Second order optimality conditions for minimization on a general set. Part 1: Applications to mathematical programming
This paper is devoted to second-order optimality conditions for minimization of a C2 function f on a general set K in a Banach space X. We consider both necessary and sufficient conditions of the second-order which differ by the strengthening of inequalities in their formulations. The conditions use...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 529; no. 2; p. 127384 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is devoted to second-order optimality conditions for minimization of a C2 function f on a general set K in a Banach space X. We consider both necessary and sufficient conditions of the second-order which differ by the strengthening of inequalities in their formulations. The conditions use first and second order approximations (first and second-order tangents) of the set K. The no gap sufficient conditions need additional assumptions in comparison with necessary conditions. We show that these assumptions hold true in the case when the set K is an intersection of a finite number of sets described by smooth inequalities and equalities, like in problems of the mathematical programming. Moreover, we illustrate the new conditions by deducing some mathematical programming results. In this sense the paper is partly a survey. One non-trivial illustrative example in an infinite dimensional space concerns the case when K can not be represented as an intersection described above. The novelty of our approach is due, on one hand, to the arbitrariness of the set K, and on the other hand, to quite straightforward proofs. |
---|---|
AbstractList | This paper is devoted to second-order optimality conditions for minimization of a C2 function f on a general set K in a Banach space X. We consider both necessary and sufficient conditions of the second-order which differ by the strengthening of inequalities in their formulations. The conditions use first and second order approximations (first and second-order tangents) of the set K. The no gap sufficient conditions need additional assumptions in comparison with necessary conditions. We show that these assumptions hold true in the case when the set K is an intersection of a finite number of sets described by smooth inequalities and equalities, like in problems of the mathematical programming. Moreover, we illustrate the new conditions by deducing some mathematical programming results. In this sense the paper is partly a survey. One non-trivial illustrative example in an infinite dimensional space concerns the case when K can not be represented as an intersection described above. The novelty of our approach is due, on one hand, to the arbitrariness of the set K, and on the other hand, to quite straightforward proofs. |
ArticleNumber | 127384 |
Author | Osmolovskii, Nikolai P. Frankowska, Hélène |
Author_xml | – sequence: 1 givenname: Hélène orcidid: 0000-0001-6237-4137 surname: Frankowska fullname: Frankowska, Hélène email: helene.frankowska@imj-prg.fr organization: CNRS, IMJ-PRG, Sorbonne Université, Case 247, 4 Place Jussieu, 75252 Paris, France – sequence: 2 givenname: Nikolai P. surname: Osmolovskii fullname: Osmolovskii, Nikolai P. email: osmolov@ibspan.waw.pl organization: Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447, Warszawa, Poland |
BookMark | eNp9kM1qwzAQhEVJoWnaF-hJL2BXK_m39BJC_yDQQnPoTSjSOlWwLSOLQPr0lXHPhWUHBr5hd67Jonc9EnIHLAUGxf0xPXZKpZxxkQIvRZVdkCWwukhYBWJBloxxnvCs_Loi1-N4ZAwgL2FJTp-oXW-o8wY9dUOwnWptONPJtcG6fqSN87Szve3sj5ocGkfRA_boVUtHDCn9UD5QeKDrYWitVjMXHO1U-Ma4otfSwbuDV12MOtyQy0a1I97-6Yrsnp92m9dk-_7ytllvE81zCImJgoXIK7HXXJmKQSPKrGRiX1awz0XDSwBTMF4LpmqjspoLnnOsjTYKlVgRPsdq78bRYyMHHx_0ZwlMTsXJo5yKk1Nxci4uQo8zhPGwk0UvR22x12isRx2kcfY__BcH-3p_ |
Cites_doi | 10.1007/s00245-017-9461-x 10.1007/BFb0120982 10.1137/S1052623496306760 10.6028/jres.049.027 10.1007/BF01585095 10.1070/RM1978v033n06ABEH003885 10.1007/BF01445166 10.1287/moor.2021.1211 10.1137/110828320 10.1137/17M1160604 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. |
Copyright_xml | – notice: 2023 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmaa.2023.127384 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
ExternalDocumentID | 10_1016_j_jmaa_2023_127384 S0022247X23003876 |
GrantInformation_xml | – fundername: AFOSR grantid: FA 9550-18-1-0254 funderid: https://doi.org/10.13039/100000181 – fundername: EDF-THALES-ORANGE-CRITEO grantid: 2018-0047H |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 4.4 457 4G. 5GY 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DM4 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW T5K TN5 TWZ UPT WH7 XPP YQT ZMT ZU3 ~G- 1~5 29L 5VS 6I. 6TJ 7-5 AAQFI AAQXK AAXKI AAYXX ABEFU ABFNM ABVKL ABXDB ADFGL ADIYS ADMUD ADVLN AEXQZ AFFNX AFJKZ AGHFR AI. AKRWK ASPBG AVWKF AZFZN CAG CITATION COF EJD FGOYB G-2 G8K HZ~ H~9 MVM NCXOZ OHT R2- RIG SSZ VH1 VOH WUQ XOL YYP ZCG |
ID | FETCH-LOGICAL-c251t-dc25e63583bc2ad801f374703b781b53f2711d602930a9da4923252e9dcdaea3 |
IEDL.DBID | AIKHN |
ISSN | 0022-247X |
IngestDate | Thu Sep 26 15:48:06 EDT 2024 Fri Feb 23 02:36:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Local minimum Equality and inequality constraints Separation theorem Second order optimality conditions Lagrange function First and second order tangents |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-dc25e63583bc2ad801f374703b781b53f2711d602930a9da4923252e9dcdaea3 |
ORCID | 0000-0001-6237-4137 |
ParticipantIDs | crossref_primary_10_1016_j_jmaa_2023_127384 elsevier_sciencedirect_doi_10_1016_j_jmaa_2023_127384 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-15 |
PublicationDateYYYYMMDD | 2024-01-15 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ben-Tal, Zowe (br0070) 1982; 19 Levitin, Milyutin, Osmolovskii (br0170) 1978; 33 Cominetti (br0020) 1990; 21 Levitin, Miljutin, Osmolovskii (br0160) 1974 Frankowska, Osmolovskii (br0100) 2015; vol. 11 Gfrerer, Ye, Zhow (br0050) 2022; 47 Bonnans, Cominetti, Shapiro (br0030) 1999; 9 Bonnans, Shapiro (br0040) 2000 Frankowska, Hoehener, Tonon (br0090) 2013; 39 Frankowska, Osmolovskii (br0120) 2018; 56 Hoffman (br0140) 1952; 49 Ben-Tal, Zowe (br0060) 1982; 24 Hoehener (br0130) 2012; 50 Ioffe, Tikhomirov (br0150) 1979 Aubin, Frankowska (br0010) 1990 Frankowska, Osmolovskii (br0110) 2019; 80 Dubovitskii, Milyutin (br0080) 1965; 5 Frankowska (10.1016/j.jmaa.2023.127384_br0120) 2018; 56 Levitin (10.1016/j.jmaa.2023.127384_br0170) 1978; 33 Ben-Tal (10.1016/j.jmaa.2023.127384_br0060) 1982; 24 Dubovitskii (10.1016/j.jmaa.2023.127384_br0080) 1965; 5 Hoehener (10.1016/j.jmaa.2023.127384_br0130) 2012; 50 Bonnans (10.1016/j.jmaa.2023.127384_br0040) 2000 Levitin (10.1016/j.jmaa.2023.127384_br0160) 1974 Ben-Tal (10.1016/j.jmaa.2023.127384_br0070) 1982; 19 Frankowska (10.1016/j.jmaa.2023.127384_br0100) 2015; vol. 11 Frankowska (10.1016/j.jmaa.2023.127384_br0110) 2019; 80 Gfrerer (10.1016/j.jmaa.2023.127384_br0050) 2022; 47 Aubin (10.1016/j.jmaa.2023.127384_br0010) 1990 Cominetti (10.1016/j.jmaa.2023.127384_br0020) 1990; 21 Ioffe (10.1016/j.jmaa.2023.127384_br0150) 1979 Hoffman (10.1016/j.jmaa.2023.127384_br0140) 1952; 49 Frankowska (10.1016/j.jmaa.2023.127384_br0090) 2013; 39 Bonnans (10.1016/j.jmaa.2023.127384_br0030) 1999; 9 |
References_xml | – volume: 24 start-page: 70 year: 1982 end-page: 91 ident: br0060 article-title: Necessary and sufficient conditions for a class of nonsmooth minimization problems publication-title: Math. Program. contributor: fullname: Zowe – volume: 5 start-page: 1 year: 1965 end-page: 80 ident: br0080 article-title: Extremum problems in the presence of restrictions publication-title: Zh. Vychisl. Mat. Mat. Fiz. contributor: fullname: Milyutin – year: 1990 ident: br0010 article-title: Set-Valued Analysis contributor: fullname: Frankowska – year: 1979 ident: br0150 article-title: Theory of Extremal Problems contributor: fullname: Tikhomirov – volume: 33 start-page: 97 year: 1978 end-page: 168 ident: br0170 article-title: Conditions of high order for a local minimum in problems with constraints publication-title: Russ. Math. Surv. contributor: fullname: Osmolovskii – volume: 21 start-page: 265 year: 1990 end-page: 287 ident: br0020 article-title: Metric regularity, tangent sets, and second-order optimality conditions publication-title: Appl. Math. Optim. contributor: fullname: Cominetti – start-page: 139 year: 1974 end-page: 202 ident: br0160 article-title: On conditions for a local minimum in a problem with constraints publication-title: Mathematical Economics and Functional Analysis contributor: fullname: Osmolovskii – volume: 50 start-page: 1139 year: 2012 end-page: 1173 ident: br0130 article-title: Variational approach to second-order optimality conditions for control problems with pure state constraints publication-title: SIAM J. Control Optim. contributor: fullname: Hoehener – year: 2000 ident: br0040 article-title: Perturbation Analysis of Optimization Problems contributor: fullname: Shapiro – volume: 56 start-page: 2353 year: 2018 end-page: 2376 ident: br0120 article-title: Strong local minimizers in optimal control problems with state constraints: second-order necessary conditions publication-title: SIAM J. Control Optim. contributor: fullname: Osmolovskii – volume: 19 start-page: 39 year: 1982 end-page: 76 ident: br0070 article-title: A unified theory of first- and second-order conditions for extremum problems in topological vector spaces publication-title: Math. Program. Stud. contributor: fullname: Zowe – volume: 49 start-page: 263 year: 1952 end-page: 265 ident: br0140 article-title: On approximate solutions of systems of linear inequalities publication-title: J. Res. Natl. Bur. Stand. contributor: fullname: Hoffman – volume: 9 start-page: 466 year: 1999 end-page: 492 ident: br0030 article-title: Second order optimality conditions based on parabolic second order tangent sets publication-title: SIAM J. Optim. contributor: fullname: Shapiro – volume: 47 start-page: 2344 year: 2022 end-page: 2365 ident: br0050 article-title: Second order optimality conditions for non-convex set-constrained optimization problems publication-title: Math. Oper. Res. contributor: fullname: Zhow – volume: 39 start-page: 233 year: 2013 end-page: 270 ident: br0090 article-title: A second-order maximum principle in optimal control under state constraints publication-title: Serdica Math. J. contributor: fullname: Tonon – volume: vol. 11 start-page: 171 year: 2015 end-page: 207 ident: br0100 article-title: Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint publication-title: Analysis and Geometry in Control Theory and its Applications contributor: fullname: Osmolovskii – volume: 80 start-page: 135 year: 2019 end-page: 164 ident: br0110 article-title: Second-order necessary conditions for a strong local minimum in a control problem with general control constraints publication-title: Appl. Math. Optim. contributor: fullname: Osmolovskii – year: 1979 ident: 10.1016/j.jmaa.2023.127384_br0150 contributor: fullname: Ioffe – volume: 80 start-page: 135 year: 2019 ident: 10.1016/j.jmaa.2023.127384_br0110 article-title: Second-order necessary conditions for a strong local minimum in a control problem with general control constraints publication-title: Appl. Math. Optim. doi: 10.1007/s00245-017-9461-x contributor: fullname: Frankowska – volume: 5 start-page: 1 year: 1965 ident: 10.1016/j.jmaa.2023.127384_br0080 article-title: Extremum problems in the presence of restrictions publication-title: Zh. Vychisl. Mat. Mat. Fiz. contributor: fullname: Dubovitskii – volume: vol. 11 start-page: 171 year: 2015 ident: 10.1016/j.jmaa.2023.127384_br0100 article-title: Second-order necessary optimality conditions for the Mayer problem subject to a general control constraint contributor: fullname: Frankowska – year: 1990 ident: 10.1016/j.jmaa.2023.127384_br0010 contributor: fullname: Aubin – volume: 19 start-page: 39 year: 1982 ident: 10.1016/j.jmaa.2023.127384_br0070 article-title: A unified theory of first- and second-order conditions for extremum problems in topological vector spaces publication-title: Math. Program. Stud. doi: 10.1007/BFb0120982 contributor: fullname: Ben-Tal – volume: 9 start-page: 466 year: 1999 ident: 10.1016/j.jmaa.2023.127384_br0030 article-title: Second order optimality conditions based on parabolic second order tangent sets publication-title: SIAM J. Optim. doi: 10.1137/S1052623496306760 contributor: fullname: Bonnans – volume: 49 start-page: 263 year: 1952 ident: 10.1016/j.jmaa.2023.127384_br0140 article-title: On approximate solutions of systems of linear inequalities publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.027 contributor: fullname: Hoffman – year: 2000 ident: 10.1016/j.jmaa.2023.127384_br0040 contributor: fullname: Bonnans – volume: 24 start-page: 70 year: 1982 ident: 10.1016/j.jmaa.2023.127384_br0060 article-title: Necessary and sufficient conditions for a class of nonsmooth minimization problems publication-title: Math. Program. doi: 10.1007/BF01585095 contributor: fullname: Ben-Tal – volume: 33 start-page: 97 year: 1978 ident: 10.1016/j.jmaa.2023.127384_br0170 article-title: Conditions of high order for a local minimum in problems with constraints publication-title: Russ. Math. Surv. doi: 10.1070/RM1978v033n06ABEH003885 contributor: fullname: Levitin – volume: 21 start-page: 265 year: 1990 ident: 10.1016/j.jmaa.2023.127384_br0020 article-title: Metric regularity, tangent sets, and second-order optimality conditions publication-title: Appl. Math. Optim. doi: 10.1007/BF01445166 contributor: fullname: Cominetti – volume: 47 start-page: 2344 year: 2022 ident: 10.1016/j.jmaa.2023.127384_br0050 article-title: Second order optimality conditions for non-convex set-constrained optimization problems publication-title: Math. Oper. Res. doi: 10.1287/moor.2021.1211 contributor: fullname: Gfrerer – volume: 50 start-page: 1139 year: 2012 ident: 10.1016/j.jmaa.2023.127384_br0130 article-title: Variational approach to second-order optimality conditions for control problems with pure state constraints publication-title: SIAM J. Control Optim. doi: 10.1137/110828320 contributor: fullname: Hoehener – volume: 56 start-page: 2353 year: 2018 ident: 10.1016/j.jmaa.2023.127384_br0120 article-title: Strong local minimizers in optimal control problems with state constraints: second-order necessary conditions publication-title: SIAM J. Control Optim. doi: 10.1137/17M1160604 contributor: fullname: Frankowska – volume: 39 start-page: 233 year: 2013 ident: 10.1016/j.jmaa.2023.127384_br0090 article-title: A second-order maximum principle in optimal control under state constraints publication-title: Serdica Math. J. contributor: fullname: Frankowska – start-page: 139 year: 1974 ident: 10.1016/j.jmaa.2023.127384_br0160 article-title: On conditions for a local minimum in a problem with constraints contributor: fullname: Levitin |
SSID | ssj0011571 |
Score | 2.4635265 |
Snippet | This paper is devoted to second-order optimality conditions for minimization of a C2 function f on a general set K in a Banach space X. We consider both... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 127384 |
SubjectTerms | Equality and inequality constraints First and second order tangents Lagrange function Local minimum Second order optimality conditions Separation theorem |
Title | Second order optimality conditions for minimization on a general set. Part 1: Applications to mathematical programming |
URI | https://dx.doi.org/10.1016/j.jmaa.2023.127384 |
Volume | 529 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB58XNpD6ZPah-yhtxLNZvOyN5GKrSiltdRb2GRXUYhKTXvsb--M2YiF0kMhsGTJZpPZMN-3zMwXgBtEUeEnMrBiT2vLjZW2pIxdS2tbOJOWDkNFxcmDod97dR_H3rgEnaIWhtIqje_PffrGW5ueprFmczWbUY0vYpsbjJFEUwzWL0MV4cgJK1BtP_R7w20wgXsBL0TDaYCpncnTvOapJPkhRzQ4Vam4v-PTDuZ0D-HAkEXWzp_nCEp6cQz7g63S6voEPl9oR6vYRkKTLdEBpBtmzag3T8diyEsZSYikpuaS4SHZNBecZmudNdgTvjPjd6y9E89m2ZKl27nwSpPLhbeansKoez_q9CzzLwUrQQaTWQobjeQiFHHiSIW4NBG4k7BFHCBx9cTECThXvo3ob8uWkqTb5niObqlESS3FGVQWy4U-B-b6wvVx6Ske6PKJI3koJcV7kyAOksSvwW1hwGiVK2ZERSrZPCJzR2TuKDd3DbzCxtGPdY_Qpf8x7uKf4y5hD88o8cbi3hVUsvcPfY20IovrUG588br5eKjtP7_1vwGIc8-V |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba8IwFA5OH7Y9jF2Zu-ZhbyPaNOltbyKTOi8M5sC3kDZRFKoyu_3-ndhUHIw9DAqFtGnak_acL5zvfEXoAaIo81MZkMTTmvBEaSJlwonWDnMnkQ5DZYqTB0M_fucvY29cQe2yFsbQKq3vL3z6xlvblqa1ZnM1m5kaX4htPBgDiDY5WH8P1QANRPB11lrdXjzcJhOoF9BSNNx0sLUzBc1rnkkjP-SyBjVVKvz3-LQTczrH6MiCRdwq7ucEVfTiFB0Otkqr6zP09WZWtApvJDTxEhxAtkHW2LQWdCwMuBQbCZHM1lxi2CSeFoLTeK3zBn6FZ8b0Cbd28tk4X-JsOxacablccKnpORp1nkftmNh_KZAUEExOFOw0gIuQJakrFcSlCYOVhMOSAICrxyZuQKnyHYj-joyUNLptrufqSKVKaskuUHWxXOhLhLnPuA9Tb_KBnE5cSUMpTb43DZIgTf06eiwNKFaFYoYoqWRzYcwtjLlFYe468kobix_zLsCl_9Hv6p_97tF-PBr0Rb877F2jAzhiSDiEejeomn986luAGHlyZ1-hbxJtz-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second+order+optimality+conditions+for+minimization+on+a+general+set.+Part+1%3A+Applications+to+mathematical+programming&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Frankowska%2C+H%C3%A9l%C3%A8ne&rft.au=Osmolovskii%2C+Nikolai+P.&rft.date=2024-01-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=529&rft.issue=2&rft_id=info:doi/10.1016%2Fj.jmaa.2023.127384&rft.externalDocID=S0022247X23003876 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |