Multi-Context enhanced Lane-Changing prediction using a heterogeneous Graph Neural Network

Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic load on bridge decks. Despite their simplicity, existing physics-based approaches are subjective and deterministic, resulting in low fidelity in...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 264; p. 125902
Main Authors Dong, Yiqing, Han, Chengjia, Zhao, Chaoyang, Madan, Aayush, Mohanty, Lipi, Yang, Yaowen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic load on bridge decks. Despite their simplicity, existing physics-based approaches are subjective and deterministic, resulting in low fidelity in reflecting real-world scenarios. Current data-driven methods attempt to address this but only consider the trajectories of the subject vehicle and adjacent vehicles, neglecting other relevant contexts and thus compromising prediction accuracy. This study introduces LaneMCGNN, a multi-context enhanced graph neural network model for lane-changing prediction. The model integrates contextual features from spatial-temporal trajectories, vehicle types, and semantic maps, employing multi-attention mechanisms and Transformer modules to enhance feature extraction from these contexts. A lightweight Convolutional Neural Network (CNN) is utilized for efficient feature extraction from semantic maps of bridge decks. Trained and evaluated on an open-access dataset, our model achieves an accuracy of 98.928%, an F1-score of 0.989, and an Area Under Curve (AUC) of 0.999. Comparative discussions and ablation tests underscore the superiority of our model and the importance of incorporating multiple contexts. The proposed model can significantly enhance MTLS by improving the prediction of lane-keeping and lane-changing behaviors of vehicles, thereby increasing the precision of performance assessment for bridge components.
AbstractList Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic load on bridge decks. Despite their simplicity, existing physics-based approaches are subjective and deterministic, resulting in low fidelity in reflecting real-world scenarios. Current data-driven methods attempt to address this but only consider the trajectories of the subject vehicle and adjacent vehicles, neglecting other relevant contexts and thus compromising prediction accuracy. This study introduces LaneMCGNN, a multi-context enhanced graph neural network model for lane-changing prediction. The model integrates contextual features from spatial-temporal trajectories, vehicle types, and semantic maps, employing multi-attention mechanisms and Transformer modules to enhance feature extraction from these contexts. A lightweight Convolutional Neural Network (CNN) is utilized for efficient feature extraction from semantic maps of bridge decks. Trained and evaluated on an open-access dataset, our model achieves an accuracy of 98.928%, an F1-score of 0.989, and an Area Under Curve (AUC) of 0.999. Comparative discussions and ablation tests underscore the superiority of our model and the importance of incorporating multiple contexts. The proposed model can significantly enhance MTLS by improving the prediction of lane-keeping and lane-changing behaviors of vehicles, thereby increasing the precision of performance assessment for bridge components.
ArticleNumber 125902
Author Han, Chengjia
Mohanty, Lipi
Yang, Yaowen
Madan, Aayush
Dong, Yiqing
Zhao, Chaoyang
Author_xml – sequence: 1
  givenname: Yiqing
  surname: Dong
  fullname: Dong, Yiqing
  email: yiqing.dong@ntu.edu.sg
– sequence: 2
  givenname: Chengjia
  surname: Han
  fullname: Han, Chengjia
  email: chengjia.han@ntu.edu.sg
– sequence: 3
  givenname: Chaoyang
  surname: Zhao
  fullname: Zhao, Chaoyang
  email: cy.zhao@ntu.edu.sg
– sequence: 4
  givenname: Aayush
  surname: Madan
  fullname: Madan, Aayush
  email: aayush.madan@ntu.edu.sg
– sequence: 5
  givenname: Lipi
  surname: Mohanty
  fullname: Mohanty, Lipi
  email: lipi@ntu.edu.sg
– sequence: 6
  givenname: Yaowen
  surname: Yang
  fullname: Yang, Yaowen
  email: cywyang@ntu.edu.sg
BookMark eNp9kLFOwzAQhj0UibbwAkx-gQTbsetEYkERFKQACywslmtfW5diV7ZD4e1JVGamX3fS9-vum6GJDx4QuqKkpIQurnclpKMuGWG8pEw0hE3QlDRCFpxKfo5mKe0IoZIQOUXvT_0-u6INPsN3xuC32huwuNMeinYYNs5v8CGCdSa74HGfxoXGW8gQwwY8hD7hZdSHLX6GPur9EPkY4scFOlvrfYLLv5yjt_u71_ah6F6Wj-1tVxgmaC60rWpiqKy5lLJiwkrQNeOmlkZzQptFtYCVXa05CGK01NQ0RjAhVxYqAbKq5oidek0MKUVYq0N0nzr-KErUaETt1GhEjUbUycgA3ZwgGC77chBVMg7G110Ek5UN7j_8F9oXbuk
Cites_doi 10.1109/TKDE.2020.2981333
10.1016/0191-2615(86)90012-3
10.1016/S0167-4730(97)00016-7
10.1177/0361198120922210
10.1016/j.istruc.2021.08.112
10.1016/j.oceaneng.2022.112960
10.1016/j.trc.2021.103363
10.1109/ACCESS.2019.2900416
10.1016/j.trc.2010.05.006
10.1016/j.aap.2021.106500
10.1076/vesd.40.1.101.15875
10.1109/ACCESS.2021.3122869
10.1076/vesd.35.1.19.5614
10.3141/2124-08
10.1109/TITS.2022.3164450
10.1080/15732479.2016.1164724
10.1109/TIV.2023.3266196
10.3390/app132212366
10.1109/TITS.2013.2272074
10.1111/mice.13154
10.1016/j.engappai.2021.104530
10.1109/CVPR.2019.00293
10.1080/15472450.2018.1462176
10.1109/TITS.2022.3146300
10.1016/j.strusafe.2015.01.002
10.1016/j.trc.2020.102642
10.1061/(ASCE)0733-9445(1991)117:5(1413)
10.1061/(ASCE)BE.1943-5592.0001929
10.3141/1999-10
10.1016/j.neucom.2021.03.024
10.1109/ITSC.2018.8569552
10.1016/j.physa.2023.129060
10.1016/j.trc.2022.103738
10.1109/TNNLS.2020.2978386
10.3390/s24020403
10.1177/03611981241248647
10.1016/j.autcon.2023.104985
10.1016/j.trb.2013.11.009
10.1016/j.measurement.2023.113029
10.1016/j.iot.2023.100935
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125902
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125902
S0957417424027696
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c251t-ad380c1784777325d7ea824c87ca4019636ebdbf4e50ca7a1c9c5257bde35e733
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Jul 03 08:30:51 EDT 2025
Tue Jul 29 20:14:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Microscopic traffic load simulation
Attention mechanism
Lane-changing prediction
Transformer
Heterogeneous graph neural network
Multiple contexts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-ad380c1784777325d7ea824c87ca4019636ebdbf4e50ca7a1c9c5257bde35e733
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125902
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125902
PublicationCentury 2000
PublicationDate 2025-03-10
PublicationDateYYYYMMDD 2025-03-10
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-10
  day: 10
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zheng (b0060) 2014; 60
Li, Zhang, Chen (b0180) 2023; 72
Liu, Wang, Li, Cheng, Chen (b0075) 2019; 7
Liu, Hong, Lin (b0070) 2023; 13
Shen, Li, Chen, Yang, Kong (b0185) 2023; 24
Mohamed, Qian, Elhoseiny, Claudel (b0160) 2020
Veličković, Cucurull, Casanova, Romero, Li, Bengio (b0200) 2018
Obrien, Schmidt, Hajializadeh, Zhou, Enright, Caprani, Wilson, Sheils (b0015) 2015; 53
Accessed 2024-06-17 from http://doi.org/10.21949/1504477.
R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. (2018). The HighD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. in
Shangguan, Fu, Wang, Fang, Fu (b0195) 2022; 164
Xu, Hu, Leskovec, Jegelka (b0270) 2019
Zhou, Ren, Xia, Fan, Yang, Huang (b0155) 2021; 445
Zhang, Pu, Zhang, Nie (b0140) 2024; 24
Gipps (b0045) 1986; 20
Toledo, Katz (b0050) 2009; 2124
Du, Pan, Kawsar, Li, Hou, Glowacz (b0120) 2023; 217
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. (2016). SqueezeNet: Alexnet-Level Accuracy with 50X Fewer Parameters and <0.5Mb Model Size. in
.
Hwang, Nowak (b0005) 1991; 117
Miao, Liu, Li (b0285) 2022
U.S. Department of Transportation Federal Highway Administration. (2016). Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. Provided by
Garcia Satorras, Hoogeboom, Welling (b0275) 2021
Zhang, Cui, Zhu (b0150) 2022; 34
Liu, Shi (b0115) 2019; 23
Li, Wang, Sun, Cui, Huang, Chen (b0090) 2023; 8
Hamilton, Ying, Leskovec (b0265) 2017
Rahman, Chowdhury, Xie, He (b0035) 2013; 14
Mahajan, Katrakazas, Antoniou (b0130) 2020; 2674
Wu, Pan, Chen, Long, Zhang, Yu (b0145) 2021; 32
Günther (b0245) 2001; 35
Ruan, Zhou, Shi, Caprani (b0025) 2017; 13
Howard, Sandler, Chen, Wang, Chen, Tan, Chu, Vasudevan, Zhu, Pang, Adam, Le (b0235) 2019
Zhou, Wu, Caprani, Tan, Wei, Zhang (b0255) 2024; 39
Feng, Cao, Xu, Ge (b0165) 2022; 266
Corso, Cavalleri, Beaini, Liò, Veličković (b0280) 2020
2118-2125.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0205) 2017
Zhou, Hu, Zhang, Huang (b0020) 2021; 34
Yang, Guan, Yi, Li, Ni (b0030) 2022; 27
Xue, Xing, Lu (b0085) 2022; 141
Ossen, Hoogendoorn (b0190) 2011; 19
Crespo-Minguillón, Casas (b0010) 1997; 19
Yang, Wang, Nassif (b0100) 2024
Jeong (b0135) 2021; 9
Van der Maaten, Hinton (b0225) 2008; 9
Mo, Huang, Xing, Lv (b0175) 2022; 23
Macadam (b0250) 2003; 40
Zhang, Feng, Wu, He (b0170) 2022; 23
Ma, Zhang, Zheng, Sun (b0215) 2018
M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. (2019). MnasNet: Platform-Aware Neural Architecture Search for Mobile. in
Sandler, Howard, Zhu, Zhmoginov, Chen (b0220) 2018
Ma, Li (b0040) 2023; 626
Zhang, Zhou, Lin, Sun (b0210) 2017
Guo, Harmati (b0065) 2022; 107
Kesting, Treiber, Helbing (b0055) 2007; 1999
Kamrani, Srinivasan, Chakraborty, Khattak (b0095) 2020; 115
Dong, Wang, Pan, Ma (b0260) 2023; 154
Dong, Pan, Wang, Chen (b0125) 2024
Wang, Zhang, Lu (b0080) 2021; 132
Van der Maaten (10.1016/j.eswa.2024.125902_b0225) 2008; 9
Mahajan (10.1016/j.eswa.2024.125902_b0130) 2020; 2674
Guo (10.1016/j.eswa.2024.125902_b0065) 2022; 107
Veličković (10.1016/j.eswa.2024.125902_b0200) 2018
Wang (10.1016/j.eswa.2024.125902_b0080) 2021; 132
Zhang (10.1016/j.eswa.2024.125902_b0210) 2017
Zhang (10.1016/j.eswa.2024.125902_b0150) 2022; 34
Zhou (10.1016/j.eswa.2024.125902_b0255) 2024; 39
10.1016/j.eswa.2024.125902_b0105
Liu (10.1016/j.eswa.2024.125902_b0070) 2023; 13
Xu (10.1016/j.eswa.2024.125902_b0270) 2019
Shangguan (10.1016/j.eswa.2024.125902_b0195) 2022; 164
Feng (10.1016/j.eswa.2024.125902_b0165) 2022; 266
Miao (10.1016/j.eswa.2024.125902_b0285) 2022
Du (10.1016/j.eswa.2024.125902_b0120) 2023; 217
Ossen (10.1016/j.eswa.2024.125902_b0190) 2011; 19
Macadam (10.1016/j.eswa.2024.125902_b0250) 2003; 40
Mo (10.1016/j.eswa.2024.125902_b0175) 2022; 23
Kamrani (10.1016/j.eswa.2024.125902_b0095) 2020; 115
Zhang (10.1016/j.eswa.2024.125902_b0140) 2024; 24
10.1016/j.eswa.2024.125902_b0230
Li (10.1016/j.eswa.2024.125902_b0180) 2023; 72
10.1016/j.eswa.2024.125902_b0110
Vaswani (10.1016/j.eswa.2024.125902_b0205) 2017
Liu (10.1016/j.eswa.2024.125902_b0115) 2019; 23
Gipps (10.1016/j.eswa.2024.125902_b0045) 1986; 20
Yang (10.1016/j.eswa.2024.125902_b0100) 2024
Liu (10.1016/j.eswa.2024.125902_b0075) 2019; 7
Wu (10.1016/j.eswa.2024.125902_b0145) 2021; 32
Jeong (10.1016/j.eswa.2024.125902_b0135) 2021; 9
Obrien (10.1016/j.eswa.2024.125902_b0015) 2015; 53
Xue (10.1016/j.eswa.2024.125902_b0085) 2022; 141
Li (10.1016/j.eswa.2024.125902_b0090) 2023; 8
10.1016/j.eswa.2024.125902_b0240
Zhang (10.1016/j.eswa.2024.125902_b0170) 2022; 23
Sandler (10.1016/j.eswa.2024.125902_b0220) 2018
Shen (10.1016/j.eswa.2024.125902_b0185) 2023; 24
Ruan (10.1016/j.eswa.2024.125902_b0025) 2017; 13
Toledo (10.1016/j.eswa.2024.125902_b0050) 2009; 2124
Garcia Satorras (10.1016/j.eswa.2024.125902_b0275) 2021
Mohamed (10.1016/j.eswa.2024.125902_b0160) 2020
Crespo-Minguillón (10.1016/j.eswa.2024.125902_b0010) 1997; 19
Howard (10.1016/j.eswa.2024.125902_b0235) 2019
Zhou (10.1016/j.eswa.2024.125902_b0020) 2021; 34
Ma (10.1016/j.eswa.2024.125902_b0040) 2023; 626
Zheng (10.1016/j.eswa.2024.125902_b0060) 2014; 60
Yang (10.1016/j.eswa.2024.125902_b0030) 2022; 27
Hamilton (10.1016/j.eswa.2024.125902_b0265) 2017
Dong (10.1016/j.eswa.2024.125902_b0125) 2024
Ma (10.1016/j.eswa.2024.125902_b0215) 2018
Corso (10.1016/j.eswa.2024.125902_b0280) 2020
Rahman (10.1016/j.eswa.2024.125902_b0035) 2013; 14
Kesting (10.1016/j.eswa.2024.125902_b0055) 2007; 1999
Hwang (10.1016/j.eswa.2024.125902_b0005) 1991; 117
Zhou (10.1016/j.eswa.2024.125902_b0155) 2021; 445
Dong (10.1016/j.eswa.2024.125902_b0260) 2023; 154
Günther (10.1016/j.eswa.2024.125902_b0245) 2001; 35
References_xml – volume: 19
  start-page: 339
  year: 1997
  end-page: 359
  ident: b0010
  article-title: A Comprehensive Traffic Load Model for Bridge Safety Checking
– volume: 266
  year: 2022
  ident: b0165
  article-title: IS-STGCNN: An Improved Social Spatial-Temporal Graph Convolutional Neural Network for Ship Trajectory Prediction
– year: 2017
  ident: b0205
  article-title: Attention is All You Need
  publication-title: in
– volume: 14
  start-page: 1942
  year: 2013
  end-page: 1956
  ident: b0035
  article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities
– reference: . Accessed 2024-06-17 from http://doi.org/10.21949/1504477.
– reference: F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. (2016). SqueezeNet: Alexnet-Level Accuracy with 50X Fewer Parameters and <0.5Mb Model Size. in
– volume: 132
  year: 2021
  ident: b0080
  article-title: A Bayesian Inference Based Adaptive Lane Change Prediction Model
– volume: 23
  start-page: 22343
  year: 2022
  end-page: 22353
  ident: b0170
  article-title: Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
– year: 2017
  ident: b0265
  article-title: Inductive Representation Learning on Large Graphs
  publication-title: In
– volume: 34
  start-page: 1746
  year: 2021
  end-page: 1760
  ident: b0020
  article-title: Incorporating the Unevenness of Lane Truck Loading into Fatigue Load Modeling of Multi-Lane Bridges
– volume: 1999
  start-page: 86
  year: 2007
  end-page: 94
  ident: b0055
  article-title: General Lane-Changing Model Mobil for Car-Following Models
– volume: 107
  year: 2022
  ident: b0065
  article-title: Lane-Changing Decision Modelling in Congested Traffic with a Game Theory-Based Decomposition Algorithm
– volume: 13
  start-page: 494
  year: 2017
  end-page: 504
  ident: b0025
  article-title: A Site-Specific Traffic Load Model for Long-Span Multi-Pylon Cable-Stayed Bridges
– volume: 23
  start-page: 9554
  year: 2022
  end-page: 9567
  ident: b0175
  article-title: Multi-Agent Trajectory Prediction with Heterogeneous Edge-Enhanced Graph Attention Network
– volume: 24
  year: 2023
  ident: b0185
  article-title: Spatio-Temporal Interactive Graph Convolution Network for Vehicle Trajectory Prediction
– start-page: 1
  year: 2024
  end-page: 14
  ident: b0125
  article-title: Traffic Load Simulation for Long-Span Bridges Using a Transformer Model Incorporating In-Lane Transverse Vehicle Movements
– reference: . 2118-2125.
– volume: 32
  start-page: 4
  year: 2021
  end-page: 24
  ident: b0145
  article-title: A Comprehensive Survey on Graph Neural Networks
– volume: 7
  start-page: 26543
  year: 2019
  end-page: 26550
  ident: b0075
  article-title: A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine
– volume: 115
  year: 2020
  ident: b0095
  article-title: Applying Markov Decision Process to Understand Driving Decisions Using Basic Safety Messages Data
– volume: 20
  start-page: 403
  year: 1986
  end-page: 414
  ident: b0045
  article-title: A Model for the Structure of Lane-Changing Decisions
– volume: 117
  start-page: 1413
  year: 1991
  end-page: 1434
  ident: b0005
  article-title: Simulation of Dynamic Load for Bridges
– volume: 2124
  start-page: 81
  year: 2009
  end-page: 88
  ident: b0050
  article-title: State Dependence in Lane-Changing Models
– start-page: 122
  year: 2018
  end-page: 138
  ident: b0215
  article-title: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
  publication-title: in
– year: 2021
  ident: b0275
  article-title: E(n) Equivariant Graph Neural Networks
  publication-title: In
– volume: 626
  year: 2023
  ident: b0040
  article-title: A Review of Vehicle Lane Change Research
– start-page: 1314
  year: 2019
  end-page: 1324
  ident: b0235
  article-title: Searching for MobilenetV3
  publication-title: in
– start-page: 14424
  year: 2020
  end-page: 14432
  ident: b0160
  article-title: Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
  publication-title: in
– volume: 13
  start-page: 12366
  year: 2023
  ident: b0070
  article-title: Vehicle Lane Change Models - a Historical Review
– reference: M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. (2019). MnasNet: Platform-Aware Neural Architecture Search for Mobile. in
– year: 2022
  ident: b0285
  article-title: Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
  publication-title: In
– volume: 53
  start-page: 44
  year: 2015
  end-page: 56
  ident: b0015
  article-title: A Review of Probabilistic Methods of Assessment of Load Effects in Bridges
– volume: 154
  year: 2023
  ident: b0260
  article-title: Large Field Monitoring System of Vehicle Load On Long-Span Bridge Based on the Fusion of Multiple Vision and Wim Data
– reference: U.S. Department of Transportation Federal Highway Administration. (2016). Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. Provided by
– year: 2019
  ident: b0270
  article-title: How Powerful are Graph Neural Networks?
  publication-title: In
– volume: 8
  start-page: 3620
  year: 2023
  end-page: 3628
  ident: b0090
  article-title: Explaining a Machine-Learning Lane Change Model with Maximum Entropy Shapley Values
– volume: 217
  year: 2023
  ident: b0120
  article-title: Enhanced Traffic Safety and Efficiency of an Accelerated LC Decision via DNN-APF Technique
– reference: R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. (2018). The HighD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. in
– volume: 164
  year: 2022
  ident: b0195
  article-title: A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns
– volume: 19
  start-page: 182
  year: 2011
  end-page: 195
  ident: b0190
  article-title: Heterogeneity in car-following behavior: Theory and empirics
– year: 2020
  ident: b0280
  article-title: Principal Neighbourhood Aggregation for Graph Nets
  publication-title: In
– volume: 39
  start-page: 1699
  year: 2024
  end-page: 1723
  ident: b0255
  article-title: A Hybrid Virtual–Real Traffic Simulation Approach to Reproducing the Spatiotemporal Distribution of Bridge Loads
– volume: 27
  start-page: 4022082
  year: 2022
  ident: b0030
  article-title: Fatigue Evaluation of Bridges Based on Strain Influence Line Loaded by Elaborate Stochastic Traffic Flow
– volume: 72
  start-page: 1
  year: 2023
  end-page: 13
  ident: b0180
  article-title: STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network with Spatial-Temporal Synchronization
– volume: 445
  start-page: 298
  year: 2021
  end-page: 308
  ident: b0155
  article-title: AST-GNN: An Attention-Based Spatio-Temporal Graph Neural Network for Interaction-Aware Pedestrian Trajectory Prediction
– volume: 60
  start-page: 16
  year: 2014
  end-page: 32
  ident: b0060
  article-title: Recent Developments and Research Needs in Modeling Lane Changing
– volume: 9
  start-page: 144985
  year: 2021
  end-page: 144998
  ident: b0135
  article-title: Predictive Lane Change Decision Making Using Bidirectional Long Shot-Term Memory for Autonomous Driving on Highways
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0225
  article-title: Visualizing Data Using T-Sne
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: b0220
  article-title: MobileNetV2: Inverted Residuals and Linear Bottlenecks
  publication-title: in
– volume: 2674
  start-page: 336
  year: 2020
  end-page: 347
  ident: b0130
  article-title: Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning
– reference: .
– volume: 35
  start-page: 19
  year: 2001
  end-page: 53
  ident: b0245
  article-title: Modeling Human Vehicle Driving by Model Predictive Online Optimization
– volume: 141
  year: 2022
  ident: b0085
  article-title: An Integrated Lane Change Prediction Model Incorporating Traffic Context Based on Trajectory Data
– volume: 23
  start-page: 309
  year: 2019
  end-page: 318
  ident: b0115
  article-title: A Cellular Automata Traffic Flow Model Combined with a BP Neural Network Based Microscopic Lane Changing Decision Model
– year: 2018
  ident: b0200
  article-title: Graph Attention Networks
  publication-title: in
– volume: 24
  year: 2024
  ident: b0140
  article-title: Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning
– volume: 40
  start-page: 101
  year: 2003
  end-page: 134
  ident: b0250
  article-title: Understanding and Modeling the Human Driver
– year: 2024
  ident: b0100
  article-title: Impact of Environmental Conditions on Predicting Condition Rating of Concrete Bridge Decks
  publication-title: .
– volume: 34
  start-page: 249
  year: 2022
  end-page: 270
  ident: b0150
  article-title: Deep Learning on Graphs: A Survey
– start-page: 6848
  year: 2017
  end-page: 6856
  ident: b0210
  article-title: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
  publication-title: in
– volume: 34
  start-page: 249
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0150
  article-title: Deep Learning on Graphs: A Survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.2981333
– volume: 20
  start-page: 403
  issue: 5
  year: 1986
  ident: 10.1016/j.eswa.2024.125902_b0045
  article-title: A Model for the Structure of Lane-Changing Decisions
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/0191-2615(86)90012-3
– ident: 10.1016/j.eswa.2024.125902_b0230
– volume: 19
  start-page: 339
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2024.125902_b0010
  article-title: A Comprehensive Traffic Load Model for Bridge Safety Checking
  publication-title: Structural Safety
  doi: 10.1016/S0167-4730(97)00016-7
– volume: 2674
  start-page: 336
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2024.125902_b0130
  article-title: Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.1177/0361198120922210
– volume: 34
  start-page: 1746
  year: 2021
  ident: 10.1016/j.eswa.2024.125902_b0020
  article-title: Incorporating the Unevenness of Lane Truck Loading into Fatigue Load Modeling of Multi-Lane Bridges
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.08.112
– volume: 266
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0165
  article-title: IS-STGCNN: An Improved Social Spatial-Temporal Graph Convolutional Neural Network for Ship Trajectory Prediction
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112960
– volume: 132
  year: 2021
  ident: 10.1016/j.eswa.2024.125902_b0080
  article-title: A Bayesian Inference Based Adaptive Lane Change Prediction Model
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2021.103363
– volume: 7
  start-page: 26543
  year: 2019
  ident: 10.1016/j.eswa.2024.125902_b0075
  article-title: A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900416
– volume: 19
  start-page: 182
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2024.125902_b0190
  article-title: Heterogeneity in car-following behavior: Theory and empirics
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2010.05.006
– start-page: 1314
  year: 2019
  ident: 10.1016/j.eswa.2024.125902_b0235
  article-title: Searching for MobilenetV3
– year: 2019
  ident: 10.1016/j.eswa.2024.125902_b0270
  article-title: How Powerful are Graph Neural Networks?
– volume: 164
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0195
  article-title: A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns
  publication-title: Accident Analysis & Prevention
  doi: 10.1016/j.aap.2021.106500
– year: 2017
  ident: 10.1016/j.eswa.2024.125902_b0265
  article-title: Inductive Representation Learning on Large Graphs
– volume: 40
  start-page: 101
  issue: 1–3
  year: 2003
  ident: 10.1016/j.eswa.2024.125902_b0250
  article-title: Understanding and Modeling the Human Driver
  publication-title: Vehicle System Dynamics
  doi: 10.1076/vesd.40.1.101.15875
– volume: 9
  start-page: 144985
  year: 2021
  ident: 10.1016/j.eswa.2024.125902_b0135
  article-title: Predictive Lane Change Decision Making Using Bidirectional Long Shot-Term Memory for Autonomous Driving on Highways
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3122869
– year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0285
  article-title: Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
– volume: 35
  start-page: 19
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2024.125902_b0245
  article-title: Modeling Human Vehicle Driving by Model Predictive Online Optimization
  publication-title: Vehicle System Dynamics
  doi: 10.1076/vesd.35.1.19.5614
– volume: 2124
  start-page: 81
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2024.125902_b0050
  article-title: State Dependence in Lane-Changing Models
  publication-title: Transportation Research Record
  doi: 10.3141/2124-08
– start-page: 14424
  year: 2020
  ident: 10.1016/j.eswa.2024.125902_b0160
  article-title: Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
– volume: 23
  start-page: 22343
  issue: 11
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0170
  article-title: Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2022.3164450
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0180
  article-title: STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network with Spatial-Temporal Synchronization
  publication-title: IEEE Transactions on Instrumentation and Measurement
– year: 2018
  ident: 10.1016/j.eswa.2024.125902_b0200
  article-title: Graph Attention Networks
– volume: 13
  start-page: 494
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2024.125902_b0025
  article-title: A Site-Specific Traffic Load Model for Long-Span Multi-Pylon Cable-Stayed Bridges
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732479.2016.1164724
– start-page: 122
  year: 2018
  ident: 10.1016/j.eswa.2024.125902_b0215
  article-title: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
– start-page: 4510
  year: 2018
  ident: 10.1016/j.eswa.2024.125902_b0220
  article-title: MobileNetV2: Inverted Residuals and Linear Bottlenecks
– volume: 8
  start-page: 3620
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0090
  article-title: Explaining a Machine-Learning Lane Change Model with Maximum Entropy Shapley Values
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2023.3266196
– volume: 13
  start-page: 12366
  issue: 22
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0070
  article-title: Vehicle Lane Change Models - a Historical Review
  publication-title: Applied Sciences
  doi: 10.3390/app132212366
– volume: 14
  start-page: 1942
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2024.125902_b0035
  article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2272074
– year: 2017
  ident: 10.1016/j.eswa.2024.125902_b0205
  article-title: Attention is All You Need
– volume: 39
  start-page: 1699
  issue: 11
  year: 2024
  ident: 10.1016/j.eswa.2024.125902_b0255
  article-title: A Hybrid Virtual–Real Traffic Simulation Approach to Reproducing the Spatiotemporal Distribution of Bridge Loads
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.13154
– ident: 10.1016/j.eswa.2024.125902_b0105
– start-page: 6848
  year: 2017
  ident: 10.1016/j.eswa.2024.125902_b0210
  article-title: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.eswa.2024.125902_b0225
  article-title: Visualizing Data Using T-Sne
  publication-title: Journal of Machine Learning Research
– volume: 107
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0065
  article-title: Lane-Changing Decision Modelling in Congested Traffic with a Game Theory-Based Decomposition Algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104530
– ident: 10.1016/j.eswa.2024.125902_b0240
  doi: 10.1109/CVPR.2019.00293
– volume: 23
  start-page: 309
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2024.125902_b0115
  article-title: A Cellular Automata Traffic Flow Model Combined with a BP Neural Network Based Microscopic Lane Changing Decision Model
  publication-title: Journal of Intelligent Transportation Systems
  doi: 10.1080/15472450.2018.1462176
– volume: 23
  start-page: 9554
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0175
  article-title: Multi-Agent Trajectory Prediction with Heterogeneous Edge-Enhanced Graph Attention Network
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2022.3146300
– volume: 53
  start-page: 44
  year: 2015
  ident: 10.1016/j.eswa.2024.125902_b0015
  article-title: A Review of Probabilistic Methods of Assessment of Load Effects in Bridges
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2015.01.002
– volume: 115
  year: 2020
  ident: 10.1016/j.eswa.2024.125902_b0095
  article-title: Applying Markov Decision Process to Understand Driving Decisions Using Basic Safety Messages Data
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2020.102642
– volume: 117
  start-page: 1413
  issue: 5
  year: 1991
  ident: 10.1016/j.eswa.2024.125902_b0005
  article-title: Simulation of Dynamic Load for Bridges
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)0733-9445(1991)117:5(1413)
– volume: 27
  start-page: 4022082
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0030
  article-title: Fatigue Evaluation of Bridges Based on Strain Influence Line Loaded by Elaborate Stochastic Traffic Flow
  publication-title: Journal of Bridge Engineering
  doi: 10.1061/(ASCE)BE.1943-5592.0001929
– start-page: 1
  year: 2024
  ident: 10.1016/j.eswa.2024.125902_b0125
  article-title: Traffic Load Simulation for Long-Span Bridges Using a Transformer Model Incorporating In-Lane Transverse Vehicle Movements
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 1999
  start-page: 86
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2024.125902_b0055
  article-title: General Lane-Changing Model Mobil for Car-Following Models
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/1999-10
– year: 2021
  ident: 10.1016/j.eswa.2024.125902_b0275
  article-title: E(n) Equivariant Graph Neural Networks
– volume: 445
  start-page: 298
  year: 2021
  ident: 10.1016/j.eswa.2024.125902_b0155
  article-title: AST-GNN: An Attention-Based Spatio-Temporal Graph Neural Network for Interaction-Aware Pedestrian Trajectory Prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.024
– ident: 10.1016/j.eswa.2024.125902_b0110
  doi: 10.1109/ITSC.2018.8569552
– volume: 626
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0040
  article-title: A Review of Vehicle Lane Change Research
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2023.129060
– volume: 141
  year: 2022
  ident: 10.1016/j.eswa.2024.125902_b0085
  article-title: An Integrated Lane Change Prediction Model Incorporating Traffic Context Based on Trajectory Data
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2022.103738
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.125902_b0145
  article-title: A Comprehensive Survey on Graph Neural Networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2978386
– volume: 24
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2024.125902_b0140
  article-title: Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning
  publication-title: Sensors
  doi: 10.3390/s24020403
– year: 2024
  ident: 10.1016/j.eswa.2024.125902_b0100
  article-title: Impact of Environmental Conditions on Predicting Condition Rating of Concrete Bridge Decks
  publication-title: Transportation Research Record: Journal of the Transportation Research Board.
  doi: 10.1177/03611981241248647
– year: 2020
  ident: 10.1016/j.eswa.2024.125902_b0280
  article-title: Principal Neighbourhood Aggregation for Graph Nets
– volume: 154
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0260
  article-title: Large Field Monitoring System of Vehicle Load On Long-Span Bridge Based on the Fusion of Multiple Vision and Wim Data
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2023.104985
– volume: 60
  start-page: 16
  year: 2014
  ident: 10.1016/j.eswa.2024.125902_b0060
  article-title: Recent Developments and Research Needs in Modeling Lane Changing
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2013.11.009
– volume: 217
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0120
  article-title: Enhanced Traffic Safety and Efficiency of an Accelerated LC Decision via DNN-APF Technique
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113029
– volume: 24
  year: 2023
  ident: 10.1016/j.eswa.2024.125902_b0185
  article-title: Spatio-Temporal Interactive Graph Convolution Network for Vehicle Trajectory Prediction
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2023.100935
SSID ssj0017007
Score 2.4610732
Snippet Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125902
SubjectTerms Attention mechanism
Heterogeneous graph neural network
Lane-changing prediction
Microscopic traffic load simulation
Multiple contexts
Transformer
Title Multi-Context enhanced Lane-Changing prediction using a heterogeneous Graph Neural Network
URI https://dx.doi.org/10.1016/j.eswa.2024.125902
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VsLDwRpRH5YENuY_YqZOxqijl1QUqVSyRY7u0DGlVgmDit3OXOAiExMBqxUp0tu_7HH_3GeBMpE5F01By25nGXAqjuY4tqSwQ65HCBt2YqpHvRt3hWF5PwkkN-lUtDMkqfe4vc3qRrX1Ly0eztZzPW_dIDhAOcWuHWyDVjcl2W0pFs7z58SXzIPs5VfrtKU5P-8KZUuPlXt7IeyiQTcT52P9a-QVO3wBnsA2bnimyXvkxO1Bz2S5sVbcwML8o9-CxqKHlhc3Ue85cNisO9dmtzhwvigcQndhyRScyNAqMpO5PTLMZKWEWOIEc7v7ZJTlXM_LqwJeOSnH4PowHFw_9Ifc3JnCDPCXn2oqobToKIUcpEYRWOR0F0kTKaElOOKLrUptOpQvbRivdMbEhO9TUOhE6JcQBrGWLzB0Cw8Yo1ZFtS6VlmCILibQwNtbCIsPSpg7nVaiSZWmMkVSKseeEAptQYJMysHUIq2gmP4Y3wcz9R7-jf_Y7ho2ALuothHcnsJavXt0psoc8bRTTowHrvaub4egTCEvEQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BGWDhG_GNBzZk2sZOnIxVBRQoXaBSxRI5tkvLkFa0Ffx87hIHgZAYWK1Yic72vef43TPAucicioeh5LY5TLgURnOdWFJZINYjhQ2ihKqRH3pRpy_vBuFgCdpVLQzJKn3uL3N6ka19S91Hsz4dj-uPSA4QDnFrh1sgFSXRMqyQO1VYg5XW7X2n93WYoBpl1TQ-z6mDr50pZV5u9k72Q4G8RKhP_N-VX_j0DXOuN2Hdk0XWKr9nC5Zcvg0b1UUMzK_LHXguymh54TT1MWcuHxXn-qyrc8eL-gEEKDZ9o0MZGghGavcXptmIxDATnENuspixGzKvZmTXgS_tlfrwXehfXz21O9xfmsANUpU511bEDdNUiDpKiSC0yuk4kCZWRksywxGRy2w2lC5sGK100ySGHFEz60TolBB7UMsnudsHho1xpmPbkErLMEMiEmthbKKFRZKlzQFcVKFKp6U3RlqJxl5TCmxKgU3LwB5AWEUz_THCKSbvP_od_rPfGax2nh66afe2d38EawHd21vo8I6hNn9buBMkE_Ps1E-WT9d6xvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Context+enhanced+Lane-Changing+prediction+using+a+heterogeneous+Graph+Neural+Network&rft.jtitle=Expert+systems+with+applications&rft.au=Dong%2C+Yiqing&rft.au=Han%2C+Chengjia&rft.au=Zhao%2C+Chaoyang&rft.au=Madan%2C+Aayush&rft.date=2025-03-10&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=264&rft_id=info:doi/10.1016%2Fj.eswa.2024.125902&rft.externalDocID=S0957417424027696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon