Multi-Context enhanced Lane-Changing prediction using a heterogeneous Graph Neural Network
Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic load on bridge decks. Despite their simplicity, existing physics-based approaches are subjective and deterministic, resulting in low fidelity in...
Saved in:
Published in | Expert systems with applications Vol. 264; p. 125902 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic load on bridge decks. Despite their simplicity, existing physics-based approaches are subjective and deterministic, resulting in low fidelity in reflecting real-world scenarios. Current data-driven methods attempt to address this but only consider the trajectories of the subject vehicle and adjacent vehicles, neglecting other relevant contexts and thus compromising prediction accuracy. This study introduces LaneMCGNN, a multi-context enhanced graph neural network model for lane-changing prediction. The model integrates contextual features from spatial-temporal trajectories, vehicle types, and semantic maps, employing multi-attention mechanisms and Transformer modules to enhance feature extraction from these contexts. A lightweight Convolutional Neural Network (CNN) is utilized for efficient feature extraction from semantic maps of bridge decks. Trained and evaluated on an open-access dataset, our model achieves an accuracy of 98.928%, an F1-score of 0.989, and an Area Under Curve (AUC) of 0.999. Comparative discussions and ablation tests underscore the superiority of our model and the importance of incorporating multiple contexts. The proposed model can significantly enhance MTLS by improving the prediction of lane-keeping and lane-changing behaviors of vehicles, thereby increasing the precision of performance assessment for bridge components. |
---|---|
AbstractList | Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic load on bridge decks. Despite their simplicity, existing physics-based approaches are subjective and deterministic, resulting in low fidelity in reflecting real-world scenarios. Current data-driven methods attempt to address this but only consider the trajectories of the subject vehicle and adjacent vehicles, neglecting other relevant contexts and thus compromising prediction accuracy. This study introduces LaneMCGNN, a multi-context enhanced graph neural network model for lane-changing prediction. The model integrates contextual features from spatial-temporal trajectories, vehicle types, and semantic maps, employing multi-attention mechanisms and Transformer modules to enhance feature extraction from these contexts. A lightweight Convolutional Neural Network (CNN) is utilized for efficient feature extraction from semantic maps of bridge decks. Trained and evaluated on an open-access dataset, our model achieves an accuracy of 98.928%, an F1-score of 0.989, and an Area Under Curve (AUC) of 0.999. Comparative discussions and ablation tests underscore the superiority of our model and the importance of incorporating multiple contexts. The proposed model can significantly enhance MTLS by improving the prediction of lane-keeping and lane-changing behaviors of vehicles, thereby increasing the precision of performance assessment for bridge components. |
ArticleNumber | 125902 |
Author | Han, Chengjia Mohanty, Lipi Yang, Yaowen Madan, Aayush Dong, Yiqing Zhao, Chaoyang |
Author_xml | – sequence: 1 givenname: Yiqing surname: Dong fullname: Dong, Yiqing email: yiqing.dong@ntu.edu.sg – sequence: 2 givenname: Chengjia surname: Han fullname: Han, Chengjia email: chengjia.han@ntu.edu.sg – sequence: 3 givenname: Chaoyang surname: Zhao fullname: Zhao, Chaoyang email: cy.zhao@ntu.edu.sg – sequence: 4 givenname: Aayush surname: Madan fullname: Madan, Aayush email: aayush.madan@ntu.edu.sg – sequence: 5 givenname: Lipi surname: Mohanty fullname: Mohanty, Lipi email: lipi@ntu.edu.sg – sequence: 6 givenname: Yaowen surname: Yang fullname: Yang, Yaowen email: cywyang@ntu.edu.sg |
BookMark | eNp9kLFOwzAQhj0UibbwAkx-gQTbsetEYkERFKQACywslmtfW5diV7ZD4e1JVGamX3fS9-vum6GJDx4QuqKkpIQurnclpKMuGWG8pEw0hE3QlDRCFpxKfo5mKe0IoZIQOUXvT_0-u6INPsN3xuC32huwuNMeinYYNs5v8CGCdSa74HGfxoXGW8gQwwY8hD7hZdSHLX6GPur9EPkY4scFOlvrfYLLv5yjt_u71_ah6F6Wj-1tVxgmaC60rWpiqKy5lLJiwkrQNeOmlkZzQptFtYCVXa05CGK01NQ0RjAhVxYqAbKq5oidek0MKUVYq0N0nzr-KErUaETt1GhEjUbUycgA3ZwgGC77chBVMg7G110Ek5UN7j_8F9oXbuk |
Cites_doi | 10.1109/TKDE.2020.2981333 10.1016/0191-2615(86)90012-3 10.1016/S0167-4730(97)00016-7 10.1177/0361198120922210 10.1016/j.istruc.2021.08.112 10.1016/j.oceaneng.2022.112960 10.1016/j.trc.2021.103363 10.1109/ACCESS.2019.2900416 10.1016/j.trc.2010.05.006 10.1016/j.aap.2021.106500 10.1076/vesd.40.1.101.15875 10.1109/ACCESS.2021.3122869 10.1076/vesd.35.1.19.5614 10.3141/2124-08 10.1109/TITS.2022.3164450 10.1080/15732479.2016.1164724 10.1109/TIV.2023.3266196 10.3390/app132212366 10.1109/TITS.2013.2272074 10.1111/mice.13154 10.1016/j.engappai.2021.104530 10.1109/CVPR.2019.00293 10.1080/15472450.2018.1462176 10.1109/TITS.2022.3146300 10.1016/j.strusafe.2015.01.002 10.1016/j.trc.2020.102642 10.1061/(ASCE)0733-9445(1991)117:5(1413) 10.1061/(ASCE)BE.1943-5592.0001929 10.3141/1999-10 10.1016/j.neucom.2021.03.024 10.1109/ITSC.2018.8569552 10.1016/j.physa.2023.129060 10.1016/j.trc.2022.103738 10.1109/TNNLS.2020.2978386 10.3390/s24020403 10.1177/03611981241248647 10.1016/j.autcon.2023.104985 10.1016/j.trb.2013.11.009 10.1016/j.measurement.2023.113029 10.1016/j.iot.2023.100935 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.125902 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2024_125902 S0957417424027696 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c251t-ad380c1784777325d7ea824c87ca4019636ebdbf4e50ca7a1c9c5257bde35e733 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Jul 03 08:30:51 EDT 2025 Tue Jul 29 20:14:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microscopic traffic load simulation Attention mechanism Lane-changing prediction Transformer Heterogeneous graph neural network Multiple contexts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-ad380c1784777325d7ea824c87ca4019636ebdbf4e50ca7a1c9c5257bde35e733 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_125902 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125902 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-10 |
PublicationDateYYYYMMDD | 2025-03-10 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zheng (b0060) 2014; 60 Li, Zhang, Chen (b0180) 2023; 72 Liu, Wang, Li, Cheng, Chen (b0075) 2019; 7 Liu, Hong, Lin (b0070) 2023; 13 Shen, Li, Chen, Yang, Kong (b0185) 2023; 24 Mohamed, Qian, Elhoseiny, Claudel (b0160) 2020 Veličković, Cucurull, Casanova, Romero, Li, Bengio (b0200) 2018 Obrien, Schmidt, Hajializadeh, Zhou, Enright, Caprani, Wilson, Sheils (b0015) 2015; 53 Accessed 2024-06-17 from http://doi.org/10.21949/1504477. R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. (2018). The HighD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. in Shangguan, Fu, Wang, Fang, Fu (b0195) 2022; 164 Xu, Hu, Leskovec, Jegelka (b0270) 2019 Zhou, Ren, Xia, Fan, Yang, Huang (b0155) 2021; 445 Zhang, Pu, Zhang, Nie (b0140) 2024; 24 Gipps (b0045) 1986; 20 Toledo, Katz (b0050) 2009; 2124 Du, Pan, Kawsar, Li, Hou, Glowacz (b0120) 2023; 217 F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. (2016). SqueezeNet: Alexnet-Level Accuracy with 50X Fewer Parameters and <0.5Mb Model Size. in . Hwang, Nowak (b0005) 1991; 117 Miao, Liu, Li (b0285) 2022 U.S. Department of Transportation Federal Highway Administration. (2016). Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. Provided by Garcia Satorras, Hoogeboom, Welling (b0275) 2021 Zhang, Cui, Zhu (b0150) 2022; 34 Liu, Shi (b0115) 2019; 23 Li, Wang, Sun, Cui, Huang, Chen (b0090) 2023; 8 Hamilton, Ying, Leskovec (b0265) 2017 Rahman, Chowdhury, Xie, He (b0035) 2013; 14 Mahajan, Katrakazas, Antoniou (b0130) 2020; 2674 Wu, Pan, Chen, Long, Zhang, Yu (b0145) 2021; 32 Günther (b0245) 2001; 35 Ruan, Zhou, Shi, Caprani (b0025) 2017; 13 Howard, Sandler, Chen, Wang, Chen, Tan, Chu, Vasudevan, Zhu, Pang, Adam, Le (b0235) 2019 Zhou, Wu, Caprani, Tan, Wei, Zhang (b0255) 2024; 39 Feng, Cao, Xu, Ge (b0165) 2022; 266 Corso, Cavalleri, Beaini, Liò, Veličković (b0280) 2020 2118-2125. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0205) 2017 Zhou, Hu, Zhang, Huang (b0020) 2021; 34 Yang, Guan, Yi, Li, Ni (b0030) 2022; 27 Xue, Xing, Lu (b0085) 2022; 141 Ossen, Hoogendoorn (b0190) 2011; 19 Crespo-Minguillón, Casas (b0010) 1997; 19 Yang, Wang, Nassif (b0100) 2024 Jeong (b0135) 2021; 9 Van der Maaten, Hinton (b0225) 2008; 9 Mo, Huang, Xing, Lv (b0175) 2022; 23 Macadam (b0250) 2003; 40 Zhang, Feng, Wu, He (b0170) 2022; 23 Ma, Zhang, Zheng, Sun (b0215) 2018 M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. (2019). MnasNet: Platform-Aware Neural Architecture Search for Mobile. in Sandler, Howard, Zhu, Zhmoginov, Chen (b0220) 2018 Ma, Li (b0040) 2023; 626 Zhang, Zhou, Lin, Sun (b0210) 2017 Guo, Harmati (b0065) 2022; 107 Kesting, Treiber, Helbing (b0055) 2007; 1999 Kamrani, Srinivasan, Chakraborty, Khattak (b0095) 2020; 115 Dong, Wang, Pan, Ma (b0260) 2023; 154 Dong, Pan, Wang, Chen (b0125) 2024 Wang, Zhang, Lu (b0080) 2021; 132 Van der Maaten (10.1016/j.eswa.2024.125902_b0225) 2008; 9 Mahajan (10.1016/j.eswa.2024.125902_b0130) 2020; 2674 Guo (10.1016/j.eswa.2024.125902_b0065) 2022; 107 Veličković (10.1016/j.eswa.2024.125902_b0200) 2018 Wang (10.1016/j.eswa.2024.125902_b0080) 2021; 132 Zhang (10.1016/j.eswa.2024.125902_b0210) 2017 Zhang (10.1016/j.eswa.2024.125902_b0150) 2022; 34 Zhou (10.1016/j.eswa.2024.125902_b0255) 2024; 39 10.1016/j.eswa.2024.125902_b0105 Liu (10.1016/j.eswa.2024.125902_b0070) 2023; 13 Xu (10.1016/j.eswa.2024.125902_b0270) 2019 Shangguan (10.1016/j.eswa.2024.125902_b0195) 2022; 164 Feng (10.1016/j.eswa.2024.125902_b0165) 2022; 266 Miao (10.1016/j.eswa.2024.125902_b0285) 2022 Du (10.1016/j.eswa.2024.125902_b0120) 2023; 217 Ossen (10.1016/j.eswa.2024.125902_b0190) 2011; 19 Macadam (10.1016/j.eswa.2024.125902_b0250) 2003; 40 Mo (10.1016/j.eswa.2024.125902_b0175) 2022; 23 Kamrani (10.1016/j.eswa.2024.125902_b0095) 2020; 115 Zhang (10.1016/j.eswa.2024.125902_b0140) 2024; 24 10.1016/j.eswa.2024.125902_b0230 Li (10.1016/j.eswa.2024.125902_b0180) 2023; 72 10.1016/j.eswa.2024.125902_b0110 Vaswani (10.1016/j.eswa.2024.125902_b0205) 2017 Liu (10.1016/j.eswa.2024.125902_b0115) 2019; 23 Gipps (10.1016/j.eswa.2024.125902_b0045) 1986; 20 Yang (10.1016/j.eswa.2024.125902_b0100) 2024 Liu (10.1016/j.eswa.2024.125902_b0075) 2019; 7 Wu (10.1016/j.eswa.2024.125902_b0145) 2021; 32 Jeong (10.1016/j.eswa.2024.125902_b0135) 2021; 9 Obrien (10.1016/j.eswa.2024.125902_b0015) 2015; 53 Xue (10.1016/j.eswa.2024.125902_b0085) 2022; 141 Li (10.1016/j.eswa.2024.125902_b0090) 2023; 8 10.1016/j.eswa.2024.125902_b0240 Zhang (10.1016/j.eswa.2024.125902_b0170) 2022; 23 Sandler (10.1016/j.eswa.2024.125902_b0220) 2018 Shen (10.1016/j.eswa.2024.125902_b0185) 2023; 24 Ruan (10.1016/j.eswa.2024.125902_b0025) 2017; 13 Toledo (10.1016/j.eswa.2024.125902_b0050) 2009; 2124 Garcia Satorras (10.1016/j.eswa.2024.125902_b0275) 2021 Mohamed (10.1016/j.eswa.2024.125902_b0160) 2020 Crespo-Minguillón (10.1016/j.eswa.2024.125902_b0010) 1997; 19 Howard (10.1016/j.eswa.2024.125902_b0235) 2019 Zhou (10.1016/j.eswa.2024.125902_b0020) 2021; 34 Ma (10.1016/j.eswa.2024.125902_b0040) 2023; 626 Zheng (10.1016/j.eswa.2024.125902_b0060) 2014; 60 Yang (10.1016/j.eswa.2024.125902_b0030) 2022; 27 Hamilton (10.1016/j.eswa.2024.125902_b0265) 2017 Dong (10.1016/j.eswa.2024.125902_b0125) 2024 Ma (10.1016/j.eswa.2024.125902_b0215) 2018 Corso (10.1016/j.eswa.2024.125902_b0280) 2020 Rahman (10.1016/j.eswa.2024.125902_b0035) 2013; 14 Kesting (10.1016/j.eswa.2024.125902_b0055) 2007; 1999 Hwang (10.1016/j.eswa.2024.125902_b0005) 1991; 117 Zhou (10.1016/j.eswa.2024.125902_b0155) 2021; 445 Dong (10.1016/j.eswa.2024.125902_b0260) 2023; 154 Günther (10.1016/j.eswa.2024.125902_b0245) 2001; 35 |
References_xml | – volume: 19 start-page: 339 year: 1997 end-page: 359 ident: b0010 article-title: A Comprehensive Traffic Load Model for Bridge Safety Checking – volume: 266 year: 2022 ident: b0165 article-title: IS-STGCNN: An Improved Social Spatial-Temporal Graph Convolutional Neural Network for Ship Trajectory Prediction – year: 2017 ident: b0205 article-title: Attention is All You Need publication-title: in – volume: 14 start-page: 1942 year: 2013 end-page: 1956 ident: b0035 article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities – reference: . Accessed 2024-06-17 from http://doi.org/10.21949/1504477. – reference: F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. (2016). SqueezeNet: Alexnet-Level Accuracy with 50X Fewer Parameters and <0.5Mb Model Size. in – volume: 132 year: 2021 ident: b0080 article-title: A Bayesian Inference Based Adaptive Lane Change Prediction Model – volume: 23 start-page: 22343 year: 2022 end-page: 22353 ident: b0170 article-title: Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer – year: 2017 ident: b0265 article-title: Inductive Representation Learning on Large Graphs publication-title: In – volume: 34 start-page: 1746 year: 2021 end-page: 1760 ident: b0020 article-title: Incorporating the Unevenness of Lane Truck Loading into Fatigue Load Modeling of Multi-Lane Bridges – volume: 1999 start-page: 86 year: 2007 end-page: 94 ident: b0055 article-title: General Lane-Changing Model Mobil for Car-Following Models – volume: 107 year: 2022 ident: b0065 article-title: Lane-Changing Decision Modelling in Congested Traffic with a Game Theory-Based Decomposition Algorithm – volume: 13 start-page: 494 year: 2017 end-page: 504 ident: b0025 article-title: A Site-Specific Traffic Load Model for Long-Span Multi-Pylon Cable-Stayed Bridges – volume: 23 start-page: 9554 year: 2022 end-page: 9567 ident: b0175 article-title: Multi-Agent Trajectory Prediction with Heterogeneous Edge-Enhanced Graph Attention Network – volume: 24 year: 2023 ident: b0185 article-title: Spatio-Temporal Interactive Graph Convolution Network for Vehicle Trajectory Prediction – start-page: 1 year: 2024 end-page: 14 ident: b0125 article-title: Traffic Load Simulation for Long-Span Bridges Using a Transformer Model Incorporating In-Lane Transverse Vehicle Movements – reference: . 2118-2125. – volume: 32 start-page: 4 year: 2021 end-page: 24 ident: b0145 article-title: A Comprehensive Survey on Graph Neural Networks – volume: 7 start-page: 26543 year: 2019 end-page: 26550 ident: b0075 article-title: A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine – volume: 115 year: 2020 ident: b0095 article-title: Applying Markov Decision Process to Understand Driving Decisions Using Basic Safety Messages Data – volume: 20 start-page: 403 year: 1986 end-page: 414 ident: b0045 article-title: A Model for the Structure of Lane-Changing Decisions – volume: 117 start-page: 1413 year: 1991 end-page: 1434 ident: b0005 article-title: Simulation of Dynamic Load for Bridges – volume: 2124 start-page: 81 year: 2009 end-page: 88 ident: b0050 article-title: State Dependence in Lane-Changing Models – start-page: 122 year: 2018 end-page: 138 ident: b0215 article-title: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design publication-title: in – year: 2021 ident: b0275 article-title: E(n) Equivariant Graph Neural Networks publication-title: In – volume: 626 year: 2023 ident: b0040 article-title: A Review of Vehicle Lane Change Research – start-page: 1314 year: 2019 end-page: 1324 ident: b0235 article-title: Searching for MobilenetV3 publication-title: in – start-page: 14424 year: 2020 end-page: 14432 ident: b0160 article-title: Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction publication-title: in – volume: 13 start-page: 12366 year: 2023 ident: b0070 article-title: Vehicle Lane Change Models - a Historical Review – reference: M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. (2019). MnasNet: Platform-Aware Neural Architecture Search for Mobile. in – year: 2022 ident: b0285 article-title: Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism publication-title: In – volume: 53 start-page: 44 year: 2015 end-page: 56 ident: b0015 article-title: A Review of Probabilistic Methods of Assessment of Load Effects in Bridges – volume: 154 year: 2023 ident: b0260 article-title: Large Field Monitoring System of Vehicle Load On Long-Span Bridge Based on the Fusion of Multiple Vision and Wim Data – reference: U.S. Department of Transportation Federal Highway Administration. (2016). Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. Provided by – year: 2019 ident: b0270 article-title: How Powerful are Graph Neural Networks? publication-title: In – volume: 8 start-page: 3620 year: 2023 end-page: 3628 ident: b0090 article-title: Explaining a Machine-Learning Lane Change Model with Maximum Entropy Shapley Values – volume: 217 year: 2023 ident: b0120 article-title: Enhanced Traffic Safety and Efficiency of an Accelerated LC Decision via DNN-APF Technique – reference: R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. (2018). The HighD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. in – volume: 164 year: 2022 ident: b0195 article-title: A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns – volume: 19 start-page: 182 year: 2011 end-page: 195 ident: b0190 article-title: Heterogeneity in car-following behavior: Theory and empirics – year: 2020 ident: b0280 article-title: Principal Neighbourhood Aggregation for Graph Nets publication-title: In – volume: 39 start-page: 1699 year: 2024 end-page: 1723 ident: b0255 article-title: A Hybrid Virtual–Real Traffic Simulation Approach to Reproducing the Spatiotemporal Distribution of Bridge Loads – volume: 27 start-page: 4022082 year: 2022 ident: b0030 article-title: Fatigue Evaluation of Bridges Based on Strain Influence Line Loaded by Elaborate Stochastic Traffic Flow – volume: 72 start-page: 1 year: 2023 end-page: 13 ident: b0180 article-title: STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network with Spatial-Temporal Synchronization – volume: 445 start-page: 298 year: 2021 end-page: 308 ident: b0155 article-title: AST-GNN: An Attention-Based Spatio-Temporal Graph Neural Network for Interaction-Aware Pedestrian Trajectory Prediction – volume: 60 start-page: 16 year: 2014 end-page: 32 ident: b0060 article-title: Recent Developments and Research Needs in Modeling Lane Changing – volume: 9 start-page: 144985 year: 2021 end-page: 144998 ident: b0135 article-title: Predictive Lane Change Decision Making Using Bidirectional Long Shot-Term Memory for Autonomous Driving on Highways – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0225 article-title: Visualizing Data Using T-Sne – start-page: 4510 year: 2018 end-page: 4520 ident: b0220 article-title: MobileNetV2: Inverted Residuals and Linear Bottlenecks publication-title: in – volume: 2674 start-page: 336 year: 2020 end-page: 347 ident: b0130 article-title: Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning – reference: . – volume: 35 start-page: 19 year: 2001 end-page: 53 ident: b0245 article-title: Modeling Human Vehicle Driving by Model Predictive Online Optimization – volume: 141 year: 2022 ident: b0085 article-title: An Integrated Lane Change Prediction Model Incorporating Traffic Context Based on Trajectory Data – volume: 23 start-page: 309 year: 2019 end-page: 318 ident: b0115 article-title: A Cellular Automata Traffic Flow Model Combined with a BP Neural Network Based Microscopic Lane Changing Decision Model – year: 2018 ident: b0200 article-title: Graph Attention Networks publication-title: in – volume: 24 year: 2024 ident: b0140 article-title: Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning – volume: 40 start-page: 101 year: 2003 end-page: 134 ident: b0250 article-title: Understanding and Modeling the Human Driver – year: 2024 ident: b0100 article-title: Impact of Environmental Conditions on Predicting Condition Rating of Concrete Bridge Decks publication-title: . – volume: 34 start-page: 249 year: 2022 end-page: 270 ident: b0150 article-title: Deep Learning on Graphs: A Survey – start-page: 6848 year: 2017 end-page: 6856 ident: b0210 article-title: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices publication-title: in – volume: 34 start-page: 249 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0150 article-title: Deep Learning on Graphs: A Survey publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2020.2981333 – volume: 20 start-page: 403 issue: 5 year: 1986 ident: 10.1016/j.eswa.2024.125902_b0045 article-title: A Model for the Structure of Lane-Changing Decisions publication-title: Transportation Research Part B: Methodological doi: 10.1016/0191-2615(86)90012-3 – ident: 10.1016/j.eswa.2024.125902_b0230 – volume: 19 start-page: 339 issue: 4 year: 1997 ident: 10.1016/j.eswa.2024.125902_b0010 article-title: A Comprehensive Traffic Load Model for Bridge Safety Checking publication-title: Structural Safety doi: 10.1016/S0167-4730(97)00016-7 – volume: 2674 start-page: 336 issue: 7 year: 2020 ident: 10.1016/j.eswa.2024.125902_b0130 article-title: Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.1177/0361198120922210 – volume: 34 start-page: 1746 year: 2021 ident: 10.1016/j.eswa.2024.125902_b0020 article-title: Incorporating the Unevenness of Lane Truck Loading into Fatigue Load Modeling of Multi-Lane Bridges publication-title: Structures doi: 10.1016/j.istruc.2021.08.112 – volume: 266 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0165 article-title: IS-STGCNN: An Improved Social Spatial-Temporal Graph Convolutional Neural Network for Ship Trajectory Prediction publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112960 – volume: 132 year: 2021 ident: 10.1016/j.eswa.2024.125902_b0080 article-title: A Bayesian Inference Based Adaptive Lane Change Prediction Model publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2021.103363 – volume: 7 start-page: 26543 year: 2019 ident: 10.1016/j.eswa.2024.125902_b0075 article-title: A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900416 – volume: 19 start-page: 182 issue: 2 year: 2011 ident: 10.1016/j.eswa.2024.125902_b0190 article-title: Heterogeneity in car-following behavior: Theory and empirics publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2010.05.006 – start-page: 1314 year: 2019 ident: 10.1016/j.eswa.2024.125902_b0235 article-title: Searching for MobilenetV3 – year: 2019 ident: 10.1016/j.eswa.2024.125902_b0270 article-title: How Powerful are Graph Neural Networks? – volume: 164 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0195 article-title: A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns publication-title: Accident Analysis & Prevention doi: 10.1016/j.aap.2021.106500 – year: 2017 ident: 10.1016/j.eswa.2024.125902_b0265 article-title: Inductive Representation Learning on Large Graphs – volume: 40 start-page: 101 issue: 1–3 year: 2003 ident: 10.1016/j.eswa.2024.125902_b0250 article-title: Understanding and Modeling the Human Driver publication-title: Vehicle System Dynamics doi: 10.1076/vesd.40.1.101.15875 – volume: 9 start-page: 144985 year: 2021 ident: 10.1016/j.eswa.2024.125902_b0135 article-title: Predictive Lane Change Decision Making Using Bidirectional Long Shot-Term Memory for Autonomous Driving on Highways publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3122869 – year: 2022 ident: 10.1016/j.eswa.2024.125902_b0285 article-title: Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism – volume: 35 start-page: 19 issue: 1 year: 2001 ident: 10.1016/j.eswa.2024.125902_b0245 article-title: Modeling Human Vehicle Driving by Model Predictive Online Optimization publication-title: Vehicle System Dynamics doi: 10.1076/vesd.35.1.19.5614 – volume: 2124 start-page: 81 issue: 1 year: 2009 ident: 10.1016/j.eswa.2024.125902_b0050 article-title: State Dependence in Lane-Changing Models publication-title: Transportation Research Record doi: 10.3141/2124-08 – start-page: 14424 year: 2020 ident: 10.1016/j.eswa.2024.125902_b0160 article-title: Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction – volume: 23 start-page: 22343 issue: 11 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0170 article-title: Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2022.3164450 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0180 article-title: STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network with Spatial-Temporal Synchronization publication-title: IEEE Transactions on Instrumentation and Measurement – year: 2018 ident: 10.1016/j.eswa.2024.125902_b0200 article-title: Graph Attention Networks – volume: 13 start-page: 494 issue: 4 year: 2017 ident: 10.1016/j.eswa.2024.125902_b0025 article-title: A Site-Specific Traffic Load Model for Long-Span Multi-Pylon Cable-Stayed Bridges publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732479.2016.1164724 – start-page: 122 year: 2018 ident: 10.1016/j.eswa.2024.125902_b0215 article-title: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design – start-page: 4510 year: 2018 ident: 10.1016/j.eswa.2024.125902_b0220 article-title: MobileNetV2: Inverted Residuals and Linear Bottlenecks – volume: 8 start-page: 3620 issue: 6 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0090 article-title: Explaining a Machine-Learning Lane Change Model with Maximum Entropy Shapley Values publication-title: IEEE Transactions on Intelligent Vehicles doi: 10.1109/TIV.2023.3266196 – volume: 13 start-page: 12366 issue: 22 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0070 article-title: Vehicle Lane Change Models - a Historical Review publication-title: Applied Sciences doi: 10.3390/app132212366 – volume: 14 start-page: 1942 issue: 4 year: 2013 ident: 10.1016/j.eswa.2024.125902_b0035 article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2272074 – year: 2017 ident: 10.1016/j.eswa.2024.125902_b0205 article-title: Attention is All You Need – volume: 39 start-page: 1699 issue: 11 year: 2024 ident: 10.1016/j.eswa.2024.125902_b0255 article-title: A Hybrid Virtual–Real Traffic Simulation Approach to Reproducing the Spatiotemporal Distribution of Bridge Loads publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.13154 – ident: 10.1016/j.eswa.2024.125902_b0105 – start-page: 6848 year: 2017 ident: 10.1016/j.eswa.2024.125902_b0210 article-title: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 10.1016/j.eswa.2024.125902_b0225 article-title: Visualizing Data Using T-Sne publication-title: Journal of Machine Learning Research – volume: 107 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0065 article-title: Lane-Changing Decision Modelling in Congested Traffic with a Game Theory-Based Decomposition Algorithm publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104530 – ident: 10.1016/j.eswa.2024.125902_b0240 doi: 10.1109/CVPR.2019.00293 – volume: 23 start-page: 309 issue: 4 year: 2019 ident: 10.1016/j.eswa.2024.125902_b0115 article-title: A Cellular Automata Traffic Flow Model Combined with a BP Neural Network Based Microscopic Lane Changing Decision Model publication-title: Journal of Intelligent Transportation Systems doi: 10.1080/15472450.2018.1462176 – volume: 23 start-page: 9554 issue: 7 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0175 article-title: Multi-Agent Trajectory Prediction with Heterogeneous Edge-Enhanced Graph Attention Network publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2022.3146300 – volume: 53 start-page: 44 year: 2015 ident: 10.1016/j.eswa.2024.125902_b0015 article-title: A Review of Probabilistic Methods of Assessment of Load Effects in Bridges publication-title: Structural Safety doi: 10.1016/j.strusafe.2015.01.002 – volume: 115 year: 2020 ident: 10.1016/j.eswa.2024.125902_b0095 article-title: Applying Markov Decision Process to Understand Driving Decisions Using Basic Safety Messages Data publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2020.102642 – volume: 117 start-page: 1413 issue: 5 year: 1991 ident: 10.1016/j.eswa.2024.125902_b0005 article-title: Simulation of Dynamic Load for Bridges publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)0733-9445(1991)117:5(1413) – volume: 27 start-page: 4022082 issue: 9 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0030 article-title: Fatigue Evaluation of Bridges Based on Strain Influence Line Loaded by Elaborate Stochastic Traffic Flow publication-title: Journal of Bridge Engineering doi: 10.1061/(ASCE)BE.1943-5592.0001929 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2024.125902_b0125 article-title: Traffic Load Simulation for Long-Span Bridges Using a Transformer Model Incorporating In-Lane Transverse Vehicle Movements publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 1999 start-page: 86 issue: 1 year: 2007 ident: 10.1016/j.eswa.2024.125902_b0055 article-title: General Lane-Changing Model Mobil for Car-Following Models publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/1999-10 – year: 2021 ident: 10.1016/j.eswa.2024.125902_b0275 article-title: E(n) Equivariant Graph Neural Networks – volume: 445 start-page: 298 year: 2021 ident: 10.1016/j.eswa.2024.125902_b0155 article-title: AST-GNN: An Attention-Based Spatio-Temporal Graph Neural Network for Interaction-Aware Pedestrian Trajectory Prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.024 – ident: 10.1016/j.eswa.2024.125902_b0110 doi: 10.1109/ITSC.2018.8569552 – volume: 626 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0040 article-title: A Review of Vehicle Lane Change Research publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2023.129060 – volume: 141 year: 2022 ident: 10.1016/j.eswa.2024.125902_b0085 article-title: An Integrated Lane Change Prediction Model Incorporating Traffic Context Based on Trajectory Data publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2022.103738 – volume: 32 start-page: 4 issue: 1 year: 2021 ident: 10.1016/j.eswa.2024.125902_b0145 article-title: A Comprehensive Survey on Graph Neural Networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2978386 – volume: 24 issue: 2 year: 2024 ident: 10.1016/j.eswa.2024.125902_b0140 article-title: Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning publication-title: Sensors doi: 10.3390/s24020403 – year: 2024 ident: 10.1016/j.eswa.2024.125902_b0100 article-title: Impact of Environmental Conditions on Predicting Condition Rating of Concrete Bridge Decks publication-title: Transportation Research Record: Journal of the Transportation Research Board. doi: 10.1177/03611981241248647 – year: 2020 ident: 10.1016/j.eswa.2024.125902_b0280 article-title: Principal Neighbourhood Aggregation for Graph Nets – volume: 154 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0260 article-title: Large Field Monitoring System of Vehicle Load On Long-Span Bridge Based on the Fusion of Multiple Vision and Wim Data publication-title: Automation in Construction doi: 10.1016/j.autcon.2023.104985 – volume: 60 start-page: 16 year: 2014 ident: 10.1016/j.eswa.2024.125902_b0060 article-title: Recent Developments and Research Needs in Modeling Lane Changing publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2013.11.009 – volume: 217 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0120 article-title: Enhanced Traffic Safety and Efficiency of an Accelerated LC Decision via DNN-APF Technique publication-title: Measurement doi: 10.1016/j.measurement.2023.113029 – volume: 24 year: 2023 ident: 10.1016/j.eswa.2024.125902_b0185 article-title: Spatio-Temporal Interactive Graph Convolution Network for Vehicle Trajectory Prediction publication-title: Internet of Things doi: 10.1016/j.iot.2023.100935 |
SSID | ssj0017007 |
Score | 2.4610732 |
Snippet | Lane-changing Prediction (LCP) is crucial in defining vehicle movement in Microscopic Traffic Load Simulation (MTLS), impacting the distribution of traffic... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 125902 |
SubjectTerms | Attention mechanism Heterogeneous graph neural network Lane-changing prediction Microscopic traffic load simulation Multiple contexts Transformer |
Title | Multi-Context enhanced Lane-Changing prediction using a heterogeneous Graph Neural Network |
URI | https://dx.doi.org/10.1016/j.eswa.2024.125902 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VsLDwRpRH5YENuY_YqZOxqijl1QUqVSyRY7u0DGlVgmDit3OXOAiExMBqxUp0tu_7HH_3GeBMpE5F01By25nGXAqjuY4tqSwQ65HCBt2YqpHvRt3hWF5PwkkN-lUtDMkqfe4vc3qRrX1Ly0eztZzPW_dIDhAOcWuHWyDVjcl2W0pFs7z58SXzIPs5VfrtKU5P-8KZUuPlXt7IeyiQTcT52P9a-QVO3wBnsA2bnimyXvkxO1Bz2S5sVbcwML8o9-CxqKHlhc3Ue85cNisO9dmtzhwvigcQndhyRScyNAqMpO5PTLMZKWEWOIEc7v7ZJTlXM_LqwJeOSnH4PowHFw_9Ifc3JnCDPCXn2oqobToKIUcpEYRWOR0F0kTKaElOOKLrUptOpQvbRivdMbEhO9TUOhE6JcQBrGWLzB0Cw8Yo1ZFtS6VlmCILibQwNtbCIsPSpg7nVaiSZWmMkVSKseeEAptQYJMysHUIq2gmP4Y3wcz9R7-jf_Y7ho2ALuothHcnsJavXt0psoc8bRTTowHrvaub4egTCEvEQw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BGWDhG_GNBzZk2sZOnIxVBRQoXaBSxRI5tkvLkFa0Ffx87hIHgZAYWK1Yic72vef43TPAucicioeh5LY5TLgURnOdWFJZINYjhQ2ihKqRH3pRpy_vBuFgCdpVLQzJKn3uL3N6ka19S91Hsz4dj-uPSA4QDnFrh1sgFSXRMqyQO1VYg5XW7X2n93WYoBpl1TQ-z6mDr50pZV5u9k72Q4G8RKhP_N-VX_j0DXOuN2Hdk0XWKr9nC5Zcvg0b1UUMzK_LHXguymh54TT1MWcuHxXn-qyrc8eL-gEEKDZ9o0MZGghGavcXptmIxDATnENuspixGzKvZmTXgS_tlfrwXehfXz21O9xfmsANUpU511bEDdNUiDpKiSC0yuk4kCZWRksywxGRy2w2lC5sGK100ySGHFEz60TolBB7UMsnudsHho1xpmPbkErLMEMiEmthbKKFRZKlzQFcVKFKp6U3RlqJxl5TCmxKgU3LwB5AWEUz_THCKSbvP_od_rPfGax2nh66afe2d38EawHd21vo8I6hNn9buBMkE_Ps1E-WT9d6xvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Context+enhanced+Lane-Changing+prediction+using+a+heterogeneous+Graph+Neural+Network&rft.jtitle=Expert+systems+with+applications&rft.au=Dong%2C+Yiqing&rft.au=Han%2C+Chengjia&rft.au=Zhao%2C+Chaoyang&rft.au=Madan%2C+Aayush&rft.date=2025-03-10&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=264&rft_id=info:doi/10.1016%2Fj.eswa.2024.125902&rft.externalDocID=S0957417424027696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |