Numerical investigation on the dynamic behavior of thermoplastic fiber-metal laminates subject to confined explosion loading
•A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than dynamic response.•A surrogate model with Bayesian optimization improved TFML lightweight design.•Thickness redistribution enhanced protection and l...
Saved in:
Published in | Thin-walled structures Vol. 214; p. 113354 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0263-8231 |
DOI | 10.1016/j.tws.2025.113354 |
Cover
Loading…
Abstract | •A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than dynamic response.•A surrogate model with Bayesian optimization improved TFML lightweight design.•Thickness redistribution enhanced protection and lightweight efficiency of TFMLs.
A numerical simulation study was conducted to investigate the dynamic response and failure behavior of thermoplastic fiber-metal laminates (TFMLs) under confined explosion conditions. To simulate the response of TFMLs to high-impact loads, a subroutine was developed incorporating the strain rate effect. In addition, a surrogate model for predicting the dynamic response of TFMLs was established by employing parametric modeling combined with Gaussian process regression analysis. Bayesian optimization of the thickness ratios for each layer group of the laminates was performed, using lightweight and protective performance as the comprehensive evaluation indices. The results indicate that incorporating the strain rate effect facilitates reliable characterization of both overall deformation and internal damage of TFMLs. The deviation of peak deflection between the numerically calculated value and experimental results is approximately 3 %, while the error for residual deflection is <10 %. A comparative analysis shows that the strain rate effect has significant influence both on the overall deformation and internal fiber damage of the blast loaded TFMLs. Furthermore, optimizing the thickness of each stack achieved an 11.9 % reduction in areal density and a 1.6 % reduction in residual deflection compared to those of the original design scheme. Increasing the metal thickness ratios on the front and rear faces of the laminated structure was shown to significantly enhance its protective performance. This research will contribute to advancing methodologies for analyzing the dynamic response and optimizing the structural design of TFMLs. |
---|---|
AbstractList | •A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than dynamic response.•A surrogate model with Bayesian optimization improved TFML lightweight design.•Thickness redistribution enhanced protection and lightweight efficiency of TFMLs.
A numerical simulation study was conducted to investigate the dynamic response and failure behavior of thermoplastic fiber-metal laminates (TFMLs) under confined explosion conditions. To simulate the response of TFMLs to high-impact loads, a subroutine was developed incorporating the strain rate effect. In addition, a surrogate model for predicting the dynamic response of TFMLs was established by employing parametric modeling combined with Gaussian process regression analysis. Bayesian optimization of the thickness ratios for each layer group of the laminates was performed, using lightweight and protective performance as the comprehensive evaluation indices. The results indicate that incorporating the strain rate effect facilitates reliable characterization of both overall deformation and internal damage of TFMLs. The deviation of peak deflection between the numerically calculated value and experimental results is approximately 3 %, while the error for residual deflection is <10 %. A comparative analysis shows that the strain rate effect has significant influence both on the overall deformation and internal fiber damage of the blast loaded TFMLs. Furthermore, optimizing the thickness of each stack achieved an 11.9 % reduction in areal density and a 1.6 % reduction in residual deflection compared to those of the original design scheme. Increasing the metal thickness ratios on the front and rear faces of the laminated structure was shown to significantly enhance its protective performance. This research will contribute to advancing methodologies for analyzing the dynamic response and optimizing the structural design of TFMLs. |
ArticleNumber | 113354 |
Author | Zhu, Zihan Zheng, Cheng Kong, Xiangshao Zhou, Hu Wu, Weiguo |
Author_xml | – sequence: 1 givenname: Xiangshao surname: Kong fullname: Kong, Xiangshao organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China – sequence: 2 givenname: Zihan orcidid: 0000-0001-8205-6259 surname: Zhu fullname: Zhu, Zihan organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China – sequence: 3 givenname: Cheng surname: Zheng fullname: Zheng, Cheng organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China – sequence: 4 givenname: Hu orcidid: 0000-0002-4126-1667 surname: Zhou fullname: Zhou, Hu email: zhouhu@whut.edu.cn organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China – sequence: 5 givenname: Weiguo surname: Wu fullname: Wu, Weiguo organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China |
BookMark | eNp9kMtqwzAQRbVIoUnbD-hOP2DX8kO26aqEviC0m-yFHqNExpaCpKQN9OMrk64LA8MM915mzgotrLOA0D0pclIQ-jDk8SvkZVE2OSFV1dQLtCxKWmVdWZFrtAphKArSkr5eop-P4wTeSD5iY08QotnxaJzFqeIesDpbPhmJBez5yTiPnZ73fnKHkSe1xNoI8NkEMUWMSWt5hIDDUQwgI44OS2e1saAwfB9GF-bw0XFl7O4WXWk-Brj76zdo-_K8Xb9lm8_X9_XTJpNlQ2IGtKdEKVG3RLSiajXRiohaqY4L1deccpCaNqWo-65MY0e0BEqlbqAXdVPdIHKJld6F4EGzgzcT92dGCjYTYwNLxNhMjF2IJc_jxQPprpMBz4I0YCUo49NfTDnzj_sXzqt8hA |
Cites_doi | 10.1016/j.compstruct.2011.10.027 10.1016/j.tws.2017.10.006 10.1016/j.compstruct.2019.04.012 10.1016/j.compstruct.2019.02.102 10.1016/0045-7825(92)90042-I 10.1063/5.0052524 10.1142/S0218625X22500664 10.1016/j.ijimpeng.2017.04.010 10.1016/j.compositesa.2023.107674 10.1177/002199837300700404 10.1016/j.compstruct.2008.02.017 10.1016/j.compstruct.2021.114471 10.1016/j.compositesa.2024.108099 10.1016/j.tws.2022.110522 10.3390/met13040638 10.1016/j.tws.2023.111328 10.1016/S0263-8223(02)00047-8 10.1016/j.taml.2024.100543 10.1016/j.ijimpeng.2023.104654 10.1016/j.tws.2023.110760 10.1016/j.tws.2023.111435 10.1016/j.compstruct.2021.114848 10.1016/j.compstruct.2022.115365 10.1177/002199837100500106 10.1016/j.compstruct.2020.112446 10.1016/0266-3538(96)00005-X 10.1016/j.compstruct.2022.115776 10.1016/j.tws.2021.108026 10.1016/j.compstruct.2019.111368 10.1016/j.compstruct.2021.114638 10.1016/j.compstruct.2020.112488 10.1016/j.compositesa.2015.01.025 10.1016/j.ijimpeng.2009.04.001 10.1016/j.compositesb.2024.111740 10.1016/j.ijimpeng.2014.08.002 10.1016/j.compstruct.2018.06.046 10.1016/j.compstruct.2016.04.012 10.1016/j.tws.2023.111125 10.1177/002199838702100904 10.1177/0021998303034505 10.1016/j.compositesb.2012.06.013 10.1016/j.ijimpeng.2018.11.011 10.1016/j.compstruct.2023.116791 10.1016/j.compositesb.2024.111415 10.1016/j.ijimpeng.2021.103931 10.1016/j.tws.2023.111053 10.1016/j.compscitech.2016.09.006 10.1016/S0266-3538(00)00002-6 10.1016/j.ijimpeng.2006.05.008 10.1016/j.dt.2020.11.012 10.1016/j.engfracmech.2021.107764 10.1016/j.compscitech.2006.09.010 10.1016/j.ijimpeng.2014.05.002 10.1016/S0266-3538(01)00208-1 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tws.2025.113354 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_tws_2025_113354 S0263823125004471 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSH SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c251t-e6961ddb471b7b37f1fd1b4dd8abd94a6aecf652b49824a681fce66cf5e9b453 |
IEDL.DBID | AIKHN |
ISSN | 0263-8231 |
IngestDate | Thu Jul 03 08:42:46 EDT 2025 Sat Jul 05 17:10:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulation Thermoplastic fiber-metal laminates Bayesian optimization Strain rate effect Confined explosion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-e6961ddb471b7b37f1fd1b4dd8abd94a6aecf652b49824a681fce66cf5e9b453 |
ORCID | 0000-0002-4126-1667 0000-0001-8205-6259 |
ParticipantIDs | crossref_primary_10_1016_j_tws_2025_113354 elsevier_sciencedirect_doi_10_1016_j_tws_2025_113354 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Thin-walled structures |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ma, Manes, Amico, Giglio (bib0035) 2019; 216 Vo, Guan, Cantwell, Schleyer (bib0054) 2012; 94 Wu, Ji, Lv, Zheng, Ye, Xie (bib0056) 2024; 14 Geretto, Chung Kim Yuen, Nurick (bib0023) 2015; 79 Vo, Guan, Cantwell, Schleyer (bib0053) 2013; 44 Camanho, Davila, De Moura (bib0048) 2003; 37 Karagiozova, Langdon, Nurick, Chung Kim Yuen (bib0026) 2010; 37 Puck, Schürmann (bib0030) 2002; 62 Ren, Zhong, Le, Ma (bib0045) 2019; 220 Pang, Yan, Wu, Qu (bib0015) 2022; 280 Khan, Sharma (bib0011) 2022; 18 Peng, Zhou, Wang, Zhang, Guan (bib0044) 2024; 14 Li, Kang, Li, Zhang, Zhao, Lu (bib0050) 2023; 311 Yuan, Liu, Wang, Wei, Yang (bib0009) 2021; 251 Dündar, Uygur, Ekici (bib0042) 2024 Treutenaere, Lauro, Bennani, Haugou, Matsumoto, Mottola (bib0034) 2017; 108 Zhang, Qian, Zhang, Zhou, Xuan, Wang, Cai (bib0008) 2024; 194 Wang, Wang, Zhang (bib0041) 2024; 285 Tsai, Wu (bib0032) 1971; 5 Dong, Yang, Jin, Wu (bib0019) 2022; 294 Zhou, Zheng, Lu, Zhu, Kong, Wu (bib0027) 2023; 192 Costa, Sales-Contini, Silva, Sebbe, Jesus (bib0005) 2023; 13 Liang, Zhou, Qi, Li, Lin, Lu, Li (bib0021) 2023; 184 Serubibi, Hazell, Escobedo, Wang, Oromiehie, Prusty, Phillips, St John (bib0013) 2023; 173 Gerendt, Dean, Mahrholz, Englisch, Krause, Rolfes (bib0007) 2020; 248 Chen, Cao, Fang (bib0018) 2021; 156 Tan, Falzon, Chiu, Price (bib0047) 2015; 71 Sitnikova, Guan, Cantwell (bib0052) 2016; 135 Zheng, Ji, Xie, Zhang, Zheng, Zheng (bib0057) 2021; 33 Corderley, Mostert, Krüger (bib0016) 2019; 125 Song, Chapman, Graham, Lukić, Rack, Siviour (bib0036) 2024; 180 Gerendt, Dean, Mahrholz, Rolfes (bib0006) 2019; 229 Dean, Asur Vijaya Kumar, Reinoso, Gerendt, Paggi, Mahdi, Rolfes (bib0039) 2020; 251 Reyes V, Cantwell (bib0001) 2000; 60 Benson (bib0051) 1992; 99 Langdon, Ozinsky, Chung Kim Yuen (bib0055) 2014; 73 Benzeggagh, Kenane (bib0049) 1996; 56 Huang, Tao, Sun, Zhang, Zhao (bib0003) 2023; 191 Asur Vijaya Kumar, Dean, Reinoso, Paggi (bib0038) 2021; 276 He, Wang, Liu, Wang, Yao, Li, Sun (bib0004) 2021; 167 Langdon, Lemanski, Nurick, Simmons, Cantwell, Schleyer (bib0024) 2007; 34 Tabiei, Aminjikarai (bib0037) 2009; 88 Kong, Zhou, Zheng, Zhu, Wu, Guan, Dear, Liu (bib0028) 2023; 187 Hashin, Rotem (bib0029) 1973; 7 He, Wang, Liu, Wang, Yao, Li, Sun (bib0012) 2021; 167 LANGDON, NURICK, LEMANSKI, SIMMONS, CANTWELL, SCHLEYER (bib0025) 2007; 67 Logesh, Moshi, Bharathi (bib0040) 2022; 29 Liu, Wang, Sutherland (bib0022) 2023; 179 Zheng, Xie, Ji, Zhou, Zheng (bib0058) 2024 Majzoobi, Morshedi, Farhadi (bib0014) 2018; 122 Huang, Lee (bib0046) 2003; 61 Chang, Chang (bib0031) 1987; 21 Liu, Liao, Jia, Peng (bib0043) 2016; 149 Wang, Zhao, Hong, Zhang (bib0002) 2018; 201 Li, Xu, Durandet, Gao, Huang, Ruan (bib0033) 2024; 277 Yang, Liao, Qiu, Hong, Yang (bib0010) 2024; 196 Cao, Chen, Xu, Fang (bib0017) 2021; 277 Peinado, Jiao-Wang, Olmedo, Santiuste (bib0020) 2022; 286 Peng (10.1016/j.tws.2025.113354_bib0044) 2024; 14 Zhou (10.1016/j.tws.2025.113354_bib0027) 2023; 192 Kong (10.1016/j.tws.2025.113354_bib0028) 2023; 187 Dong (10.1016/j.tws.2025.113354_bib0019) 2022; 294 Benzeggagh (10.1016/j.tws.2025.113354_bib0049) 1996; 56 Hashin (10.1016/j.tws.2025.113354_bib0029) 1973; 7 Pang (10.1016/j.tws.2025.113354_bib0015) 2022; 280 Cao (10.1016/j.tws.2025.113354_bib0017) 2021; 277 Vo (10.1016/j.tws.2025.113354_bib0054) 2012; 94 He (10.1016/j.tws.2025.113354_bib0004) 2021; 167 Yang (10.1016/j.tws.2025.113354_bib0010) 2024; 196 Peinado (10.1016/j.tws.2025.113354_bib0020) 2022; 286 Liang (10.1016/j.tws.2025.113354_bib0021) 2023; 184 Logesh (10.1016/j.tws.2025.113354_bib0040) 2022; 29 Ren (10.1016/j.tws.2025.113354_bib0045) 2019; 220 Huang (10.1016/j.tws.2025.113354_bib0046) 2003; 61 Chen (10.1016/j.tws.2025.113354_bib0018) 2021; 156 Chang (10.1016/j.tws.2025.113354_bib0031) 1987; 21 Gerendt (10.1016/j.tws.2025.113354_bib0006) 2019; 229 Li (10.1016/j.tws.2025.113354_bib0033) 2024; 277 Khan (10.1016/j.tws.2025.113354_bib0011) 2022; 18 Wu (10.1016/j.tws.2025.113354_bib0056) 2024; 14 Karagiozova (10.1016/j.tws.2025.113354_bib0026) 2010; 37 Wang (10.1016/j.tws.2025.113354_bib0002) 2018; 201 Treutenaere (10.1016/j.tws.2025.113354_bib0034) 2017; 108 Benson (10.1016/j.tws.2025.113354_bib0051) 1992; 99 Li (10.1016/j.tws.2025.113354_bib0050) 2023; 311 He (10.1016/j.tws.2025.113354_bib0012) 2021; 167 Majzoobi (10.1016/j.tws.2025.113354_bib0014) 2018; 122 Puck (10.1016/j.tws.2025.113354_bib0030) 2002; 62 Liu (10.1016/j.tws.2025.113354_bib0022) 2023; 179 Zheng (10.1016/j.tws.2025.113354_bib0057) 2021; 33 Dündar (10.1016/j.tws.2025.113354_bib0042) 2024 Geretto (10.1016/j.tws.2025.113354_bib0023) 2015; 79 Costa (10.1016/j.tws.2025.113354_bib0005) 2023; 13 LANGDON (10.1016/j.tws.2025.113354_bib0025) 2007; 67 Zheng (10.1016/j.tws.2025.113354_bib0058) 2024 Serubibi (10.1016/j.tws.2025.113354_bib0013) 2023; 173 Liu (10.1016/j.tws.2025.113354_bib0043) 2016; 149 Camanho (10.1016/j.tws.2025.113354_bib0048) 2003; 37 Gerendt (10.1016/j.tws.2025.113354_bib0007) 2020; 248 Dean (10.1016/j.tws.2025.113354_bib0039) 2020; 251 Zhang (10.1016/j.tws.2025.113354_bib0008) 2024; 194 Huang (10.1016/j.tws.2025.113354_bib0003) 2023; 191 Tabiei (10.1016/j.tws.2025.113354_bib0037) 2009; 88 Wang (10.1016/j.tws.2025.113354_bib0041) 2024; 285 Yuan (10.1016/j.tws.2025.113354_bib0009) 2021; 251 Reyes V (10.1016/j.tws.2025.113354_bib0001) 2000; 60 Langdon (10.1016/j.tws.2025.113354_bib0055) 2014; 73 Corderley (10.1016/j.tws.2025.113354_bib0016) 2019; 125 Asur Vijaya Kumar (10.1016/j.tws.2025.113354_bib0038) 2021; 276 Tan (10.1016/j.tws.2025.113354_bib0047) 2015; 71 Tsai (10.1016/j.tws.2025.113354_bib0032) 1971; 5 Vo (10.1016/j.tws.2025.113354_bib0053) 2013; 44 Ma (10.1016/j.tws.2025.113354_bib0035) 2019; 216 Langdon (10.1016/j.tws.2025.113354_bib0024) 2007; 34 Song (10.1016/j.tws.2025.113354_bib0036) 2024; 180 Sitnikova (10.1016/j.tws.2025.113354_bib0052) 2016; 135 |
References_xml | – volume: 187 year: 2023 ident: bib0028 article-title: Dynamic response and failure behaviour of thermoplastic fibre–metal laminates subjected to confined blast load publication-title: Thin. Wall. Struct. – volume: 180 year: 2024 ident: bib0036 article-title: Thermomechanical characterisation of a thermoplastic polymer and its short glass fibre reinforced composite: influence of fibre, fibre orientation, strain rates and temperatures publication-title: Comp. A: Appl. Sci. Manuf. – volume: 248 year: 2020 ident: bib0007 article-title: On the progressive fatigue failure of mechanical composite joints: numerical simulation and experimental validation publication-title: Compos. Struct. – volume: 156 year: 2021 ident: bib0018 article-title: Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness publication-title: Int. J. Impact. Eng. – volume: 108 start-page: 361 year: 2017 end-page: 369 ident: bib0034 article-title: Constitutive modelling of the strain-rate dependency of fabric reinforced polymers publication-title: Int. J. Impact Eng. – volume: 125 start-page: 180 year: 2019 end-page: 187 ident: bib0016 article-title: Failure modes in a carbon /titanium fibre metal laminate under hyper-velocity impact publication-title: Int. J. Impact Eng. – volume: 61 start-page: 265 year: 2003 end-page: 270 ident: bib0046 article-title: Experiments and simulation of the static contact crush of composite laminated plates publication-title: Compos. Struct. – volume: 167 year: 2021 ident: bib0004 article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review publication-title: Thin-Walled Struct. – volume: 277 year: 2021 ident: bib0017 article-title: Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness publication-title: Compos. Struct. – volume: 29 year: 2022 ident: bib0040 article-title: A multi-objective grey relational approach and regression analysis on optimization of drilling process parameters for GLARE fiber metal laminates publication-title: Surf. Rev. Lett. – volume: 285 year: 2024 ident: bib0041 article-title: Applications of artificial intelligence/machine learning to high-performance composites publication-title: Compos. B: Eng. – volume: 73 start-page: 1 year: 2014 end-page: 14 ident: bib0055 article-title: The response of partially confined right circular stainless steel cylinders to internal air-blast loading publication-title: Int. J. Impact. Eng. – volume: 179 year: 2023 ident: bib0022 article-title: Experimental and numerical response and failure of laterally impacted carbon/glass fibre-reinforced hybrid composite laminates publication-title: Int. J. Impact. Eng. – volume: 7 start-page: 448 year: 1973 end-page: 464 ident: bib0029 article-title: A fatigue failure criterion for Fiber reinforced materials publication-title: J. Compos. Mater. – volume: 13 start-page: 638 year: 2023 ident: bib0005 article-title: A critical review on Fiber metal laminates (FML): from manufacturing to sustainable processing publication-title: Metals – volume: 14 year: 2024 ident: bib0044 article-title: Numerical modelling of the ballistic impact response of hybrid composite structures publication-title: Compos. C: Open Access – volume: 18 start-page: 441 year: 2022 end-page: 456 ident: bib0011 article-title: Influence of metal/composite interface on the damage behavior and energy absorption mechanisms of FMLs against projectile impact publication-title: Def. Technol. – volume: 311 year: 2023 ident: bib0050 article-title: Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading publication-title: Compos. Struct. – volume: 44 start-page: 141 year: 2013 end-page: 151 ident: bib0053 article-title: Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys publication-title: Compos. B: Eng. – volume: 191 year: 2023 ident: bib0003 article-title: Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact publication-title: Thin-Walled Struct. – volume: 21 start-page: 834 year: 1987 end-page: 855 ident: bib0031 article-title: A progressive damage model for laminated composites containing stress concentrations publication-title: J. Compos. Mater. – volume: 220 start-page: 481 year: 2019 end-page: 493 ident: bib0045 article-title: Research on intralaminar load reversal damage modeling for predicting composite laminates’ low velocity impact responses publication-title: Compos. Struct. – volume: 149 start-page: 408 year: 2016 end-page: 422 ident: bib0043 article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact publication-title: Compos. Struct. – volume: 216 start-page: 187 year: 2019 end-page: 200 ident: bib0035 article-title: Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach publication-title: Compos. Struct. – volume: 94 start-page: 954 year: 2012 end-page: 965 ident: bib0054 article-title: Low-impulse blast behaviour of fibre-metal laminates publication-title: Compos. Struct. – volume: 194 year: 2024 ident: bib0008 article-title: On strain rate effect and high-velocity impact behavior of carbon fiber reinforced laminated composites publication-title: Thin-Walled Struct. – volume: 201 start-page: 995 year: 2018 end-page: 1003 ident: bib0002 article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates publication-title: Compos. Struct. – volume: 286 year: 2022 ident: bib0020 article-title: Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels publication-title: Compos. Struct. – volume: 56 start-page: 439 year: 1996 end-page: 449 ident: bib0049 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos. Sci. Technol. – volume: 276 year: 2021 ident: bib0038 article-title: A multi phase-field-cohesive zone model for laminated composites: application to delamination migration publication-title: Compos. Struct. – volume: 294 year: 2022 ident: bib0019 article-title: Experimental and numerical analysis of ballistic impact response of fiber-reinforced composite/metal composite target publication-title: Compos. Struct. – volume: 37 start-page: 766 year: 2010 end-page: 782 ident: bib0026 article-title: Simulation of the response of fibre–metal laminates to localised blast loading publication-title: Int. J. Impact. Eng. – volume: 184 year: 2023 ident: bib0021 article-title: Failure mode and blast resistance of polyurea coated metallic cylinders under internal multi-field coupled loading publication-title: Thin-Walled Struct. – volume: 62 start-page: 1633 year: 2002 end-page: 1662 ident: bib0030 article-title: Failure analysis of FRP laminates by means of physically based phenomenological models publication-title: Compos. Sci. Technol. – volume: 5 start-page: 58 year: 1971 end-page: 80 ident: bib0032 article-title: A general theory of strength for anisotropic materials publication-title: J. Compos. Mater. – volume: 122 start-page: 1 year: 2018 end-page: 7 ident: bib0014 article-title: The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs publication-title: Thin. Wall. Struct. – volume: 192 year: 2023 ident: bib0027 article-title: An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre–metal laminates subjected to blast loading publication-title: Thin. Wall. Struct. – volume: 88 start-page: 65 year: 2009 end-page: 82 ident: bib0037 article-title: A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates publication-title: Compos. Struct. – volume: 14 year: 2024 ident: bib0056 article-title: Learning active flow control strategies of a swept wing by intelligent wind tunnel publication-title: Theor. Appl. Mech. Lett. – volume: 79 start-page: 32 year: 2015 end-page: 44 ident: bib0023 article-title: An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading publication-title: Int. J. Impact. Eng. – volume: 196 year: 2024 ident: bib0010 article-title: Experimental study on the impact resistance and damage tolerance of thermoplastic FMLs publication-title: Thin. Wall. Struct. – volume: 34 start-page: 1202 year: 2007 end-page: 1222 ident: bib0024 article-title: Behaviour of fibre–metal laminates subjected to localised blast loading: part I—Experimental observations publication-title: Int. J. Impact. Eng. – start-page: 1001 year: 2024 ident: bib0058 article-title: Transformer-based in-context policy learning for efficient active flow control across various airfoils publication-title: J. Fluid Mech. – volume: 71 start-page: 212 year: 2015 end-page: 226 ident: bib0047 article-title: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates publication-title: Compos. A: Appl. Sci. Manuf. – volume: 229 year: 2019 ident: bib0006 article-title: On the progressive failure simulation and experimental validation of fiber metal laminate bolted joints publication-title: Compos. Struct. – volume: 277 year: 2024 ident: bib0033 article-title: Strain rate dependence of 3D printed continuous fiber reinforced composites publication-title: Compos. B: Eng. – volume: 67 start-page: 1385 year: 2007 end-page: 1405 ident: bib0025 article-title: Failure characterisation of blast-loaded fibre–metal laminate panels based on aluminium and glass–fibre reinforced polypropylene publication-title: Compos. Sci. Technol. – volume: 33 year: 2021 ident: bib0057 article-title: From active learning to deep reinforcement learning: intelligent active flow control in suppressing vortex-induced vibration publication-title: Phys. Fluids – volume: 251 year: 2020 ident: bib0039 article-title: A multi phase-field fracture model for long fiber reinforced composites based on the Puck theory of failure publication-title: Compos. Struct. – volume: 99 start-page: 235 year: 1992 end-page: 394 ident: bib0051 article-title: Computational methods in lagrangian and eulerian hydrocodes publication-title: Comput. Methods Appl. Mech. Eng. – volume: 280 year: 2022 ident: bib0015 article-title: Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles publication-title: Compos. Struct. – volume: 60 start-page: 1085 year: 2000 end-page: 1094 ident: bib0001 article-title: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene publication-title: Compos. Sci. Technol. – volume: 37 start-page: 1415 year: 2003 end-page: 1438 ident: bib0048 article-title: Numerical simulation of mixed-mode progressive delamination in composite materials publication-title: J. Compos. Mater. – volume: 135 start-page: 1 year: 2016 end-page: 12 ident: bib0052 article-title: The analysis of the ultimate blast failure modes in fibre metal laminates publication-title: Compos. Sci. Technol. – volume: 167 year: 2021 ident: bib0012 article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review publication-title: Thin. Wall. Struct. – volume: 173 year: 2023 ident: bib0013 article-title: Fibre-metal laminate structures: high-velocity impact, penetration, and blast loading – A review publication-title: Compos. A Appl. S – volume: 251 year: 2021 ident: bib0009 article-title: Dynamic fracture in CFRP laminates: effect of projectile mass and dimension publication-title: Eng. Fract. Mech. – year: 2024 ident: bib0042 article-title: Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis publication-title: J. Compos. Mater. – volume: 94 start-page: 954 year: 2012 ident: 10.1016/j.tws.2025.113354_bib0054 article-title: Low-impulse blast behaviour of fibre-metal laminates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2011.10.027 – volume: 122 start-page: 1 year: 2018 ident: 10.1016/j.tws.2025.113354_bib0014 article-title: The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs publication-title: Thin. Wall. Struct. doi: 10.1016/j.tws.2017.10.006 – volume: 220 start-page: 481 year: 2019 ident: 10.1016/j.tws.2025.113354_bib0045 article-title: Research on intralaminar load reversal damage modeling for predicting composite laminates’ low velocity impact responses publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.04.012 – volume: 216 start-page: 187 year: 2019 ident: 10.1016/j.tws.2025.113354_bib0035 article-title: Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.02.102 – volume: 99 start-page: 235 year: 1992 ident: 10.1016/j.tws.2025.113354_bib0051 article-title: Computational methods in lagrangian and eulerian hydrocodes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(92)90042-I – volume: 33 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0057 article-title: From active learning to deep reinforcement learning: intelligent active flow control in suppressing vortex-induced vibration publication-title: Phys. Fluids doi: 10.1063/5.0052524 – volume: 29 issue: 05 year: 2022 ident: 10.1016/j.tws.2025.113354_bib0040 article-title: A multi-objective grey relational approach and regression analysis on optimization of drilling process parameters for GLARE fiber metal laminates publication-title: Surf. Rev. Lett. doi: 10.1142/S0218625X22500664 – volume: 108 start-page: 361 year: 2017 ident: 10.1016/j.tws.2025.113354_bib0034 article-title: Constitutive modelling of the strain-rate dependency of fabric reinforced polymers publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2017.04.010 – volume: 173 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0013 article-title: Fibre-metal laminate structures: high-velocity impact, penetration, and blast loading – A review publication-title: Compos. A Appl. S doi: 10.1016/j.compositesa.2023.107674 – volume: 7 start-page: 448 year: 1973 ident: 10.1016/j.tws.2025.113354_bib0029 article-title: A fatigue failure criterion for Fiber reinforced materials publication-title: J. Compos. Mater. doi: 10.1177/002199837300700404 – volume: 88 start-page: 65 year: 2009 ident: 10.1016/j.tws.2025.113354_bib0037 article-title: A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2008.02.017 – volume: 276 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0038 article-title: A multi phase-field-cohesive zone model for laminated composites: application to delamination migration publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114471 – start-page: 1001 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0058 article-title: Transformer-based in-context policy learning for efficient active flow control across various airfoils publication-title: J. Fluid Mech. – volume: 180 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0036 article-title: Thermomechanical characterisation of a thermoplastic polymer and its short glass fibre reinforced composite: influence of fibre, fibre orientation, strain rates and temperatures publication-title: Comp. A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2024.108099 – volume: 184 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0021 article-title: Failure mode and blast resistance of polyurea coated metallic cylinders under internal multi-field coupled loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110522 – volume: 13 start-page: 638 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0005 article-title: A critical review on Fiber metal laminates (FML): from manufacturing to sustainable processing publication-title: Metals doi: 10.3390/met13040638 – volume: 194 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0008 article-title: On strain rate effect and high-velocity impact behavior of carbon fiber reinforced laminated composites publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2023.111328 – volume: 61 start-page: 265 year: 2003 ident: 10.1016/j.tws.2025.113354_bib0046 article-title: Experiments and simulation of the static contact crush of composite laminated plates publication-title: Compos. Struct. doi: 10.1016/S0263-8223(02)00047-8 – volume: 14 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0056 article-title: Learning active flow control strategies of a swept wing by intelligent wind tunnel publication-title: Theor. Appl. Mech. Lett. doi: 10.1016/j.taml.2024.100543 – volume: 179 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0022 article-title: Experimental and numerical response and failure of laterally impacted carbon/glass fibre-reinforced hybrid composite laminates publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2023.104654 – volume: 187 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0028 article-title: Dynamic response and failure behaviour of thermoplastic fibre–metal laminates subjected to confined blast load publication-title: Thin. Wall. Struct. doi: 10.1016/j.tws.2023.110760 – volume: 196 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0010 article-title: Experimental study on the impact resistance and damage tolerance of thermoplastic FMLs publication-title: Thin. Wall. Struct. doi: 10.1016/j.tws.2023.111435 – volume: 280 year: 2022 ident: 10.1016/j.tws.2025.113354_bib0015 article-title: Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114848 – volume: 286 year: 2022 ident: 10.1016/j.tws.2025.113354_bib0020 article-title: Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115365 – volume: 5 start-page: 58 year: 1971 ident: 10.1016/j.tws.2025.113354_bib0032 article-title: A general theory of strength for anisotropic materials publication-title: J. Compos. Mater. doi: 10.1177/002199837100500106 – volume: 251 year: 2020 ident: 10.1016/j.tws.2025.113354_bib0039 article-title: A multi phase-field fracture model for long fiber reinforced composites based on the Puck theory of failure publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112446 – volume: 56 start-page: 439 year: 1996 ident: 10.1016/j.tws.2025.113354_bib0049 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos. Sci. Technol. doi: 10.1016/0266-3538(96)00005-X – volume: 294 year: 2022 ident: 10.1016/j.tws.2025.113354_bib0019 article-title: Experimental and numerical analysis of ballistic impact response of fiber-reinforced composite/metal composite target publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115776 – volume: 167 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0004 article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.108026 – volume: 229 year: 2019 ident: 10.1016/j.tws.2025.113354_bib0006 article-title: On the progressive failure simulation and experimental validation of fiber metal laminate bolted joints publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111368 – volume: 277 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0017 article-title: Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114638 – volume: 248 year: 2020 ident: 10.1016/j.tws.2025.113354_bib0007 article-title: On the progressive fatigue failure of mechanical composite joints: numerical simulation and experimental validation publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112488 – volume: 71 start-page: 212 year: 2015 ident: 10.1016/j.tws.2025.113354_bib0047 article-title: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates publication-title: Compos. A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.01.025 – volume: 37 start-page: 766 year: 2010 ident: 10.1016/j.tws.2025.113354_bib0026 article-title: Simulation of the response of fibre–metal laminates to localised blast loading publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2009.04.001 – volume: 285 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0041 article-title: Applications of artificial intelligence/machine learning to high-performance composites publication-title: Compos. B: Eng. doi: 10.1016/j.compositesb.2024.111740 – volume: 79 start-page: 32 year: 2015 ident: 10.1016/j.tws.2025.113354_bib0023 article-title: An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2014.08.002 – volume: 201 start-page: 995 year: 2018 ident: 10.1016/j.tws.2025.113354_bib0002 article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.06.046 – volume: 149 start-page: 408 year: 2016 ident: 10.1016/j.tws.2025.113354_bib0043 article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.04.012 – volume: 192 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0027 article-title: An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre–metal laminates subjected to blast loading publication-title: Thin. Wall. Struct. doi: 10.1016/j.tws.2023.111125 – volume: 21 start-page: 834 year: 1987 ident: 10.1016/j.tws.2025.113354_bib0031 article-title: A progressive damage model for laminated composites containing stress concentrations publication-title: J. Compos. Mater. doi: 10.1177/002199838702100904 – volume: 37 start-page: 1415 year: 2003 ident: 10.1016/j.tws.2025.113354_bib0048 article-title: Numerical simulation of mixed-mode progressive delamination in composite materials publication-title: J. Compos. Mater. doi: 10.1177/0021998303034505 – volume: 44 start-page: 141 year: 2013 ident: 10.1016/j.tws.2025.113354_bib0053 article-title: Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys publication-title: Compos. B: Eng. doi: 10.1016/j.compositesb.2012.06.013 – volume: 125 start-page: 180 year: 2019 ident: 10.1016/j.tws.2025.113354_bib0016 article-title: Failure modes in a carbon /titanium fibre metal laminate under hyper-velocity impact publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.11.011 – volume: 311 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0050 article-title: Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2023.116791 – volume: 277 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0033 article-title: Strain rate dependence of 3D printed continuous fiber reinforced composites publication-title: Compos. B: Eng. doi: 10.1016/j.compositesb.2024.111415 – volume: 156 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0018 article-title: Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2021.103931 – volume: 191 year: 2023 ident: 10.1016/j.tws.2025.113354_bib0003 article-title: Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2023.111053 – volume: 167 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0012 article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review publication-title: Thin. Wall. Struct. doi: 10.1016/j.tws.2021.108026 – volume: 135 start-page: 1 year: 2016 ident: 10.1016/j.tws.2025.113354_bib0052 article-title: The analysis of the ultimate blast failure modes in fibre metal laminates publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.09.006 – volume: 60 start-page: 1085 year: 2000 ident: 10.1016/j.tws.2025.113354_bib0001 article-title: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(00)00002-6 – year: 2024 ident: 10.1016/j.tws.2025.113354_bib0042 article-title: Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis publication-title: J. Compos. Mater. – volume: 34 start-page: 1202 year: 2007 ident: 10.1016/j.tws.2025.113354_bib0024 article-title: Behaviour of fibre–metal laminates subjected to localised blast loading: part I—Experimental observations publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2006.05.008 – volume: 18 start-page: 441 year: 2022 ident: 10.1016/j.tws.2025.113354_bib0011 article-title: Influence of metal/composite interface on the damage behavior and energy absorption mechanisms of FMLs against projectile impact publication-title: Def. Technol. doi: 10.1016/j.dt.2020.11.012 – volume: 251 year: 2021 ident: 10.1016/j.tws.2025.113354_bib0009 article-title: Dynamic fracture in CFRP laminates: effect of projectile mass and dimension publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2021.107764 – volume: 67 start-page: 1385 year: 2007 ident: 10.1016/j.tws.2025.113354_bib0025 article-title: Failure characterisation of blast-loaded fibre–metal laminate panels based on aluminium and glass–fibre reinforced polypropylene publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2006.09.010 – volume: 73 start-page: 1 year: 2014 ident: 10.1016/j.tws.2025.113354_bib0055 article-title: The response of partially confined right circular stainless steel cylinders to internal air-blast loading publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2014.05.002 – volume: 62 start-page: 1633 year: 2002 ident: 10.1016/j.tws.2025.113354_bib0030 article-title: Failure analysis of FRP laminates by means of physically based phenomenological models publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(01)00208-1 – volume: 14 year: 2024 ident: 10.1016/j.tws.2025.113354_bib0044 article-title: Numerical modelling of the ballistic impact response of hybrid composite structures publication-title: Compos. C: Open Access |
SSID | ssj0017194 |
Score | 2.427532 |
Snippet | •A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 113354 |
SubjectTerms | Bayesian optimization Confined explosion Numerical simulation Strain rate effect Thermoplastic fiber-metal laminates |
Title | Numerical investigation on the dynamic behavior of thermoplastic fiber-metal laminates subject to confined explosion loading |
URI | https://dx.doi.org/10.1016/j.tws.2025.113354 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu-hB_MT5MXLwJMS1aZK2xzEc0-EOOnG30jQJTLZ2zA4v4t_uSz90gl6EQEnoa8treO_38r4QulSggo2OOeGADQgTwhBJHUZMIEMOw3iJTU6-H4vhE7ub8mkD9etcGBtWWcn-UqYX0rpa6Vbc7C5ns-4jWA-FEwuUuMOYzSNvUS8UvIlavdvRcPzlTPDdoh-ivZ9Ygtq5WYR55W-2aDfltrmJx9nv6mlD5Qz20G6FFXGv_Jx91NDpAdrZqCB4iN7H69LlMsez74oZWYphALTDqmw4j-tsfJwZu75aZEuAzfBcbGzICFloAOEYdscsteATv66lPaDBeYbBYDbwQoW1Ddezh2t4nhWR90doMriZ9IekaqhAEoAxOdEiFK5SEpglfen5xjXKlUypIJYqZLGIdWIEp5KFAYVp4JpEC5EYrkPJuHeMmmmW6hOEwR53DI8ZdQDABIXRRIXyhC8D4VGPtdFVzcZoWZbNiOp4spcIeB5Znkclz9uI1YyOfvz7CMT632Sn_yM7Q9t2VsaJnaNmvlrrCwAWueygresPt1NtH3sdPTyPPgFyo9E8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTkmketpOMqKIq0HahSN2sOLaloDapSioWxG_nnAcUCRYkL3HsJLpYd9_Z390hdKXABBsdM8IAGxDKuSHScygxoYwYNOMnNjh5NOaDZ_owZdMW6jWxMJZWWev-SqeX2rru6dbS7C7StPsE3kN5iAVG3KHUxpFvUOYHltd38_HF83ADt6yGaEcTO7w52ixJXsWbTdntMVvaxGf0d-O0ZnD6u2inRor4tvqYPdTS2T7aXssfeIDex6vqwGWG0-98GXmGoQGww6oqN4-bWHycG9u_nOcLAM3wXGwsYYTMNUBwDGsjzSz0xK8rabdncJFjcJcNvFBhbcl6dmsNz_KSd3-IJv27SW9A6nIKJAEQUxDNI-4qJUFUMpB-YFyjXEmVCmOpIhrzWCeGM0_SKPTgMnRNojlPDNORBMkeoXaWZ_oYYfDGHcNi6jkAX8LSZfK48nkgQ-57Pu2g60aMYlElzRANm-xFgMyFlbmoZN5BtBG0-PHnBSj1v6ed_G_aJdocTEZDMbwfP56iLXunYoydoXaxXOlzgBiFvCiX0CewzNBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+the+dynamic+behavior+of+thermoplastic+fiber-metal+laminates+subject+to+confined+explosion+loading&rft.jtitle=Thin-walled+structures&rft.au=Kong%2C+Xiangshao&rft.au=Zhu%2C+Zihan&rft.au=Zheng%2C+Cheng&rft.au=Zhou%2C+Hu&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.volume=214&rft_id=info:doi/10.1016%2Fj.tws.2025.113354&rft.externalDocID=S0263823125004471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |