Coalescence mechanisms of nanodroplets on interfaces with different hydrophobicity: A dynamic density functional study

•We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions of the three coalescence modes.•We summarized the correlation between coalescence and various conditions. The coalescence of nanodroplets on...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 313; p. 121694
Main Authors Ding, Fanfeng, Liu, Yu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2025
Subjects
Online AccessGet full text
ISSN0009-2509
DOI10.1016/j.ces.2025.121694

Cover

Loading…
Abstract •We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions of the three coalescence modes.•We summarized the correlation between coalescence and various conditions. The coalescence of nanodroplets on interfaces is an important subject in many fields but the underlying mechanisms remain unsettled. In this work, we introduce a dynamic density functional theory (DDFT) to examine this process, focusing on surface hydrophobicity. We found that coalescence time monotonically correlates with the contact angle (CA) of the droplets and there are three typical coalescence modes: vapor bridging, surface bridging and evaporation, depending on the hydrophobicity and the size difference of the droplet. Hydrophilic surfaces consistently induce surface bridging. On hydrophobic surfaces, vapor bridging occurs when droplet sizes are similar; conversely, when one droplet is large enough to encompass the center point, coalescence will perform in the evaporation mode. The evolution of density profile, local chemical potential, flux and free energy have been examined, which provide an insight into the interfacial coalescence of nanodroplet.
AbstractList •We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions of the three coalescence modes.•We summarized the correlation between coalescence and various conditions. The coalescence of nanodroplets on interfaces is an important subject in many fields but the underlying mechanisms remain unsettled. In this work, we introduce a dynamic density functional theory (DDFT) to examine this process, focusing on surface hydrophobicity. We found that coalescence time monotonically correlates with the contact angle (CA) of the droplets and there are three typical coalescence modes: vapor bridging, surface bridging and evaporation, depending on the hydrophobicity and the size difference of the droplet. Hydrophilic surfaces consistently induce surface bridging. On hydrophobic surfaces, vapor bridging occurs when droplet sizes are similar; conversely, when one droplet is large enough to encompass the center point, coalescence will perform in the evaporation mode. The evolution of density profile, local chemical potential, flux and free energy have been examined, which provide an insight into the interfacial coalescence of nanodroplet.
ArticleNumber 121694
Author Ding, Fanfeng
Liu, Yu
Author_xml – sequence: 1
  givenname: Fanfeng
  surname: Ding
  fullname: Ding, Fanfeng
– sequence: 2
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  email: liuyu89@mail.sysu.edu.cn
BookMark eNp9kM1uwyAQhDmkUpO0D9AbL2AXMI5De4qi_kmRemnPCMMiE9kQAUnlt6-t9NzTalY7o51vhRY-eEDogZKSErp5PJYaUskIq0vK6EbwBVoSQkTBaiJu0Sql4ySbhpIluuyD6iFp8BrwALpT3qUh4WCxVz6YGE495El77HyGaNWUjX9c7rBx1kIEn3E3znddaJ12eXzCO2xGrwansQGfphW2Z6-zC171OOWzGe_QjVV9gvu_uUbfry9f-_fi8Pn2sd8dCs1qmgsw1ZZb3VDBG6Eos4Zw3rCKblUrxFYZ1nCwBioraGs1r7Wuad2QllLLDWfVGtFrro4hpQhWnqIbVBwlJXKGJY9yKiRnWPIKa_I8Xz0wPXZxEGXSbuZjXASdpQnuH_cvIiZ5LA
Cites_doi 10.1016/j.ijmultiphaseflow.2025.105129
10.1016/j.ces.2022.117957
10.1021/acs.langmuir.1c00077
10.1002/dro2.106
10.1021/acs.jpcc.8b08927
10.1063/1.1672048
10.1039/C7SM01857F
10.1021/acs.langmuir.1c02052
10.1021/nl304647t
10.1038/s41586-022-05384-8
10.1007/BF01017860
10.1007/s00332-017-9422-1
10.1021/acs.jpcc.0c00175
10.1016/j.carbpol.2021.118586
10.1063/1.1778374
10.1021/acs.langmuir.2c02029
10.1016/j.molliq.2024.124694
10.1126/science.adj6728
10.1063/1.1701689
10.1021/nl303835d
10.1063/1.478705
10.1002/aic.16169
10.1007/s11051-005-9056-3
10.1016/j.molliq.2024.124009
10.1038/s41467-023-40279-w
10.1016/j.molliq.2023.122976
10.1021/acsami.0c16259
10.1063/1.1520530
10.1109/JPROC.2004.840301
10.1016/j.ces.2023.118667
10.1088/1361-665X/aa54a2
10.1063/5.0011151
10.1039/C8CP05014G
10.1021/acs.langmuir.4c04208
10.1016/j.ces.2021.117153
10.1126/sciadv.aav7399
10.1016/j.elstat.2024.103933
10.1021/jacs.1c08861
10.1038/s41598-020-66562-0
10.1002/adfm.202207738
10.1016/j.ijheatmasstransfer.2017.04.052
10.1016/j.cis.2021.102541
10.1016/j.foodhyd.2023.108851
10.1103/PhysRevLett.97.064501
10.1021/acsnano.5b07197
10.1017/jfm.2024.229
10.1038/s41586-020-2331-8
10.1016/j.molliq.2017.10.104
10.1080/00268979300100411
10.1126/science.adi1563
10.1063/5.0099434
10.1021/acsami.0c00234
10.1021/acsnano.0c03487
10.1038/srep34074
10.1007/s42757-022-0137-7
10.1016/j.corsci.2021.110082
10.1002/adfm.201905197
10.1016/j.ijmultiphaseflow.2021.103628
10.1088/0953-8984/12/8A/356
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2025.121694
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ces_2025_121694
S0009250925005172
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AGQPQ
AI.
AIDUJ
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
RIG
SC5
T9H
VH1
WUQ
Y6R
ZY4
ID FETCH-LOGICAL-c251t-ed384fc719479a12fd04472318ab998ad274efde3f91bfc45cc51570b11f4d423
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Sun Jul 06 05:04:27 EDT 2025
Sat Jun 14 16:51:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Dynamic density functional theory
Coalescence
Nanodroplet
Surface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-ed384fc719479a12fd04472318ab998ad274efde3f91bfc45cc51570b11f4d423
ParticipantIDs crossref_primary_10_1016_j_ces_2025_121694
elsevier_sciencedirect_doi_10_1016_j_ces_2025_121694
PublicationCentury 2000
PublicationDate 2025-07-01
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering science
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Marconi, Tarazona (b0170) 1999; 110
Sivasankar, Hines, Das (b0245) 2022; 38
Wan, Wang, Feng, Chen, Wang (b0255) 2021; 273
Voorhees (b0250) 1985; 38
Archer, Evans (b0010) 2004; 121
Li, Li, Wang, Li, Duan, Li (b0140) 2018; 20
Zhong, Shi, Yang, Handschuh-Wang, Zhang, Gan, Zhou (b0305) 2023; 34
Ding, Liu (b0050) 2024; 401
Han, Wang, Han, Wang, Guo, Che, Heng, Jiang (b0085) 2022; 32
Kim, Jung, Lee, Koo, Thangam, Jang, Kim, Park, Lee, Bae, Patel, Wei, Lee, Paulmurugan, Jeong, Hyeon, Kim, Kang (b0105) 2022; 144
Fu, Deng, Dong, Mou, Hu, Zhou, Yuan (b0070) 2022; 5
Wu, Ervik, Snustad, Xiao, Brunsvold, He, Zhang (b0275) 2018; 123
Yu, Wu (b0295) 2002; 117
Frigo, Johnson (b0065) 2005; 93
Li, Zhang, Li (b0145) 2021; 37
Chu, Wu, Zhu, Yuan (b0035) 2017; 111
Pak, Li, Steve Tse (b0200) 2020; 124
Zhou, Li, Lu, Liu, Kim, Kim, Yao, Liu, Qian, Hood, Lin, Chen, Gage, Arslan, Travesset, Sun, Kotov, Chen (b0310) 2022; 612
Li, Dou, Yu, Huang, Zhang, Xu, Sun, Wang, Wang (b0120) 2021; 139
Li, Li, Wang, Duan, Li (b0135) 2016; 6
Sarma, Monga, Guo, Chen, Dai (b0240) 2024; 3
Huang, Lu, Li, Luo, Teng, Li, Li, Yin (b0095) 2024; 129
Wang, Sun, Hokkanen, Zhang, Lin, Liu, Zhu, Zhou, Chang, He, Zhou, Chen, Wang, Ras, Deng (b0260) 2020; 582
Carnahan, Starling (b0020) 1969; 51
Sang, Wei (b0235) 2024; 397
Kuang, Rong, Belal, Vu, López, Wang, Arican, Garciamendez-Mijares, Chen, Yao, Zhang (b0110) 2023; 382
Xu, Zhou, Daniel, Herzog, Wang, Sick, Adera (b0285) 2023; 14
Sanders, DeVoria, Washuta, Elamin, Skenes, Berlinghieri (b0230) 2024; 984
Miljkovic, Enright, Nam, Lopez, Dou, Sack, Wang (b0180) 2013; 13
Leong, Le (b0115) 2020; 32
Wang, Liang, Jiang, Zheng, Lan, Ma (b0265) 2018; 64
Akbarzadeh, Abbaspour, Salemi, Hasani (b0005) 2017; 248
Li, Wu, Dou, Xiang, Wang, Sun, Wang, Wang (b0125) 2025; 184
Ho, Razzaghi, Ramachandran, Mikkonen (b0090) 2022; 299
Nannette, Baudry, Chen, Song, Shglabow, Bremond, Démoulin, Walters, Weitz, Bibette (b0190) 2024; 384
Wang, Rohlfs, Kneer (b0270) 2023; 35
Xing, Li, Jiang, Zhao (b0280) 2022; 34
Di Plinio, Giorgini, Pata, Temam (b0040) 2017; 28
Prusty, Gallegos, Wu (b0210) 2023; 390
Salama (b0225) 2021; 37
Ristenpart, McCalla, Roy, Stone (b0220) 2006; 97
Liu, Chen, Zhang, Wang, Guan, Yu (b0155) 2019; 29
Gonzalez-Pinto, Martinez-Raton, Velasco (b0080) 2017; 13
Yan, Qin, Chen, Zhao, Sett, Hoque, Rabbi, Zhang, Wang, Li, Chen, Feng, Miljkovic (b0290) 2020; 14
Li, Yang, Li, Liang, Chen, He (b0130) 2025; 41
Raj, Maroo, Wang (b0215) 2013; 13
Luo, Xu, Li, Huang, He (b0160) 2022; 248
Ghaffari, Hashemabadi (b0075) 2017; 26
Johnson, Zollweg, Gubbins (b0100) 1993; 78
Mohammadi, Kashi, Kashiri, Bagheri, Chen, Ettelaie, Jäger, Shahbazi (b0185) 2023; 142
Niu, Liu, Liu, Hu (b0195) 2019; 66
Pan, Zhang, Zhong (b0205) 2021; 13
Ding, Liu (b0045) 2023; 273
Chen, Wang, Zhang, Wu, Ou (b0025) 2022; 197
Fries, Stopper, Skoda, Blum, Kertzscher, Hinderhofer, Zhang, Jacobs, Roth, Schreiber (b0060) 2020; 10
Marconi, Tarazona (b0175) 2000; 12
Lutsko (b0165) 2019; 5
Li, Bunes, Zang, Zhao, Li, Zhu, Wang (b0150) 2016; 10
Feng, Xu, Song, Wang, Wang, Wang (b0055) 2020; 12
Barker, Henderson (b0015) 1967; 47
Cheng, Xu, Yang, Lv, Lian, Liu (b0030) 2022; 261
Zhang, Miser (b0300) 2006; 8
Cheng (10.1016/j.ces.2025.121694_b0030) 2022; 261
Fries (10.1016/j.ces.2025.121694_b0060) 2020; 10
Wang (10.1016/j.ces.2025.121694_b0270) 2023; 35
Nannette (10.1016/j.ces.2025.121694_b0190) 2024; 384
Wang (10.1016/j.ces.2025.121694_b0260) 2020; 582
Johnson (10.1016/j.ces.2025.121694_b0100) 1993; 78
Kim (10.1016/j.ces.2025.121694_b0105) 2022; 144
Pan (10.1016/j.ces.2025.121694_b0205) 2021; 13
Ristenpart (10.1016/j.ces.2025.121694_b0220) 2006; 97
Ho (10.1016/j.ces.2025.121694_b0090) 2022; 299
Zhong (10.1016/j.ces.2025.121694_b0305) 2023; 34
Ding (10.1016/j.ces.2025.121694_b0045) 2023; 273
Sarma (10.1016/j.ces.2025.121694_b0240) 2024; 3
Li (10.1016/j.ces.2025.121694_b0145) 2021; 37
Li (10.1016/j.ces.2025.121694_b0130) 2025; 41
Voorhees (10.1016/j.ces.2025.121694_b0250) 1985; 38
Yu (10.1016/j.ces.2025.121694_b0295) 2002; 117
Zhang (10.1016/j.ces.2025.121694_b0300) 2006; 8
Frigo (10.1016/j.ces.2025.121694_b0065) 2005; 93
Ding (10.1016/j.ces.2025.121694_b0050) 2024; 401
Raj (10.1016/j.ces.2025.121694_b0215) 2013; 13
Marconi (10.1016/j.ces.2025.121694_b0170) 1999; 110
Li (10.1016/j.ces.2025.121694_b0150) 2016; 10
Sivasankar (10.1016/j.ces.2025.121694_b0245) 2022; 38
Kuang (10.1016/j.ces.2025.121694_b0110) 2023; 382
Di Plinio (10.1016/j.ces.2025.121694_b0040) 2017; 28
Salama (10.1016/j.ces.2025.121694_b0225) 2021; 37
Wang (10.1016/j.ces.2025.121694_b0265) 2018; 64
Liu (10.1016/j.ces.2025.121694_b0155) 2019; 29
Niu (10.1016/j.ces.2025.121694_b0195) 2019; 66
Chu (10.1016/j.ces.2025.121694_b0035) 2017; 111
Carnahan (10.1016/j.ces.2025.121694_b0020) 1969; 51
Mohammadi (10.1016/j.ces.2025.121694_b0185) 2023; 142
Leong (10.1016/j.ces.2025.121694_b0115) 2020; 32
Wu (10.1016/j.ces.2025.121694_b0275) 2018; 123
Prusty (10.1016/j.ces.2025.121694_b0210) 2023; 390
Feng (10.1016/j.ces.2025.121694_b0055) 2020; 12
Huang (10.1016/j.ces.2025.121694_b0095) 2024; 129
Li (10.1016/j.ces.2025.121694_b0140) 2018; 20
Xing (10.1016/j.ces.2025.121694_b0280) 2022; 34
Miljkovic (10.1016/j.ces.2025.121694_b0180) 2013; 13
Fu (10.1016/j.ces.2025.121694_b0070) 2022; 5
Li (10.1016/j.ces.2025.121694_b0120) 2021; 139
Xu (10.1016/j.ces.2025.121694_b0285) 2023; 14
Pak (10.1016/j.ces.2025.121694_b0200) 2020; 124
Gonzalez-Pinto (10.1016/j.ces.2025.121694_b0080) 2017; 13
Akbarzadeh (10.1016/j.ces.2025.121694_b0005) 2017; 248
Marconi (10.1016/j.ces.2025.121694_b0175) 2000; 12
Ghaffari (10.1016/j.ces.2025.121694_b0075) 2017; 26
Barker (10.1016/j.ces.2025.121694_b0015) 1967; 47
Zhou (10.1016/j.ces.2025.121694_b0310) 2022; 612
Yan (10.1016/j.ces.2025.121694_b0290) 2020; 14
Archer (10.1016/j.ces.2025.121694_b0010) 2004; 121
Li (10.1016/j.ces.2025.121694_b0125) 2025; 184
Sanders (10.1016/j.ces.2025.121694_b0230) 2024; 984
Luo (10.1016/j.ces.2025.121694_b0160) 2022; 248
Li (10.1016/j.ces.2025.121694_b0135) 2016; 6
Han (10.1016/j.ces.2025.121694_b0085) 2022; 32
Lutsko (10.1016/j.ces.2025.121694_b0165) 2019; 5
Chen (10.1016/j.ces.2025.121694_b0025) 2022; 197
Sang (10.1016/j.ces.2025.121694_b0235) 2024; 397
Wan (10.1016/j.ces.2025.121694_b0255) 2021; 273
References_xml – volume: 97
  year: 2006
  ident: b0220
  article-title: Coalescence of spreading droplets on a wettable substrate
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 3672
  year: 2021
  end-page: 3684
  ident: b0225
  article-title: Coalescence of an Oil Droplet with a Permeating One over a Membrane Surface: Conditions of Permeation, Recoil, and Pinning
  publication-title: Langmuir
– volume: 984
  start-page: A27
  year: 2024
  ident: b0230
  article-title: A canonical Hamiltonian formulation of the Navier–Stokes problem
  publication-title: J. Fluid Mech.
– volume: 14
  start-page: 12796
  year: 2020
  end-page: 12809
  ident: b0290
  article-title: Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces
  publication-title: ACS Nano
– volume: 273
  year: 2023
  ident: b0045
  article-title: A novel density functional study on the freezing mechanism of a nanodroplet under an external electric field
  publication-title: Chem. Eng. Sci.
– volume: 299
  year: 2022
  ident: b0090
  article-title: Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence
  publication-title: Adv. Colloid Interface Sci.
– volume: 142
  year: 2023
  ident: b0185
  article-title: Self-assembly of plant polyphenols-grafted soy proteins to manufacture a highly stable antioxidative Pickering emulsion gel for direct-ink-write 3D printing
  publication-title: Food Hydrocoll.
– volume: 13
  start-page: 9246
  year: 2017
  end-page: 9258
  ident: b0080
  article-title: Dynamical properties of heterogeneous nucleation of parallel hard squares
  publication-title: Soft Matter
– volume: 139
  year: 2021
  ident: b0120
  article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field
  publication-title: Int. J. Multiph. Flow
– volume: 20
  start-page: 24750
  year: 2018
  end-page: 24758
  ident: b0140
  article-title: Effect of nano-pillared surfaces with an arrangement density gradient on droplet coalescence dynamics
  publication-title: Phys Chem Chem Phys
– volume: 47
  start-page: 4714
  year: 1967
  end-page: 4721
  ident: b0015
  article-title: Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids
  publication-title: J. Chem. Phys.
– volume: 64
  start-page: 2913
  year: 2018
  end-page: 2921
  ident: b0265
  article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces
  publication-title: AIChE J
– volume: 93
  start-page: 216
  year: 2005
  end-page: 231
  ident: b0065
  article-title: The design and implementation of FFTW3
  publication-title: Proc. IEEE
– volume: 10
  start-page: 10349
  year: 2020
  ident: b0060
  article-title: Enhanced protein adsorption upon bulk phase separation
  publication-title: Sci. Rep.
– volume: 129
  year: 2024
  ident: b0095
  article-title: The isoAdvector method for simulating deformation and breakup of multiple emulsion droplets responding to a DC electric field
  publication-title: J. Electrostat.
– volume: 41
  start-page: 5097
  year: 2025
  end-page: 5111
  ident: b0130
  article-title: Optimizing and Regulating Electric-Induced Breakup of Salt-Containing Droplets through Magnetic Field Coupling: Insights from Molecular Dynamics Simulations
  publication-title: Langmuir
– volume: 8
  start-page: 1027
  year: 2006
  end-page: 1032
  ident: b0300
  article-title: Coalescence of oxide nanoparticles: In situ HRTEM observation
  publication-title: J. Nanopart. Res.
– volume: 14
  start-page: 4901
  year: 2023
  ident: b0285
  article-title: Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1743
  year: 2021
  end-page: 1753
  ident: b0205
  article-title: Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication
  publication-title: ACS Appl. Mater. Interfaces
– volume: 197
  year: 2022
  ident: b0025
  article-title: How surface orientation affects coalescence-induced droplet jumping behavior and subsequent atmospheric corrosion resistance of a superhydrophobic surface?
  publication-title: Corros. Sci.
– volume: 28
  start-page: 653
  year: 2017
  end-page: 686
  ident: b0040
  article-title: Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity
  publication-title: J. Nonlinear Sci.
– volume: 382
  start-page: 1148
  year: 2023
  end-page: 1155
  ident: b0110
  article-title: Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing
  publication-title: Science
– volume: 78
  start-page: 591
  year: 1993
  end-page: 618
  ident: b0100
  article-title: The Lennard-Jones equation of state revisited
  publication-title: Mol. Phys.
– volume: 261
  year: 2022
  ident: b0030
  article-title: Enhanced oil recovery by sacrificing polyelectrolyte to reduce surfactant adsorption: A classical density functional theory study
  publication-title: Chem. Eng. Sci.
– volume: 612
  start-page: 259
  year: 2022
  end-page: 265
  ident: b0310
  article-title: Chiral assemblies of pinwheel superlattices on substrates
  publication-title: Nature
– volume: 117
  start-page: 10156
  year: 2002
  end-page: 10164
  ident: b0295
  article-title: Structures of hard-sphere fluids from a modified fundamental-measure theory
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 443
  year: 2018
  end-page: 451
  ident: b0275
  article-title: Contact Angle and Condensation of a CO2 Droplet on a Solid Surface
  publication-title: J. Phys. Chem. C
– volume: 248
  year: 2022
  ident: b0160
  article-title: Mixing characteristics and energy conversion in the coalescence process of the two droplets
  publication-title: Chem. Eng. Sci.
– volume: 34
  year: 2023
  ident: b0305
  article-title: Highly Stretchable yet Degradable and Recyclable Conductive Composites with Liquid Metal Nanodroplets as Physical Crosslinks
  publication-title: Adv. Funct. Mater.
– volume: 401
  year: 2024
  ident: b0050
  article-title: Structural transition of a nanodroplet under an alternating electric field: Understandings and predictions from a dynamic density functional theory
  publication-title: J. Mol. Liq.
– volume: 34
  year: 2022
  ident: b0280
  article-title: Simulation of coalescence dynamics of droplets on surfaces with different wettabilities
  publication-title: Phys. Fluids
– volume: 384
  start-page: 209
  year: 2024
  end-page: 213
  ident: b0190
  article-title: Thin adhesive oil films lead to anomalously stable mixtures of water in oil
  publication-title: Science
– volume: 121
  start-page: 4246
  year: 2004
  end-page: 4254
  ident: b0010
  article-title: Dynamical density functional theory and its application to spinodal decomposition
  publication-title: J Chem Phys
– volume: 38
  start-page: 232
  year: 1985
  end-page: 252
  ident: b0250
  article-title: The theory of Ostwald ripening
  publication-title: J. Stat. Phys.
– volume: 32
  year: 2020
  ident: b0115
  article-title: Droplet dynamics on viscoelastic soft substrate: Toward coalescence control
  publication-title: Phys. Fluids
– volume: 29
  year: 2019
  ident: b0155
  article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity
  publication-title: Advanced Functional Materials
– volume: 110
  start-page: 8032
  year: 1999
  end-page: 8044
  ident: b0170
  article-title: Dynamic density functional theory of fluids
  publication-title: The Journal of Chemical Physics
– volume: 273
  year: 2021
  ident: b0255
  article-title: High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing
  publication-title: Carbohydr. Polym.
– volume: 32
  year: 2022
  ident: b0085
  article-title: Active Manipulation of Functional Droplets on Slippery Surface
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: A413
  year: 2000
  end-page: A418
  ident: b0175
  article-title: Dynamic density functional theory of fluids
  publication-title: Journal of Physics-Condensed Matter
– volume: 144
  start-page: 5769
  year: 2022
  end-page: 5783
  ident: b0105
  article-title: Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 635
  year: 1969
  end-page: 636
  ident: b0020
  article-title: Equation of State for Nonattracting Rigid Spheres
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 2386
  year: 2016
  end-page: 2391
  ident: b0150
  article-title: Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet
  publication-title: ACS Nano
– volume: 3
  start-page: e106
  year: 2024
  ident: b0240
  article-title: Coarsening droplets for frosting delay on hydrophilic slippery liquid‐infused porous surfaces
  publication-title: Droplet
– volume: 5
  year: 2019
  ident: b0165
  article-title: How crystals form: A theory of nucleation pathways
  publication-title: Sci. Adv.
– volume: 12
  start-page: 12373
  year: 2020
  end-page: 12381
  ident: b0055
  article-title: A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 212
  year: 2022
  end-page: 220
  ident: b0070
  article-title: Numerical simulation of oil dewatering in a disc centrifuge based on PBM model
  publication-title: Experimental and Computational Multiphase Flow
– volume: 66
  year: 2019
  ident: b0195
  article-title: Time‐dependent density functional study for nanodroplet coalescence
  publication-title: AIChE J
– volume: 38
  start-page: 14084
  year: 2022
  end-page: 14096
  ident: b0245
  article-title: Numerical Study of the Coalescence and Mixing of Drops of Different Polymeric Materials
  publication-title: Langmuir
– volume: 13
  start-page: 179
  year: 2013
  end-page: 187
  ident: b0180
  article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
  publication-title: Nano Letters
– volume: 397
  year: 2024
  ident: b0235
  article-title: Investigating the properties of the water−vapor and water−graphite interfaces by PC-SAFT based density functional theory: A comparative study of different association functionals and PC-SAFT water parameter sets
  publication-title: J. Mol. Liq.
– volume: 37
  start-page: 11414
  year: 2021
  end-page: 11421
  ident: b0145
  article-title: Controllable Coalescence Dynamics of Nanodroplets on Textured Surfaces Decorated with Well-Designed Wrinkled Nanostructures: A Molecular Dynamics Study
  publication-title: Langmuir
– volume: 184
  year: 2025
  ident: b0125
  article-title: Coalescence dynamics of a nanoparticle-laden droplet at oil-water interface under electric field: A molecular dynamics simulation
  publication-title: Int. J. Multiph. Flow
– volume: 6
  start-page: 34074
  year: 2016
  ident: b0135
  article-title: Coalescence of Immiscible Liquid Metal Drop on Graphene
  publication-title: Sci. Rep.
– volume: 13
  start-page: 1509
  year: 2013
  end-page: 1515
  ident: b0215
  article-title: Wettability of graphene
  publication-title: Nano Lett.
– volume: 124
  start-page: 8749
  year: 2020
  end-page: 8757
  ident: b0200
  article-title: Free Energy and Dynamics of Organic-Coated Water Droplet Coalescence
  publication-title: J. Phys. Chem. C
– volume: 582
  start-page: 55
  year: 2020
  end-page: 59
  ident: b0260
  article-title: Design of robust superhydrophobic surfaces
  publication-title: Nature
– volume: 248
  start-page: 738
  year: 2017
  end-page: 750
  ident: b0005
  article-title: Coalescence process of gold/silver core-shell nanoparticles located on carbon nanotube and graphene surfaces
  publication-title: J. Mol. Liq.
– volume: 111
  start-page: 836
  year: 2017
  end-page: 841
  ident: b0035
  article-title: Relationship between condensed droplet coalescence and surface wettability
  publication-title: Int. J. Heat Mass Transf.
– volume: 390
  year: 2023
  ident: b0210
  article-title: Adsorption behavior of associating nanoparticle-polymer systems in the vicinity of an attractive surface: Predictions from classical density functional theory
  publication-title: J. Mol. Liq.
– volume: 26
  year: 2017
  ident: b0075
  article-title: Parameter study and CFD analysis of head on collision and dynamic behavior of two colliding ferrofluid droplets
  publication-title: Smart Mater. Struct.
– volume: 35
  year: 2023
  ident: b0270
  article-title: Effects of protuberant structure on coalescence-induced jumping of droplets on superhydrophobic surfaces
  publication-title: Phys. Fluids
– volume: 184
  year: 2025
  ident: 10.1016/j.ces.2025.121694_b0125
  article-title: Coalescence dynamics of a nanoparticle-laden droplet at oil-water interface under electric field: A molecular dynamics simulation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2025.105129
– volume: 261
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0030
  article-title: Enhanced oil recovery by sacrificing polyelectrolyte to reduce surfactant adsorption: A classical density functional theory study
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117957
– volume: 37
  start-page: 3672
  year: 2021
  ident: 10.1016/j.ces.2025.121694_b0225
  article-title: Coalescence of an Oil Droplet with a Permeating One over a Membrane Surface: Conditions of Permeation, Recoil, and Pinning
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c00077
– volume: 3
  start-page: e106
  year: 2024
  ident: 10.1016/j.ces.2025.121694_b0240
  article-title: Coarsening droplets for frosting delay on hydrophilic slippery liquid‐infused porous surfaces
  publication-title: Droplet
  doi: 10.1002/dro2.106
– volume: 123
  start-page: 443
  year: 2018
  ident: 10.1016/j.ces.2025.121694_b0275
  article-title: Contact Angle and Condensation of a CO2 Droplet on a Solid Surface
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b08927
– volume: 51
  start-page: 635
  year: 1969
  ident: 10.1016/j.ces.2025.121694_b0020
  article-title: Equation of State for Nonattracting Rigid Spheres
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1672048
– volume: 13
  start-page: 9246
  year: 2017
  ident: 10.1016/j.ces.2025.121694_b0080
  article-title: Dynamical properties of heterogeneous nucleation of parallel hard squares
  publication-title: Soft Matter
  doi: 10.1039/C7SM01857F
– volume: 37
  start-page: 11414
  year: 2021
  ident: 10.1016/j.ces.2025.121694_b0145
  article-title: Controllable Coalescence Dynamics of Nanodroplets on Textured Surfaces Decorated with Well-Designed Wrinkled Nanostructures: A Molecular Dynamics Study
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c02052
– volume: 13
  start-page: 1509
  year: 2013
  ident: 10.1016/j.ces.2025.121694_b0215
  article-title: Wettability of graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl304647t
– volume: 612
  start-page: 259
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0310
  article-title: Chiral assemblies of pinwheel superlattices on substrates
  publication-title: Nature
  doi: 10.1038/s41586-022-05384-8
– volume: 38
  start-page: 232
  year: 1985
  ident: 10.1016/j.ces.2025.121694_b0250
  article-title: The theory of Ostwald ripening
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01017860
– volume: 28
  start-page: 653
  year: 2017
  ident: 10.1016/j.ces.2025.121694_b0040
  article-title: Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-017-9422-1
– volume: 124
  start-page: 8749
  year: 2020
  ident: 10.1016/j.ces.2025.121694_b0200
  article-title: Free Energy and Dynamics of Organic-Coated Water Droplet Coalescence
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00175
– volume: 273
  year: 2021
  ident: 10.1016/j.ces.2025.121694_b0255
  article-title: High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118586
– volume: 121
  start-page: 4246
  year: 2004
  ident: 10.1016/j.ces.2025.121694_b0010
  article-title: Dynamical density functional theory and its application to spinodal decomposition
  publication-title: J Chem Phys
  doi: 10.1063/1.1778374
– volume: 38
  start-page: 14084
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0245
  article-title: Numerical Study of the Coalescence and Mixing of Drops of Different Polymeric Materials
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c02029
– volume: 401
  year: 2024
  ident: 10.1016/j.ces.2025.121694_b0050
  article-title: Structural transition of a nanodroplet under an alternating electric field: Understandings and predictions from a dynamic density functional theory
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2024.124694
– volume: 384
  start-page: 209
  year: 2024
  ident: 10.1016/j.ces.2025.121694_b0190
  article-title: Thin adhesive oil films lead to anomalously stable mixtures of water in oil
  publication-title: Science
  doi: 10.1126/science.adj6728
– volume: 47
  start-page: 4714
  year: 1967
  ident: 10.1016/j.ces.2025.121694_b0015
  article-title: Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1701689
– volume: 13
  start-page: 179
  year: 2013
  ident: 10.1016/j.ces.2025.121694_b0180
  article-title: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
  publication-title: Nano Letters
  doi: 10.1021/nl303835d
– volume: 110
  start-page: 8032
  year: 1999
  ident: 10.1016/j.ces.2025.121694_b0170
  article-title: Dynamic density functional theory of fluids
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.478705
– volume: 64
  start-page: 2913
  year: 2018
  ident: 10.1016/j.ces.2025.121694_b0265
  article-title: Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces
  publication-title: AIChE J
  doi: 10.1002/aic.16169
– volume: 8
  start-page: 1027
  year: 2006
  ident: 10.1016/j.ces.2025.121694_b0300
  article-title: Coalescence of oxide nanoparticles: In situ HRTEM observation
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-005-9056-3
– volume: 397
  year: 2024
  ident: 10.1016/j.ces.2025.121694_b0235
  article-title: Investigating the properties of the water−vapor and water−graphite interfaces by PC-SAFT based density functional theory: A comparative study of different association functionals and PC-SAFT water parameter sets
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2024.124009
– volume: 35
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0270
  article-title: Effects of protuberant structure on coalescence-induced jumping of droplets on superhydrophobic surfaces
  publication-title: Phys. Fluids
– volume: 14
  start-page: 4901
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0285
  article-title: Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40279-w
– volume: 390
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0210
  article-title: Adsorption behavior of associating nanoparticle-polymer systems in the vicinity of an attractive surface: Predictions from classical density functional theory
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2023.122976
– volume: 13
  start-page: 1743
  year: 2021
  ident: 10.1016/j.ces.2025.121694_b0205
  article-title: Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c16259
– volume: 117
  start-page: 10156
  year: 2002
  ident: 10.1016/j.ces.2025.121694_b0295
  article-title: Structures of hard-sphere fluids from a modified fundamental-measure theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1520530
– volume: 93
  start-page: 216
  year: 2005
  ident: 10.1016/j.ces.2025.121694_b0065
  article-title: The design and implementation of FFTW3
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2004.840301
– volume: 273
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0045
  article-title: A novel density functional study on the freezing mechanism of a nanodroplet under an external electric field
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118667
– volume: 26
  year: 2017
  ident: 10.1016/j.ces.2025.121694_b0075
  article-title: Parameter study and CFD analysis of head on collision and dynamic behavior of two colliding ferrofluid droplets
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa54a2
– volume: 32
  year: 2020
  ident: 10.1016/j.ces.2025.121694_b0115
  article-title: Droplet dynamics on viscoelastic soft substrate: Toward coalescence control
  publication-title: Phys. Fluids
  doi: 10.1063/5.0011151
– volume: 20
  start-page: 24750
  year: 2018
  ident: 10.1016/j.ces.2025.121694_b0140
  article-title: Effect of nano-pillared surfaces with an arrangement density gradient on droplet coalescence dynamics
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C8CP05014G
– volume: 41
  start-page: 5097
  year: 2025
  ident: 10.1016/j.ces.2025.121694_b0130
  article-title: Optimizing and Regulating Electric-Induced Breakup of Salt-Containing Droplets through Magnetic Field Coupling: Insights from Molecular Dynamics Simulations
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.4c04208
– volume: 248
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0160
  article-title: Mixing characteristics and energy conversion in the coalescence process of the two droplets
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117153
– volume: 5
  year: 2019
  ident: 10.1016/j.ces.2025.121694_b0165
  article-title: How crystals form: A theory of nucleation pathways
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7399
– volume: 129
  year: 2024
  ident: 10.1016/j.ces.2025.121694_b0095
  article-title: The isoAdvector method for simulating deformation and breakup of multiple emulsion droplets responding to a DC electric field
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2024.103933
– volume: 144
  start-page: 5769
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0105
  article-title: Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08861
– volume: 10
  start-page: 10349
  year: 2020
  ident: 10.1016/j.ces.2025.121694_b0060
  article-title: Enhanced protein adsorption upon bulk phase separation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66562-0
– volume: 32
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0085
  article-title: Active Manipulation of Functional Droplets on Slippery Surface
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207738
– volume: 34
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0305
  article-title: Highly Stretchable yet Degradable and Recyclable Conductive Composites with Liquid Metal Nanodroplets as Physical Crosslinks
  publication-title: Adv. Funct. Mater.
– volume: 111
  start-page: 836
  year: 2017
  ident: 10.1016/j.ces.2025.121694_b0035
  article-title: Relationship between condensed droplet coalescence and surface wettability
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.04.052
– volume: 299
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0090
  article-title: Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2021.102541
– volume: 142
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0185
  article-title: Self-assembly of plant polyphenols-grafted soy proteins to manufacture a highly stable antioxidative Pickering emulsion gel for direct-ink-write 3D printing
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2023.108851
– volume: 97
  year: 2006
  ident: 10.1016/j.ces.2025.121694_b0220
  article-title: Coalescence of spreading droplets on a wettable substrate
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.064501
– volume: 10
  start-page: 2386
  year: 2016
  ident: 10.1016/j.ces.2025.121694_b0150
  article-title: Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07197
– volume: 984
  start-page: A27
  year: 2024
  ident: 10.1016/j.ces.2025.121694_b0230
  article-title: A canonical Hamiltonian formulation of the Navier–Stokes problem
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2024.229
– volume: 582
  start-page: 55
  year: 2020
  ident: 10.1016/j.ces.2025.121694_b0260
  article-title: Design of robust superhydrophobic surfaces
  publication-title: Nature
  doi: 10.1038/s41586-020-2331-8
– volume: 248
  start-page: 738
  year: 2017
  ident: 10.1016/j.ces.2025.121694_b0005
  article-title: Coalescence process of gold/silver core-shell nanoparticles located on carbon nanotube and graphene surfaces
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.10.104
– volume: 78
  start-page: 591
  year: 1993
  ident: 10.1016/j.ces.2025.121694_b0100
  article-title: The Lennard-Jones equation of state revisited
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300100411
– volume: 66
  year: 2019
  ident: 10.1016/j.ces.2025.121694_b0195
  article-title: Time‐dependent density functional study for nanodroplet coalescence
  publication-title: AIChE J
– volume: 382
  start-page: 1148
  year: 2023
  ident: 10.1016/j.ces.2025.121694_b0110
  article-title: Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing
  publication-title: Science
  doi: 10.1126/science.adi1563
– volume: 34
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0280
  article-title: Simulation of coalescence dynamics of droplets on surfaces with different wettabilities
  publication-title: Phys. Fluids
  doi: 10.1063/5.0099434
– volume: 12
  start-page: 12373
  year: 2020
  ident: 10.1016/j.ces.2025.121694_b0055
  article-title: A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00234
– volume: 14
  start-page: 12796
  year: 2020
  ident: 10.1016/j.ces.2025.121694_b0290
  article-title: Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03487
– volume: 6
  start-page: 34074
  year: 2016
  ident: 10.1016/j.ces.2025.121694_b0135
  article-title: Coalescence of Immiscible Liquid Metal Drop on Graphene
  publication-title: Sci. Rep.
  doi: 10.1038/srep34074
– volume: 5
  start-page: 212
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0070
  article-title: Numerical simulation of oil dewatering in a disc centrifuge based on PBM model
  publication-title: Experimental and Computational Multiphase Flow
  doi: 10.1007/s42757-022-0137-7
– volume: 197
  year: 2022
  ident: 10.1016/j.ces.2025.121694_b0025
  article-title: How surface orientation affects coalescence-induced droplet jumping behavior and subsequent atmospheric corrosion resistance of a superhydrophobic surface?
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.110082
– volume: 29
  year: 2019
  ident: 10.1016/j.ces.2025.121694_b0155
  article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201905197
– volume: 139
  year: 2021
  ident: 10.1016/j.ces.2025.121694_b0120
  article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2021.103628
– volume: 12
  start-page: A413
  year: 2000
  ident: 10.1016/j.ces.2025.121694_b0175
  article-title: Dynamic density functional theory of fluids
  publication-title: Journal of Physics-Condensed Matter
  doi: 10.1088/0953-8984/12/8A/356
SSID ssj0007710
Score 2.4697976
Snippet •We introduced a DDFT for nanodroplet coalescence on different surfaces.•We found three different coalescence modes.•We revealed the mechanisms and conditions...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 121694
SubjectTerms Coalescence
Dynamic density functional theory
Nanodroplet
Surface
Title Coalescence mechanisms of nanodroplets on interfaces with different hydrophobicity: A dynamic density functional study
URI https://dx.doi.org/10.1016/j.ces.2025.121694
Volume 313
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14EmLz2GSz3kqxVIWeLPQWsi8aoUlpo9CLv92ZPLCCXjzksGEXkslm5pvdb78h5FaHaWx05DmQInOHMR_8IAu1E0g_ipUvuG8qtsU0mszY8zycd8ioPQuDtMrG99c-vfLWzZ1BY83BKsvwjK8rIIDjhUJT6IcZ46iff__5TfPg3HPbamrYu93ZrDhe8CtCiuiHqLEQCfZ7bNqJN-MjctgARTqsn-WYdEx-Qg525ANPyceoSGs5JmXo0uAZ3myz3NDC0jzNC71GcngJ7ZyiKsTaIv2K4sorbeuilHSxxX6LQmYKAPkDHVJdF6mnGrnt5ZZi6KtXDGklRntGZuPH19HEaeooOArQS-kYHcTMKu4JxkXq-Va7YCgAdnEqIdtKNWSmxmoTWOFJq1ioFKAc7krPs0wD3jon3bzIzQWhCtCSEkzyyLqMSx4HSgKiS1NfKJgNfo_ctRZMVrVcRtLyyN4SeMkEzZ3U5u4R1to4-fHNE3Dnfw-7_N-wK7KPrZpqe0265frd3ACgKGW_mjF9sjd8eplMvwCEC8vW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF5ED20PpU9qn3voqRDMY5NNehOpaLWeFLyF7AtTMBFNC_77zpikWGgvPeSQx0Iy2cx8s_nmG0IelZ-EWgWOBSkytxhzwQ8yX1mecINQuhF39Y5tMQkGM_Y69-cN0qtrYZBWWfn-0qfvvHV1pFNZs7NKU6zxtSMI4Lih0BT44RaqU8Fkb3WHo8Hk2yFz7th1QzUcUP_c3NG84GuELNH1UWYhiNjv4Wkv5PRPyHGFFWm3vJ1T0tDZGTnaUxA8J5-9PCkVmaSmS41lvOlmuaG5oVmS5WqN_PAC9jOKwhBrgwwsiouvtG6NUtDFFq9b5CKVgMmfaZeqsk89VUhvL7YUo1-5aEh3erQXZNZ_mfYGVtVKwZIAYApLKy9kRnInYjxKHNcomzEO2C5MBCRciYLkVBulPRM5wkjmSwlAh9vCcQxTALkuSTPLM31FqATAJCMmeGBsxgUPPSkA1CWJG0mYEG6bPNUWjFelYkZcU8neY3jIGM0dl-ZuE1bbOP7x2mPw6H8Pu_7fsAdyMJi-jePxcDK6IYd4pmTe3pJmsf7Qd4AvCnFfzZ8vjazOhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalescence+mechanisms+of+nanodroplets+on+interfaces+with+different+hydrophobicity%3A+A+dynamic+density+functional+study&rft.jtitle=Chemical+engineering+science&rft.au=Ding%2C+Fanfeng&rft.au=Liu%2C+Yu&rft.date=2025-07-01&rft.issn=0009-2509&rft.volume=313&rft.spage=121694&rft_id=info:doi/10.1016%2Fj.ces.2025.121694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2025_121694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon