Boosting biomass upcycling into 2,5-furandicarboxylic acid via amine-induced protonation on ternary metal-organic heterojunction
The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics, represents a transformative approach for advancing bioeconomy. However, efficient electrocatalysis must achieve high product selectivity while simu...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 520; p. 165842 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics, represents a transformative approach for advancing bioeconomy. However, efficient electrocatalysis must achieve high product selectivity while simultaneously suppressing side reactions. Here, a ligand-modified electrocatalyst, CoNiCu-HAB (HAB = hexylaminobenzene), was synthesized to boost HMF electrooxidation whilst passivating the competitive oxygen evolution, wherein uncoordinated amine groups induce efficient protonation and electrostatic adsorption of reactive substrates. The CoNiCu layered hydroxides exhibit beneficial synergies: binary CoNi significantly improves reaction kinetics and lowers the onset potential for HMF oxidation (10 mA cm−2 at 1.15 V vs. reversible hydrogen electrode), while Cu effectively inhibits oxygen evolution. Theoretical calculations indicate that the protonation of organic ligands to form -NH3+ species enhances the adsorption of reactive substrates and achieves outstanding Faradaic efficiency exceeding 95 % across a wide potential range. In situ Raman spectroscopy reveals that incorporating organic ligands creates a ternary metal-organic heterojunction structure (MON, where MCo/Ni), the modulation of which increases the availability of active MOOH sites. These results offer a novel strategy for designing high-performance transition metal-based electrocatalysts for biomass upcycling.
The work demonstrates an environmentally friendly approach to converting biomass-derived HMF into FDCA, a key bioplastic precursor, using earth-abundant transition metals and minimal energy input, advancing the circular bioeconomy. The work highlights a novel amine-induced protonation strategy that enhances electrostatic adsorption of reactive substrates, significantly improving catalytic performance through formation of -NH3+ species that strengthen substrate binding. [Display omitted]
•Ligand-modified catalysts boost FDCA production while passivating oxygen evolution.•Amine protonation forming NH3+ species enhances adsorption of reactive substrates.•Ternary metal-organic heterojunction structure leads to beneficial synergies.•Faradaic efficiency exceeding 95 % across a wide potential range is achieved. |
---|---|
AbstractList | The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics, represents a transformative approach for advancing bioeconomy. However, efficient electrocatalysis must achieve high product selectivity while simultaneously suppressing side reactions. Here, a ligand-modified electrocatalyst, CoNiCu-HAB (HAB = hexylaminobenzene), was synthesized to boost HMF electrooxidation whilst passivating the competitive oxygen evolution, wherein uncoordinated amine groups induce efficient protonation and electrostatic adsorption of reactive substrates. The CoNiCu layered hydroxides exhibit beneficial synergies: binary CoNi significantly improves reaction kinetics and lowers the onset potential for HMF oxidation (10 mA cm−2 at 1.15 V vs. reversible hydrogen electrode), while Cu effectively inhibits oxygen evolution. Theoretical calculations indicate that the protonation of organic ligands to form -NH3+ species enhances the adsorption of reactive substrates and achieves outstanding Faradaic efficiency exceeding 95 % across a wide potential range. In situ Raman spectroscopy reveals that incorporating organic ligands creates a ternary metal-organic heterojunction structure (MON, where MCo/Ni), the modulation of which increases the availability of active MOOH sites. These results offer a novel strategy for designing high-performance transition metal-based electrocatalysts for biomass upcycling.
The work demonstrates an environmentally friendly approach to converting biomass-derived HMF into FDCA, a key bioplastic precursor, using earth-abundant transition metals and minimal energy input, advancing the circular bioeconomy. The work highlights a novel amine-induced protonation strategy that enhances electrostatic adsorption of reactive substrates, significantly improving catalytic performance through formation of -NH3+ species that strengthen substrate binding. [Display omitted]
•Ligand-modified catalysts boost FDCA production while passivating oxygen evolution.•Amine protonation forming NH3+ species enhances adsorption of reactive substrates.•Ternary metal-organic heterojunction structure leads to beneficial synergies.•Faradaic efficiency exceeding 95 % across a wide potential range is achieved. |
ArticleNumber | 165842 |
Author | Lam, Jason Chun-Ho Lin, Richen Shen, Laihong Hao, Qi Zhao, Haiqing Shen, Tianxu Ji, Wei |
Author_xml | – sequence: 1 givenname: Haiqing surname: Zhao fullname: Zhao, Haiqing organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China – sequence: 2 givenname: Tianxu surname: Shen fullname: Shen, Tianxu organization: School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China – sequence: 3 givenname: Wei surname: Ji fullname: Ji, Wei organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China – sequence: 4 givenname: Jason Chun-Ho surname: Lam fullname: Lam, Jason Chun-Ho organization: School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China – sequence: 5 givenname: Qi surname: Hao fullname: Hao, Qi organization: Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China – sequence: 6 givenname: Laihong surname: Shen fullname: Shen, Laihong email: lhshen@seu.edu.cn organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China – sequence: 7 givenname: Richen surname: Lin fullname: Lin, Richen email: richenlin@seu.edu.cn organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China |
BookMark | eNp9kM9qwzAMh33oYG23B9jND7Bkdpo4CTttZf-gsMt2NoqtdA6JXeykrLc9-hy680Ag-KFPSN-KLKyzSMgNZylnXNx1qcIuzVhWpFwUVZ4tyJJvqiKp6ry8JKsQOsaYqHm9JD-PzoXR2D1tjBsgBDod1En1c2Ls6Gh2WyTt5MFqo8A37vvUG0VBGU2PBigMxmJirJ4UanrwbnQWRuMsjTWit-BPdMAR-sT5PdjIfmHMXTdZNc9dkYsW-oDXf31NPp-fPravye795W37sEtUVvAxaXLOBWNQYaWZZsDqWjTAdCUqKFuhyzwGiivM20yX0BQZR1WKuoQcywLLzZrw817lXQgeW3nwZojXSc7krE12MmqTszZ51haZ-zOD8bCjQS-DMmjjp8ajGqV25h_6F1nrfLg |
Cites_doi | 10.1016/j.jechem.2024.06.027 10.1016/j.ijhydene.2023.06.097 10.1039/D4SC01752H 10.1016/j.cej.2024.149365 10.1039/D3RA05623F 10.1063/1.3382344 10.1039/b925869h 10.1039/D2TA00863G 10.1016/j.jechem.2024.08.066 10.1103/PhysRevLett.77.3865 10.1021/acsnano.2c10327 10.1016/j.jcat.2024.115531 10.1038/s41467-024-51937-y 10.1016/j.jallcom.2021.159858 10.1021/acsaem.4c02464 10.1021/acscatal.0c00007 10.1021/jacs.8b06020 10.1039/D2SC00038E 10.1016/j.cjche.2020.09.018 10.1021/acscatal.8b01017 10.1002/smll.202405056 10.1016/j.apcatb.2021.119906 10.1039/D4GC00338A 10.1039/D1GC00914A 10.1002/cssc.202300222 10.1039/D0CS01601B 10.1016/j.cej.2024.158011 10.1002/adma.202306108 10.1002/smll.202208027 10.1021/acs.chemrev.2c00756 10.1021/acs.chemrev.0c00158 10.1103/PhysRevB.54.11169 10.1016/j.cej.2021.133842 10.1002/anie.202007767 10.1002/anie.202306701 10.1021/acsanm.4c00277 10.1002/adfm.202406423 10.1038/s41467-024-49510-8 10.1021/acssuschemeng.1c07482 10.1021/acs.chemrev.1c00191 10.1002/advs.202205540 10.1039/D4GC03597F 10.1039/D0GC02770G 10.3390/nano13162318 10.1016/j.cej.2023.141779 10.1002/anie.202016601 10.1002/cctc.201901742 10.1039/D4CC01443J 10.1002/sus2.109 10.1103/PhysRevB.59.1758 10.1021/jacs.3c05688 10.1021/acscatal.3c04372 10.1021/jacs.0c00257 10.1039/D2GC03444A 10.1002/adma.202204089 10.1021/acsaem.0c01189 10.1021/acssuschemeng.4c07570 10.1039/D1TA05425B 10.1038/s41467-023-40463-y 10.1016/j.cpc.2021.108033 10.1021/acscatal.2c00174 10.1039/D3NJ01836A 10.1016/j.apcatb.2022.121400 10.1039/D1TA02464G 10.1002/anie.201806298 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2025.165842 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2025_165842 S138589472506680X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AAYXX ABXDB AFFNX ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 |
ID | FETCH-LOGICAL-c251t-b411600a8e8d0d0a0996ba0d868a7f6d74996c1ce4f2d7ab521ec7697a4e75e73 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Wed Aug 27 16:27:03 EDT 2025 Sat Aug 30 17:13:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalytic oxidation 2,5-furandicarboxylic acid Biomass upcycling Interfacial engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-b411600a8e8d0d0a0996ba0d868a7f6d74996c1ce4f2d7ab521ec7697a4e75e73 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2025_165842 elsevier_sciencedirect_doi_10_1016_j_cej_2025_165842 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-15 |
PublicationDateYYYYMMDD | 2025-09-15 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Mu (bb0010) 2021; 23 Lei, Zhang, Yang, Ran, Ning, Wang, Hu (bb0065) 2025; 100 Grimme, Antony, Ehrlich, Krieg (bb0235) 2010; 132 Akhade, Singh, Gutiérrez, Lopez-Ruiz, Wang, Holladay, Liu, Karkamkar, Weber, Padmaperuma (bb0050) 2020; 120 Bai, He, Lu, Fu, Qi (bb0155) 2021; 9 Jiang, Li, Liu, Zhao, Chen, Zhang, Zhang, Yun (bb0075) 2023; 3 Chen, Yu, Song, Dong, Mu, Qiu (bb0120) 2024; 15 Qian, Zhu, Ahmad, Feng, Zhang, Cheng, Liu, Xiao, Zhang, Xie (bb0035) 2024; 36 Kang, Liu, Hu, Huang, Liu, Dong, Teobaldi, Guo (bb0310) 2023; 145 Li, Huang, Jiang, Xi, Duan, Ratova, Wu (bb0105) 2024; 98 Jiang, Xiao, Xu, Wang, Peng, Zhang, Liu, Song (bb0255) 2023; 19 James, Maity, Usman, Ajanaku, Ajani, Siyanbola, Sahu, Chaubey (bb0015) 2010; 3 Feng, Long, Tang, Sun, Luque, Zeng, Lin (bb0115) 2021; 50 Perdew, Burke, Ernzerhof (bb0220) 1996; 77 Qi, Wang, Sun, Wang, Wang (bb0320) 2022; 10 Sang, Xu, Wang, Ji, Hao, Li (bb0265) 2024; 60 Kresse, Joubert (bb0225) 1999; 59 Wang, Liu, Jin, Huang, Lam (bb0290) 2023; 16 Zhang, Liu, Liu, Chen, Xu, Yan (bb0140) 2020; 10 Zhou, Lv, Tao, Wu, Wang, Wei, Wang, Zhou, Lu, Frauenheim (bb0150) 2022; 34 Ji, You, Xu, Yang, Liu (bb0325) 2024; 483 Chen, Ding, Cao, Wang, Lee, Lin, Li, Ding, Sun (bb0130) 2023; 62 Park, Lee, Feng, Huang, Hinckley, Yakovenko, Zou, Cui, Bao (bb0205) 2018; 140 Yang, Xu, Zhang, Xue, Mu (bb0125) 2022; 433 Li, Huang, Jiang, Xi, Duan, Ratova, Wu (bb0070) 2024; 98 Lu, Qi, Dai, Li, Wang, Dou, Qi (bb0215) 2024; 15 Zhang, Hu, Wang, Gao, Zhu, Yan, Gu (bb0145) 2021; 286 Aguilera, Leyet, Almeida, Moreira, de la Cruz, Milán-Garcés, Passos, Pocrifka (bb0345) 2021; 874 Xiao, Huang, Dong, Xie, Liu, Du, Chen, Yan, Tao, Shu (bb0295) 2020; 142 Liu, Dang, Xu, Yu, Jin, Huber (bb0275) 2018; 8 Wang, Li, An, Zhuang, Tao (bb0285) 2021; 9 van der Ham, van Keulen, Koper, Tashvigh, Bitter (bb0025) 2023; 62 Kou, Fang, Ding, Luo, Liu, Peng, Guo, Ding, Hou (bb0340) 2024 Hauke, Merzdorf, Klingenhof, Strasser (bb0195) 2023; 14 Zhang, Hong, Cao, Wang, Chen, Qiao (bb0270) 2024; 12 Dhanasmoro, Li (bb0305) 2023; 47 Lu, Dong, Huang, Zou, Liu, Liu, Li, He, Shi, Wang (bb0330) 2020; 59 Plucksacholatarn, Tharat, Faungnawakij, Suthirakun, Thongkham, Praserthdam, Junkaew (bb0110) 2024; 434 Chen, Wang, Zhou, Li (bb0175) 2022; 13 Guo, Zhang, Gan, Pan, Shi, Huang, Zhang, Zou (bb0060) 2023; 10 Jiang, Zeng, Hu, Guo, Yan, Luque (bb0030) 2023; 25 Wang, Xu, Liu, Tang, Geng (bb0230) 2021; 267 An, Lei, Jiang, Pang (bb0045) 2024; 26 Li, Huang, Lv, Zhang, Li (bb0135) 2023; 48 Dhingra, Chhabra, Krishnan, Nagaraja (bb0090) 2020; 3 Shen, Deng, Huang, Du, Zhou, Ma, Shen, Wang, Dong, Xu (bb0180) 2024 Chen, Yang, Zhou, Haeffner, Dersjant, Dulock, Dong, He, Jin, Zhao (bb0080) 2021; 60 Kresse, Furthmüller (bb0210) 1996; 54 Megías-Sayago, Lolli, Bonincontro, Penkova, Albonetti, Cavani, Odriozola, Ivanova (bb0100) 2020; 12 Guo, Huo, Zhang, Wan, Yang, Liu, Peng (bb0240) 2023; 13 Lu, Liu, Huang, Zhou, Li, Chen, Yang, Zhou, Wu, Kong (bb0200) 2022; 12 Chen, Wu, Zhu, Wu, Li, Yin (bb0280) 2024; 7 Tao, Su, Meng, Xue, Zhang, Feng, Zheng, Xu (bb0190) 2024; 502 Wu, Tong, Liang, Peng, Gu, Ding (bb0250) 2023; 460 Chen, Lv, Hu, Huai, Zhu, Fan, Wang, Zhang (bb0020) 2024; 36 Wu, Kong, Li, Lu, Zhou, Wang, Xu, Wang, Zou (bb0085) 2022; 16 Chen, Ding, Cao, Wang, Lee, Lin, Li, Ding, Sun (bb0170) 2023; 62 Sendeku, Harrath, Dajan, Wu, Hussain, Gao, Zhan, Yang, Wang, Chen (bb0095) 2024; 15 Hauke, Merzdorf, Klingenhof, Strasser (bb0300) 2023; 14 Wen, Zhang, Fan, Chen (bb0165) 2023; 13 Ghosh, Mondal, Roy, Shalom, Sadan (bb0350) 2022; 10 Song, Xie, Song, Li, Li, Jiang, Lee, Shao (bb0335) 2022; 312 Li, Wang, Pang, Wang, Li, Zhang (bb0040) 2024; 124 Hou, Qi, Zhen, Qian, Nie, Bai, Zhang, Bai, Ju (bb0005) 2021; 23 Yin, Feng, Lei, Fu (bb0315) 2024 Gidi, Amalraj, Tenreiro, Ramírez (bb0055) 2023; 13 Zhu, Gong, Huang, Jin, Liu, Shao, Yang, Cataldo, Bedford, Lam (bb0260) 2024; 26 Li, Zhong, Wang, Deng, Wang, Zeng, Cao, Deng (bb0160) 2021; 33 Barwe, Weidner, Cychy, Morales, Dieckhöfer, Hiltrop, Masa, Muhler, Schuhmann (bb0245) 2018; 57 Ganguly, Basera, Ahmed, Saha, Dutta, Loha, Ghosh (bb0355) 2024; 20 Sui, Ji (bb0185) 2021; 121 Li (10.1016/j.cej.2025.165842_bb0160) 2021; 33 Jiang (10.1016/j.cej.2025.165842_bb0255) 2023; 19 Dhingra (10.1016/j.cej.2025.165842_bb0090) 2020; 3 Wu (10.1016/j.cej.2025.165842_bb0250) 2023; 460 Chen (10.1016/j.cej.2025.165842_bb0020) 2024; 36 Jiang (10.1016/j.cej.2025.165842_bb0030) 2023; 25 van der Ham (10.1016/j.cej.2025.165842_bb0025) 2023; 62 Zhang (10.1016/j.cej.2025.165842_bb0140) 2020; 10 Chen (10.1016/j.cej.2025.165842_bb0080) 2021; 60 Wang (10.1016/j.cej.2025.165842_bb0285) 2021; 9 Dhanasmoro (10.1016/j.cej.2025.165842_bb0305) 2023; 47 Chen (10.1016/j.cej.2025.165842_bb0130) 2023; 62 Hou (10.1016/j.cej.2025.165842_bb0005) 2021; 23 Hauke (10.1016/j.cej.2025.165842_bb0300) 2023; 14 Guo (10.1016/j.cej.2025.165842_bb0240) 2023; 13 Akhade (10.1016/j.cej.2025.165842_bb0050) 2020; 120 Kresse (10.1016/j.cej.2025.165842_bb0225) 1999; 59 Hauke (10.1016/j.cej.2025.165842_bb0195) 2023; 14 Kresse (10.1016/j.cej.2025.165842_bb0210) 1996; 54 Guo (10.1016/j.cej.2025.165842_bb0060) 2023; 10 Park (10.1016/j.cej.2025.165842_bb0205) 2018; 140 Sui (10.1016/j.cej.2025.165842_bb0185) 2021; 121 Barwe (10.1016/j.cej.2025.165842_bb0245) 2018; 57 Chen (10.1016/j.cej.2025.165842_bb0280) 2024; 7 Feng (10.1016/j.cej.2025.165842_bb0115) 2021; 50 Wu (10.1016/j.cej.2025.165842_bb0085) 2022; 16 Ganguly (10.1016/j.cej.2025.165842_bb0355) 2024; 20 Wang (10.1016/j.cej.2025.165842_bb0230) 2021; 267 Liu (10.1016/j.cej.2025.165842_bb0275) 2018; 8 Aguilera (10.1016/j.cej.2025.165842_bb0345) 2021; 874 Grimme (10.1016/j.cej.2025.165842_bb0235) 2010; 132 Ji (10.1016/j.cej.2025.165842_bb0325) 2024; 483 Yang (10.1016/j.cej.2025.165842_bb0010) 2021; 23 Qian (10.1016/j.cej.2025.165842_bb0035) 2024; 36 Sendeku (10.1016/j.cej.2025.165842_bb0095) 2024; 15 Qi (10.1016/j.cej.2025.165842_bb0320) 2022; 10 Chen (10.1016/j.cej.2025.165842_bb0120) 2024; 15 Zhang (10.1016/j.cej.2025.165842_bb0145) 2021; 286 Wen (10.1016/j.cej.2025.165842_bb0165) 2023; 13 Ghosh (10.1016/j.cej.2025.165842_bb0350) 2022; 10 Li (10.1016/j.cej.2025.165842_bb0070) 2024; 98 Lu (10.1016/j.cej.2025.165842_bb0330) 2020; 59 Lei (10.1016/j.cej.2025.165842_bb0065) 2025; 100 Tao (10.1016/j.cej.2025.165842_bb0190) 2024; 502 Megías-Sayago (10.1016/j.cej.2025.165842_bb0100) 2020; 12 Chen (10.1016/j.cej.2025.165842_bb0170) 2023; 62 Kang (10.1016/j.cej.2025.165842_bb0310) 2023; 145 Li (10.1016/j.cej.2025.165842_bb0105) 2024; 98 Lu (10.1016/j.cej.2025.165842_bb0200) 2022; 12 Perdew (10.1016/j.cej.2025.165842_bb0220) 1996; 77 Song (10.1016/j.cej.2025.165842_bb0335) 2022; 312 Bai (10.1016/j.cej.2025.165842_bb0155) 2021; 9 Yang (10.1016/j.cej.2025.165842_bb0125) 2022; 433 Li (10.1016/j.cej.2025.165842_bb0135) 2023; 48 Zhang (10.1016/j.cej.2025.165842_bb0270) 2024; 12 Yin (10.1016/j.cej.2025.165842_bb0315) 2024 Xiao (10.1016/j.cej.2025.165842_bb0295) 2020; 142 Kou (10.1016/j.cej.2025.165842_bb0340) 2024 Plucksacholatarn (10.1016/j.cej.2025.165842_bb0110) 2024; 434 Zhou (10.1016/j.cej.2025.165842_bb0150) 2022; 34 An (10.1016/j.cej.2025.165842_bb0045) 2024; 26 Sang (10.1016/j.cej.2025.165842_bb0265) 2024; 60 Jiang (10.1016/j.cej.2025.165842_bb0075) 2023; 3 Li (10.1016/j.cej.2025.165842_bb0040) 2024; 124 Shen (10.1016/j.cej.2025.165842_bb0180) 2024 Gidi (10.1016/j.cej.2025.165842_bb0055) 2023; 13 Wang (10.1016/j.cej.2025.165842_bb0290) 2023; 16 Lu (10.1016/j.cej.2025.165842_bb0215) 2024; 15 Zhu (10.1016/j.cej.2025.165842_bb0260) 2024; 26 James (10.1016/j.cej.2025.165842_bb0015) 2010; 3 Chen (10.1016/j.cej.2025.165842_bb0175) 2022; 13 |
References_xml | – volume: 50 start-page: 6042 year: 2021 end-page: 6093 ident: bb0115 article-title: Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion publication-title: Chem. Soc. Rev. – volume: 10 start-page: 5179 year: 2020 end-page: 5189 ident: bb0140 article-title: Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-Hydroxymethylfurfural publication-title: ACS Catal. – volume: 98 start-page: 24 year: 2024 end-page: 46 ident: bb0105 article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation publication-title: J. Energy Chem. – volume: 13 start-page: 28307 year: 2023 end-page: 28336 ident: bb0055 article-title: Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF) publication-title: RSC Adv. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bb0210 article-title: Efficient iterative schemes for publication-title: Phys. Rev. B – volume: 10 start-page: 8238 year: 2022 end-page: 8244 ident: bb0350 article-title: Alcohol oxidation with high efficiency and selectivity by nickel phosphide phases publication-title: J. Mater. Chem. A – volume: 140 start-page: 10315 year: 2018 end-page: 10323 ident: bb0205 article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 7138 year: 2020 end-page: 7148 ident: bb0090 article-title: Visible-light-driven selective oxidation of biomass-derived HMF to DFF coupled with H publication-title: ACS Appl. Energy Mater. – volume: 16 start-page: 21518 year: 2022 end-page: 21526 ident: bb0085 article-title: Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation publication-title: ACS Nano – volume: 60 start-page: 5868 year: 2024 end-page: 5871 ident: bb0265 article-title: Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural publication-title: Chem. Commun. – volume: 12 start-page: 18390 year: 2024 end-page: 18398 ident: bb0270 article-title: Dual modulation strategy of NiMoO publication-title: ACS Sustain. Chem. Eng. – volume: 36 year: 2024 ident: bb0035 article-title: Recent advancements in electrochemical hydrogen production via hybrid water splitting publication-title: Adv. Mater. – year: 2024 ident: bb0315 article-title: Self-supported co-VS publication-title: ACS Appl. Energy Mater. – volume: 12 start-page: 1177 year: 2020 end-page: 1183 ident: bb0100 article-title: Effect of gold particles size over au/C catalyst selectivity in HMF oxidation reaction publication-title: ChemCatChem – volume: 120 start-page: 11370 year: 2020 end-page: 11419 ident: bb0050 article-title: Electrocatalytic hydrogenation of biomass-derived organics: a review publication-title: Chem. Rev. – volume: 286 year: 2021 ident: bb0145 article-title: In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction publication-title: Appl Catal B – volume: 23 start-page: 4228 year: 2021 end-page: 4254 ident: bb0010 article-title: Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions publication-title: Green Chem. – volume: 142 start-page: 12087 year: 2020 end-page: 12095 ident: bb0295 article-title: identification of the dynamic behavior of oxygen vacancy-rich co publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 ident: bb0150 article-title: Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation publication-title: Adv. Mater. – volume: 62 year: 2023 ident: bb0170 article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1833 year: 2010 ident: bb0015 article-title: Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural publication-title: Energy Environ. Sci. – volume: 267 year: 2021 ident: bb0230 article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. – year: 2024 ident: bb0340 article-title: Valence engineering boosts kinetics and storage capacity of layered double hydroxides for aqueous magnesium-ion batteries publication-title: Adv. Funct. Mater. – volume: 10 year: 2023 ident: bb0060 article-title: Advances in selective electrochemical oxidation of 5-Hydroxymethylfurfural to produce high-value chemicals publication-title: Adv. Sci. – volume: 14 start-page: 4708 year: 2023 ident: bb0195 article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics publication-title: Nat. Commun. – volume: 57 start-page: 11460 year: 2018 end-page: 11464 ident: bb0245 article-title: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride publication-title: Angew. Chem. Int. Ed. – volume: 502 year: 2024 ident: bb0190 article-title: Enhanced co-production of H2 and formic acid via Ni-facilitated Cu+/Cu2+ cycling in an industry-level hybrid water splitting system publication-title: Chem. Eng. J. – volume: 98 start-page: 24 year: 2024 end-page: 46 ident: bb0070 article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation publication-title: J. Energy Chem. – volume: 132 year: 2010 ident: bb0235 article-title: A consistent and accurate publication-title: J. Chem. Phys. – volume: 145 start-page: 25143 year: 2023 end-page: 25149 ident: bb0310 article-title: Parallel Nanosheet arrays for industrial oxygen production publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bb0220 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 62 year: 2023 ident: bb0130 article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity publication-title: Angew. Chem. Int. Ed. – volume: 16 year: 2023 ident: bb0290 article-title: Amorphous RuO publication-title: ChemSusChem – volume: 26 start-page: 4135 year: 2024 end-page: 4150 ident: bb0260 article-title: Rhombohedral ZnIn publication-title: Green Chem. – volume: 15 start-page: 8072 year: 2024 ident: bb0120 article-title: Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen publication-title: Nat. Commun. – volume: 9 start-page: 18421 year: 2021 end-page: 18430 ident: bb0285 article-title: Surface reconstruction of NiCoP for enhanced biomass upgrading publication-title: J. Mater. Chem. A – volume: 14 year: 2023 ident: bb0300 article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics publication-title: Nat. Commun. – volume: 13 start-page: 2318 year: 2023 ident: bb0240 article-title: MOF material-derived bimetallic sulfide CoxNiyS for electrocatalytic oxidation of 5-hydroxymethylfurfural publication-title: Nanomaterials – volume: 62 year: 2023 ident: bb0025 article-title: Steering the selectivity of electrocatalytic glucose oxidation by the Pt oxidation state publication-title: Angew. Chem. Int. Ed. – volume: 433 year: 2022 ident: bb0125 article-title: Substrate molecule adsorption energy: an activity descriptor for electrochemical oxidation of 5-hydroxymethylfurfural (HMF) publication-title: Chem. Eng. J. – volume: 19 year: 2023 ident: bb0255 article-title: Passivating oxygen evolution activity of NiFe-LDH through heterostructure engineering to realize high-efficiency electrocatalytic formate and hydrogen co-production publication-title: Small – volume: 874 year: 2021 ident: bb0345 article-title: Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices publication-title: J. Alloys Compd. – volume: 60 start-page: 7534 year: 2021 end-page: 7539 ident: bb0080 article-title: Electrochemically triggered chain reactions for the conversion of furan derivatives publication-title: Angew. Chem. Int. Ed. – year: 2024 ident: bb0180 article-title: Promoted electrochemical reconstruction of glassy metal–organic frameworks for efficient electrocatalytic 5-hydroxymethylfurfural oxidation publication-title: Adv. Energy Mater. – volume: 59 start-page: 19215 year: 2020 end-page: 19221 ident: bb0330 article-title: Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural publication-title: Angew. Chem. Int. Ed. – volume: 460 year: 2023 ident: bb0250 article-title: Pd nanoparticles encapsulated in MOF boosts selective hydrogenation of biomass derived compound under mild conditions publication-title: Chem. Eng. J. – volume: 121 start-page: 6654 year: 2021 end-page: 6695 ident: bb0185 article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries publication-title: Chem. Rev. – volume: 26 start-page: 10739 year: 2024 end-page: 10773 ident: bb0045 article-title: Research progress on photocatalytic, electrocatalytic and photoelectrocatalytic selective oxidation of 5-hydroxymethylfurfural publication-title: Green Chem. – volume: 12 start-page: 4242 year: 2022 end-page: 4251 ident: bb0200 article-title: Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural publication-title: ACS Catal. – volume: 100 start-page: 792 year: 2025 end-page: 814 ident: bb0065 article-title: Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural publication-title: J. Energy Chem. – volume: 434 year: 2024 ident: bb0110 article-title: Unraveling selectivity in non-noble metal-catalyzed hydrogenation of 5-hydroxymethylfurfural (HMF) through mechanistic insights publication-title: J. Catal. – volume: 33 start-page: 167 year: 2021 end-page: 174 ident: bb0160 article-title: Functionalized metal–organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural publication-title: Chin. J. Chem. Eng. – volume: 47 start-page: 14282 year: 2023 end-page: 14288 ident: bb0305 article-title: Highly active NiFe LDH anchoring on cobalt carbonate hydroxide for efficient electrocatalytic 5-hydroxymethylfurfural oxidation towards 2,5-furandicarboxylic acid publication-title: New J. Chem. – volume: 36 year: 2024 ident: bb0020 article-title: 5-Hydroxymethylfurfural and its downstream chemicals: a review of catalytic routes publication-title: Adv. Mater. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: bb0225 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 15 start-page: 5174 year: 2024 ident: bb0095 article-title: Deciphering in-situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation publication-title: Nat. Commun. – volume: 312 year: 2022 ident: bb0335 article-title: Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation publication-title: Appl Catal B – volume: 25 start-page: 871 year: 2023 end-page: 892 ident: bb0030 article-title: Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future publication-title: Green Chem. – volume: 9 start-page: 14270 year: 2021 end-page: 14275 ident: bb0155 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework nanoarrays: enhancement from electronic structure modulation publication-title: J. Mater. Chem. A – volume: 13 start-page: 4647 year: 2022 end-page: 4653 ident: bb0175 article-title: Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co–CoS publication-title: Chem. Sci. – volume: 20 year: 2024 ident: bb0355 article-title: Trace Ru incorporation boosted co publication-title: Small – volume: 8 start-page: 5533 year: 2018 end-page: 5541 ident: bb0275 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts publication-title: ACS Catal. – volume: 10 start-page: 645 year: 2022 end-page: 654 ident: bb0320 article-title: Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid publication-title: ACS Sustain. Chem. Eng. – volume: 23 start-page: 119 year: 2021 end-page: 231 ident: bb0005 article-title: Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural publication-title: Green Chem. – volume: 48 start-page: 38279 year: 2023 end-page: 38295 ident: bb0135 article-title: Highly efficient electrooxidation of 5-hydroxymethylfurfural (HMF) by cu regulated co carbonate hydroxides boosting hydrogen evolution reaction publication-title: Int. J. Hydrog. Energy – volume: 483 year: 2024 ident: bb0325 article-title: Engineering metal organic framework (MOF)@MXene based electrodes for hybrid supercapacitors – a review publication-title: Chem. Eng. J. – volume: 13 start-page: 15263 year: 2023 end-page: 15289 ident: bb0165 article-title: Recent advances in furfural reduction via electro- and photocatalysis: from mechanism to catalyst design publication-title: ACS Catal. – volume: 124 start-page: 2889 year: 2024 end-page: 2954 ident: bb0040 article-title: Production of renewable hydrocarbon biofuels with lignocellulose and its derivatives over heterogeneous catalysts publication-title: Chem. Rev. – volume: 3 start-page: 21 year: 2023 end-page: 43 ident: bb0075 article-title: Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production—from mechanism to catalysts design publication-title: SusMat – volume: 15 start-page: 11043 year: 2024 end-page: 11052 ident: bb0215 article-title: Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure–function relationships publication-title: Chem. Sci. – volume: 7 start-page: 7605 year: 2024 end-page: 7613 ident: bb0280 article-title: Co- and V publication-title: ACS Appl. Nano Mater. – volume: 98 start-page: 24 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0105 article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.06.027 – volume: 48 start-page: 38279 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0135 article-title: Highly efficient electrooxidation of 5-hydroxymethylfurfural (HMF) by cu regulated co carbonate hydroxides boosting hydrogen evolution reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2023.06.097 – volume: 15 start-page: 11043 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0215 article-title: Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure–function relationships publication-title: Chem. Sci. doi: 10.1039/D4SC01752H – volume: 483 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0325 article-title: Engineering metal organic framework (MOF)@MXene based electrodes for hybrid supercapacitors – a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.149365 – volume: 13 start-page: 28307 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0055 article-title: Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF) publication-title: RSC Adv. doi: 10.1039/D3RA05623F – volume: 132 year: 2010 ident: 10.1016/j.cej.2025.165842_bb0235 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 3 start-page: 1833 year: 2010 ident: 10.1016/j.cej.2025.165842_bb0015 article-title: Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural publication-title: Energy Environ. Sci. doi: 10.1039/b925869h – volume: 10 start-page: 8238 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0350 article-title: Alcohol oxidation with high efficiency and selectivity by nickel phosphide phases publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00863G – volume: 100 start-page: 792 year: 2025 ident: 10.1016/j.cej.2025.165842_bb0065 article-title: Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.08.066 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.cej.2025.165842_bb0220 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 16 start-page: 21518 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0085 article-title: Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation publication-title: ACS Nano doi: 10.1021/acsnano.2c10327 – volume: 434 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0110 article-title: Unraveling selectivity in non-noble metal-catalyzed hydrogenation of 5-hydroxymethylfurfural (HMF) through mechanistic insights publication-title: J. Catal. doi: 10.1016/j.jcat.2024.115531 – volume: 15 start-page: 8072 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0120 article-title: Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen publication-title: Nat. Commun. doi: 10.1038/s41467-024-51937-y – volume: 874 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0345 article-title: Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159858 – volume: 98 start-page: 24 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0070 article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.06.027 – year: 2024 ident: 10.1016/j.cej.2025.165842_bb0315 article-title: Self-supported co-VS 2 @MoS 2 heterostructure for boosting overall water splitting publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.4c02464 – volume: 10 start-page: 5179 year: 2020 ident: 10.1016/j.cej.2025.165842_bb0140 article-title: Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-Hydroxymethylfurfural publication-title: ACS Catal. doi: 10.1021/acscatal.0c00007 – year: 2024 ident: 10.1016/j.cej.2025.165842_bb0180 article-title: Promoted electrochemical reconstruction of glassy metal–organic frameworks for efficient electrocatalytic 5-hydroxymethylfurfural oxidation publication-title: Adv. Energy Mater. – volume: 140 start-page: 10315 year: 2018 ident: 10.1016/j.cej.2025.165842_bb0205 article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06020 – volume: 13 start-page: 4647 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0175 article-title: Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co–CoS x heterojunction by intensified spin polarization publication-title: Chem. Sci. doi: 10.1039/D2SC00038E – volume: 33 start-page: 167 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0160 article-title: Functionalized metal–organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.09.018 – volume: 8 start-page: 5533 year: 2018 ident: 10.1016/j.cej.2025.165842_bb0275 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b01017 – volume: 20 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0355 article-title: Trace Ru incorporation boosted co 2 P nanorods for superior water electrolysis and substrate-paired electrolysis toward value-added chemicals in alkaline medium publication-title: Small doi: 10.1002/smll.202405056 – volume: 286 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0145 article-title: In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.119906 – volume: 26 start-page: 4135 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0260 article-title: Rhombohedral ZnIn 2 S 4 -catalysed anodic direct electrochemical oxidative cleavage of C–O bond in α-O-4 linkages in ambient conditions publication-title: Green Chem. doi: 10.1039/D4GC00338A – volume: 23 start-page: 4228 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0010 article-title: Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions publication-title: Green Chem. doi: 10.1039/D1GC00914A – volume: 16 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0290 article-title: Amorphous RuO2 catalyst for medium size carboxylic acid to alkane dimer selective Kolbe electrolysis in an aqueous environment publication-title: ChemSusChem doi: 10.1002/cssc.202300222 – volume: 50 start-page: 6042 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0115 article-title: Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01601B – volume: 62 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0170 article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity publication-title: Angew. Chem. Int. Ed. – volume: 502 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0190 article-title: Enhanced co-production of H2 and formic acid via Ni-facilitated Cu+/Cu2+ cycling in an industry-level hybrid water splitting system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.158011 – volume: 36 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0035 article-title: Recent advancements in electrochemical hydrogen production via hybrid water splitting publication-title: Adv. Mater. doi: 10.1002/adma.202306108 – volume: 19 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0255 article-title: Passivating oxygen evolution activity of NiFe-LDH through heterostructure engineering to realize high-efficiency electrocatalytic formate and hydrogen co-production publication-title: Small doi: 10.1002/smll.202208027 – volume: 36 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0020 article-title: 5-Hydroxymethylfurfural and its downstream chemicals: a review of catalytic routes publication-title: Adv. Mater. – volume: 124 start-page: 2889 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0040 article-title: Production of renewable hydrocarbon biofuels with lignocellulose and its derivatives over heterogeneous catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00756 – volume: 120 start-page: 11370 year: 2020 ident: 10.1016/j.cej.2025.165842_bb0050 article-title: Electrocatalytic hydrogenation of biomass-derived organics: a review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00158 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.cej.2025.165842_bb0210 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 433 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0125 article-title: Substrate molecule adsorption energy: an activity descriptor for electrochemical oxidation of 5-hydroxymethylfurfural (HMF) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133842 – volume: 59 start-page: 19215 year: 2020 ident: 10.1016/j.cej.2025.165842_bb0330 article-title: Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007767 – volume: 62 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0025 article-title: Steering the selectivity of electrocatalytic glucose oxidation by the Pt oxidation state publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202306701 – volume: 7 start-page: 7605 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0280 article-title: Co- and V 2 O 3 -modified Ni-based nanocatalyst for 5-hydroxymethylfurfural electrooxidation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.4c00277 – year: 2024 ident: 10.1016/j.cej.2025.165842_bb0340 article-title: Valence engineering boosts kinetics and storage capacity of layered double hydroxides for aqueous magnesium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202406423 – volume: 15 start-page: 5174 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0095 article-title: Deciphering in-situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-024-49510-8 – volume: 10 start-page: 645 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0320 article-title: Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c07482 – volume: 121 start-page: 6654 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0185 article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 10 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0060 article-title: Advances in selective electrochemical oxidation of 5-Hydroxymethylfurfural to produce high-value chemicals publication-title: Adv. Sci. doi: 10.1002/advs.202205540 – volume: 26 start-page: 10739 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0045 article-title: Research progress on photocatalytic, electrocatalytic and photoelectrocatalytic selective oxidation of 5-hydroxymethylfurfural publication-title: Green Chem. doi: 10.1039/D4GC03597F – volume: 23 start-page: 119 issue: 1 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0005 article-title: Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural publication-title: Green Chem. doi: 10.1039/D0GC02770G – volume: 13 start-page: 2318 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0240 article-title: MOF material-derived bimetallic sulfide CoxNiyS for electrocatalytic oxidation of 5-hydroxymethylfurfural publication-title: Nanomaterials doi: 10.3390/nano13162318 – volume: 460 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0250 article-title: Pd nanoparticles encapsulated in MOF boosts selective hydrogenation of biomass derived compound under mild conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141779 – volume: 62 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0130 article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 7534 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0080 article-title: Electrochemically triggered chain reactions for the conversion of furan derivatives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016601 – volume: 12 start-page: 1177 year: 2020 ident: 10.1016/j.cej.2025.165842_bb0100 article-title: Effect of gold particles size over au/C catalyst selectivity in HMF oxidation reaction publication-title: ChemCatChem doi: 10.1002/cctc.201901742 – volume: 60 start-page: 5868 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0265 article-title: Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural publication-title: Chem. Commun. doi: 10.1039/D4CC01443J – volume: 3 start-page: 21 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0075 article-title: Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production—from mechanism to catalysts design publication-title: SusMat doi: 10.1002/sus2.109 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.cej.2025.165842_bb0225 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 145 start-page: 25143 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0310 article-title: Parallel Nanosheet arrays for industrial oxygen production publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c05688 – volume: 13 start-page: 15263 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0165 article-title: Recent advances in furfural reduction via electro- and photocatalysis: from mechanism to catalyst design publication-title: ACS Catal. doi: 10.1021/acscatal.3c04372 – volume: 142 start-page: 12087 year: 2020 ident: 10.1016/j.cej.2025.165842_bb0295 article-title: Operando identification of the dynamic behavior of oxygen vacancy-rich co 3 O 4 for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00257 – volume: 25 start-page: 871 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0030 article-title: Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future publication-title: Green Chem. doi: 10.1039/D2GC03444A – volume: 34 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0150 article-title: Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation publication-title: Adv. Mater. doi: 10.1002/adma.202204089 – volume: 3 start-page: 7138 year: 2020 ident: 10.1016/j.cej.2025.165842_bb0090 article-title: Visible-light-driven selective oxidation of biomass-derived HMF to DFF coupled with H 2 generation by noble metal-free Zn 0.5 cd 0.5 S/MnO 2 heterostructures publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01189 – volume: 12 start-page: 18390 year: 2024 ident: 10.1016/j.cej.2025.165842_bb0270 article-title: Dual modulation strategy of NiMoO x active site by ionic liquid for boosting electrocatalytic HMF oxidation reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.4c07570 – volume: 9 start-page: 18421 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0285 article-title: Surface reconstruction of NiCoP for enhanced biomass upgrading publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05425B – volume: 14 start-page: 4708 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0195 article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics publication-title: Nat. Commun. doi: 10.1038/s41467-023-40463-y – volume: 267 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0230 article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 12 start-page: 4242 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0200 article-title: Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural publication-title: ACS Catal. doi: 10.1021/acscatal.2c00174 – volume: 47 start-page: 14282 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0305 article-title: Highly active NiFe LDH anchoring on cobalt carbonate hydroxide for efficient electrocatalytic 5-hydroxymethylfurfural oxidation towards 2,5-furandicarboxylic acid publication-title: New J. Chem. doi: 10.1039/D3NJ01836A – volume: 14 year: 2023 ident: 10.1016/j.cej.2025.165842_bb0300 article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics publication-title: Nat. Commun. doi: 10.1038/s41467-023-40463-y – volume: 312 year: 2022 ident: 10.1016/j.cej.2025.165842_bb0335 article-title: Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121400 – volume: 9 start-page: 14270 year: 2021 ident: 10.1016/j.cej.2025.165842_bb0155 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework nanoarrays: enhancement from electronic structure modulation publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02464G – volume: 57 start-page: 11460 year: 2018 ident: 10.1016/j.cej.2025.165842_bb0245 article-title: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806298 |
SSID | ssj0006919 |
Score | 2.4735076 |
Snippet | The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics,... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 165842 |
SubjectTerms | 2,5-furandicarboxylic acid Biomass upcycling Electrocatalytic oxidation Interfacial engineering |
Title | Boosting biomass upcycling into 2,5-furandicarboxylic acid via amine-induced protonation on ternary metal-organic heterojunction |
URI | https://dx.doi.org/10.1016/j.cej.2025.165842 |
Volume | 520 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT3yWHDyJsbvt5tGjiqVa9OADe1vyWt1iu6W2Yi_iT3dmH6igF2Fh2WUSwiTMfJN8kyHkwIfGNQPnmJcqYJE0nCmuFbOKW5nwpvMa9yGvrkXnPrrs8d4cOatyYZBWWdr-wqbn1rr8Uy-1WR-laf02xDOtViTBiQuhgh5msEcSV_nx-xfNQ7Ty4h4ozFC6OtnMOV7W9yFEbPDjEB1x43ff9M3ftFfIcgkU6UkxllUy54drZOnb9YHr5OM0y16QtkwxiR5QMJ2O7AxzHR9pOpxktHHEWTIdY-aK1WOTvc2eU0u1TR19TTXVA-iLQVAO0-so3tiQFXuDFJ58o3A8owMP8JwVxZ8sfUL2TNYHZ4hyG-S-fX531mFlRQVmAcdMmInCEBCOVl65wAUa4KEwOnBKKC0T4STEP8KG1kdJw0ltwLd7K0VL6shL7mVzk8wPs6HfIlRAP6ZllbcAyUKdQJiiPVhdAwbBQI_b5LDSZTwqLs6IK0ZZPwbFx6j4uFD8Nokqbcc_Zj8Gw_53s53_Ndsli_iFrI-Q75H5yXjq9wFaTEwtXzs1snBy0e1c47t789D9BDO_0gk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3HpgQpkkbPzoCAhUoLIDULfIrkAqaqrSILoifzl0eokiwIGVK7FN0Tu6-s7-7I-TAh8Y1AueYlypgkTScKa4Vs4pbmfCG8xr3IW9uReshuurwzhQ5q3JhkFZZ2v7CpufWurxTK7VZ66dp7S7EM61mJMGJC6GCzjSZjeD3xTYGxx_fPA_RzLt74GiGw6ujzZzkZX0XYsQ6Pw7RE9d_d04TDudiiSyWSJGeFC-zTKZ8b4UsTNQPXCWfp1n2irxliln0AIPpqG_HmOz4SNPeMKP1I86S0QBTV6wemOx9_Jxaqm3q6FuqqX4BWQyiclhfR7FkQ1ZsDlK48p3CwZi-eMDnrOj-ZOkT0meyLnhDHLdGHi7O789arGypwCwAmSEzURgCxNHKKxe4QAM-FEYHTgmlZSKchABI2ND6KKk7qQ04d2-laEodecm9bKyTmV7W8xuECpBjmlZ5C5gs1AnEKdqD2TVgEQxI3CSHlS7jflE5I64oZd0YFB-j4uNC8ZskqrQd_1j-GCz739O2_jdtn8y17m_acfvy9nqbzOMTpICEfIfMDAcjvws4Y2j28u_oC5mS0fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+biomass+upcycling+into+2%2C5-furandicarboxylic+acid+via+amine-induced+protonation+on+ternary+metal-organic+heterojunction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhao%2C+Haiqing&rft.au=Shen%2C+Tianxu&rft.au=Ji%2C+Wei&rft.au=Lam%2C+Jason+Chun-Ho&rft.date=2025-09-15&rft.issn=1385-8947&rft.volume=520&rft.spage=165842&rft_id=info:doi/10.1016%2Fj.cej.2025.165842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_165842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |