EOG compression in polysomnographic recordings based on the Lempel-Ziv-Welch algorithm
•To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To compare the performance of lossless and lossy compression techniques on EOGs. Nocturnal polysomnography (PSG) is a neurophysiological techniq...
Saved in:
Published in | Biomedical signal processing and control Vol. 103; p. 107372 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To compare the performance of lossless and lossy compression techniques on EOGs.
Nocturnal polysomnography (PSG) is a neurophysiological technique that studies sleep by recording multiple physiological parameters. One is the electrical signal, called the electrooculogram (EOG), generated from eye movement. An extensive PSG signal recording, typically around 8 h, requires a massive volume of data to be transmitted and stored; compression is therefore required. This study aims to compress EOG signals effectively, providing high-quality reconstruction with low bit rates and acceptable distortions. The Sleep Disorders Research Center dataset is employed to verify the applicability of the devised method. The solution is founded on the Lempel-Ziv-Welch (LZW) algorithm, developed with MATLAB software. The signal is compressed using this algorithm and subsequently reconstructed. The algorithm’s performance is evaluated using five parameters: compression performance (CP), L2 energy retained in the compressed signal, percent root-mean-square difference (PRD) in the reconstruction, compressed signal size, and runtime. The findings of the experiment, which used 22 EOGs of different subjects, comprising 11 individuals with psychophysiological insomnia and 11 individuals without this condition, demonstrated that the LZW algorithm produced an average CP of 84.65% while retaining almost 100.44% of the signal energy and a PRD of 6.20% in the reconstructed signal. |
---|---|
AbstractList | •To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To compare the performance of lossless and lossy compression techniques on EOGs.
Nocturnal polysomnography (PSG) is a neurophysiological technique that studies sleep by recording multiple physiological parameters. One is the electrical signal, called the electrooculogram (EOG), generated from eye movement. An extensive PSG signal recording, typically around 8 h, requires a massive volume of data to be transmitted and stored; compression is therefore required. This study aims to compress EOG signals effectively, providing high-quality reconstruction with low bit rates and acceptable distortions. The Sleep Disorders Research Center dataset is employed to verify the applicability of the devised method. The solution is founded on the Lempel-Ziv-Welch (LZW) algorithm, developed with MATLAB software. The signal is compressed using this algorithm and subsequently reconstructed. The algorithm’s performance is evaluated using five parameters: compression performance (CP), L2 energy retained in the compressed signal, percent root-mean-square difference (PRD) in the reconstruction, compressed signal size, and runtime. The findings of the experiment, which used 22 EOGs of different subjects, comprising 11 individuals with psychophysiological insomnia and 11 individuals without this condition, demonstrated that the LZW algorithm produced an average CP of 84.65% while retaining almost 100.44% of the signal energy and a PRD of 6.20% in the reconstructed signal. |
ArticleNumber | 107372 |
Author | Ferrero, Francisco López, Alberto Qaisar, Saeed Mian Álvarez, Juan Carlos García, Gonzalo |
Author_xml | – sequence: 1 givenname: Alberto orcidid: 0000-0003-3572-7632 surname: López fullname: López, Alberto email: uo181549@uniovi.es organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain – sequence: 2 givenname: Gonzalo orcidid: 0009-0000-0920-3099 surname: García fullname: García, Gonzalo organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain – sequence: 3 givenname: Saeed Mian orcidid: 0000-0002-4268-3482 surname: Qaisar fullname: Qaisar, Saeed Mian organization: Electrical and Computer Engineering Department, Effat University, 21478 Jeddah, Saudi Arabia – sequence: 4 givenname: Francisco orcidid: 0000-0003-3551-8160 surname: Ferrero fullname: Ferrero, Francisco organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain – sequence: 5 givenname: Juan Carlos surname: Álvarez fullname: Álvarez, Juan Carlos organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain |
BookMark | eNp9kMtqwzAQRbVIoUnbH-hKP-BUL1sKdFNCmhYC2fQB3QhJHscKtmQkE8jf1yFddzUw3HOZOQs0CzEAQo-ULCmh1dNxafPglowwMS0kl2yG5lSKqlBkJW7RIucjIUJJKuboa7PfYhf7IUHOPgbsAx5id86xD_GQzNB6hxO4mGofDhlbk6HGU25sAe-gH6Arfvyp-IbOtdh0h5j82Pb36KYxXYaHv3mHPl83H-u3Yrffvq9fdoVjJR0LY5VhatVwJriVFhRrTOWqRolSlLyxgqgp4CpqCWO8UlA6UFIaZaVgnAG_Q-za61LMOUGjh-R7k86aEn2xoY_6YkNfbOirjQl6vkIwXXbykHR2HoKD2k-fjrqO_j_8F9QPbRM |
Cites_doi | 10.1109/ACCESS.2020.2986397 10.1109/NTMS.2015.7266469 10.1164/ajrccm.162.3.9908002 10.1109/TENCON54134.2021.9707201 10.1109/MC.1984.1659158 10.1007/s40031-021-00686-3 10.1378/chest.124.4.1543 10.1109/I2MTC50364.2021.9459880 10.1109/I2MTC60896.2024.10560680 10.1109/ACCESS.2020.3023915 10.1109/NGCT.2015.7375242 10.1111/coa.12549 10.1109/TBCAS.2018.2824659 10.1109/TIT.1977.1055714 10.1016/j.dib.2017.09.033 10.4018/jalr.2011070102 10.1371/journal.pone.0218948 10.1007/978-3-540-68017-8_111 10.1016/j.compeleceng.2019.106462 10.1109/WESCAN.1991.160551 10.1109/DATE.2003.1253596 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.bspc.2024.107372 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2024_107372 S1746809424014307 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c251t-ab8a289f3243b7be82fa6c6f845453fb4088a2c61b022368e5ce877a8b74232e3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 04:57:11 EDT 2025 Sat Jun 07 17:01:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Compression performance Root-mean-square difference Electrooculography L2 energy retained Polysomnography Lempel-Ziv-Welch algorithm |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-ab8a289f3243b7be82fa6c6f845453fb4088a2c61b022368e5ce877a8b74232e3 |
ORCID | 0000-0003-3551-8160 0000-0002-4268-3482 0009-0000-0920-3099 0000-0003-3572-7632 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1746809424014307 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2024_107372 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_107372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | A. Bhandari, V. Khare, J. Santhosh, and S. Anand, “Wavelet based compression technique of Electro-oculogram signals,” in Proc. of the 3rd Kuala Lumpur International Conference on Biomedical Engineering, vol. 15, pp. 440–443, 2006. S.T.-B. Hamida and B. Ahmed, “A remote deep sleep monitoring system based on a single channel for in-home insomnia diagnosis,” in Proc. of the 7th International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 27–29 July 2015. Liu, Imtiaz (b0070) 2020; 8 M.J. Knieser, F.G. Wolff, C.A. Papachristou, D.J. Weyer, and D.R. McIntyre, “A technique for high ratio LZW compression,” in Proc. of the Design, Automation and Test in Europe Conference (DATE), Munich, Germany, 7 March 2003, pp. 116–121. Wissel, Palaniappan (b0080) 2011; 2 Surrel, Aminifar, Rincon, Murali, Atienza (b0020) 2018; 12 A. Rechtschaffen and A. Kales, “A manual of standarized terminology. Techniques and scoring system for sleep stages of human subjects,” National Institutes of Health, USA, no. 204, Eds. A. Rechtschaffenn and A. Kales, 1968. A. López, S. Mian, F. J. Ferrero, and R. Yahiaoui, “Electrooculogram compression based on wavelet packet decomposition,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024. U. Pratap and R. Kumar, “ECG compression using compressed sensing with Lempel-Ziv-Welch technique,” in Proc. of the International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4−5 September 2015, pp. 863−867. Elakkiya, Thivya (b0120) 2022; 103 Flemons, Littner, Rowley, Gay, Anderson, Hudgel, McEvoy, Loube (b0040) 2003; 124 Welch (b0110) 1984; 17 W. Kinsner and R. H. Greenfield, “The Lempel-Ziv-Welch (LZW) data compression algorithm for packet radio,” in Proc. of the IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Environment (Wescanex), Regina, Saskatchewan, Canada, 29–30 May 1991, pp. 225–229. Leigh, Zee (b0100) 2015 Y.-L. Tsai and J.-J. Ding, “An improved LZW algorithm for large data size and low bitwidth per code,” in Proc. of the IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021, pp. 203–208. Qaisar, Khan, Dallet, Tadeusiewicz, Pławiak (b0135) 2022; 42 McPartland, Kupfer, Coble, Shaw, Spiker (b0010) 1979; 14 Qaisar (b0130) 2019; 79 Culebras (b0035) 2004; 1 J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Infonn. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977. S.-F. Liang, Y.-H. Shih, P.-Y. Chen, and C.-E. Kuo, “Development of a human-computer collaborative sleep scoring system for polysomnography recordings,” PLoS ONE, vol. 14, no. 7, 2019. Rezaei, Mohammadi, Khazaie (b0075) 2017; 15 Portier, Portmann, Czernichow, Vascaut, Devin, Benhamou, Cuvelier, Muir (b0050) 2000; 162 SOMNOscreen™ plus PSG. SOMNOmedics. https://www.sanro.com/producto/somnoscreen-plus-psg-somnomedics. Lee, Hsu, Chang, Lin, Kang (b0015) 2016; 41 Kuo, Chen (b0025) 2020; 8 A. López, F.J. Ferrero, and J.R. Villar, “EOG signal compression using turning point algorithm,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 17–20 May 2021. 10.1016/j.bspc.2024.107372_b0090 10.1016/j.bspc.2024.107372_b0030 Portier (10.1016/j.bspc.2024.107372_b0050) 2000; 162 10.1016/j.bspc.2024.107372_b0095 Rezaei (10.1016/j.bspc.2024.107372_b0075) 2017; 15 Kuo (10.1016/j.bspc.2024.107372_b0025) 2020; 8 10.1016/j.bspc.2024.107372_b0055 10.1016/j.bspc.2024.107372_b0005 10.1016/j.bspc.2024.107372_b0105 10.1016/j.bspc.2024.107372_b0125 McPartland (10.1016/j.bspc.2024.107372_b0010) 1979; 14 Liu (10.1016/j.bspc.2024.107372_b0070) 2020; 8 Welch (10.1016/j.bspc.2024.107372_b0110) 1984; 17 Elakkiya (10.1016/j.bspc.2024.107372_b0120) 2022; 103 Wissel (10.1016/j.bspc.2024.107372_b0080) 2011; 2 10.1016/j.bspc.2024.107372_b0060 Qaisar (10.1016/j.bspc.2024.107372_b0135) 2022; 42 Lee (10.1016/j.bspc.2024.107372_b0015) 2016; 41 10.1016/j.bspc.2024.107372_b0085 Culebras (10.1016/j.bspc.2024.107372_b0035) 2004; 1 10.1016/j.bspc.2024.107372_b0045 10.1016/j.bspc.2024.107372_b0065 Leigh (10.1016/j.bspc.2024.107372_b0100) 2015 10.1016/j.bspc.2024.107372_b0115 Flemons (10.1016/j.bspc.2024.107372_b0040) 2003; 124 Qaisar (10.1016/j.bspc.2024.107372_b0130) 2019; 79 Surrel (10.1016/j.bspc.2024.107372_b0020) 2018; 12 |
References_xml | – reference: S.-F. Liang, Y.-H. Shih, P.-Y. Chen, and C.-E. Kuo, “Development of a human-computer collaborative sleep scoring system for polysomnography recordings,” PLoS ONE, vol. 14, no. 7, 2019. – reference: A. López, F.J. Ferrero, and J.R. Villar, “EOG signal compression using turning point algorithm,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 17–20 May 2021. – volume: 2 start-page: 6 year: 2011 end-page: 21 ident: b0080 article-title: Considerations on strategies to improve EOG signal analysis publication-title: Int. J. of Artif. Life Res. – reference: U. Pratap and R. Kumar, “ECG compression using compressed sensing with Lempel-Ziv-Welch technique,” in Proc. of the International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4−5 September 2015, pp. 863−867. – volume: 8 start-page: 168486 year: 2020 end-page: 168501 ident: b0070 article-title: Studying the effects of compression in EEG-based wearable sleep monitoring systems publication-title: IEEE Access – reference: Y.-L. Tsai and J.-J. Ding, “An improved LZW algorithm for large data size and low bitwidth per code,” in Proc. of the IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021, pp. 203–208. – reference: A. Rechtschaffen and A. Kales, “A manual of standarized terminology. Techniques and scoring system for sleep stages of human subjects,” National Institutes of Health, USA, no. 204, Eds. A. Rechtschaffenn and A. Kales, 1968. – reference: J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Infonn. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977. – volume: 15 start-page: 314 year: 2017 end-page: 319 ident: b0075 article-title: EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects publication-title: Data Brief – volume: 42 start-page: 681 year: 2022 end-page: 694 ident: b0135 article-title: Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare publication-title: Biocyb. Biomed. Eng. – volume: 1 start-page: 124 year: 2004 end-page: 132 ident: b0035 article-title: Who should be tested in the sleep laboratory? publication-title: Rev. Neurol. Dis. – volume: 162 start-page: 814 year: 2000 end-page: 818 ident: b0050 article-title: Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome publication-title: Am. J. Respir. Crit. Care. Med. – reference: A. López, S. Mian, F. J. Ferrero, and R. Yahiaoui, “Electrooculogram compression based on wavelet packet decomposition,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024. – reference: W. Kinsner and R. H. Greenfield, “The Lempel-Ziv-Welch (LZW) data compression algorithm for packet radio,” in Proc. of the IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Environment (Wescanex), Regina, Saskatchewan, Canada, 29–30 May 1991, pp. 225–229. – reference: M.J. Knieser, F.G. Wolff, C.A. Papachristou, D.J. Weyer, and D.R. McIntyre, “A technique for high ratio LZW compression,” in Proc. of the Design, Automation and Test in Europe Conference (DATE), Munich, Germany, 7 March 2003, pp. 116–121. – volume: 17 start-page: 8 year: 1984 end-page: 19 ident: b0110 article-title: A technique for high-performance data compression publication-title: IEEE Comput. – volume: 14 start-page: 767 year: 1979 end-page: 776 ident: b0010 article-title: An automated analysis of REM sleep in primary depression publication-title: Biol. Psych. – volume: 8 start-page: 69763 year: 2020 end-page: 69773 ident: b0025 article-title: A short-time insomnia detection system based on sleep EOG with RCMSE analysis publication-title: IEEE Access – volume: 79 year: 2019 ident: b0130 article-title: Efficient mobile systems based on adaptive rate signal processing publication-title: Comput. Electr. Eng. – reference: S.T.-B. Hamida and B. Ahmed, “A remote deep sleep monitoring system based on a single channel for in-home insomnia diagnosis,” in Proc. of the 7th International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 27–29 July 2015. – reference: SOMNOscreen™ plus PSG. SOMNOmedics. https://www.sanro.com/producto/somnoscreen-plus-psg-somnomedics. – volume: 41 start-page: 498 year: 2016 end-page: 510 ident: b0015 article-title: Polysomnographic findings after adenotonsillectomy for obstructive sleep apnea in obese and non-obese children: a systemic review and meta-analysis publication-title: Clin. Otolaryngol. – year: 2015 ident: b0100 article-title: The neurology of eye movements. Encyclopedia of biomedical engineering – volume: 103 start-page: 1003 year: 2022 end-page: 1012 ident: b0120 article-title: Comprehensive review on lossy and lossless compression techniques publication-title: J. Inst. Eng. India Ser. B – volume: 124 start-page: 1543 year: 2003 end-page: 1579 ident: b0040 article-title: Home diagnosis of sleep apnea: A systematic review of the literature publication-title: Chest – reference: A. Bhandari, V. Khare, J. Santhosh, and S. Anand, “Wavelet based compression technique of Electro-oculogram signals,” in Proc. of the 3rd Kuala Lumpur International Conference on Biomedical Engineering, vol. 15, pp. 440–443, 2006. – volume: 12 start-page: 762 year: 2018 end-page: 773 ident: b0020 article-title: Online obstructive sleep apnea detection on medical wearable sensors publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 8 start-page: 69763 year: 2020 ident: 10.1016/j.bspc.2024.107372_b0025 article-title: A short-time insomnia detection system based on sleep EOG with RCMSE analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986397 – ident: 10.1016/j.bspc.2024.107372_b0045 doi: 10.1109/NTMS.2015.7266469 – ident: 10.1016/j.bspc.2024.107372_b0095 – volume: 162 start-page: 814 year: 2000 ident: 10.1016/j.bspc.2024.107372_b0050 article-title: Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome publication-title: Am. J. Respir. Crit. Care. Med. doi: 10.1164/ajrccm.162.3.9908002 – ident: 10.1016/j.bspc.2024.107372_b0125 doi: 10.1109/TENCON54134.2021.9707201 – volume: 14 start-page: 767 year: 1979 ident: 10.1016/j.bspc.2024.107372_b0010 article-title: An automated analysis of REM sleep in primary depression publication-title: Biol. Psych. – volume: 17 start-page: 8 issue: 6 year: 1984 ident: 10.1016/j.bspc.2024.107372_b0110 article-title: A technique for high-performance data compression publication-title: IEEE Comput. doi: 10.1109/MC.1984.1659158 – volume: 103 start-page: 1003 year: 2022 ident: 10.1016/j.bspc.2024.107372_b0120 article-title: Comprehensive review on lossy and lossless compression techniques publication-title: J. Inst. Eng. India Ser. B doi: 10.1007/s40031-021-00686-3 – volume: 124 start-page: 1543 issue: 4 year: 2003 ident: 10.1016/j.bspc.2024.107372_b0040 article-title: Home diagnosis of sleep apnea: A systematic review of the literature publication-title: Chest doi: 10.1378/chest.124.4.1543 – ident: 10.1016/j.bspc.2024.107372_b0065 doi: 10.1109/I2MTC50364.2021.9459880 – volume: 1 start-page: 124 year: 2004 ident: 10.1016/j.bspc.2024.107372_b0035 article-title: Who should be tested in the sleep laboratory? publication-title: Rev. Neurol. Dis. – ident: 10.1016/j.bspc.2024.107372_b0060 doi: 10.1109/I2MTC60896.2024.10560680 – volume: 8 start-page: 168486 year: 2020 ident: 10.1016/j.bspc.2024.107372_b0070 article-title: Studying the effects of compression in EEG-based wearable sleep monitoring systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023915 – ident: 10.1016/j.bspc.2024.107372_b0085 doi: 10.1109/NGCT.2015.7375242 – volume: 41 start-page: 498 issue: 5 year: 2016 ident: 10.1016/j.bspc.2024.107372_b0015 article-title: Polysomnographic findings after adenotonsillectomy for obstructive sleep apnea in obese and non-obese children: a systemic review and meta-analysis publication-title: Clin. Otolaryngol. doi: 10.1111/coa.12549 – volume: 12 start-page: 762 issue: 4 year: 2018 ident: 10.1016/j.bspc.2024.107372_b0020 article-title: Online obstructive sleep apnea detection on medical wearable sensors publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2018.2824659 – year: 2015 ident: 10.1016/j.bspc.2024.107372_b0100 – ident: 10.1016/j.bspc.2024.107372_b0105 doi: 10.1109/TIT.1977.1055714 – volume: 42 start-page: 681 issue: 2 year: 2022 ident: 10.1016/j.bspc.2024.107372_b0135 article-title: Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare publication-title: Biocyb. Biomed. Eng. – volume: 15 start-page: 314 year: 2017 ident: 10.1016/j.bspc.2024.107372_b0075 article-title: EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects publication-title: Data Brief doi: 10.1016/j.dib.2017.09.033 – volume: 2 start-page: 6 issue: 3 year: 2011 ident: 10.1016/j.bspc.2024.107372_b0080 article-title: Considerations on strategies to improve EOG signal analysis publication-title: Int. J. of Artif. Life Res. doi: 10.4018/jalr.2011070102 – ident: 10.1016/j.bspc.2024.107372_b0005 doi: 10.1371/journal.pone.0218948 – ident: 10.1016/j.bspc.2024.107372_b0055 doi: 10.1007/978-3-540-68017-8_111 – volume: 79 year: 2019 ident: 10.1016/j.bspc.2024.107372_b0130 article-title: Efficient mobile systems based on adaptive rate signal processing publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.106462 – ident: 10.1016/j.bspc.2024.107372_b0030 – ident: 10.1016/j.bspc.2024.107372_b0115 doi: 10.1109/WESCAN.1991.160551 – ident: 10.1016/j.bspc.2024.107372_b0090 doi: 10.1109/DATE.2003.1253596 |
SSID | ssj0048714 |
Score | 2.366132 |
Snippet | •To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 107372 |
SubjectTerms | Compression performance Electrooculography L2 energy retained Lempel-Ziv-Welch algorithm Polysomnography Root-mean-square difference |
Title | EOG compression in polysomnographic recordings based on the Lempel-Ziv-Welch algorithm |
URI | https://dx.doi.org/10.1016/j.bspc.2024.107372 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdPQ2I4Zq6qlvMoAhYolih2bBrVJ1AYkFn475zxQkRADq3WWos_W3XfOd3cIHTPJXSWMIiFzHEI1U0RCGkGAO2jDjTROXi52O-SDEb0as3ENdataGCurLH1_4dNzb12utEo0W2kUte6BS3MB2QnEJAj6eUU5pZ695aef3zIP4ON5f29rTKx1WThTaLzkIrVtDNsUFuy8lt-D01LA6W-g9ZIp4k7xMZuopuMttLbUP3AbPfbuLrAVhRdi1hhHMU6T6ccimcVFK-pI4eIZxj6IYxuyQgx2wPrwjQbGPCXP0Tt50lM1wcH0JZlH2WS2g0b93kN3QMpBCUQBPclIIEUAiZMBcuRKT2rRNgFX3AgK_Mg1AL4AA8XPJERslws4ES08LxAy_0-r3V1Uj5NY7yGshAP7tDEscKmnQulQyZg511SHPKBBA51UCPlp0Q_Dr4Rir77F07d4-gWeDcQqEP0fp-qDw_5j3_4_9x2g1badz5sLEg9RPZu_6SMgDZls5reiiVY6l9eD4RfU9sG2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwc2ZDU0sWPGqmpp6YOBFiqWKHZsGtSmUVuQ-Pec40QqEmJgte4k63N099n57g6hayqYK7mWJKKOQzxFJRFwjSDAHZRmWmgnKxcbDFln7D1M6KSEmkUtjJFV5rHfxvQsWucrtRzNWhrHtSfg0ozD7QRyEiR9U1FeMd2paBlVGt1eZ1gEZKDkWYtvY0-MQ147Y2VeYpWaToZ1DxbMyJbf89NGzmnvod2cLOKG3c8-KqnkAO1stBA8RM-tx3tsdOFWz5rgOMHpYva1WswT2406lti-xJg3cWyyVoTBDogf7isgzTPyGn-SFzWTUxzO3hbLeD2dH6FxuzVqdkg-K4FIYChrEgoewt1JAz9yhS8Ur-uQSaY5QEJdDfhzMJDsVkDSdhmHQ1Hc90Musl-1yj1G5WSRqBOEJXfAT2lNQ9fzZSQcT1Cq75SnIhZ6YRXdFAgFqW2JERRasffA4BkYPAOLZxXRAsTgx8EGELP_8Dv9p98V2uqMBv2g3x32ztB23YzrzfSJ56i8Xn6oC-AQa3GZfyPfjz3EZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EOG+compression+in+polysomnographic+recordings+based+on+the+Lempel-Ziv-Welch+algorithm&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=L%C3%B3pez%2C+Alberto&rft.au=Garc%C3%ADa%2C+Gonzalo&rft.au=Qaisar%2C+Saeed+Mian&rft.au=Ferrero%2C+Francisco&rft.date=2025-05-01&rft.issn=1746-8094&rft.volume=103&rft.spage=107372&rft_id=info:doi/10.1016%2Fj.bspc.2024.107372&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_107372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |