Boosting biomass upcycling into 2,5-furandicarboxylic acid via amine-induced protonation on ternary metal-organic heterojunction

The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics, represents a transformative approach for advancing bioeconomy. However, efficient electrocatalysis must achieve high product selectivity while simu...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 520; p. 165842
Main Authors Zhao, Haiqing, Shen, Tianxu, Ji, Wei, Lam, Jason Chun-Ho, Hao, Qi, Shen, Laihong, Lin, Richen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics, represents a transformative approach for advancing bioeconomy. However, efficient electrocatalysis must achieve high product selectivity while simultaneously suppressing side reactions. Here, a ligand-modified electrocatalyst, CoNiCu-HAB (HAB = hexylaminobenzene), was synthesized to boost HMF electrooxidation whilst passivating the competitive oxygen evolution, wherein uncoordinated amine groups induce efficient protonation and electrostatic adsorption of reactive substrates. The CoNiCu layered hydroxides exhibit beneficial synergies: binary CoNi significantly improves reaction kinetics and lowers the onset potential for HMF oxidation (10 mA cm−2 at 1.15 V vs. reversible hydrogen electrode), while Cu effectively inhibits oxygen evolution. Theoretical calculations indicate that the protonation of organic ligands to form -NH3+ species enhances the adsorption of reactive substrates and achieves outstanding Faradaic efficiency exceeding 95 % across a wide potential range. In situ Raman spectroscopy reveals that incorporating organic ligands creates a ternary metal-organic heterojunction structure (MON, where MCo/Ni), the modulation of which increases the availability of active MOOH sites. These results offer a novel strategy for designing high-performance transition metal-based electrocatalysts for biomass upcycling. The work demonstrates an environmentally friendly approach to converting biomass-derived HMF into FDCA, a key bioplastic precursor, using earth-abundant transition metals and minimal energy input, advancing the circular bioeconomy. The work highlights a novel amine-induced protonation strategy that enhances electrostatic adsorption of reactive substrates, significantly improving catalytic performance through formation of -NH3+ species that strengthen substrate binding. [Display omitted] •Ligand-modified catalysts boost FDCA production while passivating oxygen evolution.•Amine protonation forming NH3+ species enhances adsorption of reactive substrates.•Ternary metal-organic heterojunction structure leads to beneficial synergies.•Faradaic efficiency exceeding 95 % across a wide potential range is achieved.
AbstractList The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics, represents a transformative approach for advancing bioeconomy. However, efficient electrocatalysis must achieve high product selectivity while simultaneously suppressing side reactions. Here, a ligand-modified electrocatalyst, CoNiCu-HAB (HAB = hexylaminobenzene), was synthesized to boost HMF electrooxidation whilst passivating the competitive oxygen evolution, wherein uncoordinated amine groups induce efficient protonation and electrostatic adsorption of reactive substrates. The CoNiCu layered hydroxides exhibit beneficial synergies: binary CoNi significantly improves reaction kinetics and lowers the onset potential for HMF oxidation (10 mA cm−2 at 1.15 V vs. reversible hydrogen electrode), while Cu effectively inhibits oxygen evolution. Theoretical calculations indicate that the protonation of organic ligands to form -NH3+ species enhances the adsorption of reactive substrates and achieves outstanding Faradaic efficiency exceeding 95 % across a wide potential range. In situ Raman spectroscopy reveals that incorporating organic ligands creates a ternary metal-organic heterojunction structure (MON, where MCo/Ni), the modulation of which increases the availability of active MOOH sites. These results offer a novel strategy for designing high-performance transition metal-based electrocatalysts for biomass upcycling. The work demonstrates an environmentally friendly approach to converting biomass-derived HMF into FDCA, a key bioplastic precursor, using earth-abundant transition metals and minimal energy input, advancing the circular bioeconomy. The work highlights a novel amine-induced protonation strategy that enhances electrostatic adsorption of reactive substrates, significantly improving catalytic performance through formation of -NH3+ species that strengthen substrate binding. [Display omitted] •Ligand-modified catalysts boost FDCA production while passivating oxygen evolution.•Amine protonation forming NH3+ species enhances adsorption of reactive substrates.•Ternary metal-organic heterojunction structure leads to beneficial synergies.•Faradaic efficiency exceeding 95 % across a wide potential range is achieved.
ArticleNumber 165842
Author Lam, Jason Chun-Ho
Lin, Richen
Shen, Laihong
Hao, Qi
Zhao, Haiqing
Shen, Tianxu
Ji, Wei
Author_xml – sequence: 1
  givenname: Haiqing
  surname: Zhao
  fullname: Zhao, Haiqing
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China
– sequence: 2
  givenname: Tianxu
  surname: Shen
  fullname: Shen, Tianxu
  organization: School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China
– sequence: 3
  givenname: Wei
  surname: Ji
  fullname: Ji, Wei
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China
– sequence: 4
  givenname: Jason Chun-Ho
  surname: Lam
  fullname: Lam, Jason Chun-Ho
  organization: School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
– sequence: 5
  givenname: Qi
  surname: Hao
  fullname: Hao, Qi
  organization: Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
– sequence: 6
  givenname: Laihong
  surname: Shen
  fullname: Shen, Laihong
  email: lhshen@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China
– sequence: 7
  givenname: Richen
  surname: Lin
  fullname: Lin, Richen
  email: richenlin@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 2111189, China
BookMark eNp9kM9qwzAMh33oYG23B9jND7Bkdpo4CTttZf-gsMt2NoqtdA6JXeykrLc9-hy680Ag-KFPSN-KLKyzSMgNZylnXNx1qcIuzVhWpFwUVZ4tyJJvqiKp6ry8JKsQOsaYqHm9JD-PzoXR2D1tjBsgBDod1En1c2Ls6Gh2WyTt5MFqo8A37vvUG0VBGU2PBigMxmJirJ4UanrwbnQWRuMsjTWit-BPdMAR-sT5PdjIfmHMXTdZNc9dkYsW-oDXf31NPp-fPravye795W37sEtUVvAxaXLOBWNQYaWZZsDqWjTAdCUqKFuhyzwGiivM20yX0BQZR1WKuoQcywLLzZrw817lXQgeW3nwZojXSc7krE12MmqTszZ51haZ-zOD8bCjQS-DMmjjp8ajGqV25h_6F1nrfLg
Cites_doi 10.1016/j.jechem.2024.06.027
10.1016/j.ijhydene.2023.06.097
10.1039/D4SC01752H
10.1016/j.cej.2024.149365
10.1039/D3RA05623F
10.1063/1.3382344
10.1039/b925869h
10.1039/D2TA00863G
10.1016/j.jechem.2024.08.066
10.1103/PhysRevLett.77.3865
10.1021/acsnano.2c10327
10.1016/j.jcat.2024.115531
10.1038/s41467-024-51937-y
10.1016/j.jallcom.2021.159858
10.1021/acsaem.4c02464
10.1021/acscatal.0c00007
10.1021/jacs.8b06020
10.1039/D2SC00038E
10.1016/j.cjche.2020.09.018
10.1021/acscatal.8b01017
10.1002/smll.202405056
10.1016/j.apcatb.2021.119906
10.1039/D4GC00338A
10.1039/D1GC00914A
10.1002/cssc.202300222
10.1039/D0CS01601B
10.1016/j.cej.2024.158011
10.1002/adma.202306108
10.1002/smll.202208027
10.1021/acs.chemrev.2c00756
10.1021/acs.chemrev.0c00158
10.1103/PhysRevB.54.11169
10.1016/j.cej.2021.133842
10.1002/anie.202007767
10.1002/anie.202306701
10.1021/acsanm.4c00277
10.1002/adfm.202406423
10.1038/s41467-024-49510-8
10.1021/acssuschemeng.1c07482
10.1021/acs.chemrev.1c00191
10.1002/advs.202205540
10.1039/D4GC03597F
10.1039/D0GC02770G
10.3390/nano13162318
10.1016/j.cej.2023.141779
10.1002/anie.202016601
10.1002/cctc.201901742
10.1039/D4CC01443J
10.1002/sus2.109
10.1103/PhysRevB.59.1758
10.1021/jacs.3c05688
10.1021/acscatal.3c04372
10.1021/jacs.0c00257
10.1039/D2GC03444A
10.1002/adma.202204089
10.1021/acsaem.0c01189
10.1021/acssuschemeng.4c07570
10.1039/D1TA05425B
10.1038/s41467-023-40463-y
10.1016/j.cpc.2021.108033
10.1021/acscatal.2c00174
10.1039/D3NJ01836A
10.1016/j.apcatb.2022.121400
10.1039/D1TA02464G
10.1002/anie.201806298
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2025.165842
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2025_165842
S138589472506680X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AAYXX
ABXDB
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
ID FETCH-LOGICAL-c251t-b411600a8e8d0d0a0996ba0d868a7f6d74996c1ce4f2d7ab521ec7697a4e75e73
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Wed Aug 27 16:27:03 EDT 2025
Sat Aug 30 17:13:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalytic oxidation
2,5-furandicarboxylic acid
Biomass upcycling
Interfacial engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-b411600a8e8d0d0a0996ba0d868a7f6d74996c1ce4f2d7ab521ec7697a4e75e73
ParticipantIDs crossref_primary_10_1016_j_cej_2025_165842
elsevier_sciencedirect_doi_10_1016_j_cej_2025_165842
PublicationCentury 2000
PublicationDate 2025-09-15
PublicationDateYYYYMMDD 2025-09-15
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Mu (bb0010) 2021; 23
Lei, Zhang, Yang, Ran, Ning, Wang, Hu (bb0065) 2025; 100
Grimme, Antony, Ehrlich, Krieg (bb0235) 2010; 132
Akhade, Singh, Gutiérrez, Lopez-Ruiz, Wang, Holladay, Liu, Karkamkar, Weber, Padmaperuma (bb0050) 2020; 120
Bai, He, Lu, Fu, Qi (bb0155) 2021; 9
Jiang, Li, Liu, Zhao, Chen, Zhang, Zhang, Yun (bb0075) 2023; 3
Chen, Yu, Song, Dong, Mu, Qiu (bb0120) 2024; 15
Qian, Zhu, Ahmad, Feng, Zhang, Cheng, Liu, Xiao, Zhang, Xie (bb0035) 2024; 36
Kang, Liu, Hu, Huang, Liu, Dong, Teobaldi, Guo (bb0310) 2023; 145
Li, Huang, Jiang, Xi, Duan, Ratova, Wu (bb0105) 2024; 98
Jiang, Xiao, Xu, Wang, Peng, Zhang, Liu, Song (bb0255) 2023; 19
James, Maity, Usman, Ajanaku, Ajani, Siyanbola, Sahu, Chaubey (bb0015) 2010; 3
Feng, Long, Tang, Sun, Luque, Zeng, Lin (bb0115) 2021; 50
Perdew, Burke, Ernzerhof (bb0220) 1996; 77
Qi, Wang, Sun, Wang, Wang (bb0320) 2022; 10
Sang, Xu, Wang, Ji, Hao, Li (bb0265) 2024; 60
Kresse, Joubert (bb0225) 1999; 59
Wang, Liu, Jin, Huang, Lam (bb0290) 2023; 16
Zhang, Liu, Liu, Chen, Xu, Yan (bb0140) 2020; 10
Zhou, Lv, Tao, Wu, Wang, Wei, Wang, Zhou, Lu, Frauenheim (bb0150) 2022; 34
Ji, You, Xu, Yang, Liu (bb0325) 2024; 483
Chen, Ding, Cao, Wang, Lee, Lin, Li, Ding, Sun (bb0130) 2023; 62
Park, Lee, Feng, Huang, Hinckley, Yakovenko, Zou, Cui, Bao (bb0205) 2018; 140
Yang, Xu, Zhang, Xue, Mu (bb0125) 2022; 433
Li, Huang, Jiang, Xi, Duan, Ratova, Wu (bb0070) 2024; 98
Lu, Qi, Dai, Li, Wang, Dou, Qi (bb0215) 2024; 15
Zhang, Hu, Wang, Gao, Zhu, Yan, Gu (bb0145) 2021; 286
Aguilera, Leyet, Almeida, Moreira, de la Cruz, Milán-Garcés, Passos, Pocrifka (bb0345) 2021; 874
Xiao, Huang, Dong, Xie, Liu, Du, Chen, Yan, Tao, Shu (bb0295) 2020; 142
Liu, Dang, Xu, Yu, Jin, Huber (bb0275) 2018; 8
Wang, Li, An, Zhuang, Tao (bb0285) 2021; 9
van der Ham, van Keulen, Koper, Tashvigh, Bitter (bb0025) 2023; 62
Kou, Fang, Ding, Luo, Liu, Peng, Guo, Ding, Hou (bb0340) 2024
Hauke, Merzdorf, Klingenhof, Strasser (bb0195) 2023; 14
Zhang, Hong, Cao, Wang, Chen, Qiao (bb0270) 2024; 12
Dhanasmoro, Li (bb0305) 2023; 47
Lu, Dong, Huang, Zou, Liu, Liu, Li, He, Shi, Wang (bb0330) 2020; 59
Plucksacholatarn, Tharat, Faungnawakij, Suthirakun, Thongkham, Praserthdam, Junkaew (bb0110) 2024; 434
Chen, Wang, Zhou, Li (bb0175) 2022; 13
Guo, Zhang, Gan, Pan, Shi, Huang, Zhang, Zou (bb0060) 2023; 10
Jiang, Zeng, Hu, Guo, Yan, Luque (bb0030) 2023; 25
Wang, Xu, Liu, Tang, Geng (bb0230) 2021; 267
An, Lei, Jiang, Pang (bb0045) 2024; 26
Li, Huang, Lv, Zhang, Li (bb0135) 2023; 48
Dhingra, Chhabra, Krishnan, Nagaraja (bb0090) 2020; 3
Shen, Deng, Huang, Du, Zhou, Ma, Shen, Wang, Dong, Xu (bb0180) 2024
Chen, Yang, Zhou, Haeffner, Dersjant, Dulock, Dong, He, Jin, Zhao (bb0080) 2021; 60
Kresse, Furthmüller (bb0210) 1996; 54
Megías-Sayago, Lolli, Bonincontro, Penkova, Albonetti, Cavani, Odriozola, Ivanova (bb0100) 2020; 12
Guo, Huo, Zhang, Wan, Yang, Liu, Peng (bb0240) 2023; 13
Lu, Liu, Huang, Zhou, Li, Chen, Yang, Zhou, Wu, Kong (bb0200) 2022; 12
Chen, Wu, Zhu, Wu, Li, Yin (bb0280) 2024; 7
Tao, Su, Meng, Xue, Zhang, Feng, Zheng, Xu (bb0190) 2024; 502
Wu, Tong, Liang, Peng, Gu, Ding (bb0250) 2023; 460
Chen, Lv, Hu, Huai, Zhu, Fan, Wang, Zhang (bb0020) 2024; 36
Wu, Kong, Li, Lu, Zhou, Wang, Xu, Wang, Zou (bb0085) 2022; 16
Chen, Ding, Cao, Wang, Lee, Lin, Li, Ding, Sun (bb0170) 2023; 62
Sendeku, Harrath, Dajan, Wu, Hussain, Gao, Zhan, Yang, Wang, Chen (bb0095) 2024; 15
Hauke, Merzdorf, Klingenhof, Strasser (bb0300) 2023; 14
Wen, Zhang, Fan, Chen (bb0165) 2023; 13
Ghosh, Mondal, Roy, Shalom, Sadan (bb0350) 2022; 10
Song, Xie, Song, Li, Li, Jiang, Lee, Shao (bb0335) 2022; 312
Li, Wang, Pang, Wang, Li, Zhang (bb0040) 2024; 124
Hou, Qi, Zhen, Qian, Nie, Bai, Zhang, Bai, Ju (bb0005) 2021; 23
Yin, Feng, Lei, Fu (bb0315) 2024
Gidi, Amalraj, Tenreiro, Ramírez (bb0055) 2023; 13
Zhu, Gong, Huang, Jin, Liu, Shao, Yang, Cataldo, Bedford, Lam (bb0260) 2024; 26
Li, Zhong, Wang, Deng, Wang, Zeng, Cao, Deng (bb0160) 2021; 33
Barwe, Weidner, Cychy, Morales, Dieckhöfer, Hiltrop, Masa, Muhler, Schuhmann (bb0245) 2018; 57
Ganguly, Basera, Ahmed, Saha, Dutta, Loha, Ghosh (bb0355) 2024; 20
Sui, Ji (bb0185) 2021; 121
Li (10.1016/j.cej.2025.165842_bb0160) 2021; 33
Jiang (10.1016/j.cej.2025.165842_bb0255) 2023; 19
Dhingra (10.1016/j.cej.2025.165842_bb0090) 2020; 3
Wu (10.1016/j.cej.2025.165842_bb0250) 2023; 460
Chen (10.1016/j.cej.2025.165842_bb0020) 2024; 36
Jiang (10.1016/j.cej.2025.165842_bb0030) 2023; 25
van der Ham (10.1016/j.cej.2025.165842_bb0025) 2023; 62
Zhang (10.1016/j.cej.2025.165842_bb0140) 2020; 10
Chen (10.1016/j.cej.2025.165842_bb0080) 2021; 60
Wang (10.1016/j.cej.2025.165842_bb0285) 2021; 9
Dhanasmoro (10.1016/j.cej.2025.165842_bb0305) 2023; 47
Chen (10.1016/j.cej.2025.165842_bb0130) 2023; 62
Hou (10.1016/j.cej.2025.165842_bb0005) 2021; 23
Hauke (10.1016/j.cej.2025.165842_bb0300) 2023; 14
Guo (10.1016/j.cej.2025.165842_bb0240) 2023; 13
Akhade (10.1016/j.cej.2025.165842_bb0050) 2020; 120
Kresse (10.1016/j.cej.2025.165842_bb0225) 1999; 59
Hauke (10.1016/j.cej.2025.165842_bb0195) 2023; 14
Kresse (10.1016/j.cej.2025.165842_bb0210) 1996; 54
Guo (10.1016/j.cej.2025.165842_bb0060) 2023; 10
Park (10.1016/j.cej.2025.165842_bb0205) 2018; 140
Sui (10.1016/j.cej.2025.165842_bb0185) 2021; 121
Barwe (10.1016/j.cej.2025.165842_bb0245) 2018; 57
Chen (10.1016/j.cej.2025.165842_bb0280) 2024; 7
Feng (10.1016/j.cej.2025.165842_bb0115) 2021; 50
Wu (10.1016/j.cej.2025.165842_bb0085) 2022; 16
Ganguly (10.1016/j.cej.2025.165842_bb0355) 2024; 20
Wang (10.1016/j.cej.2025.165842_bb0230) 2021; 267
Liu (10.1016/j.cej.2025.165842_bb0275) 2018; 8
Aguilera (10.1016/j.cej.2025.165842_bb0345) 2021; 874
Grimme (10.1016/j.cej.2025.165842_bb0235) 2010; 132
Ji (10.1016/j.cej.2025.165842_bb0325) 2024; 483
Yang (10.1016/j.cej.2025.165842_bb0010) 2021; 23
Qian (10.1016/j.cej.2025.165842_bb0035) 2024; 36
Sendeku (10.1016/j.cej.2025.165842_bb0095) 2024; 15
Qi (10.1016/j.cej.2025.165842_bb0320) 2022; 10
Chen (10.1016/j.cej.2025.165842_bb0120) 2024; 15
Zhang (10.1016/j.cej.2025.165842_bb0145) 2021; 286
Wen (10.1016/j.cej.2025.165842_bb0165) 2023; 13
Ghosh (10.1016/j.cej.2025.165842_bb0350) 2022; 10
Li (10.1016/j.cej.2025.165842_bb0070) 2024; 98
Lu (10.1016/j.cej.2025.165842_bb0330) 2020; 59
Lei (10.1016/j.cej.2025.165842_bb0065) 2025; 100
Tao (10.1016/j.cej.2025.165842_bb0190) 2024; 502
Megías-Sayago (10.1016/j.cej.2025.165842_bb0100) 2020; 12
Chen (10.1016/j.cej.2025.165842_bb0170) 2023; 62
Kang (10.1016/j.cej.2025.165842_bb0310) 2023; 145
Li (10.1016/j.cej.2025.165842_bb0105) 2024; 98
Lu (10.1016/j.cej.2025.165842_bb0200) 2022; 12
Perdew (10.1016/j.cej.2025.165842_bb0220) 1996; 77
Song (10.1016/j.cej.2025.165842_bb0335) 2022; 312
Bai (10.1016/j.cej.2025.165842_bb0155) 2021; 9
Yang (10.1016/j.cej.2025.165842_bb0125) 2022; 433
Li (10.1016/j.cej.2025.165842_bb0135) 2023; 48
Zhang (10.1016/j.cej.2025.165842_bb0270) 2024; 12
Yin (10.1016/j.cej.2025.165842_bb0315) 2024
Xiao (10.1016/j.cej.2025.165842_bb0295) 2020; 142
Kou (10.1016/j.cej.2025.165842_bb0340) 2024
Plucksacholatarn (10.1016/j.cej.2025.165842_bb0110) 2024; 434
Zhou (10.1016/j.cej.2025.165842_bb0150) 2022; 34
An (10.1016/j.cej.2025.165842_bb0045) 2024; 26
Sang (10.1016/j.cej.2025.165842_bb0265) 2024; 60
Jiang (10.1016/j.cej.2025.165842_bb0075) 2023; 3
Li (10.1016/j.cej.2025.165842_bb0040) 2024; 124
Shen (10.1016/j.cej.2025.165842_bb0180) 2024
Gidi (10.1016/j.cej.2025.165842_bb0055) 2023; 13
Wang (10.1016/j.cej.2025.165842_bb0290) 2023; 16
Lu (10.1016/j.cej.2025.165842_bb0215) 2024; 15
Zhu (10.1016/j.cej.2025.165842_bb0260) 2024; 26
James (10.1016/j.cej.2025.165842_bb0015) 2010; 3
Chen (10.1016/j.cej.2025.165842_bb0175) 2022; 13
References_xml – volume: 50
  start-page: 6042
  year: 2021
  end-page: 6093
  ident: bb0115
  article-title: Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 5179
  year: 2020
  end-page: 5189
  ident: bb0140
  article-title: Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-Hydroxymethylfurfural
  publication-title: ACS Catal.
– volume: 98
  start-page: 24
  year: 2024
  end-page: 46
  ident: bb0105
  article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation
  publication-title: J. Energy Chem.
– volume: 13
  start-page: 28307
  year: 2023
  end-page: 28336
  ident: bb0055
  article-title: Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF)
  publication-title: RSC Adv.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bb0210
  article-title: Efficient iterative schemes for
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 8238
  year: 2022
  end-page: 8244
  ident: bb0350
  article-title: Alcohol oxidation with high efficiency and selectivity by nickel phosphide phases
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 10315
  year: 2018
  end-page: 10323
  ident: bb0205
  article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 7138
  year: 2020
  end-page: 7148
  ident: bb0090
  article-title: Visible-light-driven selective oxidation of biomass-derived HMF to DFF coupled with H
  publication-title: ACS Appl. Energy Mater.
– volume: 16
  start-page: 21518
  year: 2022
  end-page: 21526
  ident: bb0085
  article-title: Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation
  publication-title: ACS Nano
– volume: 60
  start-page: 5868
  year: 2024
  end-page: 5871
  ident: bb0265
  article-title: Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural
  publication-title: Chem. Commun.
– volume: 12
  start-page: 18390
  year: 2024
  end-page: 18398
  ident: bb0270
  article-title: Dual modulation strategy of NiMoO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 36
  year: 2024
  ident: bb0035
  article-title: Recent advancements in electrochemical hydrogen production via hybrid water splitting
  publication-title: Adv. Mater.
– year: 2024
  ident: bb0315
  article-title: Self-supported co-VS
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  start-page: 1177
  year: 2020
  end-page: 1183
  ident: bb0100
  article-title: Effect of gold particles size over au/C catalyst selectivity in HMF oxidation reaction
  publication-title: ChemCatChem
– volume: 120
  start-page: 11370
  year: 2020
  end-page: 11419
  ident: bb0050
  article-title: Electrocatalytic hydrogenation of biomass-derived organics: a review
  publication-title: Chem. Rev.
– volume: 286
  year: 2021
  ident: bb0145
  article-title: In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction
  publication-title: Appl Catal B
– volume: 23
  start-page: 4228
  year: 2021
  end-page: 4254
  ident: bb0010
  article-title: Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions
  publication-title: Green Chem.
– volume: 142
  start-page: 12087
  year: 2020
  end-page: 12095
  ident: bb0295
  article-title: identification of the dynamic behavior of oxygen vacancy-rich co
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  ident: bb0150
  article-title: Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation
  publication-title: Adv. Mater.
– volume: 62
  year: 2023
  ident: bb0170
  article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1833
  year: 2010
  ident: bb0015
  article-title: Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural
  publication-title: Energy Environ. Sci.
– volume: 267
  year: 2021
  ident: bb0230
  article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code
  publication-title: Comput. Phys. Commun.
– year: 2024
  ident: bb0340
  article-title: Valence engineering boosts kinetics and storage capacity of layered double hydroxides for aqueous magnesium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2023
  ident: bb0060
  article-title: Advances in selective electrochemical oxidation of 5-Hydroxymethylfurfural to produce high-value chemicals
  publication-title: Adv. Sci.
– volume: 14
  start-page: 4708
  year: 2023
  ident: bb0195
  article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics
  publication-title: Nat. Commun.
– volume: 57
  start-page: 11460
  year: 2018
  end-page: 11464
  ident: bb0245
  article-title: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride
  publication-title: Angew. Chem. Int. Ed.
– volume: 502
  year: 2024
  ident: bb0190
  article-title: Enhanced co-production of H2 and formic acid via Ni-facilitated Cu+/Cu2+ cycling in an industry-level hybrid water splitting system
  publication-title: Chem. Eng. J.
– volume: 98
  start-page: 24
  year: 2024
  end-page: 46
  ident: bb0070
  article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation
  publication-title: J. Energy Chem.
– volume: 132
  year: 2010
  ident: bb0235
  article-title: A consistent and accurate
  publication-title: J. Chem. Phys.
– volume: 145
  start-page: 25143
  year: 2023
  end-page: 25149
  ident: bb0310
  article-title: Parallel Nanosheet arrays for industrial oxygen production
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bb0220
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 62
  year: 2023
  ident: bb0130
  article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  year: 2023
  ident: bb0290
  article-title: Amorphous RuO
  publication-title: ChemSusChem
– volume: 26
  start-page: 4135
  year: 2024
  end-page: 4150
  ident: bb0260
  article-title: Rhombohedral ZnIn
  publication-title: Green Chem.
– volume: 15
  start-page: 8072
  year: 2024
  ident: bb0120
  article-title: Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen
  publication-title: Nat. Commun.
– volume: 9
  start-page: 18421
  year: 2021
  end-page: 18430
  ident: bb0285
  article-title: Surface reconstruction of NiCoP for enhanced biomass upgrading
  publication-title: J. Mater. Chem. A
– volume: 14
  year: 2023
  ident: bb0300
  article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2318
  year: 2023
  ident: bb0240
  article-title: MOF material-derived bimetallic sulfide CoxNiyS for electrocatalytic oxidation of 5-hydroxymethylfurfural
  publication-title: Nanomaterials
– volume: 62
  year: 2023
  ident: bb0025
  article-title: Steering the selectivity of electrocatalytic glucose oxidation by the Pt oxidation state
  publication-title: Angew. Chem. Int. Ed.
– volume: 433
  year: 2022
  ident: bb0125
  article-title: Substrate molecule adsorption energy: an activity descriptor for electrochemical oxidation of 5-hydroxymethylfurfural (HMF)
  publication-title: Chem. Eng. J.
– volume: 19
  year: 2023
  ident: bb0255
  article-title: Passivating oxygen evolution activity of NiFe-LDH through heterostructure engineering to realize high-efficiency electrocatalytic formate and hydrogen co-production
  publication-title: Small
– volume: 874
  year: 2021
  ident: bb0345
  article-title: Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices
  publication-title: J. Alloys Compd.
– volume: 60
  start-page: 7534
  year: 2021
  end-page: 7539
  ident: bb0080
  article-title: Electrochemically triggered chain reactions for the conversion of furan derivatives
  publication-title: Angew. Chem. Int. Ed.
– year: 2024
  ident: bb0180
  article-title: Promoted electrochemical reconstruction of glassy metal–organic frameworks for efficient electrocatalytic 5-hydroxymethylfurfural oxidation
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 19215
  year: 2020
  end-page: 19221
  ident: bb0330
  article-title: Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural
  publication-title: Angew. Chem. Int. Ed.
– volume: 460
  year: 2023
  ident: bb0250
  article-title: Pd nanoparticles encapsulated in MOF boosts selective hydrogenation of biomass derived compound under mild conditions
  publication-title: Chem. Eng. J.
– volume: 121
  start-page: 6654
  year: 2021
  end-page: 6695
  ident: bb0185
  article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries
  publication-title: Chem. Rev.
– volume: 26
  start-page: 10739
  year: 2024
  end-page: 10773
  ident: bb0045
  article-title: Research progress on photocatalytic, electrocatalytic and photoelectrocatalytic selective oxidation of 5-hydroxymethylfurfural
  publication-title: Green Chem.
– volume: 12
  start-page: 4242
  year: 2022
  end-page: 4251
  ident: bb0200
  article-title: Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural
  publication-title: ACS Catal.
– volume: 100
  start-page: 792
  year: 2025
  end-page: 814
  ident: bb0065
  article-title: Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural
  publication-title: J. Energy Chem.
– volume: 434
  year: 2024
  ident: bb0110
  article-title: Unraveling selectivity in non-noble metal-catalyzed hydrogenation of 5-hydroxymethylfurfural (HMF) through mechanistic insights
  publication-title: J. Catal.
– volume: 33
  start-page: 167
  year: 2021
  end-page: 174
  ident: bb0160
  article-title: Functionalized metal–organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural
  publication-title: Chin. J. Chem. Eng.
– volume: 47
  start-page: 14282
  year: 2023
  end-page: 14288
  ident: bb0305
  article-title: Highly active NiFe LDH anchoring on cobalt carbonate hydroxide for efficient electrocatalytic 5-hydroxymethylfurfural oxidation towards 2,5-furandicarboxylic acid
  publication-title: New J. Chem.
– volume: 36
  year: 2024
  ident: bb0020
  article-title: 5-Hydroxymethylfurfural and its downstream chemicals: a review of catalytic routes
  publication-title: Adv. Mater.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: bb0225
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 5174
  year: 2024
  ident: bb0095
  article-title: Deciphering in-situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation
  publication-title: Nat. Commun.
– volume: 312
  year: 2022
  ident: bb0335
  article-title: Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation
  publication-title: Appl Catal B
– volume: 25
  start-page: 871
  year: 2023
  end-page: 892
  ident: bb0030
  article-title: Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future
  publication-title: Green Chem.
– volume: 9
  start-page: 14270
  year: 2021
  end-page: 14275
  ident: bb0155
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework nanoarrays: enhancement from electronic structure modulation
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 4647
  year: 2022
  end-page: 4653
  ident: bb0175
  article-title: Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co–CoS
  publication-title: Chem. Sci.
– volume: 20
  year: 2024
  ident: bb0355
  article-title: Trace Ru incorporation boosted co
  publication-title: Small
– volume: 8
  start-page: 5533
  year: 2018
  end-page: 5541
  ident: bb0275
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts
  publication-title: ACS Catal.
– volume: 10
  start-page: 645
  year: 2022
  end-page: 654
  ident: bb0320
  article-title: Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
  publication-title: ACS Sustain. Chem. Eng.
– volume: 23
  start-page: 119
  year: 2021
  end-page: 231
  ident: bb0005
  article-title: Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural
  publication-title: Green Chem.
– volume: 48
  start-page: 38279
  year: 2023
  end-page: 38295
  ident: bb0135
  article-title: Highly efficient electrooxidation of 5-hydroxymethylfurfural (HMF) by cu regulated co carbonate hydroxides boosting hydrogen evolution reaction
  publication-title: Int. J. Hydrog. Energy
– volume: 483
  year: 2024
  ident: bb0325
  article-title: Engineering metal organic framework (MOF)@MXene based electrodes for hybrid supercapacitors – a review
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 15263
  year: 2023
  end-page: 15289
  ident: bb0165
  article-title: Recent advances in furfural reduction via electro- and photocatalysis: from mechanism to catalyst design
  publication-title: ACS Catal.
– volume: 124
  start-page: 2889
  year: 2024
  end-page: 2954
  ident: bb0040
  article-title: Production of renewable hydrocarbon biofuels with lignocellulose and its derivatives over heterogeneous catalysts
  publication-title: Chem. Rev.
– volume: 3
  start-page: 21
  year: 2023
  end-page: 43
  ident: bb0075
  article-title: Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production—from mechanism to catalysts design
  publication-title: SusMat
– volume: 15
  start-page: 11043
  year: 2024
  end-page: 11052
  ident: bb0215
  article-title: Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure–function relationships
  publication-title: Chem. Sci.
– volume: 7
  start-page: 7605
  year: 2024
  end-page: 7613
  ident: bb0280
  article-title: Co- and V
  publication-title: ACS Appl. Nano Mater.
– volume: 98
  start-page: 24
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0105
  article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.06.027
– volume: 48
  start-page: 38279
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0135
  article-title: Highly efficient electrooxidation of 5-hydroxymethylfurfural (HMF) by cu regulated co carbonate hydroxides boosting hydrogen evolution reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2023.06.097
– volume: 15
  start-page: 11043
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0215
  article-title: Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure–function relationships
  publication-title: Chem. Sci.
  doi: 10.1039/D4SC01752H
– volume: 483
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0325
  article-title: Engineering metal organic framework (MOF)@MXene based electrodes for hybrid supercapacitors – a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.149365
– volume: 13
  start-page: 28307
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0055
  article-title: Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF)
  publication-title: RSC Adv.
  doi: 10.1039/D3RA05623F
– volume: 132
  year: 2010
  ident: 10.1016/j.cej.2025.165842_bb0235
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 3
  start-page: 1833
  year: 2010
  ident: 10.1016/j.cej.2025.165842_bb0015
  article-title: Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b925869h
– volume: 10
  start-page: 8238
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0350
  article-title: Alcohol oxidation with high efficiency and selectivity by nickel phosphide phases
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00863G
– volume: 100
  start-page: 792
  year: 2025
  ident: 10.1016/j.cej.2025.165842_bb0065
  article-title: Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.08.066
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.cej.2025.165842_bb0220
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 16
  start-page: 21518
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0085
  article-title: Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c10327
– volume: 434
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0110
  article-title: Unraveling selectivity in non-noble metal-catalyzed hydrogenation of 5-hydroxymethylfurfural (HMF) through mechanistic insights
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2024.115531
– volume: 15
  start-page: 8072
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0120
  article-title: Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-51937-y
– volume: 874
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0345
  article-title: Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159858
– volume: 98
  start-page: 24
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0070
  article-title: Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.06.027
– year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0315
  article-title: Self-supported co-VS 2 @MoS 2 heterostructure for boosting overall water splitting
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.4c02464
– volume: 10
  start-page: 5179
  year: 2020
  ident: 10.1016/j.cej.2025.165842_bb0140
  article-title: Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-Hydroxymethylfurfural
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00007
– year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0180
  article-title: Promoted electrochemical reconstruction of glassy metal–organic frameworks for efficient electrocatalytic 5-hydroxymethylfurfural oxidation
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 10315
  year: 2018
  ident: 10.1016/j.cej.2025.165842_bb0205
  article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06020
– volume: 13
  start-page: 4647
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0175
  article-title: Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co–CoS x heterojunction by intensified spin polarization
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC00038E
– volume: 33
  start-page: 167
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0160
  article-title: Functionalized metal–organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.09.018
– volume: 8
  start-page: 5533
  year: 2018
  ident: 10.1016/j.cej.2025.165842_bb0275
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01017
– volume: 20
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0355
  article-title: Trace Ru incorporation boosted co 2 P nanorods for superior water electrolysis and substrate-paired electrolysis toward value-added chemicals in alkaline medium
  publication-title: Small
  doi: 10.1002/smll.202405056
– volume: 286
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0145
  article-title: In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2021.119906
– volume: 26
  start-page: 4135
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0260
  article-title: Rhombohedral ZnIn 2 S 4 -catalysed anodic direct electrochemical oxidative cleavage of C–O bond in α-O-4 linkages in ambient conditions
  publication-title: Green Chem.
  doi: 10.1039/D4GC00338A
– volume: 23
  start-page: 4228
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0010
  article-title: Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions
  publication-title: Green Chem.
  doi: 10.1039/D1GC00914A
– volume: 16
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0290
  article-title: Amorphous RuO2 catalyst for medium size carboxylic acid to alkane dimer selective Kolbe electrolysis in an aqueous environment
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300222
– volume: 50
  start-page: 6042
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0115
  article-title: Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01601B
– volume: 62
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0170
  article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity
  publication-title: Angew. Chem. Int. Ed.
– volume: 502
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0190
  article-title: Enhanced co-production of H2 and formic acid via Ni-facilitated Cu+/Cu2+ cycling in an industry-level hybrid water splitting system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.158011
– volume: 36
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0035
  article-title: Recent advancements in electrochemical hydrogen production via hybrid water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202306108
– volume: 19
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0255
  article-title: Passivating oxygen evolution activity of NiFe-LDH through heterostructure engineering to realize high-efficiency electrocatalytic formate and hydrogen co-production
  publication-title: Small
  doi: 10.1002/smll.202208027
– volume: 36
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0020
  article-title: 5-Hydroxymethylfurfural and its downstream chemicals: a review of catalytic routes
  publication-title: Adv. Mater.
– volume: 124
  start-page: 2889
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0040
  article-title: Production of renewable hydrocarbon biofuels with lignocellulose and its derivatives over heterogeneous catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00756
– volume: 120
  start-page: 11370
  year: 2020
  ident: 10.1016/j.cej.2025.165842_bb0050
  article-title: Electrocatalytic hydrogenation of biomass-derived organics: a review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00158
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.cej.2025.165842_bb0210
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 433
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0125
  article-title: Substrate molecule adsorption energy: an activity descriptor for electrochemical oxidation of 5-hydroxymethylfurfural (HMF)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133842
– volume: 59
  start-page: 19215
  year: 2020
  ident: 10.1016/j.cej.2025.165842_bb0330
  article-title: Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007767
– volume: 62
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0025
  article-title: Steering the selectivity of electrocatalytic glucose oxidation by the Pt oxidation state
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202306701
– volume: 7
  start-page: 7605
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0280
  article-title: Co- and V 2 O 3 -modified Ni-based nanocatalyst for 5-hydroxymethylfurfural electrooxidation
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.4c00277
– year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0340
  article-title: Valence engineering boosts kinetics and storage capacity of layered double hydroxides for aqueous magnesium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202406423
– volume: 15
  start-page: 5174
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0095
  article-title: Deciphering in-situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49510-8
– volume: 10
  start-page: 645
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0320
  article-title: Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c07482
– volume: 121
  start-page: 6654
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0185
  article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 10
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0060
  article-title: Advances in selective electrochemical oxidation of 5-Hydroxymethylfurfural to produce high-value chemicals
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202205540
– volume: 26
  start-page: 10739
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0045
  article-title: Research progress on photocatalytic, electrocatalytic and photoelectrocatalytic selective oxidation of 5-hydroxymethylfurfural
  publication-title: Green Chem.
  doi: 10.1039/D4GC03597F
– volume: 23
  start-page: 119
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0005
  article-title: Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural
  publication-title: Green Chem.
  doi: 10.1039/D0GC02770G
– volume: 13
  start-page: 2318
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0240
  article-title: MOF material-derived bimetallic sulfide CoxNiyS for electrocatalytic oxidation of 5-hydroxymethylfurfural
  publication-title: Nanomaterials
  doi: 10.3390/nano13162318
– volume: 460
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0250
  article-title: Pd nanoparticles encapsulated in MOF boosts selective hydrogenation of biomass derived compound under mild conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141779
– volume: 62
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0130
  article-title: Highly efficient biomass upgrading by a Ni−Cu electrocatalyst featuring passivation of water oxidation activity
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 7534
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0080
  article-title: Electrochemically triggered chain reactions for the conversion of furan derivatives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016601
– volume: 12
  start-page: 1177
  year: 2020
  ident: 10.1016/j.cej.2025.165842_bb0100
  article-title: Effect of gold particles size over au/C catalyst selectivity in HMF oxidation reaction
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901742
– volume: 60
  start-page: 5868
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0265
  article-title: Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural
  publication-title: Chem. Commun.
  doi: 10.1039/D4CC01443J
– volume: 3
  start-page: 21
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0075
  article-title: Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production—from mechanism to catalysts design
  publication-title: SusMat
  doi: 10.1002/sus2.109
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.cej.2025.165842_bb0225
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 145
  start-page: 25143
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0310
  article-title: Parallel Nanosheet arrays for industrial oxygen production
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c05688
– volume: 13
  start-page: 15263
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0165
  article-title: Recent advances in furfural reduction via electro- and photocatalysis: from mechanism to catalyst design
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c04372
– volume: 142
  start-page: 12087
  year: 2020
  ident: 10.1016/j.cej.2025.165842_bb0295
  article-title: Operando identification of the dynamic behavior of oxygen vacancy-rich co 3 O 4 for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00257
– volume: 25
  start-page: 871
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0030
  article-title: Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future
  publication-title: Green Chem.
  doi: 10.1039/D2GC03444A
– volume: 34
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0150
  article-title: Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204089
– volume: 3
  start-page: 7138
  year: 2020
  ident: 10.1016/j.cej.2025.165842_bb0090
  article-title: Visible-light-driven selective oxidation of biomass-derived HMF to DFF coupled with H 2 generation by noble metal-free Zn 0.5 cd 0.5 S/MnO 2 heterostructures
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01189
– volume: 12
  start-page: 18390
  year: 2024
  ident: 10.1016/j.cej.2025.165842_bb0270
  article-title: Dual modulation strategy of NiMoO x active site by ionic liquid for boosting electrocatalytic HMF oxidation reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.4c07570
– volume: 9
  start-page: 18421
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0285
  article-title: Surface reconstruction of NiCoP for enhanced biomass upgrading
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05425B
– volume: 14
  start-page: 4708
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0195
  article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40463-y
– volume: 267
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0230
  article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108033
– volume: 12
  start-page: 4242
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0200
  article-title: Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00174
– volume: 47
  start-page: 14282
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0305
  article-title: Highly active NiFe LDH anchoring on cobalt carbonate hydroxide for efficient electrocatalytic 5-hydroxymethylfurfural oxidation towards 2,5-furandicarboxylic acid
  publication-title: New J. Chem.
  doi: 10.1039/D3NJ01836A
– volume: 14
  year: 2023
  ident: 10.1016/j.cej.2025.165842_bb0300
  article-title: Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived cu-bimetallics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40463-y
– volume: 312
  year: 2022
  ident: 10.1016/j.cej.2025.165842_bb0335
  article-title: Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.121400
– volume: 9
  start-page: 14270
  year: 2021
  ident: 10.1016/j.cej.2025.165842_bb0155
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework nanoarrays: enhancement from electronic structure modulation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02464G
– volume: 57
  start-page: 11460
  year: 2018
  ident: 10.1016/j.cej.2025.165842_bb0245
  article-title: Electrocatalytic oxidation of 5-(Hydroxymethyl)furfural using high-surface-area nickel boride
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806298
SSID ssj0006919
Score 2.4735076
Snippet The electrocatalytic upcycling of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid, a vital building block for bioplastics,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 165842
SubjectTerms 2,5-furandicarboxylic acid
Biomass upcycling
Electrocatalytic oxidation
Interfacial engineering
Title Boosting biomass upcycling into 2,5-furandicarboxylic acid via amine-induced protonation on ternary metal-organic heterojunction
URI https://dx.doi.org/10.1016/j.cej.2025.165842
Volume 520
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT3yWHDyJsbvt5tGjiqVa9OADe1vyWt1iu6W2Yi_iT3dmH6igF2Fh2WUSwiTMfJN8kyHkwIfGNQPnmJcqYJE0nCmuFbOKW5nwpvMa9yGvrkXnPrrs8d4cOatyYZBWWdr-wqbn1rr8Uy-1WR-laf02xDOtViTBiQuhgh5msEcSV_nx-xfNQ7Ty4h4ozFC6OtnMOV7W9yFEbPDjEB1x43ff9M3ftFfIcgkU6UkxllUy54drZOnb9YHr5OM0y16QtkwxiR5QMJ2O7AxzHR9pOpxktHHEWTIdY-aK1WOTvc2eU0u1TR19TTXVA-iLQVAO0-so3tiQFXuDFJ58o3A8owMP8JwVxZ8sfUL2TNYHZ4hyG-S-fX531mFlRQVmAcdMmInCEBCOVl65wAUa4KEwOnBKKC0T4STEP8KG1kdJw0ltwLd7K0VL6shL7mVzk8wPs6HfIlRAP6ZllbcAyUKdQJiiPVhdAwbBQI_b5LDSZTwqLs6IK0ZZPwbFx6j4uFD8Nokqbcc_Zj8Gw_53s53_Ndsli_iFrI-Q75H5yXjq9wFaTEwtXzs1snBy0e1c47t789D9BDO_0gk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3HpgQpkkbPzoCAhUoLIDULfIrkAqaqrSILoifzl0eokiwIGVK7FN0Tu6-s7-7I-TAh8Y1AueYlypgkTScKa4Vs4pbmfCG8xr3IW9uReshuurwzhQ5q3JhkFZZ2v7CpufWurxTK7VZ66dp7S7EM61mJMGJC6GCzjSZjeD3xTYGxx_fPA_RzLt74GiGw6ujzZzkZX0XYsQ6Pw7RE9d_d04TDudiiSyWSJGeFC-zTKZ8b4UsTNQPXCWfp1n2irxliln0AIPpqG_HmOz4SNPeMKP1I86S0QBTV6wemOx9_Jxaqm3q6FuqqX4BWQyiclhfR7FkQ1ZsDlK48p3CwZi-eMDnrOj-ZOkT0meyLnhDHLdGHi7O789arGypwCwAmSEzURgCxNHKKxe4QAM-FEYHTgmlZSKchABI2ND6KKk7qQ04d2-laEodecm9bKyTmV7W8xuECpBjmlZ5C5gs1AnEKdqD2TVgEQxI3CSHlS7jflE5I64oZd0YFB-j4uNC8ZskqrQd_1j-GCz739O2_jdtn8y17m_acfvy9nqbzOMTpICEfIfMDAcjvws4Y2j28u_oC5mS0fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+biomass+upcycling+into+2%2C5-furandicarboxylic+acid+via+amine-induced+protonation+on+ternary+metal-organic+heterojunction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhao%2C+Haiqing&rft.au=Shen%2C+Tianxu&rft.au=Ji%2C+Wei&rft.au=Lam%2C+Jason+Chun-Ho&rft.date=2025-09-15&rft.issn=1385-8947&rft.volume=520&rft.spage=165842&rft_id=info:doi/10.1016%2Fj.cej.2025.165842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_165842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon