Coalescence mechanisms of nanodroplets on interfaces with different hydrophobicity: A dynamic density functional study
•We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions of the three coalescence modes.•We summarized the correlation between coalescence and various conditions. The coalescence of nanodroplets on...
Saved in:
Published in | Chemical engineering science Vol. 313; p. 121694 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2509 |
DOI | 10.1016/j.ces.2025.121694 |
Cover
Loading…
Abstract | •We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions of the three coalescence modes.•We summarized the correlation between coalescence and various conditions.
The coalescence of nanodroplets on interfaces is an important subject in many fields but the underlying mechanisms remain unsettled. In this work, we introduce a dynamic density functional theory (DDFT) to examine this process, focusing on surface hydrophobicity. We found that coalescence time monotonically correlates with the contact angle (CA) of the droplets and there are three typical coalescence modes: vapor bridging, surface bridging and evaporation, depending on the hydrophobicity and the size difference of the droplet. Hydrophilic surfaces consistently induce surface bridging. On hydrophobic surfaces, vapor bridging occurs when droplet sizes are similar; conversely, when one droplet is large enough to encompass the center point, coalescence will perform in the evaporation mode. The evolution of density profile, local chemical potential, flux and free energy have been examined, which provide an insight into the interfacial coalescence of nanodroplet. |
---|---|
AbstractList | •We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions of the three coalescence modes.•We summarized the correlation between coalescence and various conditions.
The coalescence of nanodroplets on interfaces is an important subject in many fields but the underlying mechanisms remain unsettled. In this work, we introduce a dynamic density functional theory (DDFT) to examine this process, focusing on surface hydrophobicity. We found that coalescence time monotonically correlates with the contact angle (CA) of the droplets and there are three typical coalescence modes: vapor bridging, surface bridging and evaporation, depending on the hydrophobicity and the size difference of the droplet. Hydrophilic surfaces consistently induce surface bridging. On hydrophobic surfaces, vapor bridging occurs when droplet sizes are similar; conversely, when one droplet is large enough to encompass the center point, coalescence will perform in the evaporation mode. The evolution of density profile, local chemical potential, flux and free energy have been examined, which provide an insight into the interfacial coalescence of nanodroplet. |
ArticleNumber | 121694 |
Author | Ding, Fanfeng Liu, Yu |
Author_xml | – sequence: 1 givenname: Fanfeng surname: Ding fullname: Ding, Fanfeng – sequence: 2 givenname: Yu surname: Liu fullname: Liu, Yu email: liuyu89@mail.sysu.edu.cn |
BookMark | eNp9kM1uwyAQhDmkUpO0D9AbL2AXMI5De4qi_kmRemnPCMMiE9kQAUnlt6-t9NzTalY7o51vhRY-eEDogZKSErp5PJYaUskIq0vK6EbwBVoSQkTBaiJu0Sql4ySbhpIluuyD6iFp8BrwALpT3qUh4WCxVz6YGE495El77HyGaNWUjX9c7rBx1kIEn3E3znddaJ12eXzCO2xGrwansQGfphW2Z6-zC171OOWzGe_QjVV9gvu_uUbfry9f-_fi8Pn2sd8dCs1qmgsw1ZZb3VDBG6Eos4Zw3rCKblUrxFYZ1nCwBioraGs1r7Wuad2QllLLDWfVGtFrro4hpQhWnqIbVBwlJXKGJY9yKiRnWPIKa_I8Xz0wPXZxEGXSbuZjXASdpQnuH_cvIiZ5LA |
Cites_doi | 10.1016/j.ijmultiphaseflow.2025.105129 10.1016/j.ces.2022.117957 10.1021/acs.langmuir.1c00077 10.1002/dro2.106 10.1021/acs.jpcc.8b08927 10.1063/1.1672048 10.1039/C7SM01857F 10.1021/acs.langmuir.1c02052 10.1021/nl304647t 10.1038/s41586-022-05384-8 10.1007/BF01017860 10.1007/s00332-017-9422-1 10.1021/acs.jpcc.0c00175 10.1016/j.carbpol.2021.118586 10.1063/1.1778374 10.1021/acs.langmuir.2c02029 10.1016/j.molliq.2024.124694 10.1126/science.adj6728 10.1063/1.1701689 10.1021/nl303835d 10.1063/1.478705 10.1002/aic.16169 10.1007/s11051-005-9056-3 10.1016/j.molliq.2024.124009 10.1038/s41467-023-40279-w 10.1016/j.molliq.2023.122976 10.1021/acsami.0c16259 10.1063/1.1520530 10.1109/JPROC.2004.840301 10.1016/j.ces.2023.118667 10.1088/1361-665X/aa54a2 10.1063/5.0011151 10.1039/C8CP05014G 10.1021/acs.langmuir.4c04208 10.1016/j.ces.2021.117153 10.1126/sciadv.aav7399 10.1016/j.elstat.2024.103933 10.1021/jacs.1c08861 10.1038/s41598-020-66562-0 10.1002/adfm.202207738 10.1016/j.ijheatmasstransfer.2017.04.052 10.1016/j.cis.2021.102541 10.1016/j.foodhyd.2023.108851 10.1103/PhysRevLett.97.064501 10.1021/acsnano.5b07197 10.1017/jfm.2024.229 10.1038/s41586-020-2331-8 10.1016/j.molliq.2017.10.104 10.1080/00268979300100411 10.1126/science.adi1563 10.1063/5.0099434 10.1021/acsami.0c00234 10.1021/acsnano.0c03487 10.1038/srep34074 10.1007/s42757-022-0137-7 10.1016/j.corsci.2021.110082 10.1002/adfm.201905197 10.1016/j.ijmultiphaseflow.2021.103628 10.1088/0953-8984/12/8A/356 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ces.2025.121694 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ces_2025_121694 S0009250925005172 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSH SSZ T5K XPP ZMT ~02 ~G- AAQXK AAYXX ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AGQPQ AI. AIDUJ ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- RIG SC5 T9H VH1 WUQ Y6R ZY4 |
ID | FETCH-LOGICAL-c251t-ed384fc719479a12fd04472318ab998ad274efde3f91bfc45cc51570b11f4d423 |
IEDL.DBID | .~1 |
ISSN | 0009-2509 |
IngestDate | Sun Jul 06 05:04:27 EDT 2025 Sat Jun 14 16:51:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic density functional theory Coalescence Nanodroplet Surface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-ed384fc719479a12fd04472318ab998ad274efde3f91bfc45cc51570b11f4d423 |
ParticipantIDs | crossref_primary_10_1016_j_ces_2025_121694 elsevier_sciencedirect_doi_10_1016_j_ces_2025_121694 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering science |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Marconi, Tarazona (b0170) 1999; 110 Sivasankar, Hines, Das (b0245) 2022; 38 Wan, Wang, Feng, Chen, Wang (b0255) 2021; 273 Voorhees (b0250) 1985; 38 Archer, Evans (b0010) 2004; 121 Li, Li, Wang, Li, Duan, Li (b0140) 2018; 20 Zhong, Shi, Yang, Handschuh-Wang, Zhang, Gan, Zhou (b0305) 2023; 34 Ding, Liu (b0050) 2024; 401 Han, Wang, Han, Wang, Guo, Che, Heng, Jiang (b0085) 2022; 32 Kim, Jung, Lee, Koo, Thangam, Jang, Kim, Park, Lee, Bae, Patel, Wei, Lee, Paulmurugan, Jeong, Hyeon, Kim, Kang (b0105) 2022; 144 Fu, Deng, Dong, Mou, Hu, Zhou, Yuan (b0070) 2022; 5 Wu, Ervik, Snustad, Xiao, Brunsvold, He, Zhang (b0275) 2018; 123 Yu, Wu (b0295) 2002; 117 Frigo, Johnson (b0065) 2005; 93 Li, Zhang, Li (b0145) 2021; 37 Chu, Wu, Zhu, Yuan (b0035) 2017; 111 Pak, Li, Steve Tse (b0200) 2020; 124 Zhou, Li, Lu, Liu, Kim, Kim, Yao, Liu, Qian, Hood, Lin, Chen, Gage, Arslan, Travesset, Sun, Kotov, Chen (b0310) 2022; 612 Li, Dou, Yu, Huang, Zhang, Xu, Sun, Wang, Wang (b0120) 2021; 139 Li, Li, Wang, Duan, Li (b0135) 2016; 6 Sarma, Monga, Guo, Chen, Dai (b0240) 2024; 3 Huang, Lu, Li, Luo, Teng, Li, Li, Yin (b0095) 2024; 129 Wang, Sun, Hokkanen, Zhang, Lin, Liu, Zhu, Zhou, Chang, He, Zhou, Chen, Wang, Ras, Deng (b0260) 2020; 582 Carnahan, Starling (b0020) 1969; 51 Sang, Wei (b0235) 2024; 397 Kuang, Rong, Belal, Vu, López, Wang, Arican, Garciamendez-Mijares, Chen, Yao, Zhang (b0110) 2023; 382 Xu, Zhou, Daniel, Herzog, Wang, Sick, Adera (b0285) 2023; 14 Sanders, DeVoria, Washuta, Elamin, Skenes, Berlinghieri (b0230) 2024; 984 Miljkovic, Enright, Nam, Lopez, Dou, Sack, Wang (b0180) 2013; 13 Leong, Le (b0115) 2020; 32 Wang, Liang, Jiang, Zheng, Lan, Ma (b0265) 2018; 64 Akbarzadeh, Abbaspour, Salemi, Hasani (b0005) 2017; 248 Li, Wu, Dou, Xiang, Wang, Sun, Wang, Wang (b0125) 2025; 184 Ho, Razzaghi, Ramachandran, Mikkonen (b0090) 2022; 299 Nannette, Baudry, Chen, Song, Shglabow, Bremond, Démoulin, Walters, Weitz, Bibette (b0190) 2024; 384 Wang, Rohlfs, Kneer (b0270) 2023; 35 Xing, Li, Jiang, Zhao (b0280) 2022; 34 Di Plinio, Giorgini, Pata, Temam (b0040) 2017; 28 Prusty, Gallegos, Wu (b0210) 2023; 390 Salama (b0225) 2021; 37 Ristenpart, McCalla, Roy, Stone (b0220) 2006; 97 Liu, Chen, Zhang, Wang, Guan, Yu (b0155) 2019; 29 Gonzalez-Pinto, Martinez-Raton, Velasco (b0080) 2017; 13 Yan, Qin, Chen, Zhao, Sett, Hoque, Rabbi, Zhang, Wang, Li, Chen, Feng, Miljkovic (b0290) 2020; 14 Li, Yang, Li, Liang, Chen, He (b0130) 2025; 41 Raj, Maroo, Wang (b0215) 2013; 13 Luo, Xu, Li, Huang, He (b0160) 2022; 248 Ghaffari, Hashemabadi (b0075) 2017; 26 Johnson, Zollweg, Gubbins (b0100) 1993; 78 Mohammadi, Kashi, Kashiri, Bagheri, Chen, Ettelaie, Jäger, Shahbazi (b0185) 2023; 142 Niu, Liu, Liu, Hu (b0195) 2019; 66 Pan, Zhang, Zhong (b0205) 2021; 13 Ding, Liu (b0045) 2023; 273 Chen, Wang, Zhang, Wu, Ou (b0025) 2022; 197 Fries, Stopper, Skoda, Blum, Kertzscher, Hinderhofer, Zhang, Jacobs, Roth, Schreiber (b0060) 2020; 10 Marconi, Tarazona (b0175) 2000; 12 Lutsko (b0165) 2019; 5 Li, Bunes, Zang, Zhao, Li, Zhu, Wang (b0150) 2016; 10 Feng, Xu, Song, Wang, Wang, Wang (b0055) 2020; 12 Barker, Henderson (b0015) 1967; 47 Cheng, Xu, Yang, Lv, Lian, Liu (b0030) 2022; 261 Zhang, Miser (b0300) 2006; 8 Cheng (10.1016/j.ces.2025.121694_b0030) 2022; 261 Fries (10.1016/j.ces.2025.121694_b0060) 2020; 10 Wang (10.1016/j.ces.2025.121694_b0270) 2023; 35 Nannette (10.1016/j.ces.2025.121694_b0190) 2024; 384 Wang (10.1016/j.ces.2025.121694_b0260) 2020; 582 Johnson (10.1016/j.ces.2025.121694_b0100) 1993; 78 Kim (10.1016/j.ces.2025.121694_b0105) 2022; 144 Pan (10.1016/j.ces.2025.121694_b0205) 2021; 13 Ristenpart (10.1016/j.ces.2025.121694_b0220) 2006; 97 Ho (10.1016/j.ces.2025.121694_b0090) 2022; 299 Zhong (10.1016/j.ces.2025.121694_b0305) 2023; 34 Ding (10.1016/j.ces.2025.121694_b0045) 2023; 273 Sarma (10.1016/j.ces.2025.121694_b0240) 2024; 3 Li (10.1016/j.ces.2025.121694_b0145) 2021; 37 Li (10.1016/j.ces.2025.121694_b0130) 2025; 41 Voorhees (10.1016/j.ces.2025.121694_b0250) 1985; 38 Yu (10.1016/j.ces.2025.121694_b0295) 2002; 117 Zhang (10.1016/j.ces.2025.121694_b0300) 2006; 8 Frigo (10.1016/j.ces.2025.121694_b0065) 2005; 93 Ding (10.1016/j.ces.2025.121694_b0050) 2024; 401 Raj (10.1016/j.ces.2025.121694_b0215) 2013; 13 Marconi (10.1016/j.ces.2025.121694_b0170) 1999; 110 Li (10.1016/j.ces.2025.121694_b0150) 2016; 10 Sivasankar (10.1016/j.ces.2025.121694_b0245) 2022; 38 Kuang (10.1016/j.ces.2025.121694_b0110) 2023; 382 Di Plinio (10.1016/j.ces.2025.121694_b0040) 2017; 28 Salama (10.1016/j.ces.2025.121694_b0225) 2021; 37 Wang (10.1016/j.ces.2025.121694_b0265) 2018; 64 Liu (10.1016/j.ces.2025.121694_b0155) 2019; 29 Niu (10.1016/j.ces.2025.121694_b0195) 2019; 66 Chu (10.1016/j.ces.2025.121694_b0035) 2017; 111 Carnahan (10.1016/j.ces.2025.121694_b0020) 1969; 51 Mohammadi (10.1016/j.ces.2025.121694_b0185) 2023; 142 Leong (10.1016/j.ces.2025.121694_b0115) 2020; 32 Wu (10.1016/j.ces.2025.121694_b0275) 2018; 123 Prusty (10.1016/j.ces.2025.121694_b0210) 2023; 390 Feng (10.1016/j.ces.2025.121694_b0055) 2020; 12 Huang (10.1016/j.ces.2025.121694_b0095) 2024; 129 Li (10.1016/j.ces.2025.121694_b0140) 2018; 20 Xing (10.1016/j.ces.2025.121694_b0280) 2022; 34 Miljkovic (10.1016/j.ces.2025.121694_b0180) 2013; 13 Fu (10.1016/j.ces.2025.121694_b0070) 2022; 5 Li (10.1016/j.ces.2025.121694_b0120) 2021; 139 Xu (10.1016/j.ces.2025.121694_b0285) 2023; 14 Pak (10.1016/j.ces.2025.121694_b0200) 2020; 124 Gonzalez-Pinto (10.1016/j.ces.2025.121694_b0080) 2017; 13 Akbarzadeh (10.1016/j.ces.2025.121694_b0005) 2017; 248 Marconi (10.1016/j.ces.2025.121694_b0175) 2000; 12 Ghaffari (10.1016/j.ces.2025.121694_b0075) 2017; 26 Barker (10.1016/j.ces.2025.121694_b0015) 1967; 47 Zhou (10.1016/j.ces.2025.121694_b0310) 2022; 612 Yan (10.1016/j.ces.2025.121694_b0290) 2020; 14 Archer (10.1016/j.ces.2025.121694_b0010) 2004; 121 Li (10.1016/j.ces.2025.121694_b0125) 2025; 184 Sanders (10.1016/j.ces.2025.121694_b0230) 2024; 984 Luo (10.1016/j.ces.2025.121694_b0160) 2022; 248 Li (10.1016/j.ces.2025.121694_b0135) 2016; 6 Han (10.1016/j.ces.2025.121694_b0085) 2022; 32 Lutsko (10.1016/j.ces.2025.121694_b0165) 2019; 5 Chen (10.1016/j.ces.2025.121694_b0025) 2022; 197 Sang (10.1016/j.ces.2025.121694_b0235) 2024; 397 Wan (10.1016/j.ces.2025.121694_b0255) 2021; 273 |
References_xml | – volume: 97 year: 2006 ident: b0220 article-title: Coalescence of spreading droplets on a wettable substrate publication-title: Phys. Rev. Lett. – volume: 37 start-page: 3672 year: 2021 end-page: 3684 ident: b0225 article-title: Coalescence of an Oil Droplet with a Permeating One over a Membrane Surface: Conditions of Permeation, Recoil, and Pinning publication-title: Langmuir – volume: 984 start-page: A27 year: 2024 ident: b0230 article-title: A canonical Hamiltonian formulation of the Navier–Stokes problem publication-title: J. Fluid Mech. – volume: 14 start-page: 12796 year: 2020 end-page: 12809 ident: b0290 article-title: Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces publication-title: ACS Nano – volume: 273 year: 2023 ident: b0045 article-title: A novel density functional study on the freezing mechanism of a nanodroplet under an external electric field publication-title: Chem. Eng. Sci. – volume: 299 year: 2022 ident: b0090 article-title: Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence publication-title: Adv. Colloid Interface Sci. – volume: 142 year: 2023 ident: b0185 article-title: Self-assembly of plant polyphenols-grafted soy proteins to manufacture a highly stable antioxidative Pickering emulsion gel for direct-ink-write 3D printing publication-title: Food Hydrocoll. – volume: 13 start-page: 9246 year: 2017 end-page: 9258 ident: b0080 article-title: Dynamical properties of heterogeneous nucleation of parallel hard squares publication-title: Soft Matter – volume: 139 year: 2021 ident: b0120 article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field publication-title: Int. J. Multiph. Flow – volume: 20 start-page: 24750 year: 2018 end-page: 24758 ident: b0140 article-title: Effect of nano-pillared surfaces with an arrangement density gradient on droplet coalescence dynamics publication-title: Phys Chem Chem Phys – volume: 47 start-page: 4714 year: 1967 end-page: 4721 ident: b0015 article-title: Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids publication-title: J. Chem. Phys. – volume: 64 start-page: 2913 year: 2018 end-page: 2921 ident: b0265 article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces publication-title: AIChE J – volume: 93 start-page: 216 year: 2005 end-page: 231 ident: b0065 article-title: The design and implementation of FFTW3 publication-title: Proc. IEEE – volume: 10 start-page: 10349 year: 2020 ident: b0060 article-title: Enhanced protein adsorption upon bulk phase separation publication-title: Sci. Rep. – volume: 129 year: 2024 ident: b0095 article-title: The isoAdvector method for simulating deformation and breakup of multiple emulsion droplets responding to a DC electric field publication-title: J. Electrostat. – volume: 41 start-page: 5097 year: 2025 end-page: 5111 ident: b0130 article-title: Optimizing and Regulating Electric-Induced Breakup of Salt-Containing Droplets through Magnetic Field Coupling: Insights from Molecular Dynamics Simulations publication-title: Langmuir – volume: 8 start-page: 1027 year: 2006 end-page: 1032 ident: b0300 article-title: Coalescence of oxide nanoparticles: In situ HRTEM observation publication-title: J. Nanopart. Res. – volume: 14 start-page: 4901 year: 2023 ident: b0285 article-title: Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces publication-title: Nat. Commun. – volume: 13 start-page: 1743 year: 2021 end-page: 1753 ident: b0205 article-title: Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication publication-title: ACS Appl. Mater. Interfaces – volume: 197 year: 2022 ident: b0025 article-title: How surface orientation affects coalescence-induced droplet jumping behavior and subsequent atmospheric corrosion resistance of a superhydrophobic surface? publication-title: Corros. Sci. – volume: 28 start-page: 653 year: 2017 end-page: 686 ident: b0040 article-title: Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity publication-title: J. Nonlinear Sci. – volume: 382 start-page: 1148 year: 2023 end-page: 1155 ident: b0110 article-title: Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing publication-title: Science – volume: 78 start-page: 591 year: 1993 end-page: 618 ident: b0100 article-title: The Lennard-Jones equation of state revisited publication-title: Mol. Phys. – volume: 261 year: 2022 ident: b0030 article-title: Enhanced oil recovery by sacrificing polyelectrolyte to reduce surfactant adsorption: A classical density functional theory study publication-title: Chem. Eng. Sci. – volume: 612 start-page: 259 year: 2022 end-page: 265 ident: b0310 article-title: Chiral assemblies of pinwheel superlattices on substrates publication-title: Nature – volume: 117 start-page: 10156 year: 2002 end-page: 10164 ident: b0295 article-title: Structures of hard-sphere fluids from a modified fundamental-measure theory publication-title: J. Chem. Phys. – volume: 123 start-page: 443 year: 2018 end-page: 451 ident: b0275 article-title: Contact Angle and Condensation of a CO2 Droplet on a Solid Surface publication-title: J. Phys. Chem. C – volume: 248 year: 2022 ident: b0160 article-title: Mixing characteristics and energy conversion in the coalescence process of the two droplets publication-title: Chem. Eng. Sci. – volume: 34 year: 2023 ident: b0305 article-title: Highly Stretchable yet Degradable and Recyclable Conductive Composites with Liquid Metal Nanodroplets as Physical Crosslinks publication-title: Adv. Funct. Mater. – volume: 401 year: 2024 ident: b0050 article-title: Structural transition of a nanodroplet under an alternating electric field: Understandings and predictions from a dynamic density functional theory publication-title: J. Mol. Liq. – volume: 34 year: 2022 ident: b0280 article-title: Simulation of coalescence dynamics of droplets on surfaces with different wettabilities publication-title: Phys. Fluids – volume: 384 start-page: 209 year: 2024 end-page: 213 ident: b0190 article-title: Thin adhesive oil films lead to anomalously stable mixtures of water in oil publication-title: Science – volume: 121 start-page: 4246 year: 2004 end-page: 4254 ident: b0010 article-title: Dynamical density functional theory and its application to spinodal decomposition publication-title: J Chem Phys – volume: 38 start-page: 232 year: 1985 end-page: 252 ident: b0250 article-title: The theory of Ostwald ripening publication-title: J. Stat. Phys. – volume: 32 year: 2020 ident: b0115 article-title: Droplet dynamics on viscoelastic soft substrate: Toward coalescence control publication-title: Phys. Fluids – volume: 29 year: 2019 ident: b0155 article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity publication-title: Advanced Functional Materials – volume: 110 start-page: 8032 year: 1999 end-page: 8044 ident: b0170 article-title: Dynamic density functional theory of fluids publication-title: The Journal of Chemical Physics – volume: 273 year: 2021 ident: b0255 article-title: High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing publication-title: Carbohydr. Polym. – volume: 32 year: 2022 ident: b0085 article-title: Active Manipulation of Functional Droplets on Slippery Surface publication-title: Adv. Funct. Mater. – volume: 12 start-page: A413 year: 2000 end-page: A418 ident: b0175 article-title: Dynamic density functional theory of fluids publication-title: Journal of Physics-Condensed Matter – volume: 144 start-page: 5769 year: 2022 end-page: 5783 ident: b0105 article-title: Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 635 year: 1969 end-page: 636 ident: b0020 article-title: Equation of State for Nonattracting Rigid Spheres publication-title: J. Chem. Phys. – volume: 10 start-page: 2386 year: 2016 end-page: 2391 ident: b0150 article-title: Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet publication-title: ACS Nano – volume: 3 start-page: e106 year: 2024 ident: b0240 article-title: Coarsening droplets for frosting delay on hydrophilic slippery liquid‐infused porous surfaces publication-title: Droplet – volume: 5 year: 2019 ident: b0165 article-title: How crystals form: A theory of nucleation pathways publication-title: Sci. Adv. – volume: 12 start-page: 12373 year: 2020 end-page: 12381 ident: b0055 article-title: A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 212 year: 2022 end-page: 220 ident: b0070 article-title: Numerical simulation of oil dewatering in a disc centrifuge based on PBM model publication-title: Experimental and Computational Multiphase Flow – volume: 66 year: 2019 ident: b0195 article-title: Time‐dependent density functional study for nanodroplet coalescence publication-title: AIChE J – volume: 38 start-page: 14084 year: 2022 end-page: 14096 ident: b0245 article-title: Numerical Study of the Coalescence and Mixing of Drops of Different Polymeric Materials publication-title: Langmuir – volume: 13 start-page: 179 year: 2013 end-page: 187 ident: b0180 article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces publication-title: Nano Letters – volume: 397 year: 2024 ident: b0235 article-title: Investigating the properties of the water−vapor and water−graphite interfaces by PC-SAFT based density functional theory: A comparative study of different association functionals and PC-SAFT water parameter sets publication-title: J. Mol. Liq. – volume: 37 start-page: 11414 year: 2021 end-page: 11421 ident: b0145 article-title: Controllable Coalescence Dynamics of Nanodroplets on Textured Surfaces Decorated with Well-Designed Wrinkled Nanostructures: A Molecular Dynamics Study publication-title: Langmuir – volume: 184 year: 2025 ident: b0125 article-title: Coalescence dynamics of a nanoparticle-laden droplet at oil-water interface under electric field: A molecular dynamics simulation publication-title: Int. J. Multiph. Flow – volume: 6 start-page: 34074 year: 2016 ident: b0135 article-title: Coalescence of Immiscible Liquid Metal Drop on Graphene publication-title: Sci. Rep. – volume: 13 start-page: 1509 year: 2013 end-page: 1515 ident: b0215 article-title: Wettability of graphene publication-title: Nano Lett. – volume: 124 start-page: 8749 year: 2020 end-page: 8757 ident: b0200 article-title: Free Energy and Dynamics of Organic-Coated Water Droplet Coalescence publication-title: J. Phys. Chem. C – volume: 582 start-page: 55 year: 2020 end-page: 59 ident: b0260 article-title: Design of robust superhydrophobic surfaces publication-title: Nature – volume: 248 start-page: 738 year: 2017 end-page: 750 ident: b0005 article-title: Coalescence process of gold/silver core-shell nanoparticles located on carbon nanotube and graphene surfaces publication-title: J. Mol. Liq. – volume: 111 start-page: 836 year: 2017 end-page: 841 ident: b0035 article-title: Relationship between condensed droplet coalescence and surface wettability publication-title: Int. J. Heat Mass Transf. – volume: 390 year: 2023 ident: b0210 article-title: Adsorption behavior of associating nanoparticle-polymer systems in the vicinity of an attractive surface: Predictions from classical density functional theory publication-title: J. Mol. Liq. – volume: 26 year: 2017 ident: b0075 article-title: Parameter study and CFD analysis of head on collision and dynamic behavior of two colliding ferrofluid droplets publication-title: Smart Mater. Struct. – volume: 35 year: 2023 ident: b0270 article-title: Effects of protuberant structure on coalescence-induced jumping of droplets on superhydrophobic surfaces publication-title: Phys. Fluids – volume: 184 year: 2025 ident: 10.1016/j.ces.2025.121694_b0125 article-title: Coalescence dynamics of a nanoparticle-laden droplet at oil-water interface under electric field: A molecular dynamics simulation publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2025.105129 – volume: 261 year: 2022 ident: 10.1016/j.ces.2025.121694_b0030 article-title: Enhanced oil recovery by sacrificing polyelectrolyte to reduce surfactant adsorption: A classical density functional theory study publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117957 – volume: 37 start-page: 3672 year: 2021 ident: 10.1016/j.ces.2025.121694_b0225 article-title: Coalescence of an Oil Droplet with a Permeating One over a Membrane Surface: Conditions of Permeation, Recoil, and Pinning publication-title: Langmuir doi: 10.1021/acs.langmuir.1c00077 – volume: 3 start-page: e106 year: 2024 ident: 10.1016/j.ces.2025.121694_b0240 article-title: Coarsening droplets for frosting delay on hydrophilic slippery liquid‐infused porous surfaces publication-title: Droplet doi: 10.1002/dro2.106 – volume: 123 start-page: 443 year: 2018 ident: 10.1016/j.ces.2025.121694_b0275 article-title: Contact Angle and Condensation of a CO2 Droplet on a Solid Surface publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b08927 – volume: 51 start-page: 635 year: 1969 ident: 10.1016/j.ces.2025.121694_b0020 article-title: Equation of State for Nonattracting Rigid Spheres publication-title: J. Chem. Phys. doi: 10.1063/1.1672048 – volume: 13 start-page: 9246 year: 2017 ident: 10.1016/j.ces.2025.121694_b0080 article-title: Dynamical properties of heterogeneous nucleation of parallel hard squares publication-title: Soft Matter doi: 10.1039/C7SM01857F – volume: 37 start-page: 11414 year: 2021 ident: 10.1016/j.ces.2025.121694_b0145 article-title: Controllable Coalescence Dynamics of Nanodroplets on Textured Surfaces Decorated with Well-Designed Wrinkled Nanostructures: A Molecular Dynamics Study publication-title: Langmuir doi: 10.1021/acs.langmuir.1c02052 – volume: 13 start-page: 1509 year: 2013 ident: 10.1016/j.ces.2025.121694_b0215 article-title: Wettability of graphene publication-title: Nano Lett. doi: 10.1021/nl304647t – volume: 612 start-page: 259 year: 2022 ident: 10.1016/j.ces.2025.121694_b0310 article-title: Chiral assemblies of pinwheel superlattices on substrates publication-title: Nature doi: 10.1038/s41586-022-05384-8 – volume: 38 start-page: 232 year: 1985 ident: 10.1016/j.ces.2025.121694_b0250 article-title: The theory of Ostwald ripening publication-title: J. Stat. Phys. doi: 10.1007/BF01017860 – volume: 28 start-page: 653 year: 2017 ident: 10.1016/j.ces.2025.121694_b0040 article-title: Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-017-9422-1 – volume: 124 start-page: 8749 year: 2020 ident: 10.1016/j.ces.2025.121694_b0200 article-title: Free Energy and Dynamics of Organic-Coated Water Droplet Coalescence publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00175 – volume: 273 year: 2021 ident: 10.1016/j.ces.2025.121694_b0255 article-title: High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118586 – volume: 121 start-page: 4246 year: 2004 ident: 10.1016/j.ces.2025.121694_b0010 article-title: Dynamical density functional theory and its application to spinodal decomposition publication-title: J Chem Phys doi: 10.1063/1.1778374 – volume: 38 start-page: 14084 year: 2022 ident: 10.1016/j.ces.2025.121694_b0245 article-title: Numerical Study of the Coalescence and Mixing of Drops of Different Polymeric Materials publication-title: Langmuir doi: 10.1021/acs.langmuir.2c02029 – volume: 401 year: 2024 ident: 10.1016/j.ces.2025.121694_b0050 article-title: Structural transition of a nanodroplet under an alternating electric field: Understandings and predictions from a dynamic density functional theory publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2024.124694 – volume: 384 start-page: 209 year: 2024 ident: 10.1016/j.ces.2025.121694_b0190 article-title: Thin adhesive oil films lead to anomalously stable mixtures of water in oil publication-title: Science doi: 10.1126/science.adj6728 – volume: 47 start-page: 4714 year: 1967 ident: 10.1016/j.ces.2025.121694_b0015 article-title: Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids publication-title: J. Chem. Phys. doi: 10.1063/1.1701689 – volume: 13 start-page: 179 year: 2013 ident: 10.1016/j.ces.2025.121694_b0180 article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces publication-title: Nano Letters doi: 10.1021/nl303835d – volume: 110 start-page: 8032 year: 1999 ident: 10.1016/j.ces.2025.121694_b0170 article-title: Dynamic density functional theory of fluids publication-title: The Journal of Chemical Physics doi: 10.1063/1.478705 – volume: 64 start-page: 2913 year: 2018 ident: 10.1016/j.ces.2025.121694_b0265 article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces publication-title: AIChE J doi: 10.1002/aic.16169 – volume: 8 start-page: 1027 year: 2006 ident: 10.1016/j.ces.2025.121694_b0300 article-title: Coalescence of oxide nanoparticles: In situ HRTEM observation publication-title: J. Nanopart. Res. doi: 10.1007/s11051-005-9056-3 – volume: 397 year: 2024 ident: 10.1016/j.ces.2025.121694_b0235 article-title: Investigating the properties of the water−vapor and water−graphite interfaces by PC-SAFT based density functional theory: A comparative study of different association functionals and PC-SAFT water parameter sets publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2024.124009 – volume: 35 year: 2023 ident: 10.1016/j.ces.2025.121694_b0270 article-title: Effects of protuberant structure on coalescence-induced jumping of droplets on superhydrophobic surfaces publication-title: Phys. Fluids – volume: 14 start-page: 4901 year: 2023 ident: 10.1016/j.ces.2025.121694_b0285 article-title: Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces publication-title: Nat. Commun. doi: 10.1038/s41467-023-40279-w – volume: 390 year: 2023 ident: 10.1016/j.ces.2025.121694_b0210 article-title: Adsorption behavior of associating nanoparticle-polymer systems in the vicinity of an attractive surface: Predictions from classical density functional theory publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.122976 – volume: 13 start-page: 1743 year: 2021 ident: 10.1016/j.ces.2025.121694_b0205 article-title: Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c16259 – volume: 117 start-page: 10156 year: 2002 ident: 10.1016/j.ces.2025.121694_b0295 article-title: Structures of hard-sphere fluids from a modified fundamental-measure theory publication-title: J. Chem. Phys. doi: 10.1063/1.1520530 – volume: 93 start-page: 216 year: 2005 ident: 10.1016/j.ces.2025.121694_b0065 article-title: The design and implementation of FFTW3 publication-title: Proc. IEEE doi: 10.1109/JPROC.2004.840301 – volume: 273 year: 2023 ident: 10.1016/j.ces.2025.121694_b0045 article-title: A novel density functional study on the freezing mechanism of a nanodroplet under an external electric field publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118667 – volume: 26 year: 2017 ident: 10.1016/j.ces.2025.121694_b0075 article-title: Parameter study and CFD analysis of head on collision and dynamic behavior of two colliding ferrofluid droplets publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa54a2 – volume: 32 year: 2020 ident: 10.1016/j.ces.2025.121694_b0115 article-title: Droplet dynamics on viscoelastic soft substrate: Toward coalescence control publication-title: Phys. Fluids doi: 10.1063/5.0011151 – volume: 20 start-page: 24750 year: 2018 ident: 10.1016/j.ces.2025.121694_b0140 article-title: Effect of nano-pillared surfaces with an arrangement density gradient on droplet coalescence dynamics publication-title: Phys Chem Chem Phys doi: 10.1039/C8CP05014G – volume: 41 start-page: 5097 year: 2025 ident: 10.1016/j.ces.2025.121694_b0130 article-title: Optimizing and Regulating Electric-Induced Breakup of Salt-Containing Droplets through Magnetic Field Coupling: Insights from Molecular Dynamics Simulations publication-title: Langmuir doi: 10.1021/acs.langmuir.4c04208 – volume: 248 year: 2022 ident: 10.1016/j.ces.2025.121694_b0160 article-title: Mixing characteristics and energy conversion in the coalescence process of the two droplets publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117153 – volume: 5 year: 2019 ident: 10.1016/j.ces.2025.121694_b0165 article-title: How crystals form: A theory of nucleation pathways publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7399 – volume: 129 year: 2024 ident: 10.1016/j.ces.2025.121694_b0095 article-title: The isoAdvector method for simulating deformation and breakup of multiple emulsion droplets responding to a DC electric field publication-title: J. Electrostat. doi: 10.1016/j.elstat.2024.103933 – volume: 144 start-page: 5769 year: 2022 ident: 10.1016/j.ces.2025.121694_b0105 article-title: Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08861 – volume: 10 start-page: 10349 year: 2020 ident: 10.1016/j.ces.2025.121694_b0060 article-title: Enhanced protein adsorption upon bulk phase separation publication-title: Sci. Rep. doi: 10.1038/s41598-020-66562-0 – volume: 32 year: 2022 ident: 10.1016/j.ces.2025.121694_b0085 article-title: Active Manipulation of Functional Droplets on Slippery Surface publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207738 – volume: 34 year: 2023 ident: 10.1016/j.ces.2025.121694_b0305 article-title: Highly Stretchable yet Degradable and Recyclable Conductive Composites with Liquid Metal Nanodroplets as Physical Crosslinks publication-title: Adv. Funct. Mater. – volume: 111 start-page: 836 year: 2017 ident: 10.1016/j.ces.2025.121694_b0035 article-title: Relationship between condensed droplet coalescence and surface wettability publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.04.052 – volume: 299 year: 2022 ident: 10.1016/j.ces.2025.121694_b0090 article-title: Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2021.102541 – volume: 142 year: 2023 ident: 10.1016/j.ces.2025.121694_b0185 article-title: Self-assembly of plant polyphenols-grafted soy proteins to manufacture a highly stable antioxidative Pickering emulsion gel for direct-ink-write 3D printing publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2023.108851 – volume: 97 year: 2006 ident: 10.1016/j.ces.2025.121694_b0220 article-title: Coalescence of spreading droplets on a wettable substrate publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.064501 – volume: 10 start-page: 2386 year: 2016 ident: 10.1016/j.ces.2025.121694_b0150 article-title: Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet publication-title: ACS Nano doi: 10.1021/acsnano.5b07197 – volume: 984 start-page: A27 year: 2024 ident: 10.1016/j.ces.2025.121694_b0230 article-title: A canonical Hamiltonian formulation of the Navier–Stokes problem publication-title: J. Fluid Mech. doi: 10.1017/jfm.2024.229 – volume: 582 start-page: 55 year: 2020 ident: 10.1016/j.ces.2025.121694_b0260 article-title: Design of robust superhydrophobic surfaces publication-title: Nature doi: 10.1038/s41586-020-2331-8 – volume: 248 start-page: 738 year: 2017 ident: 10.1016/j.ces.2025.121694_b0005 article-title: Coalescence process of gold/silver core-shell nanoparticles located on carbon nanotube and graphene surfaces publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.10.104 – volume: 78 start-page: 591 year: 1993 ident: 10.1016/j.ces.2025.121694_b0100 article-title: The Lennard-Jones equation of state revisited publication-title: Mol. Phys. doi: 10.1080/00268979300100411 – volume: 66 year: 2019 ident: 10.1016/j.ces.2025.121694_b0195 article-title: Time‐dependent density functional study for nanodroplet coalescence publication-title: AIChE J – volume: 382 start-page: 1148 year: 2023 ident: 10.1016/j.ces.2025.121694_b0110 article-title: Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing publication-title: Science doi: 10.1126/science.adi1563 – volume: 34 year: 2022 ident: 10.1016/j.ces.2025.121694_b0280 article-title: Simulation of coalescence dynamics of droplets on surfaces with different wettabilities publication-title: Phys. Fluids doi: 10.1063/5.0099434 – volume: 12 start-page: 12373 year: 2020 ident: 10.1016/j.ces.2025.121694_b0055 article-title: A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00234 – volume: 14 start-page: 12796 year: 2020 ident: 10.1016/j.ces.2025.121694_b0290 article-title: Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces publication-title: ACS Nano doi: 10.1021/acsnano.0c03487 – volume: 6 start-page: 34074 year: 2016 ident: 10.1016/j.ces.2025.121694_b0135 article-title: Coalescence of Immiscible Liquid Metal Drop on Graphene publication-title: Sci. Rep. doi: 10.1038/srep34074 – volume: 5 start-page: 212 year: 2022 ident: 10.1016/j.ces.2025.121694_b0070 article-title: Numerical simulation of oil dewatering in a disc centrifuge based on PBM model publication-title: Experimental and Computational Multiphase Flow doi: 10.1007/s42757-022-0137-7 – volume: 197 year: 2022 ident: 10.1016/j.ces.2025.121694_b0025 article-title: How surface orientation affects coalescence-induced droplet jumping behavior and subsequent atmospheric corrosion resistance of a superhydrophobic surface? publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.110082 – volume: 29 year: 2019 ident: 10.1016/j.ces.2025.121694_b0155 article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity publication-title: Advanced Functional Materials doi: 10.1002/adfm.201905197 – volume: 139 year: 2021 ident: 10.1016/j.ces.2025.121694_b0120 article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2021.103628 – volume: 12 start-page: A413 year: 2000 ident: 10.1016/j.ces.2025.121694_b0175 article-title: Dynamic density functional theory of fluids publication-title: Journal of Physics-Condensed Matter doi: 10.1088/0953-8984/12/8A/356 |
SSID | ssj0007710 |
Score | 2.4697976 |
Snippet | •We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 121694 |
SubjectTerms | Coalescence Dynamic density functional theory Nanodroplet Surface |
Title | Coalescence mechanisms of nanodroplets on interfaces with different hydrophobicity: A dynamic density functional study |
URI | https://dx.doi.org/10.1016/j.ces.2025.121694 |
Volume | 313 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14EmLz2GSz3kqxVIWeLPQWsi8aoUlpo9CLv92ZPLCCXjzksGEXkslm5pvdb78h5FaHaWx05DmQInOHMR_8IAu1E0g_ipUvuG8qtsU0mszY8zycd8ioPQuDtMrG99c-vfLWzZ1BY83BKsvwjK8rIIDjhUJT6IcZ46iff__5TfPg3HPbamrYu93ZrDhe8CtCiuiHqLEQCfZ7bNqJN-MjctgARTqsn-WYdEx-Qg525ANPyceoSGs5JmXo0uAZ3myz3NDC0jzNC71GcngJ7ZyiKsTaIv2K4sorbeuilHSxxX6LQmYKAPkDHVJdF6mnGrnt5ZZi6KtXDGklRntGZuPH19HEaeooOArQS-kYHcTMKu4JxkXq-Va7YCgAdnEqIdtKNWSmxmoTWOFJq1ioFKAc7krPs0wD3jon3bzIzQWhCtCSEkzyyLqMSx4HSgKiS1NfKJgNfo_ctRZMVrVcRtLyyN4SeMkEzZ3U5u4R1to4-fHNE3Dnfw-7_N-wK7KPrZpqe0265frd3ACgKGW_mjF9sjd8eplMvwCEC8vW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF5ED20PpU9qn3voqRDMY5NNehOpaLWeFLyF7AtTMBFNC_77zpikWGgvPeSQx0Iy2cx8s_nmG0IelZ-EWgWOBSkytxhzwQ8yX1mecINQuhF39Y5tMQkGM_Y69-cN0qtrYZBWWfn-0qfvvHV1pFNZs7NKU6zxtSMI4Lih0BT44RaqU8Fkb3WHo8Hk2yFz7th1QzUcUP_c3NG84GuELNH1UWYhiNjv4Wkv5PRPyHGFFWm3vJ1T0tDZGTnaUxA8J5-9PCkVmaSmS41lvOlmuaG5oVmS5WqN_PAC9jOKwhBrgwwsiouvtG6NUtDFFq9b5CKVgMmfaZeqsk89VUhvL7YUo1-5aEh3erQXZNZ_mfYGVtVKwZIAYApLKy9kRnInYjxKHNcomzEO2C5MBCRciYLkVBulPRM5wkjmSwlAh9vCcQxTALkuSTPLM31FqATAJCMmeGBsxgUPPSkA1CWJG0mYEG6bPNUWjFelYkZcU8neY3jIGM0dl-ZuE1bbOP7x2mPw6H8Pu_7fsAdyMJi-jePxcDK6IYd4pmTe3pJmsf7Qd4AvCnFfzZ8vjazOhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalescence+mechanisms+of+nanodroplets+on+interfaces+with+different+hydrophobicity%3A+A+dynamic+density+functional+study&rft.jtitle=Chemical+engineering+science&rft.au=Ding%2C+Fanfeng&rft.au=Liu%2C+Yu&rft.date=2025-07-01&rft.issn=0009-2509&rft.volume=313&rft.spage=121694&rft_id=info:doi/10.1016%2Fj.ces.2025.121694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2025_121694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |