Analysis of Stroop Color Word Test-Based Human Stress Detection using Electrocardiography and Heart Rate Variability Signals

A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by th...

Full description

Saved in:
Bibliographic Details
Published inArabian Journal for Science and Engineering Vol. 39; no. 3; pp. 1835 - 1847
Main Authors Karthikeyan, P., Murugappan, M., Yaacob, S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by this stressor. A total of 10 female subjects (aged 20–25 years) participated in this study. A time and frequency domain analysis of the HRV and ECG signals was done to extract the stress-related features. A total of five frequency bands and ratios of the HRV signal were used to analyze the new and existing statistical features. The results indicate that significant changes between the normal and stressed states are more evident with a classification accuracy of 79.17 %. Alternatively, the low frequency range (0.04–0.5 Hz) of the ECG signal (0–100 Hz) was used to identify the effect of stress instead of the usual frequency domain analysis of the HRV signal (0.04–0.5 Hz). To extract the stress-related features of the ECG signal, a discrete wavelet transform based feature extraction was performed using the “ db4 ” and “ coif5 ” wavelet functions. A set of eight statistical features was extracted from the two different frequency bands and the three frequency band ratios. All of the extracted features were classified into two states (stress and normal) using the simple non-linear K-nearest neighbor classifier. The experimental results gave the maximum average accuracy of 94.58 and 94.22 % with the “ db4 ” and “ coif5 ” wavelet functions, respectively. Remarkably, the classification results obtained with the features of the ECG and HRV signals were completely independent of the post-task questionnaire. The outcome of this work was helpful to develop the multiple physiological signal based stress system using optimal features in these two signals.
AbstractList A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by this stressor. A total of 10 female subjects (aged 20-25 years) participated in this study. A time and frequency domain analysis of the HRV and ECG signals was done to extract the stress-related features. A total of five frequency bands and ratios of the HRV signal were used to analyze the new and existing statistical features. The results indicate that significant changes between the normal and stressed states are more evident with a classification accuracy of 79.17 %. Alternatively, the low frequency range (0.04-0.5 Hz) of the ECG signal (0-100 Hz) was used to identify the effect of stress instead of the usual frequency domain analysis of the HRV signal (0.04-0.5 Hz). To extract the stress-related features of the ECG signal, a discrete wavelet transform based feature extraction was performed using the "db4" and "coif5" wavelet functions. A set of eight statistical features was extracted from the two different frequency bands and the three frequency band ratios. All of the extracted features were classified into two states (stress and normal) using the simple non-linear K-nearest neighbor classifier. The experimental results gave the maximum average accuracy of 94.58 and 94.22 % with the "db4" and "coif5" wavelet functions, respectively. Remarkably, the classification results obtained with the features of the ECG and HRV signals were completely independent of the post-task questionnaire. The outcome of this work was helpful to develop the multiple physiological signal based stress system using optimal features in these two signals.
A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test (stressor) was used to induce stress, and the ECG signal was acquired throughout the experiment to identify the variations that are induced by this stressor. A total of 10 female subjects (aged 20–25 years) participated in this study. A time and frequency domain analysis of the HRV and ECG signals was done to extract the stress-related features. A total of five frequency bands and ratios of the HRV signal were used to analyze the new and existing statistical features. The results indicate that significant changes between the normal and stressed states are more evident with a classification accuracy of 79.17 %. Alternatively, the low frequency range (0.04–0.5 Hz) of the ECG signal (0–100 Hz) was used to identify the effect of stress instead of the usual frequency domain analysis of the HRV signal (0.04–0.5 Hz). To extract the stress-related features of the ECG signal, a discrete wavelet transform based feature extraction was performed using the “ db4 ” and “ coif5 ” wavelet functions. A set of eight statistical features was extracted from the two different frequency bands and the three frequency band ratios. All of the extracted features were classified into two states (stress and normal) using the simple non-linear K-nearest neighbor classifier. The experimental results gave the maximum average accuracy of 94.58 and 94.22 % with the “ db4 ” and “ coif5 ” wavelet functions, respectively. Remarkably, the classification results obtained with the features of the ECG and HRV signals were completely independent of the post-task questionnaire. The outcome of this work was helpful to develop the multiple physiological signal based stress system using optimal features in these two signals.
Author Karthikeyan, P.
Yaacob, S.
Murugappan, M.
Author_xml – sequence: 1
  givenname: P.
  surname: Karthikeyan
  fullname: Karthikeyan, P.
  email: karthi_209170@yahoo.com
  organization: School of Mechatronics Engineering, Universiti Malaysia Perlis
– sequence: 2
  givenname: M.
  surname: Murugappan
  fullname: Murugappan, M.
  organization: School of Mechatronics Engineering, Universiti Malaysia Perlis
– sequence: 3
  givenname: S.
  surname: Yaacob
  fullname: Yaacob, S.
  organization: School of Mechatronics Engineering, Universiti Malaysia Perlis
BookMark eNp9kLFuFDEQhi0UJC6BB6BzSWPwrGOvtwxHIEiRIiUnKK1Zr3042rMP21ucxMPj1VFRpBqN9H_za75LchFTdIS8B_4ROO8_FRBCDYyDYLzXiulXZNPBAOy603BBNiBgYJp38g25LOWZcwW6Fxvy5ybifCqh0OTpU80pHek2zSnTnylPdOdKZZ-xuIneLQeMa8SVQr-46mwNKdKlhLint3Nbc7KYp5D2GY-_ThRjgxzmSh-xOvoDc8AxzKGe6FPYt9rylrz2bbh3_-YV2X293W3v2P3Dt-_bm3tmOwmVeeWdQDGhRcthsL20XrpRKA1CjkpyqfthVBYAvXZoVWev_Tg5jcoPwosr8uF89pjT76V9ZA6hWDfPGF1aigEpB9VLgK5F4Ry1OZWSnTfHHA6YTwa4WUWbs2jTRJtVtNGN6f9jbKi4yqkZw_wi2Z3J0lri3mXznJa8mnkB-guZbZb6
CitedBy_id crossref_primary_10_1016_j_autcon_2019_102851
crossref_primary_10_3390_s20143905
crossref_primary_10_1016_j_cmpb_2020_105408
crossref_primary_10_1109_TVCG_2024_3385637
crossref_primary_10_1109_MCE_2020_2993427
crossref_primary_10_1155_2021_6631616
crossref_primary_10_1016_j_cmpb_2020_105482
crossref_primary_10_1016_j_bspc_2024_106379
crossref_primary_10_3390_s19030455
crossref_primary_10_1007_s13246_016_0476_4
crossref_primary_10_1109_TAFFC_2021_3055294
crossref_primary_10_1016_j_buildenv_2021_108697
crossref_primary_10_1016_j_compbiomed_2021_104377
crossref_primary_10_1109_JBHI_2018_2883751
crossref_primary_10_1007_s12559_022_10042_2
crossref_primary_10_1007_s12008_021_00765_1
crossref_primary_10_1186_s12938_021_00911_6
crossref_primary_10_3390_bios12070465
crossref_primary_10_1109_TAFFC_2019_2946829
crossref_primary_10_1155_2016_5136705
crossref_primary_10_1088_1361_6501_ac3aae
crossref_primary_10_3390_app12168052
crossref_primary_10_1016_j_sna_2017_02_023
crossref_primary_10_1007_s11517_019_01958_3
crossref_primary_10_2196_32656
crossref_primary_10_4236_ojpsych_2022_123017
crossref_primary_10_1007_s12652_020_02650_3
crossref_primary_10_31436_iiumej_v25i2_3017
crossref_primary_10_1016_j_bspc_2019_101736
crossref_primary_10_3390_app14209527
crossref_primary_10_1080_13811118_2020_1841052
crossref_primary_10_1109_ACCESS_2019_2916147
crossref_primary_10_1109_JSEN_2022_3157795
crossref_primary_10_1109_JSEN_2024_3506984
crossref_primary_10_1044_2017_AJSLP_16_0172
Cites_doi 10.1109/TITS.2005.848368
10.1109/NEBC.2009.4967756
10.1109/ICBBE.2010.5516360
10.1007/978-3-540-89859-7_5
10.1109/ICCSCE.2011.6190533
10.1007/s11235-010-9286-2
10.1037/t39835-000
10.1093/oxfordjournals.eurheartj.a014868
10.1109/IEMBS.2006.259421
10.1017/S0263574702004484
10.1109/STUDENT.2012.6408369
10.1109/TBME.2005.844028
10.1016/j.autneu.2009.10.003
10.1016/S0167-8760(97)00049-4
10.1109/CSPA.2011.5759914
10.15676/ijeei.2012.4.2.9
10.1109/TFUZZ.2006.889825
10.1016/S0161-6420(00)00649-7
10.1006/nimg.2000.0662
10.1007/s13369-012-0288-0
10.1016/j.psyneuen.2010.08.004
10.1589/jpts.24.1341
10.1109/IVS.2007.4290190
10.1159/000119004
10.1109/TSMCA.2008.918624
ContentType Journal Article
Copyright King Fahd University of Petroleum and Minerals 2013
Copyright_xml – notice: King Fahd University of Petroleum and Minerals 2013
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s13369-013-0786-8
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 1847
ExternalDocumentID 10_1007_s13369_013_0786_8
GroupedDBID 06D
0VY
23M
29~
2KM
30V
4.4
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ABULA
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
ANMIH
AYJHY
BGNMA
C1A
ESBYG
ESX
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HF~
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
M4Y
NU0
O9-
O93
OK1
P9P
R9I
RLLFE
S1Z
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
AAYXX
CITATION
OVT
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c251t-f6fe3a3dacac019c75cf5eb368135b6505879b6c11af8eac62c4fbde8a6f93f3
IEDL.DBID U2A
ISSN 1319-8025
IngestDate Thu Jul 10 23:10:37 EDT 2025
Tue Jul 01 01:33:51 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Heart rate variability (HRV)
Discrete wavelet transform (DWT)
K nearest neighbor (KNN)
Human stress
Stroop colour word test
Electrocardiogram (ECG)
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-f6fe3a3dacac019c75cf5eb368135b6505879b6c11af8eac62c4fbde8a6f93f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1559675112
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1559675112
crossref_primary_10_1007_s13369_013_0786_8
crossref_citationtrail_10_1007_s13369_013_0786_8
springer_journals_10_1007_s13369_013_0786_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140300
2014-3-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 3
  year: 2014
  text: 20140300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Arabian Journal for Science and Engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References El-DahshanE.-S.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst201046320921510.1007/s11235-010-9286-2
Zhai, J.; Barreto, A.: Stress detection in computer users based on digital signal processing of noninvasive physiological variables. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 06), pp. 1355–1358 (2006)
MalikM.Heart rate variability, standards of measurement, physiological interpretation, and clinical useEur. Heart J.1996173354381
Jeong, I.C.; Park, S.W.; Ko, J.; Yoon, H.R.: Automobile driver’s stress index provision system that utilizes electrocardiogram. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey 2007, pp. 652–656. IEEE
Mahesh, C.; RA, A.; MD, U.: Suppression of noise in the ECG signal using digital IIR filter. In: Paper presented at the 8th WSEAS International Conference on Multimedia Systems and Signal Processing, Hangzhou, China
Karthikeyan, P.; Murugappan, M.; Yaacob, S.: Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. J. Phys. Therapy Sci. 24(12), (2012)
LundbergU.MelinB.Psychophysiological stress and emg activity of the trapezius muscleInt. J. Behav. Med.199414354370
Rani, P.; Sims, J.; Brackin, R.; Sarkar, N.: Online stress detection using psychophysiological signals for implicit human-robot cooperation. 20(06), 673–685 (2002). doi:10.1017/S0263574702004484
IversR.Q.MacaskillP.CummingR.G.MitchellP.Sensitivity and specificity of tests to detect eye disease in an older populationOphthalmology20011085968975
Smith, M.; Sega, R.; Segal, J.: Understanding Stress-Signs, Symptoms, Causes, and Effects. http://www.helpguide.org/mental/stress_signs.htm (2011)
HolmesT.RaheR.The social readjustment rating scaleJ. Psychosom. Res.1967112213218
KarthikeyanP.MurugappanM.YaacobS.ECG signal denoising using wavelet thresholding technique in human stress assessmentInt. J. Electr. Eng. Inform.201242306319
SeraganianP.SzaboA.BrownT.G.The Effect of Vocalization on the Heart Rate Response to Mental ArithmeticPhysiol. Behav.1997622221224
De Santos Sierra, A.; Sanchez Avila, C.; Casanova, J.; Del Pozo, G.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Indus. Electron. 58(10), 4857–4865 (2011)
KarthikeyanP.MurugappanM.YaacobS.Detection of Human stress using Short-Term ECG and HRV signalsJ. Mech. Med. Biol.2013133129
Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A study on mental arithmetic task based human stress level classification using discrete wavelet transform. In: Third IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE STUDENT 2012), Kuala Lumpur, Malaysia, 6–9 (2012)
DawansB.KirschbaumC.HeinrichsM.The trier social stress test for groups (TSST-G): a new research tool for controlled simultaneous social stress exposure in a group formatPsychoneuroendocrinology2010364514522
PujolJ.VendrellP.DeusJ.JunquéC.BelloJ.Martí-VilaltaJ.CapdevilaA.The effect of medial frontal and posterior parietal demyelinating lesions on Stroop interferenceNeuroimage20011316875
OmarH.AbidoM.Enhancement of integrated fuzzy-based guidance law by tabu searchArab. J. Sci. Eng.20123772035204610.1007/s13369-012-0288-0
KirschbaumC.PirkeK.M.HellhammerD.H.The trier social stress test—a tool for investigating psychobiological stress responses in a laboratory settingNeuropsychobiology1993281–27681
HealeyJ.PicardR.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.20056215616610.1109/TITS.2005.848368
Ranganathan, G.; Bindhu, V.; Rangarajan, R.: ECG signal processing using dyadic wavelet for mental stress assessment. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 18-20 June 2010, pp. 1–4 (2010)
RenaudP.BlondinJ.P.The stress of Stroop performance: physiological and emotional responses to color word interference, task pacing, and pacing speedInt. J. Psychophysiol.199727879710.1016/S0167-8760(97)00049-4
Kim, J.; André, E.: Fusion of multichannel biosignals towards automatic emotion recognition multisensor fusion and integration for intelligent systems. In: Hahn, H.; Ko, H.; Lee, S. (eds.) Lecture Notes in Electrical Engineering, vol. 35, pp. 55–68. Springer, Berlin (2009)
KumarM.WeippertM.VilbrandtR.KreuzfeldS.StollR.Fuzzy evaluation of heart rate signals for mental stress assessmentIEEE Trans. Fuzzy Syst.2007155791808
GliffordG.D.Quantifying errors in spectral estimates of HRV due to beat replacement and resamplingIEEE Trans. Biomed. Eng.20055263063810.1109/TBME.2005.844028
TaelmanJ.VandeputS.SpaepenA.HuffelS.V.Influence of mental stress on heart rate and heart rate variability. ECIFMBE 2008IFMBE Proc.20082213661369
Katsis, C.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.: Toward emotion recognition in car-racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(3) (2008)
PehlivanogluB.DurmazlarN.BalkanciD.Computer adapted Stroop colour-word conflict test as a laboratory stress modelErciyes Med. J.20052725863
Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A review on stress inducement stimuli for assessing human stress using physiological signals. In: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), 4–6 March 2011, pp. 420–425
Elgendi, M.; Jonkman, M.; DeBoer, F.: R wave detection using Coiflets wavelets. In: Paper presented at the 35th Annual Northeast Bioengineering Conference in IEEE, Boston, MA
Center, E.L.: Knowledge Weavers Project-ECG. http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/lead_dia.html (2012). Accessed 27 Aug 2012
TulenH.MolemanP.SteenistH.V.BoomsmaF.Characterization of stress reactions to the Stroop color word testPharmacol. Biochem. Behav.1989321915
DahshanE.S.E.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst.201046320921510.1007/s11235-010-9286-2
Lovibond, S.H.; Lovibond, P.F.: Manual for the depression anxiety stress scales. Psychology Foundation, Sydney (1995)
Karthikeyan, P.; Murugappan, M.; Yaacob, S.: ECG signals based mental stress assessment using wavelet transform. In: 2011 IEEE International Conference on Control System Computing and Engineering (ICCSCE), 25–27 Nov 2011, pp. 258–262 (2011)
HealeyJ.A.PicardR.W.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.200562156166
SvetlakM.BobP.CernikM.KukletaM.Electrodermal complexity during the Stroop Colour Word TestAuton. Neurosci. Basic Clin.201015210110710.1016/j.autneu.2009.10.003
Seong, H.; Lee, J.; Shin, T.; Kim, W.; Yoon, Y.; Yoon, Y.: The analysis of mental stress using time-frequency distribution of heart rate variability signal. In: 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 283–284 (2004)
AydinS.KilicI.TemeltasH.Using Linde Buzo Gray clustering neural networks for solving the motion equations of a mobile robotArab. J. Sci. Eng.2011365795807
M. Svetlak (786_CR8) 2010; 152
786_CR26
786_CR25
786_CR28
E.S.E. Dahshan (786_CR24) 2010; 46
786_CR27
786_CR21
J. Healey (786_CR31) 2005; 6
786_CR40
H. Omar (786_CR36) 2012; 37
786_CR9
E.-S. El-Dahshan (786_CR23) 2010; 46
P. Karthikeyan (786_CR22) 2012; 4
786_CR18
786_CR15
786_CR37
786_CR14
786_CR17
786_CR39
786_CR16
786_CR38
786_CR33
786_CR32
786_CR13
786_CR35
786_CR12
786_CR34
786_CR30
P. Karthikeyan (786_CR19) 2013; 13
786_CR4
P. Renaud (786_CR10) 1997; 27
786_CR3
786_CR2
786_CR1
786_CR7
786_CR6
786_CR5
G.D. Glifford (786_CR20) 2005; 52
B. Pehlivanoglu (786_CR11) 2005; 27
786_CR29
References_xml – reference: Lovibond, S.H.; Lovibond, P.F.: Manual for the depression anxiety stress scales. Psychology Foundation, Sydney (1995)
– reference: TaelmanJ.VandeputS.SpaepenA.HuffelS.V.Influence of mental stress on heart rate and heart rate variability. ECIFMBE 2008IFMBE Proc.20082213661369
– reference: Seong, H.; Lee, J.; Shin, T.; Kim, W.; Yoon, Y.; Yoon, Y.: The analysis of mental stress using time-frequency distribution of heart rate variability signal. In: 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 283–284 (2004)
– reference: Katsis, C.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.: Toward emotion recognition in car-racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(3) (2008)
– reference: KumarM.WeippertM.VilbrandtR.KreuzfeldS.StollR.Fuzzy evaluation of heart rate signals for mental stress assessmentIEEE Trans. Fuzzy Syst.2007155791808
– reference: HealeyJ.A.PicardR.W.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.200562156166
– reference: Center, E.L.: Knowledge Weavers Project-ECG. http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/lead_dia.html (2012). Accessed 27 Aug 2012
– reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A review on stress inducement stimuli for assessing human stress using physiological signals. In: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), 4–6 March 2011, pp. 420–425
– reference: Elgendi, M.; Jonkman, M.; DeBoer, F.: R wave detection using Coiflets wavelets. In: Paper presented at the 35th Annual Northeast Bioengineering Conference in IEEE, Boston, MA
– reference: GliffordG.D.Quantifying errors in spectral estimates of HRV due to beat replacement and resamplingIEEE Trans. Biomed. Eng.20055263063810.1109/TBME.2005.844028
– reference: AydinS.KilicI.TemeltasH.Using Linde Buzo Gray clustering neural networks for solving the motion equations of a mobile robotArab. J. Sci. Eng.2011365795807
– reference: SvetlakM.BobP.CernikM.KukletaM.Electrodermal complexity during the Stroop Colour Word TestAuton. Neurosci. Basic Clin.201015210110710.1016/j.autneu.2009.10.003
– reference: KarthikeyanP.MurugappanM.YaacobS.ECG signal denoising using wavelet thresholding technique in human stress assessmentInt. J. Electr. Eng. Inform.201242306319
– reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: ECG signals based mental stress assessment using wavelet transform. In: 2011 IEEE International Conference on Control System Computing and Engineering (ICCSCE), 25–27 Nov 2011, pp. 258–262 (2011)
– reference: KarthikeyanP.MurugappanM.YaacobS.Detection of Human stress using Short-Term ECG and HRV signalsJ. Mech. Med. Biol.2013133129
– reference: El-DahshanE.-S.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst201046320921510.1007/s11235-010-9286-2
– reference: HolmesT.RaheR.The social readjustment rating scaleJ. Psychosom. Res.1967112213218
– reference: PujolJ.VendrellP.DeusJ.JunquéC.BelloJ.Martí-VilaltaJ.CapdevilaA.The effect of medial frontal and posterior parietal demyelinating lesions on Stroop interferenceNeuroimage20011316875
– reference: OmarH.AbidoM.Enhancement of integrated fuzzy-based guidance law by tabu searchArab. J. Sci. Eng.20123772035204610.1007/s13369-012-0288-0
– reference: De Santos Sierra, A.; Sanchez Avila, C.; Casanova, J.; Del Pozo, G.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Indus. Electron. 58(10), 4857–4865 (2011)
– reference: RenaudP.BlondinJ.P.The stress of Stroop performance: physiological and emotional responses to color word interference, task pacing, and pacing speedInt. J. Psychophysiol.199727879710.1016/S0167-8760(97)00049-4
– reference: HealeyJ.PicardR.Detecting stress during real-world driving tasks using physiological sensorsIEEE Trans. Intell. Transport. Syst.20056215616610.1109/TITS.2005.848368
– reference: DawansB.KirschbaumC.HeinrichsM.The trier social stress test for groups (TSST-G): a new research tool for controlled simultaneous social stress exposure in a group formatPsychoneuroendocrinology2010364514522
– reference: PehlivanogluB.DurmazlarN.BalkanciD.Computer adapted Stroop colour-word conflict test as a laboratory stress modelErciyes Med. J.20052725863
– reference: Ranganathan, G.; Bindhu, V.; Rangarajan, R.: ECG signal processing using dyadic wavelet for mental stress assessment. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 18-20 June 2010, pp. 1–4 (2010)
– reference: MalikM.Heart rate variability, standards of measurement, physiological interpretation, and clinical useEur. Heart J.1996173354381
– reference: DahshanE.S.E.Genetic algorithm and wavelet hybrid scheme for ECG signal denoisingTelecommun. Syst.201046320921510.1007/s11235-010-9286-2
– reference: LundbergU.MelinB.Psychophysiological stress and emg activity of the trapezius muscleInt. J. Behav. Med.199414354370
– reference: Zhai, J.; Barreto, A.: Stress detection in computer users based on digital signal processing of noninvasive physiological variables. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 06), pp. 1355–1358 (2006)
– reference: Jeong, I.C.; Park, S.W.; Ko, J.; Yoon, H.R.: Automobile driver’s stress index provision system that utilizes electrocardiogram. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey 2007, pp. 652–656. IEEE
– reference: TulenH.MolemanP.SteenistH.V.BoomsmaF.Characterization of stress reactions to the Stroop color word testPharmacol. Biochem. Behav.1989321915
– reference: Rani, P.; Sims, J.; Brackin, R.; Sarkar, N.: Online stress detection using psychophysiological signals for implicit human-robot cooperation. 20(06), 673–685 (2002). doi:10.1017/S0263574702004484
– reference: Kim, J.; André, E.: Fusion of multichannel biosignals towards automatic emotion recognition multisensor fusion and integration for intelligent systems. In: Hahn, H.; Ko, H.; Lee, S. (eds.) Lecture Notes in Electrical Engineering, vol. 35, pp. 55–68. Springer, Berlin (2009)
– reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. J. Phys. Therapy Sci. 24(12), (2012)
– reference: IversR.Q.MacaskillP.CummingR.G.MitchellP.Sensitivity and specificity of tests to detect eye disease in an older populationOphthalmology20011085968975
– reference: Mahesh, C.; RA, A.; MD, U.: Suppression of noise in the ECG signal using digital IIR filter. In: Paper presented at the 8th WSEAS International Conference on Multimedia Systems and Signal Processing, Hangzhou, China
– reference: SeraganianP.SzaboA.BrownT.G.The Effect of Vocalization on the Heart Rate Response to Mental ArithmeticPhysiol. Behav.1997622221224
– reference: Smith, M.; Sega, R.; Segal, J.: Understanding Stress-Signs, Symptoms, Causes, and Effects. http://www.helpguide.org/mental/stress_signs.htm (2011)
– reference: Karthikeyan, P.; Murugappan, M.; Yaacob, S.: A study on mental arithmetic task based human stress level classification using discrete wavelet transform. In: Third IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE STUDENT 2012), Kuala Lumpur, Malaysia, 6–9 (2012)
– reference: KirschbaumC.PirkeK.M.HellhammerD.H.The trier social stress test—a tool for investigating psychobiological stress responses in a laboratory settingNeuropsychobiology1993281–27681
– volume: 6
  start-page: 156
  issue: 2
  year: 2005
  ident: 786_CR31
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2005.848368
– ident: 786_CR30
  doi: 10.1109/NEBC.2009.4967756
– ident: 786_CR28
– ident: 786_CR25
  doi: 10.1109/ICBBE.2010.5516360
– ident: 786_CR32
  doi: 10.1007/978-3-540-89859-7_5
– volume: 27
  start-page: 58
  issue: 2
  year: 2005
  ident: 786_CR11
  publication-title: Erciyes Med. J.
– ident: 786_CR35
  doi: 10.1109/ICCSCE.2011.6190533
– volume: 46
  start-page: 209
  issue: 3
  year: 2010
  ident: 786_CR24
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-010-9286-2
– ident: 786_CR7
  doi: 10.1037/t39835-000
– ident: 786_CR27
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– ident: 786_CR2
  doi: 10.1109/IEMBS.2006.259421
– volume: 13
  start-page: 1
  issue: 3
  year: 2013
  ident: 786_CR19
  publication-title: J. Mech. Med. Biol.
– ident: 786_CR17
– ident: 786_CR9
  doi: 10.1017/S0263574702004484
– ident: 786_CR5
– ident: 786_CR21
  doi: 10.1109/STUDENT.2012.6408369
– volume: 52
  start-page: 630
  year: 2005
  ident: 786_CR20
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.844028
– ident: 786_CR1
– ident: 786_CR3
– volume: 152
  start-page: 101
  year: 2010
  ident: 786_CR8
  publication-title: Auton. Neurosci. Basic Clin.
  doi: 10.1016/j.autneu.2009.10.003
– ident: 786_CR37
– volume: 46
  start-page: 209
  issue: 3
  year: 2010
  ident: 786_CR23
  publication-title: Telecommun. Syst
  doi: 10.1007/s11235-010-9286-2
– volume: 27
  start-page: 87
  year: 1997
  ident: 786_CR10
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(97)00049-4
– ident: 786_CR12
– ident: 786_CR14
– ident: 786_CR29
– ident: 786_CR16
  doi: 10.1109/CSPA.2011.5759914
– volume: 4
  start-page: 306
  issue: 2
  year: 2012
  ident: 786_CR22
  publication-title: Int. J. Electr. Eng. Inform.
  doi: 10.15676/ijeei.2012.4.2.9
– ident: 786_CR34
  doi: 10.1109/TFUZZ.2006.889825
– ident: 786_CR38
  doi: 10.1016/S0161-6420(00)00649-7
– ident: 786_CR18
– ident: 786_CR26
  doi: 10.1006/nimg.2000.0662
– volume: 37
  start-page: 2035
  issue: 7
  year: 2012
  ident: 786_CR36
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-012-0288-0
– ident: 786_CR40
  doi: 10.1016/j.psyneuen.2010.08.004
– ident: 786_CR39
– ident: 786_CR13
  doi: 10.1589/jpts.24.1341
– ident: 786_CR15
  doi: 10.1109/IVS.2007.4290190
– ident: 786_CR6
– ident: 786_CR4
  doi: 10.1159/000119004
– ident: 786_CR33
  doi: 10.1109/TSMCA.2008.918624
SSID ssj0061873
ssj0001916267
Score 2.1814554
Snippet A stress assessment based on the electrocardiography (ECG) and heart rate variability (HRV) signals is described in this paper. The Stroop color word test...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1835
SubjectTerms Classification
Electrocardiography
Engineering
Feature extraction
Frequency bands
Frequency domain analysis
Heart rate
Humanities and Social Sciences
multidisciplinary
Research Article - Computer Engineering and Computer Science
Science
Stresses
Wavelet
Title Analysis of Stroop Color Word Test-Based Human Stress Detection using Electrocardiography and Heart Rate Variability Signals
URI https://link.springer.com/article/10.1007/s13369-013-0786-8
https://www.proquest.com/docview/1559675112
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB2R9tIeUPmoGqCRkXoCWarrj_UeQ5s0AtEDSSE9WWuvXSGhTZRsD0j8eMbe3S4gQOrd9kqe9cwbz_MbgBOblTa3kanGT0sqvBTU8txRaYUotPA-S_cdH6_U7Fq8X8pl-45727Hdu5Jk8tT9YzfOVeT2cIphTVE9gF2JqXvkcV2fjfuLFQQ8qatS444V06nMzOJrHY0Rvitt_m3J34NTjzj_KJKm2DM9gMctaCTjxspP4JGvnsL-L1KCz-BHpy5CVoHMa8TDa3KOjm1DvmB6SRb4AfoOI1ZJ0rV9HII-jlz4OnGxKhIJ8Ldk0nTFcYml2ohZk6LCSXggavIJgSn5jNl1I-79ncy_3kb95eewmE4W5zPadlagDvFMTYMKnhe8LFzhcMNcJl2QmFYrzbi0CNqkznKrHGNF0Oia1ZkTwZZeFyrkPPBD2KlWlT8CknkZm-jmmXNOsJJZ5krn8ZBrIYLy-RBOux01rlUdj80vvpleLzkawaARTDSC0UN4cz9l3Uhu_G_w685MBg9GrHYUlV_dbU2st2I2hHhyCG87-5n2hG7_veKLB41-CXsIoUTDSnsFO_Xmzh8jTKntCHbHlzcfJiMYXC7ZKP2kPwG9P-E9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGJ9RvCkBFyTzWaPtSpVWw-2VW9hk01EkG1ptwfBH-8ku2tVVPCeB2QyM99kJt8gdKiiVMXKVarRk5QwEzKiaKxJqBhLBDMm8u8dnVve6rPrx_Cx_Mc9rqrdq5Skt9TTz26UclfbQwm4NU7ELJoDLCDcVe6fNqYPKwB4fFelwhzzQPg0c-B-6wjw8FVq86clvzqnKeL8liT1vudyGS2VoBE3CimvoBmTraLFT1SCa-itYhfBA4u7OeDhIW6CYRvhBwgvcQ82IGfgsVLsn-3dELBx-NzkvhYrw64A_glfFF1xtK9SLciscZLBJFCIHN8BMMX3EF0X5N6vuPv85PiX11Hv8qLXbJGyswLRgGdyYrk1NKFpohMNB6ajUNsQwmouAhoqAG2hiGLFdRAkVoBp5qeaWZUakXAbU0s3UC0bZGYT4ciEroluHGmtWZAGKtCpNqDkgjHLTVxHJ9WJSl2yjrvmFy9yypfshCBBCNIJQYo6OvqYMiwoN_4afFCJSYJiuGxHkpnBZCxdvhWiIcCTdXRcyU-WGjr-fcWtf43eR_OtXqct21e3N9toAeAUKyrUdlAtH03MLkCWXO35K_oOJh3hqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrE-I3hSgm6TzWaPtbXUVxFt1VvYZJMiyLa024Pgj3eyD6uigvdkFzKZmW8yM98gdKiCWIXKVarR05gw4zOiaKiJrxiLBDMmyN47bjq83WOXT_5TMed0XFa7lynJvKfBsTQl6ckwtifTxjdKuavzoQRcHCdiFs0x1wwMF7pXq08fWQD8ZBOWctPMPZGlnD3XuSPA25dpzp8--dVRTdHnt4Rp5oday2ipAJC4nkt8Bc2YZBUtfqIVXENvJdMIHlh8nwI2HuIGGLkRfoRQE3fhB-QMvFeMsyd8twTsHW6aNKvLSrArhu_j83xCjs4qVnNiaxwlsAmUI8V3AFLxA0TaOdH3K75_7jsu5nXUbZ13G21STFkgGrBNSiy3hkY0jnSk4cB04GvrQ4jNhUd9BQDOF0GouPa8yAow07ymmVWxERG3IbV0A1WSQWI2EQ6M7wbqhoHWmnmxpzwdawMKLxiz3IRVdFqeqNQFA7kbhPEip9zJTggShCCdEKSooqOPLcOcfuOvxQelmCQoict8RIkZTMbS5V4hMgJsWUXHpfxkoa3j37-49a_V-2j-ttmS1xedq220AMiK5cVqO6iSjiZmF9BLqvayG_oOIWjl3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Stroop+Color+Word+Test-Based+Human+Stress+Detection+using+Electrocardiography+and+Heart+Rate+Variability+Signals&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Karthikeyan%2C+P&rft.au=Murugappan%2C+M&rft.au=Yaacob%2C+S&rft.date=2014-03-01&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=39&rft.issue=3&rft.spage=1835&rft.epage=1847&rft_id=info:doi/10.1007%2Fs13369-013-0786-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon