Numerical investigation on the dynamic behavior of thermoplastic fiber-metal laminates subject to confined explosion loading

•A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than dynamic response.•A surrogate model with Bayesian optimization improved TFML lightweight design.•Thickness redistribution enhanced protection and l...

Full description

Saved in:
Bibliographic Details
Published inThin-walled structures Vol. 214; p. 113354
Main Authors Kong, Xiangshao, Zhu, Zihan, Zheng, Cheng, Zhou, Hu, Wu, Weiguo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2025
Subjects
Online AccessGet full text
ISSN0263-8231
DOI10.1016/j.tws.2025.113354

Cover

Loading…
Abstract •A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than dynamic response.•A surrogate model with Bayesian optimization improved TFML lightweight design.•Thickness redistribution enhanced protection and lightweight efficiency of TFMLs. A numerical simulation study was conducted to investigate the dynamic response and failure behavior of thermoplastic fiber-metal laminates (TFMLs) under confined explosion conditions. To simulate the response of TFMLs to high-impact loads, a subroutine was developed incorporating the strain rate effect. In addition, a surrogate model for predicting the dynamic response of TFMLs was established by employing parametric modeling combined with Gaussian process regression analysis. Bayesian optimization of the thickness ratios for each layer group of the laminates was performed, using lightweight and protective performance as the comprehensive evaluation indices. The results indicate that incorporating the strain rate effect facilitates reliable characterization of both overall deformation and internal damage of TFMLs. The deviation of peak deflection between the numerically calculated value and experimental results is approximately 3 %, while the error for residual deflection is <10 %. A comparative analysis shows that the strain rate effect has significant influence both on the overall deformation and internal fiber damage of the blast loaded TFMLs. Furthermore, optimizing the thickness of each stack achieved an 11.9 % reduction in areal density and a 1.6 % reduction in residual deflection compared to those of the original design scheme. Increasing the metal thickness ratios on the front and rear faces of the laminated structure was shown to significantly enhance its protective performance. This research will contribute to advancing methodologies for analyzing the dynamic response and optimizing the structural design of TFMLs.
AbstractList •A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than dynamic response.•A surrogate model with Bayesian optimization improved TFML lightweight design.•Thickness redistribution enhanced protection and lightweight efficiency of TFMLs. A numerical simulation study was conducted to investigate the dynamic response and failure behavior of thermoplastic fiber-metal laminates (TFMLs) under confined explosion conditions. To simulate the response of TFMLs to high-impact loads, a subroutine was developed incorporating the strain rate effect. In addition, a surrogate model for predicting the dynamic response of TFMLs was established by employing parametric modeling combined with Gaussian process regression analysis. Bayesian optimization of the thickness ratios for each layer group of the laminates was performed, using lightweight and protective performance as the comprehensive evaluation indices. The results indicate that incorporating the strain rate effect facilitates reliable characterization of both overall deformation and internal damage of TFMLs. The deviation of peak deflection between the numerically calculated value and experimental results is approximately 3 %, while the error for residual deflection is <10 %. A comparative analysis shows that the strain rate effect has significant influence both on the overall deformation and internal fiber damage of the blast loaded TFMLs. Furthermore, optimizing the thickness of each stack achieved an 11.9 % reduction in areal density and a 1.6 % reduction in residual deflection compared to those of the original design scheme. Increasing the metal thickness ratios on the front and rear faces of the laminated structure was shown to significantly enhance its protective performance. This research will contribute to advancing methodologies for analyzing the dynamic response and optimizing the structural design of TFMLs.
ArticleNumber 113354
Author Zhu, Zihan
Zheng, Cheng
Kong, Xiangshao
Zhou, Hu
Wu, Weiguo
Author_xml – sequence: 1
  givenname: Xiangshao
  surname: Kong
  fullname: Kong, Xiangshao
  organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China
– sequence: 2
  givenname: Zihan
  orcidid: 0000-0001-8205-6259
  surname: Zhu
  fullname: Zhu, Zihan
  organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China
– sequence: 3
  givenname: Cheng
  surname: Zheng
  fullname: Zheng, Cheng
  organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China
– sequence: 4
  givenname: Hu
  orcidid: 0000-0002-4126-1667
  surname: Zhou
  fullname: Zhou, Hu
  email: zhouhu@whut.edu.cn
  organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China
– sequence: 5
  givenname: Weiguo
  surname: Wu
  fullname: Wu, Weiguo
  organization: Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China
BookMark eNp9kMtqwzAQRbVIoUnbD-hOP2DX8kO26aqEviC0m-yFHqNExpaCpKQN9OMrk64LA8MM915mzgotrLOA0D0pclIQ-jDk8SvkZVE2OSFV1dQLtCxKWmVdWZFrtAphKArSkr5eop-P4wTeSD5iY08QotnxaJzFqeIesDpbPhmJBez5yTiPnZ73fnKHkSe1xNoI8NkEMUWMSWt5hIDDUQwgI44OS2e1saAwfB9GF-bw0XFl7O4WXWk-Brj76zdo-_K8Xb9lm8_X9_XTJpNlQ2IGtKdEKVG3RLSiajXRiohaqY4L1deccpCaNqWo-65MY0e0BEqlbqAXdVPdIHKJld6F4EGzgzcT92dGCjYTYwNLxNhMjF2IJc_jxQPprpMBz4I0YCUo49NfTDnzj_sXzqt8hA
Cites_doi 10.1016/j.compstruct.2011.10.027
10.1016/j.tws.2017.10.006
10.1016/j.compstruct.2019.04.012
10.1016/j.compstruct.2019.02.102
10.1016/0045-7825(92)90042-I
10.1063/5.0052524
10.1142/S0218625X22500664
10.1016/j.ijimpeng.2017.04.010
10.1016/j.compositesa.2023.107674
10.1177/002199837300700404
10.1016/j.compstruct.2008.02.017
10.1016/j.compstruct.2021.114471
10.1016/j.compositesa.2024.108099
10.1016/j.tws.2022.110522
10.3390/met13040638
10.1016/j.tws.2023.111328
10.1016/S0263-8223(02)00047-8
10.1016/j.taml.2024.100543
10.1016/j.ijimpeng.2023.104654
10.1016/j.tws.2023.110760
10.1016/j.tws.2023.111435
10.1016/j.compstruct.2021.114848
10.1016/j.compstruct.2022.115365
10.1177/002199837100500106
10.1016/j.compstruct.2020.112446
10.1016/0266-3538(96)00005-X
10.1016/j.compstruct.2022.115776
10.1016/j.tws.2021.108026
10.1016/j.compstruct.2019.111368
10.1016/j.compstruct.2021.114638
10.1016/j.compstruct.2020.112488
10.1016/j.compositesa.2015.01.025
10.1016/j.ijimpeng.2009.04.001
10.1016/j.compositesb.2024.111740
10.1016/j.ijimpeng.2014.08.002
10.1016/j.compstruct.2018.06.046
10.1016/j.compstruct.2016.04.012
10.1016/j.tws.2023.111125
10.1177/002199838702100904
10.1177/0021998303034505
10.1016/j.compositesb.2012.06.013
10.1016/j.ijimpeng.2018.11.011
10.1016/j.compstruct.2023.116791
10.1016/j.compositesb.2024.111415
10.1016/j.ijimpeng.2021.103931
10.1016/j.tws.2023.111053
10.1016/j.compscitech.2016.09.006
10.1016/S0266-3538(00)00002-6
10.1016/j.ijimpeng.2006.05.008
10.1016/j.dt.2020.11.012
10.1016/j.engfracmech.2021.107764
10.1016/j.compscitech.2006.09.010
10.1016/j.ijimpeng.2014.05.002
10.1016/S0266-3538(01)00208-1
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2025.113354
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tws_2025_113354
S0263823125004471
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-e6961ddb471b7b37f1fd1b4dd8abd94a6aecf652b49824a681fce66cf5e9b453
IEDL.DBID AIKHN
ISSN 0263-8231
IngestDate Thu Jul 03 08:42:46 EDT 2025
Sat Jul 05 17:10:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulation
Thermoplastic fiber-metal laminates
Bayesian optimization
Strain rate effect
Confined explosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-e6961ddb471b7b37f1fd1b4dd8abd94a6aecf652b49824a681fce66cf5e9b453
ORCID 0000-0002-4126-1667
0000-0001-8205-6259
ParticipantIDs crossref_primary_10_1016_j_tws_2025_113354
elsevier_sciencedirect_doi_10_1016_j_tws_2025_113354
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Manes, Amico, Giglio (bib0035) 2019; 216
Vo, Guan, Cantwell, Schleyer (bib0054) 2012; 94
Wu, Ji, Lv, Zheng, Ye, Xie (bib0056) 2024; 14
Geretto, Chung Kim Yuen, Nurick (bib0023) 2015; 79
Vo, Guan, Cantwell, Schleyer (bib0053) 2013; 44
Camanho, Davila, De Moura (bib0048) 2003; 37
Karagiozova, Langdon, Nurick, Chung Kim Yuen (bib0026) 2010; 37
Puck, Schürmann (bib0030) 2002; 62
Ren, Zhong, Le, Ma (bib0045) 2019; 220
Pang, Yan, Wu, Qu (bib0015) 2022; 280
Khan, Sharma (bib0011) 2022; 18
Peng, Zhou, Wang, Zhang, Guan (bib0044) 2024; 14
Li, Kang, Li, Zhang, Zhao, Lu (bib0050) 2023; 311
Yuan, Liu, Wang, Wei, Yang (bib0009) 2021; 251
Dündar, Uygur, Ekici (bib0042) 2024
Treutenaere, Lauro, Bennani, Haugou, Matsumoto, Mottola (bib0034) 2017; 108
Zhang, Qian, Zhang, Zhou, Xuan, Wang, Cai (bib0008) 2024; 194
Wang, Wang, Zhang (bib0041) 2024; 285
Tsai, Wu (bib0032) 1971; 5
Dong, Yang, Jin, Wu (bib0019) 2022; 294
Zhou, Zheng, Lu, Zhu, Kong, Wu (bib0027) 2023; 192
Costa, Sales-Contini, Silva, Sebbe, Jesus (bib0005) 2023; 13
Liang, Zhou, Qi, Li, Lin, Lu, Li (bib0021) 2023; 184
Serubibi, Hazell, Escobedo, Wang, Oromiehie, Prusty, Phillips, St John (bib0013) 2023; 173
Gerendt, Dean, Mahrholz, Englisch, Krause, Rolfes (bib0007) 2020; 248
Chen, Cao, Fang (bib0018) 2021; 156
Tan, Falzon, Chiu, Price (bib0047) 2015; 71
Sitnikova, Guan, Cantwell (bib0052) 2016; 135
Zheng, Ji, Xie, Zhang, Zheng, Zheng (bib0057) 2021; 33
Corderley, Mostert, Krüger (bib0016) 2019; 125
Song, Chapman, Graham, Lukić, Rack, Siviour (bib0036) 2024; 180
Gerendt, Dean, Mahrholz, Rolfes (bib0006) 2019; 229
Dean, Asur Vijaya Kumar, Reinoso, Gerendt, Paggi, Mahdi, Rolfes (bib0039) 2020; 251
Reyes V, Cantwell (bib0001) 2000; 60
Benson (bib0051) 1992; 99
Langdon, Ozinsky, Chung Kim Yuen (bib0055) 2014; 73
Benzeggagh, Kenane (bib0049) 1996; 56
Huang, Tao, Sun, Zhang, Zhao (bib0003) 2023; 191
Asur Vijaya Kumar, Dean, Reinoso, Paggi (bib0038) 2021; 276
He, Wang, Liu, Wang, Yao, Li, Sun (bib0004) 2021; 167
Langdon, Lemanski, Nurick, Simmons, Cantwell, Schleyer (bib0024) 2007; 34
Tabiei, Aminjikarai (bib0037) 2009; 88
Kong, Zhou, Zheng, Zhu, Wu, Guan, Dear, Liu (bib0028) 2023; 187
Hashin, Rotem (bib0029) 1973; 7
He, Wang, Liu, Wang, Yao, Li, Sun (bib0012) 2021; 167
LANGDON, NURICK, LEMANSKI, SIMMONS, CANTWELL, SCHLEYER (bib0025) 2007; 67
Logesh, Moshi, Bharathi (bib0040) 2022; 29
Liu, Wang, Sutherland (bib0022) 2023; 179
Zheng, Xie, Ji, Zhou, Zheng (bib0058) 2024
Majzoobi, Morshedi, Farhadi (bib0014) 2018; 122
Huang, Lee (bib0046) 2003; 61
Chang, Chang (bib0031) 1987; 21
Liu, Liao, Jia, Peng (bib0043) 2016; 149
Wang, Zhao, Hong, Zhang (bib0002) 2018; 201
Li, Xu, Durandet, Gao, Huang, Ruan (bib0033) 2024; 277
Yang, Liao, Qiu, Hong, Yang (bib0010) 2024; 196
Cao, Chen, Xu, Fang (bib0017) 2021; 277
Peinado, Jiao-Wang, Olmedo, Santiuste (bib0020) 2022; 286
Peng (10.1016/j.tws.2025.113354_bib0044) 2024; 14
Zhou (10.1016/j.tws.2025.113354_bib0027) 2023; 192
Kong (10.1016/j.tws.2025.113354_bib0028) 2023; 187
Dong (10.1016/j.tws.2025.113354_bib0019) 2022; 294
Benzeggagh (10.1016/j.tws.2025.113354_bib0049) 1996; 56
Hashin (10.1016/j.tws.2025.113354_bib0029) 1973; 7
Pang (10.1016/j.tws.2025.113354_bib0015) 2022; 280
Cao (10.1016/j.tws.2025.113354_bib0017) 2021; 277
Vo (10.1016/j.tws.2025.113354_bib0054) 2012; 94
He (10.1016/j.tws.2025.113354_bib0004) 2021; 167
Yang (10.1016/j.tws.2025.113354_bib0010) 2024; 196
Peinado (10.1016/j.tws.2025.113354_bib0020) 2022; 286
Liang (10.1016/j.tws.2025.113354_bib0021) 2023; 184
Logesh (10.1016/j.tws.2025.113354_bib0040) 2022; 29
Ren (10.1016/j.tws.2025.113354_bib0045) 2019; 220
Huang (10.1016/j.tws.2025.113354_bib0046) 2003; 61
Chen (10.1016/j.tws.2025.113354_bib0018) 2021; 156
Chang (10.1016/j.tws.2025.113354_bib0031) 1987; 21
Gerendt (10.1016/j.tws.2025.113354_bib0006) 2019; 229
Li (10.1016/j.tws.2025.113354_bib0033) 2024; 277
Khan (10.1016/j.tws.2025.113354_bib0011) 2022; 18
Wu (10.1016/j.tws.2025.113354_bib0056) 2024; 14
Karagiozova (10.1016/j.tws.2025.113354_bib0026) 2010; 37
Wang (10.1016/j.tws.2025.113354_bib0002) 2018; 201
Treutenaere (10.1016/j.tws.2025.113354_bib0034) 2017; 108
Benson (10.1016/j.tws.2025.113354_bib0051) 1992; 99
Li (10.1016/j.tws.2025.113354_bib0050) 2023; 311
He (10.1016/j.tws.2025.113354_bib0012) 2021; 167
Majzoobi (10.1016/j.tws.2025.113354_bib0014) 2018; 122
Puck (10.1016/j.tws.2025.113354_bib0030) 2002; 62
Liu (10.1016/j.tws.2025.113354_bib0022) 2023; 179
Zheng (10.1016/j.tws.2025.113354_bib0057) 2021; 33
Dündar (10.1016/j.tws.2025.113354_bib0042) 2024
Geretto (10.1016/j.tws.2025.113354_bib0023) 2015; 79
Costa (10.1016/j.tws.2025.113354_bib0005) 2023; 13
LANGDON (10.1016/j.tws.2025.113354_bib0025) 2007; 67
Zheng (10.1016/j.tws.2025.113354_bib0058) 2024
Serubibi (10.1016/j.tws.2025.113354_bib0013) 2023; 173
Liu (10.1016/j.tws.2025.113354_bib0043) 2016; 149
Camanho (10.1016/j.tws.2025.113354_bib0048) 2003; 37
Gerendt (10.1016/j.tws.2025.113354_bib0007) 2020; 248
Dean (10.1016/j.tws.2025.113354_bib0039) 2020; 251
Zhang (10.1016/j.tws.2025.113354_bib0008) 2024; 194
Huang (10.1016/j.tws.2025.113354_bib0003) 2023; 191
Tabiei (10.1016/j.tws.2025.113354_bib0037) 2009; 88
Wang (10.1016/j.tws.2025.113354_bib0041) 2024; 285
Yuan (10.1016/j.tws.2025.113354_bib0009) 2021; 251
Reyes V (10.1016/j.tws.2025.113354_bib0001) 2000; 60
Langdon (10.1016/j.tws.2025.113354_bib0055) 2014; 73
Corderley (10.1016/j.tws.2025.113354_bib0016) 2019; 125
Asur Vijaya Kumar (10.1016/j.tws.2025.113354_bib0038) 2021; 276
Tan (10.1016/j.tws.2025.113354_bib0047) 2015; 71
Tsai (10.1016/j.tws.2025.113354_bib0032) 1971; 5
Vo (10.1016/j.tws.2025.113354_bib0053) 2013; 44
Ma (10.1016/j.tws.2025.113354_bib0035) 2019; 216
Langdon (10.1016/j.tws.2025.113354_bib0024) 2007; 34
Song (10.1016/j.tws.2025.113354_bib0036) 2024; 180
Sitnikova (10.1016/j.tws.2025.113354_bib0052) 2016; 135
References_xml – volume: 187
  year: 2023
  ident: bib0028
  article-title: Dynamic response and failure behaviour of thermoplastic fibre–metal laminates subjected to confined blast load
  publication-title: Thin. Wall. Struct.
– volume: 180
  year: 2024
  ident: bib0036
  article-title: Thermomechanical characterisation of a thermoplastic polymer and its short glass fibre reinforced composite: influence of fibre, fibre orientation, strain rates and temperatures
  publication-title: Comp. A: Appl. Sci. Manuf.
– volume: 248
  year: 2020
  ident: bib0007
  article-title: On the progressive fatigue failure of mechanical composite joints: numerical simulation and experimental validation
  publication-title: Compos. Struct.
– volume: 156
  year: 2021
  ident: bib0018
  article-title: Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness
  publication-title: Int. J. Impact. Eng.
– volume: 108
  start-page: 361
  year: 2017
  end-page: 369
  ident: bib0034
  article-title: Constitutive modelling of the strain-rate dependency of fabric reinforced polymers
  publication-title: Int. J. Impact Eng.
– volume: 125
  start-page: 180
  year: 2019
  end-page: 187
  ident: bib0016
  article-title: Failure modes in a carbon /titanium fibre metal laminate under hyper-velocity impact
  publication-title: Int. J. Impact Eng.
– volume: 61
  start-page: 265
  year: 2003
  end-page: 270
  ident: bib0046
  article-title: Experiments and simulation of the static contact crush of composite laminated plates
  publication-title: Compos. Struct.
– volume: 167
  year: 2021
  ident: bib0004
  article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review
  publication-title: Thin-Walled Struct.
– volume: 277
  year: 2021
  ident: bib0017
  article-title: Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness
  publication-title: Compos. Struct.
– volume: 29
  year: 2022
  ident: bib0040
  article-title: A multi-objective grey relational approach and regression analysis on optimization of drilling process parameters for GLARE fiber metal laminates
  publication-title: Surf. Rev. Lett.
– volume: 285
  year: 2024
  ident: bib0041
  article-title: Applications of artificial intelligence/machine learning to high-performance composites
  publication-title: Compos. B: Eng.
– volume: 73
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib0055
  article-title: The response of partially confined right circular stainless steel cylinders to internal air-blast loading
  publication-title: Int. J. Impact. Eng.
– volume: 179
  year: 2023
  ident: bib0022
  article-title: Experimental and numerical response and failure of laterally impacted carbon/glass fibre-reinforced hybrid composite laminates
  publication-title: Int. J. Impact. Eng.
– volume: 7
  start-page: 448
  year: 1973
  end-page: 464
  ident: bib0029
  article-title: A fatigue failure criterion for Fiber reinforced materials
  publication-title: J. Compos. Mater.
– volume: 13
  start-page: 638
  year: 2023
  ident: bib0005
  article-title: A critical review on Fiber metal laminates (FML): from manufacturing to sustainable processing
  publication-title: Metals
– volume: 14
  year: 2024
  ident: bib0044
  article-title: Numerical modelling of the ballistic impact response of hybrid composite structures
  publication-title: Compos. C: Open Access
– volume: 18
  start-page: 441
  year: 2022
  end-page: 456
  ident: bib0011
  article-title: Influence of metal/composite interface on the damage behavior and energy absorption mechanisms of FMLs against projectile impact
  publication-title: Def. Technol.
– volume: 311
  year: 2023
  ident: bib0050
  article-title: Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading
  publication-title: Compos. Struct.
– volume: 44
  start-page: 141
  year: 2013
  end-page: 151
  ident: bib0053
  article-title: Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys
  publication-title: Compos. B: Eng.
– volume: 191
  year: 2023
  ident: bib0003
  article-title: Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact
  publication-title: Thin-Walled Struct.
– volume: 21
  start-page: 834
  year: 1987
  end-page: 855
  ident: bib0031
  article-title: A progressive damage model for laminated composites containing stress concentrations
  publication-title: J. Compos. Mater.
– volume: 220
  start-page: 481
  year: 2019
  end-page: 493
  ident: bib0045
  article-title: Research on intralaminar load reversal damage modeling for predicting composite laminates’ low velocity impact responses
  publication-title: Compos. Struct.
– volume: 149
  start-page: 408
  year: 2016
  end-page: 422
  ident: bib0043
  article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact
  publication-title: Compos. Struct.
– volume: 216
  start-page: 187
  year: 2019
  end-page: 200
  ident: bib0035
  article-title: Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach
  publication-title: Compos. Struct.
– volume: 94
  start-page: 954
  year: 2012
  end-page: 965
  ident: bib0054
  article-title: Low-impulse blast behaviour of fibre-metal laminates
  publication-title: Compos. Struct.
– volume: 194
  year: 2024
  ident: bib0008
  article-title: On strain rate effect and high-velocity impact behavior of carbon fiber reinforced laminated composites
  publication-title: Thin-Walled Struct.
– volume: 201
  start-page: 995
  year: 2018
  end-page: 1003
  ident: bib0002
  article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates
  publication-title: Compos. Struct.
– volume: 286
  year: 2022
  ident: bib0020
  article-title: Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels
  publication-title: Compos. Struct.
– volume: 56
  start-page: 439
  year: 1996
  end-page: 449
  ident: bib0049
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos. Sci. Technol.
– volume: 276
  year: 2021
  ident: bib0038
  article-title: A multi phase-field-cohesive zone model for laminated composites: application to delamination migration
  publication-title: Compos. Struct.
– volume: 294
  year: 2022
  ident: bib0019
  article-title: Experimental and numerical analysis of ballistic impact response of fiber-reinforced composite/metal composite target
  publication-title: Compos. Struct.
– volume: 37
  start-page: 766
  year: 2010
  end-page: 782
  ident: bib0026
  article-title: Simulation of the response of fibre–metal laminates to localised blast loading
  publication-title: Int. J. Impact. Eng.
– volume: 184
  year: 2023
  ident: bib0021
  article-title: Failure mode and blast resistance of polyurea coated metallic cylinders under internal multi-field coupled loading
  publication-title: Thin-Walled Struct.
– volume: 62
  start-page: 1633
  year: 2002
  end-page: 1662
  ident: bib0030
  article-title: Failure analysis of FRP laminates by means of physically based phenomenological models
  publication-title: Compos. Sci. Technol.
– volume: 5
  start-page: 58
  year: 1971
  end-page: 80
  ident: bib0032
  article-title: A general theory of strength for anisotropic materials
  publication-title: J. Compos. Mater.
– volume: 122
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib0014
  article-title: The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs
  publication-title: Thin. Wall. Struct.
– volume: 192
  year: 2023
  ident: bib0027
  article-title: An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre–metal laminates subjected to blast loading
  publication-title: Thin. Wall. Struct.
– volume: 88
  start-page: 65
  year: 2009
  end-page: 82
  ident: bib0037
  article-title: A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates
  publication-title: Compos. Struct.
– volume: 14
  year: 2024
  ident: bib0056
  article-title: Learning active flow control strategies of a swept wing by intelligent wind tunnel
  publication-title: Theor. Appl. Mech. Lett.
– volume: 79
  start-page: 32
  year: 2015
  end-page: 44
  ident: bib0023
  article-title: An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading
  publication-title: Int. J. Impact. Eng.
– volume: 196
  year: 2024
  ident: bib0010
  article-title: Experimental study on the impact resistance and damage tolerance of thermoplastic FMLs
  publication-title: Thin. Wall. Struct.
– volume: 34
  start-page: 1202
  year: 2007
  end-page: 1222
  ident: bib0024
  article-title: Behaviour of fibre–metal laminates subjected to localised blast loading: part I—Experimental observations
  publication-title: Int. J. Impact. Eng.
– start-page: 1001
  year: 2024
  ident: bib0058
  article-title: Transformer-based in-context policy learning for efficient active flow control across various airfoils
  publication-title: J. Fluid Mech.
– volume: 71
  start-page: 212
  year: 2015
  end-page: 226
  ident: bib0047
  article-title: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates
  publication-title: Compos. A: Appl. Sci. Manuf.
– volume: 229
  year: 2019
  ident: bib0006
  article-title: On the progressive failure simulation and experimental validation of fiber metal laminate bolted joints
  publication-title: Compos. Struct.
– volume: 277
  year: 2024
  ident: bib0033
  article-title: Strain rate dependence of 3D printed continuous fiber reinforced composites
  publication-title: Compos. B: Eng.
– volume: 67
  start-page: 1385
  year: 2007
  end-page: 1405
  ident: bib0025
  article-title: Failure characterisation of blast-loaded fibre–metal laminate panels based on aluminium and glass–fibre reinforced polypropylene
  publication-title: Compos. Sci. Technol.
– volume: 33
  year: 2021
  ident: bib0057
  article-title: From active learning to deep reinforcement learning: intelligent active flow control in suppressing vortex-induced vibration
  publication-title: Phys. Fluids
– volume: 251
  year: 2020
  ident: bib0039
  article-title: A multi phase-field fracture model for long fiber reinforced composites based on the Puck theory of failure
  publication-title: Compos. Struct.
– volume: 99
  start-page: 235
  year: 1992
  end-page: 394
  ident: bib0051
  article-title: Computational methods in lagrangian and eulerian hydrocodes
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 280
  year: 2022
  ident: bib0015
  article-title: Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles
  publication-title: Compos. Struct.
– volume: 60
  start-page: 1085
  year: 2000
  end-page: 1094
  ident: bib0001
  article-title: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene
  publication-title: Compos. Sci. Technol.
– volume: 37
  start-page: 1415
  year: 2003
  end-page: 1438
  ident: bib0048
  article-title: Numerical simulation of mixed-mode progressive delamination in composite materials
  publication-title: J. Compos. Mater.
– volume: 135
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0052
  article-title: The analysis of the ultimate blast failure modes in fibre metal laminates
  publication-title: Compos. Sci. Technol.
– volume: 167
  year: 2021
  ident: bib0012
  article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review
  publication-title: Thin. Wall. Struct.
– volume: 173
  year: 2023
  ident: bib0013
  article-title: Fibre-metal laminate structures: high-velocity impact, penetration, and blast loading – A review
  publication-title: Compos. A Appl. S
– volume: 251
  year: 2021
  ident: bib0009
  article-title: Dynamic fracture in CFRP laminates: effect of projectile mass and dimension
  publication-title: Eng. Fract. Mech.
– year: 2024
  ident: bib0042
  article-title: Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis
  publication-title: J. Compos. Mater.
– volume: 94
  start-page: 954
  year: 2012
  ident: 10.1016/j.tws.2025.113354_bib0054
  article-title: Low-impulse blast behaviour of fibre-metal laminates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2011.10.027
– volume: 122
  start-page: 1
  year: 2018
  ident: 10.1016/j.tws.2025.113354_bib0014
  article-title: The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs
  publication-title: Thin. Wall. Struct.
  doi: 10.1016/j.tws.2017.10.006
– volume: 220
  start-page: 481
  year: 2019
  ident: 10.1016/j.tws.2025.113354_bib0045
  article-title: Research on intralaminar load reversal damage modeling for predicting composite laminates’ low velocity impact responses
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.04.012
– volume: 216
  start-page: 187
  year: 2019
  ident: 10.1016/j.tws.2025.113354_bib0035
  article-title: Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.02.102
– volume: 99
  start-page: 235
  year: 1992
  ident: 10.1016/j.tws.2025.113354_bib0051
  article-title: Computational methods in lagrangian and eulerian hydrocodes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90042-I
– volume: 33
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0057
  article-title: From active learning to deep reinforcement learning: intelligent active flow control in suppressing vortex-induced vibration
  publication-title: Phys. Fluids
  doi: 10.1063/5.0052524
– volume: 29
  issue: 05
  year: 2022
  ident: 10.1016/j.tws.2025.113354_bib0040
  article-title: A multi-objective grey relational approach and regression analysis on optimization of drilling process parameters for GLARE fiber metal laminates
  publication-title: Surf. Rev. Lett.
  doi: 10.1142/S0218625X22500664
– volume: 108
  start-page: 361
  year: 2017
  ident: 10.1016/j.tws.2025.113354_bib0034
  article-title: Constitutive modelling of the strain-rate dependency of fabric reinforced polymers
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2017.04.010
– volume: 173
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0013
  article-title: Fibre-metal laminate structures: high-velocity impact, penetration, and blast loading – A review
  publication-title: Compos. A Appl. S
  doi: 10.1016/j.compositesa.2023.107674
– volume: 7
  start-page: 448
  year: 1973
  ident: 10.1016/j.tws.2025.113354_bib0029
  article-title: A fatigue failure criterion for Fiber reinforced materials
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199837300700404
– volume: 88
  start-page: 65
  year: 2009
  ident: 10.1016/j.tws.2025.113354_bib0037
  article-title: A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2008.02.017
– volume: 276
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0038
  article-title: A multi phase-field-cohesive zone model for laminated composites: application to delamination migration
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114471
– start-page: 1001
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0058
  article-title: Transformer-based in-context policy learning for efficient active flow control across various airfoils
  publication-title: J. Fluid Mech.
– volume: 180
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0036
  article-title: Thermomechanical characterisation of a thermoplastic polymer and its short glass fibre reinforced composite: influence of fibre, fibre orientation, strain rates and temperatures
  publication-title: Comp. A: Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2024.108099
– volume: 184
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0021
  article-title: Failure mode and blast resistance of polyurea coated metallic cylinders under internal multi-field coupled loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.110522
– volume: 13
  start-page: 638
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0005
  article-title: A critical review on Fiber metal laminates (FML): from manufacturing to sustainable processing
  publication-title: Metals
  doi: 10.3390/met13040638
– volume: 194
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0008
  article-title: On strain rate effect and high-velocity impact behavior of carbon fiber reinforced laminated composites
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2023.111328
– volume: 61
  start-page: 265
  year: 2003
  ident: 10.1016/j.tws.2025.113354_bib0046
  article-title: Experiments and simulation of the static contact crush of composite laminated plates
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(02)00047-8
– volume: 14
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0056
  article-title: Learning active flow control strategies of a swept wing by intelligent wind tunnel
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2024.100543
– volume: 179
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0022
  article-title: Experimental and numerical response and failure of laterally impacted carbon/glass fibre-reinforced hybrid composite laminates
  publication-title: Int. J. Impact. Eng.
  doi: 10.1016/j.ijimpeng.2023.104654
– volume: 187
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0028
  article-title: Dynamic response and failure behaviour of thermoplastic fibre–metal laminates subjected to confined blast load
  publication-title: Thin. Wall. Struct.
  doi: 10.1016/j.tws.2023.110760
– volume: 196
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0010
  article-title: Experimental study on the impact resistance and damage tolerance of thermoplastic FMLs
  publication-title: Thin. Wall. Struct.
  doi: 10.1016/j.tws.2023.111435
– volume: 280
  year: 2022
  ident: 10.1016/j.tws.2025.113354_bib0015
  article-title: Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114848
– volume: 286
  year: 2022
  ident: 10.1016/j.tws.2025.113354_bib0020
  article-title: Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115365
– volume: 5
  start-page: 58
  year: 1971
  ident: 10.1016/j.tws.2025.113354_bib0032
  article-title: A general theory of strength for anisotropic materials
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199837100500106
– volume: 251
  year: 2020
  ident: 10.1016/j.tws.2025.113354_bib0039
  article-title: A multi phase-field fracture model for long fiber reinforced composites based on the Puck theory of failure
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112446
– volume: 56
  start-page: 439
  year: 1996
  ident: 10.1016/j.tws.2025.113354_bib0049
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/0266-3538(96)00005-X
– volume: 294
  year: 2022
  ident: 10.1016/j.tws.2025.113354_bib0019
  article-title: Experimental and numerical analysis of ballistic impact response of fiber-reinforced composite/metal composite target
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115776
– volume: 167
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0004
  article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.108026
– volume: 229
  year: 2019
  ident: 10.1016/j.tws.2025.113354_bib0006
  article-title: On the progressive failure simulation and experimental validation of fiber metal laminate bolted joints
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111368
– volume: 277
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0017
  article-title: Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114638
– volume: 248
  year: 2020
  ident: 10.1016/j.tws.2025.113354_bib0007
  article-title: On the progressive fatigue failure of mechanical composite joints: numerical simulation and experimental validation
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112488
– volume: 71
  start-page: 212
  year: 2015
  ident: 10.1016/j.tws.2025.113354_bib0047
  article-title: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates
  publication-title: Compos. A: Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.01.025
– volume: 37
  start-page: 766
  year: 2010
  ident: 10.1016/j.tws.2025.113354_bib0026
  article-title: Simulation of the response of fibre–metal laminates to localised blast loading
  publication-title: Int. J. Impact. Eng.
  doi: 10.1016/j.ijimpeng.2009.04.001
– volume: 285
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0041
  article-title: Applications of artificial intelligence/machine learning to high-performance composites
  publication-title: Compos. B: Eng.
  doi: 10.1016/j.compositesb.2024.111740
– volume: 79
  start-page: 32
  year: 2015
  ident: 10.1016/j.tws.2025.113354_bib0023
  article-title: An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading
  publication-title: Int. J. Impact. Eng.
  doi: 10.1016/j.ijimpeng.2014.08.002
– volume: 201
  start-page: 995
  year: 2018
  ident: 10.1016/j.tws.2025.113354_bib0002
  article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.06.046
– volume: 149
  start-page: 408
  year: 2016
  ident: 10.1016/j.tws.2025.113354_bib0043
  article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.04.012
– volume: 192
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0027
  article-title: An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre–metal laminates subjected to blast loading
  publication-title: Thin. Wall. Struct.
  doi: 10.1016/j.tws.2023.111125
– volume: 21
  start-page: 834
  year: 1987
  ident: 10.1016/j.tws.2025.113354_bib0031
  article-title: A progressive damage model for laminated composites containing stress concentrations
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199838702100904
– volume: 37
  start-page: 1415
  year: 2003
  ident: 10.1016/j.tws.2025.113354_bib0048
  article-title: Numerical simulation of mixed-mode progressive delamination in composite materials
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998303034505
– volume: 44
  start-page: 141
  year: 2013
  ident: 10.1016/j.tws.2025.113354_bib0053
  article-title: Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys
  publication-title: Compos. B: Eng.
  doi: 10.1016/j.compositesb.2012.06.013
– volume: 125
  start-page: 180
  year: 2019
  ident: 10.1016/j.tws.2025.113354_bib0016
  article-title: Failure modes in a carbon /titanium fibre metal laminate under hyper-velocity impact
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.11.011
– volume: 311
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0050
  article-title: Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.116791
– volume: 277
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0033
  article-title: Strain rate dependence of 3D printed continuous fiber reinforced composites
  publication-title: Compos. B: Eng.
  doi: 10.1016/j.compositesb.2024.111415
– volume: 156
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0018
  article-title: Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness
  publication-title: Int. J. Impact. Eng.
  doi: 10.1016/j.ijimpeng.2021.103931
– volume: 191
  year: 2023
  ident: 10.1016/j.tws.2025.113354_bib0003
  article-title: Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2023.111053
– volume: 167
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0012
  article-title: On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review
  publication-title: Thin. Wall. Struct.
  doi: 10.1016/j.tws.2021.108026
– volume: 135
  start-page: 1
  year: 2016
  ident: 10.1016/j.tws.2025.113354_bib0052
  article-title: The analysis of the ultimate blast failure modes in fibre metal laminates
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.09.006
– volume: 60
  start-page: 1085
  year: 2000
  ident: 10.1016/j.tws.2025.113354_bib0001
  article-title: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(00)00002-6
– year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0042
  article-title: Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis
  publication-title: J. Compos. Mater.
– volume: 34
  start-page: 1202
  year: 2007
  ident: 10.1016/j.tws.2025.113354_bib0024
  article-title: Behaviour of fibre–metal laminates subjected to localised blast loading: part I—Experimental observations
  publication-title: Int. J. Impact. Eng.
  doi: 10.1016/j.ijimpeng.2006.05.008
– volume: 18
  start-page: 441
  year: 2022
  ident: 10.1016/j.tws.2025.113354_bib0011
  article-title: Influence of metal/composite interface on the damage behavior and energy absorption mechanisms of FMLs against projectile impact
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2020.11.012
– volume: 251
  year: 2021
  ident: 10.1016/j.tws.2025.113354_bib0009
  article-title: Dynamic fracture in CFRP laminates: effect of projectile mass and dimension
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107764
– volume: 67
  start-page: 1385
  year: 2007
  ident: 10.1016/j.tws.2025.113354_bib0025
  article-title: Failure characterisation of blast-loaded fibre–metal laminate panels based on aluminium and glass–fibre reinforced polypropylene
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2006.09.010
– volume: 73
  start-page: 1
  year: 2014
  ident: 10.1016/j.tws.2025.113354_bib0055
  article-title: The response of partially confined right circular stainless steel cylinders to internal air-blast loading
  publication-title: Int. J. Impact. Eng.
  doi: 10.1016/j.ijimpeng.2014.05.002
– volume: 62
  start-page: 1633
  year: 2002
  ident: 10.1016/j.tws.2025.113354_bib0030
  article-title: Failure analysis of FRP laminates by means of physically based phenomenological models
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(01)00208-1
– volume: 14
  year: 2024
  ident: 10.1016/j.tws.2025.113354_bib0044
  article-title: Numerical modelling of the ballistic impact response of hybrid composite structures
  publication-title: Compos. C: Open Access
SSID ssj0017194
Score 2.427532
Snippet •A strain rate-dependent damage model was developed for TFMLs under blast loading.•Internal fiber damage was found to be more strain rate sensitive than...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113354
SubjectTerms Bayesian optimization
Confined explosion
Numerical simulation
Strain rate effect
Thermoplastic fiber-metal laminates
Title Numerical investigation on the dynamic behavior of thermoplastic fiber-metal laminates subject to confined explosion loading
URI https://dx.doi.org/10.1016/j.tws.2025.113354
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu-hB_MT5MXLwJMS1aZK2xzEc0-EOOnG30jQJTLZ2zA4v4t_uSz90gl6EQEnoa8treO_38r4QulSggo2OOeGADQgTwhBJHUZMIEMOw3iJTU6-H4vhE7ub8mkD9etcGBtWWcn-UqYX0rpa6Vbc7C5ns-4jWA-FEwuUuMOYzSNvUS8UvIlavdvRcPzlTPDdoh-ivZ9Ygtq5WYR55W-2aDfltrmJx9nv6mlD5Qz20G6FFXGv_Jx91NDpAdrZqCB4iN7H69LlMsez74oZWYphALTDqmw4j-tsfJwZu75aZEuAzfBcbGzICFloAOEYdscsteATv66lPaDBeYbBYDbwQoW1Ddezh2t4nhWR90doMriZ9IekaqhAEoAxOdEiFK5SEpglfen5xjXKlUypIJYqZLGIdWIEp5KFAYVp4JpEC5EYrkPJuHeMmmmW6hOEwR53DI8ZdQDABIXRRIXyhC8D4VGPtdFVzcZoWZbNiOp4spcIeB5Znkclz9uI1YyOfvz7CMT632Sn_yM7Q9t2VsaJnaNmvlrrCwAWueygresPt1NtH3sdPTyPPgFyo9E8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTkmketpOMqKIq0HahSN2sOLaloDapSioWxG_nnAcUCRYkL3HsJLpYd9_Z390hdKXABBsdM8IAGxDKuSHScygxoYwYNOMnNjh5NOaDZ_owZdMW6jWxMJZWWev-SqeX2rru6dbS7C7StPsE3kN5iAVG3KHUxpFvUOYHltd38_HF83ADt6yGaEcTO7w52ixJXsWbTdntMVvaxGf0d-O0ZnD6u2inRor4tvqYPdTS2T7aXssfeIDex6vqwGWG0-98GXmGoQGww6oqN4-bWHycG9u_nOcLAM3wXGwsYYTMNUBwDGsjzSz0xK8rabdncJFjcJcNvFBhbcl6dmsNz_KSd3-IJv27SW9A6nIKJAEQUxDNI-4qJUFUMpB-YFyjXEmVCmOpIhrzWCeGM0_SKPTgMnRNojlPDNORBMkeoXaWZ_oYYfDGHcNi6jkAX8LSZfK48nkgQ-57Pu2g60aMYlElzRANm-xFgMyFlbmoZN5BtBG0-PHnBSj1v6ed_G_aJdocTEZDMbwfP56iLXunYoydoXaxXOlzgBiFvCiX0CewzNBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+on+the+dynamic+behavior+of+thermoplastic+fiber-metal+laminates+subject+to+confined+explosion+loading&rft.jtitle=Thin-walled+structures&rft.au=Kong%2C+Xiangshao&rft.au=Zhu%2C+Zihan&rft.au=Zheng%2C+Cheng&rft.au=Zhou%2C+Hu&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.volume=214&rft_id=info:doi/10.1016%2Fj.tws.2025.113354&rft.externalDocID=S0263823125004471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon