds.) Lecture Notes in Electrical Engineering, vol. 35, pp. 55–68. Springer, Berlin (2009) KumarM.WeippertM.VilbrandtR.KreuzfeldS.StollR.Fuzzy evaluation of heart rate signals for mental stress assessmentIEEE Trans. Fuzzy Syst.2007155791808 GliffordG.D.Quantifying errors in spectral estimates of HRV due to beat replacement and resamplingIEEE Trans. Biomed. Eng.20055263063810.1109/TBME.2005.844028 TaelmanJ.VandeputS.SpaepenA.HuffelS.V.Influence of mental stress on heart rate and heart rate variability. ECIFMBE 2008IFMBE Proc.20082213661369 Katsis, C.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.: Toward emotion recognition in car-racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(3) (2008) PehlivanogluB.DurmazlarN.BalkanciD.Computer adapted Stroop colour-word conflict test as a laboratory stress modelErciyes Med. J.20052725863 Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A review on stress inducement stimuli for assessing human stress using physiological signals. In: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), 4–6 March 2011, pp. 420–425 Elgendi, M.; Jonkman, M.; DeBoer, F.: R wave detection using Coiflets wavelets. In: Paper presented at the 35th Annual Northeast Bioengineering Conference in IEEE, Boston, MA Center, E.L.: Knowledge Weavers Project-ECG. http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/lead_dia.html (2012). Accessed 27 Aug 2012 TulenH.MolemanP.SteenistH.V.BoomsmaF.Characterization of stress reactions to the Stroop color word testPharmacol. Biochem. Behav.1989321915 DahshanE.S.E.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst.201046320921510.1007/s11235-010-9286-2 Lovibond, S.H.; Lovibond, P.F.: Manual for the depression anxiety stress scales. Psychology Foundation, Sydney (1995) Karthikeyan, P.; Murugappan, M.; Yaacob, S.: ECG signals based mental stress assessment using wavelet transform. In: 2011 IEEE International Conference on Control System Computing and Engineering (ICCSCE), 25–27 Nov 2011, pp. 258–262 (2011) HealeyJ.A.PicardR.W.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.200562156166 SvetlakM.BobP.CernikM.KukletaM.Electrodermal complexity during the Stroop Colour Word TestAuton. Neurosci. Basic Clin.201015210110710.1016/j.autneu.2009.10.003 Seong, H.; Lee, J.; Shin, T.; Kim, W.; Yoon, Y.; Yoon, Y.: The analysis of mental stress using time-frequency distribution of heart rate variability signal. In: 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 283–284 (2004) AydinS.KilicI.TemeltasH.Using Linde Buzo Gray clustering neural networks for solving the motion equations of a mobile robotArab. J. Sci. Eng.2011365795807 M. Svetlak (786_CR8) 2010; 152 786_CR26 786_CR25 786_CR28 E.S.E. Dahshan (786_CR24) 2010; 46 786_CR27 786_CR21 J. Healey (786_CR31) 2005; 6 786_CR40 H. Omar (786_CR36) 2012; 37 786_CR9 E.-S. El-Dahshan (786_CR23) 2010; 46 P. Karthikeyan (786_CR22) 2012; 4 786_CR18 786_CR15 786_CR37 786_CR14 786_CR17 786_CR39 786_CR16 786_CR38 786_CR33 786_CR32 786_CR13 786_CR35 786_CR12 786_CR34 786_CR30 P. Karthikeyan (786_CR19) 2013; 13 786_CR4 P. Renaud (786_CR10) 1997; 27 786_CR3 786_CR2 786_CR1 786_CR7 786_CR6 786_CR5 G.D. Glifford (786_CR20) 2005; 52 B. Pehlivanoglu (786_CR11) 2005; 27 786_CR29 |
References_xml | – reference: Lovibond, S.H.; Lovibond, P.F.: Manual for the depression anxiety stress scales. Psychology Foundation, Sydney (1995) – reference: TaelmanJ.VandeputS.SpaepenA.HuffelS.V.Influence of mental stress on heart rate and heart rate variability. ECIFMBE 2008IFMBE Proc.20082213661369 – reference: Seong, H.; Lee, J.; Shin, T.; Kim, W.; Yoon, Y.; Yoon, Y.: The analysis of mental stress using time-frequency distribution of heart rate variability signal. In: 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 283–284 (2004) – reference: Katsis, C.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.: Toward emotion recognition in car-racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(3) (2008) – reference: KumarM.WeippertM.VilbrandtR.KreuzfeldS.StollR.Fuzzy evaluation of heart rate signals for mental stress assessmentIEEE Trans. Fuzzy Syst.2007155791808 – reference: HealeyJ.A.PicardR.W.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.200562156166 – reference: Center, E.L.: Knowledge Weavers Project-ECG. http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/lead_dia.html (2012). Accessed 27 Aug 2012 – reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A review on stress inducement stimuli for assessing human stress using physiological signals. In: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), 4–6 March 2011, pp. 420–425 – reference: Elgendi, M.; Jonkman, M.; DeBoer, F.: R wave detection using Coiflets wavelets. In: Paper presented at the 35th Annual Northeast Bioengineering Conference in IEEE, Boston, MA – reference: GliffordG.D.Quantifying errors in spectral estimates of HRV due to beat replacement and resamplingIEEE Trans. Biomed. Eng.20055263063810.1109/TBME.2005.844028 – reference: AydinS.KilicI.TemeltasH.Using Linde Buzo Gray clustering neural networks for solving the motion equations of a mobile robotArab. J. Sci. Eng.2011365795807 – reference: SvetlakM.BobP.CernikM.KukletaM.Electrodermal complexity during the Stroop Colour Word TestAuton. Neurosci. Basic Clin.201015210110710.1016/j.autneu.2009.10.003 – reference: KarthikeyanP.MurugappanM.YaacobS.ECG signal denoising using wavelet thresholding technique in human stress assessmentInt. J. Electr. Eng. Inform.201242306319 – reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: ECG signals based mental stress assessment using wavelet transform. In: 2011 IEEE International Conference on Control System Computing and Engineering (ICCSCE), 25–27 Nov 2011, pp. 258–262 (2011) – reference: KarthikeyanP.MurugappanM.YaacobS.Detection of Human stress using Short-Term ECG and HRV signalsJ. Mech. Med. Biol.2013133129 – reference: El-DahshanE.-S.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst201046320921510.1007/s11235-010-9286-2 – reference: HolmesT.RaheR.The social readjustment rating scaleJ. Psychosom. Res.1967112213218 – reference: PujolJ.VendrellP.DeusJ.JunquéC.BelloJ.Martí-VilaltaJ.CapdevilaA.The effect of medial frontal and posterior parietal demyelinating lesions on Stroop interferenceNeuroimage20011316875 – reference: OmarH.AbidoM.Enhancement of integrated fuzzy-based guidance law by tabu searchArab. J. Sci. Eng.20123772035204610.1007/s13369-012-0288-0 – reference: De Santos Sierra, A.; Sanchez Avila, C.; Casanova, J.; Del Pozo, G.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Indus. Electron. 58(10), 4857–4865 (2011) – reference: RenaudP.BlondinJ.P.The stress of Stroop performance: physiological and emotional responses to color word interference, task pacing, and pacing speedInt. J. Psychophysiol.199727879710.1016/S0167-8760(97)00049-4 – reference: HealeyJ.PicardR.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.20056215616610.1109/TITS.2005.848368 – reference: DawansB.KirschbaumC.HeinrichsM.The trier social stress test for groups (TSST-G): a new research tool for controlled simultaneous social stress exposure in a group formatPsychoneuroendocrinology2010364514522 – reference: PehlivanogluB.DurmazlarN.BalkanciD.Computer adapted Stroop colour-word conflict test as a laboratory stress modelErciyes Med. J.20052725863 – reference: Ranganathan, G.; Bindhu, V.; Rangarajan, R.: ECG signal processing using dyadic wavelet for mental stress assessment. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 18-20 June 2010, pp. 1–4 (2010) – reference: MalikM.Heart rate variability, standards of measurement, physiological interpretation, and clinical useEur. Heart J.1996173354381 – reference: DahshanE.S.E.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst.201046320921510.1007/s11235-010-9286-2 – reference: LundbergU.MelinB.Psychophysiological stress and emg activity of the trapezius muscleInt. J. Behav. Med.199414354370 – reference: Zhai, J.; Barreto, A.: Stress detection in computer users based on digital signal processing of noninvasive physiological variables. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 06), pp. 1355–1358 (2006) – reference: Jeong, I.C.; Park, S.W.; Ko, J.; Yoon, H.R.: Automobile driver’s stress index provision system that utilizes electrocardiogram. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey 2007, pp. 652–656. IEEE – reference: TulenH.MolemanP.SteenistH.V.BoomsmaF.Characterization of stress reactions to the Stroop color word testPharmacol. Biochem. Behav.1989321915 – reference: Rani, P.; Sims, J.; Brackin, R.; Sarkar, N.: Online stress detection using psychophysiological signals for implicit human-robot cooperation. 20(06), 673–685 (2002). doi:10.1017/S0263574702004484 – reference: Kim, J.; André, E.: Fusion of multichannel biosignals towards automatic emotion recognition multisensor fusion and integration for intelligent systems. In: Hahn, H.; Ko, H.; Lee, S. (eds.) Lecture Notes in Electrical Engineering, vol. 35, pp. 55–68. Springer, Berlin (2009) – reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. J. Phys. Therapy Sci. 24(12), (2012) – reference: IversR.Q.MacaskillP.CummingR.G.MitchellP.Sensitivity and specificity of tests to detect eye disease in an older populationOphthalmology20011085968975 – reference: Mahesh, C.; RA, A.; MD, U.: Suppression of noise in the ECG signal using digital IIR filter. In: Paper presented at the 8th WSEAS International Conference on Multimedia Systems and Signal Processing, Hangzhou, China – reference: SeraganianP.SzaboA.BrownT.G.The Effect of Vocalization on the Heart Rate Response to Mental ArithmeticPhysiol. Behav.1997622221224 – reference: Smith, M.; Sega, R.; Segal, J.: Understanding Stress-Signs, Symptoms, Causes, and Effects. http://www.helpguide.org/mental/stress_signs.htm (2011) – reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A study on mental arithmetic task based human stress level classification using discrete wavelet transform. In: Third IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE STUDENT 2012), Kuala Lumpur, Malaysia, 6–9 (2012) – reference: KirschbaumC.PirkeK.M.HellhammerD.H.The trier social stress test—a tool for investigating psychobiological stress responses in a laboratory settingNeuropsychobiology1993281–27681 – volume: 6 start-page: 156 issue: 2 year: 2005 ident: 786_CR31 publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2005.848368 – ident: 786_CR30 doi: 10.1109/NEBC.2009.4967756 – ident: 786_CR28 – ident: 786_CR25 doi: 10.1109/ICBBE.2010.5516360 – ident: 786_CR32 doi: 10.1007/978-3-540-89859-7_5 – volume: 27 start-page: 58 issue: 2 year: 2005 ident: 786_CR11 publication-title: Erciyes Med. J. – ident: 786_CR35 doi: 10.1109/ICCSCE.2011.6190533 – volume: 46 start-page: 209 issue: 3 year: 2010 ident: 786_CR24 publication-title: Telecommun. Syst. doi: 10.1007/s11235-010-9286-2 – ident: 786_CR7 doi: 10.1037/t39835-000 – ident: 786_CR27 doi: 10.1093/oxfordjournals.eurheartj.a014868 – ident: 786_CR2 doi: 10.1109/IEMBS.2006.259421 – volume: 13 start-page: 1 issue: 3 year: 2013 ident: 786_CR19 publication-title: J. Mech. Med. Biol. – ident: 786_CR17 – ident: 786_CR9 doi: 10.1017/S0263574702004484 – ident: 786_CR5 – ident: 786_CR21 doi: 10.1109/STUDENT.2012.6408369 – volume: 52 start-page: 630 year: 2005 ident: 786_CR20 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.844028 – ident: 786_CR1 – ident: 786_CR3 – volume: 152 start-page: 101 year: 2010 ident: 786_CR8 publication-title: Auton. Neurosci. Basic Clin. doi: 10.1016/j.autneu.2009.10.003 – ident: 786_CR37 – volume: 46 start-page: 209 issue: 3 year: 2010 ident: 786_CR23 publication-title: Telecommun. Syst doi: 10.1007/s11235-010-9286-2 – volume: 27 start-page: 87 year: 1997 ident: 786_CR10 publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(97)00049-4 – ident: 786_CR12 – ident: 786_CR14 – ident: 786_CR29 – ident: 786_CR16 doi: 10.1109/CSPA.2011.5759914 – volume: 4 start-page: 306 issue: 2 year: 2012 ident: 786_CR22 publication-title: Int. J. Electr. Eng. Inform. doi: 10.15676/ijeei.2012.4.2.9 – ident: 786_CR34 doi: 10.1109/TFUZZ.2006.889825 – ident: 786_CR38 doi: 10.1016/S0161-6420(00)00649-7 – ident: 786_CR18 – ident: 786_CR26 doi: 10.1006/nimg.2000.0662 – volume: 37 start-page: 2035 issue: 7 year: 2012 ident: 786_CR36 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-012-0288-0 – ident: 786_CR40 doi: 10.1016/j.psyneuen.2010.08.004 – ident: 786_CR39 – ident: 786_CR13 doi: 10.1589/jpts.24.1341 – ident: 786_CR15 doi: 10.1109/IVS.2007.4290190 – ident: 786_CR6 – ident: 786_CR4 doi: 10.1159/000119004 – ident: 786_CR33 doi: 10.1109/TSMCA.2008.918624 |
SSID | ssj0061873 ssj0001916267 |
Score | 2.1814554 |
Snippet | A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1835 |
SubjectTerms | Classification Electrocardiography Engineering Feature extraction Frequency bands Frequency domain analysis Heart rate Humanities and Social Sciences multidisciplinary Research Article - Computer Engineering and Computer Science Science Stresses Wavelet |
Title | Analysis of Stroop Color Word Test-Based Human Stress Detection using Electrocardiography and Heart Rate Variability Signals |
URI | https://link.springer.com/article/10.1007/s13369-013-0786-8 https://www.proquest.com/docview/1559675112 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB2R9tIeUPmoGqCRkXoCWarrj_UeQ5s0AtEDSSE9WWuvXSGhTZRsD0j8eMbe3S4gQOrd9kqe9cwbz_MbgBOblTa3kanGT0sqvBTU8txRaYUotPA-S_cdH6_U7Fq8X8pl-45727Hdu5Jk8tT9YzfOVeT2cIphTVE9gF2JqXvkcV2fjfuLFQQ8qatS444V06nMzOJrHY0Rvitt_m3J34NTjzj_KJKm2DM9gMctaCTjxspP4JGvnsL-L1KCz-BHpy5CVoHMa8TDa3KOjm1DvmB6SRb4AfoOI1ZJ0rV9HII-jlz4OnGxKhIJ8Ldk0nTFcYml2ohZk6LCSXggavIJgSn5jNl1I-79ncy_3kb95eewmE4W5zPadlagDvFMTYMKnhe8LFzhcMNcJl2QmFYrzbi0CNqkznKrHGNF0Oia1ZkTwZZeFyrkPPBD2KlWlT8CknkZm-jmmXNOsJJZ5krn8ZBrIYLy-RBOux01rlUdj80vvpleLzkawaARTDSC0UN4cz9l3Uhu_G_w685MBg9GrHYUlV_dbU2st2I2hHhyCG87-5n2hG7_veKLB41-CXsIoUTDSnsFO_Xmzh8jTKntCHbHlzcfJiMYXC7ZKP2kPwG9P-E9 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGJ9RvCkBFyTzWaPtSpVWw-2VW9hk01EkG1ptwfBH-8ku2tVVPCeB2QyM99kJt8gdKiiVMXKVarRk5QwEzKiaKxJqBhLBDMm8u8dnVve6rPrx_Cx_Mc9rqrdq5Skt9TTz26UclfbQwm4NU7ELJoDLCDcVe6fNqYPKwB4fFelwhzzQPg0c-B-6wjw8FVq86clvzqnKeL8liT1vudyGS2VoBE3CimvoBmTraLFT1SCa-itYhfBA4u7OeDhIW6CYRvhBwgvcQ82IGfgsVLsn-3dELBx-NzkvhYrw64A_glfFF1xtK9SLciscZLBJFCIHN8BMMX3EF0X5N6vuPv85PiX11Hv8qLXbJGyswLRgGdyYrk1NKFpohMNB6ajUNsQwmouAhoqAG2hiGLFdRAkVoBp5qeaWZUakXAbU0s3UC0bZGYT4ciEroluHGmtWZAGKtCpNqDkgjHLTVxHJ9WJSl2yjrvmFy9yypfshCBBCNIJQYo6OvqYMiwoN_4afFCJSYJiuGxHkpnBZCxdvhWiIcCTdXRcyU-WGjr-fcWtf43eR_OtXqct21e3N9toAeAUKyrUdlAtH03MLkCWXO35K_oOJh3hqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrE-I3hSgm6TzWaPtbXUVxFt1VvYZJMiyLa024Pgj3eyD6uigvdkFzKZmW8yM98gdKiCWIXKVarR05gw4zOiaKiJrxiLBDMmyN47bjq83WOXT_5TMed0XFa7lynJvKfBsTQl6ckwtifTxjdKuavzoQRcHCdiFs0x1wwMF7pXq08fWQD8ZBOWctPMPZGlnD3XuSPA25dpzp8--dVRTdHnt4Rp5oday2ipAJC4nkt8Bc2YZBUtfqIVXENvJdMIHlh8nwI2HuIGGLkRfoRQE3fhB-QMvFeMsyd8twTsHW6aNKvLSrArhu_j83xCjs4qVnNiaxwlsAmUI8V3AFLxA0TaOdH3K75_7jsu5nXUbZ13G21STFkgGrBNSiy3hkY0jnSk4cB04GvrQ4jNhUd9BQDOF0GouPa8yAow07ymmVWxERG3IbV0A1WSQWI2EQ6M7wbqhoHWmnmxpzwdawMKLxiz3IRVdFqeqNQFA7kbhPEip9zJTggShCCdEKSooqOPLcOcfuOvxQelmCQoict8RIkZTMbS5V4hMgJsWUXHpfxkoa3j37-49a_V-2j-ttmS1xedq220AMiK5cVqO6iSjiZmF9BLqvayG_oOIWjl3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Stroop+Color+Word+Test-Based+Human+Stress+Detection+using+Electrocardiography+and+Heart+Rate+Variability+Signals&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Karthikeyan%2C+P&rft.au=Murugappan%2C+M&rft.au=Yaacob%2C+S&rft.date=2014-03-01&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=39&rft.issue=3&rft.spage=1835&rft.epage=1847&rft_id=info:doi/10.1007%2Fs13369-013-0786-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon |