EOG compression in polysomnographic recordings based on the Lempel-Ziv-Welch algorithm

•To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To compare the performance of lossless and lossy compression techniques on EOGs. Nocturnal polysomnography (PSG) is a neurophysiological techniq...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 103; p. 107372
Main Authors López, Alberto, García, Gonzalo, Qaisar, Saeed Mian, Ferrero, Francisco, Álvarez, Juan Carlos
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To compare the performance of lossless and lossy compression techniques on EOGs. Nocturnal polysomnography (PSG) is a neurophysiological technique that studies sleep by recording multiple physiological parameters. One is the electrical signal, called the electrooculogram (EOG), generated from eye movement. An extensive PSG signal recording, typically around 8 h, requires a massive volume of data to be transmitted and stored; compression is therefore required. This study aims to compress EOG signals effectively, providing high-quality reconstruction with low bit rates and acceptable distortions. The Sleep Disorders Research Center dataset is employed to verify the applicability of the devised method. The solution is founded on the Lempel-Ziv-Welch (LZW) algorithm, developed with MATLAB software. The signal is compressed using this algorithm and subsequently reconstructed. The algorithm’s performance is evaluated using five parameters: compression performance (CP), L2 energy retained in the compressed signal, percent root-mean-square difference (PRD) in the reconstruction, compressed signal size, and runtime. The findings of the experiment, which used 22 EOGs of different subjects, comprising 11 individuals with psychophysiological insomnia and 11 individuals without this condition, demonstrated that the LZW algorithm produced an average CP of 84.65% while retaining almost 100.44% of the signal energy and a PRD of 6.20% in the reconstructed signal.
AbstractList •To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To compare the performance of lossless and lossy compression techniques on EOGs. Nocturnal polysomnography (PSG) is a neurophysiological technique that studies sleep by recording multiple physiological parameters. One is the electrical signal, called the electrooculogram (EOG), generated from eye movement. An extensive PSG signal recording, typically around 8 h, requires a massive volume of data to be transmitted and stored; compression is therefore required. This study aims to compress EOG signals effectively, providing high-quality reconstruction with low bit rates and acceptable distortions. The Sleep Disorders Research Center dataset is employed to verify the applicability of the devised method. The solution is founded on the Lempel-Ziv-Welch (LZW) algorithm, developed with MATLAB software. The signal is compressed using this algorithm and subsequently reconstructed. The algorithm’s performance is evaluated using five parameters: compression performance (CP), L2 energy retained in the compressed signal, percent root-mean-square difference (PRD) in the reconstruction, compressed signal size, and runtime. The findings of the experiment, which used 22 EOGs of different subjects, comprising 11 individuals with psychophysiological insomnia and 11 individuals without this condition, demonstrated that the LZW algorithm produced an average CP of 84.65% while retaining almost 100.44% of the signal energy and a PRD of 6.20% in the reconstructed signal.
ArticleNumber 107372
Author Ferrero, Francisco
López, Alberto
Qaisar, Saeed Mian
Álvarez, Juan Carlos
García, Gonzalo
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0003-3572-7632
  surname: López
  fullname: López, Alberto
  email: uo181549@uniovi.es
  organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain
– sequence: 2
  givenname: Gonzalo
  orcidid: 0009-0000-0920-3099
  surname: García
  fullname: García, Gonzalo
  organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain
– sequence: 3
  givenname: Saeed Mian
  orcidid: 0000-0002-4268-3482
  surname: Qaisar
  fullname: Qaisar, Saeed Mian
  organization: Electrical and Computer Engineering Department, Effat University, 21478 Jeddah, Saudi Arabia
– sequence: 4
  givenname: Francisco
  orcidid: 0000-0003-3551-8160
  surname: Ferrero
  fullname: Ferrero, Francisco
  organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain
– sequence: 5
  givenname: Juan Carlos
  surname: Álvarez
  fullname: Álvarez, Juan Carlos
  organization: Department of Electrical, Electronic, Communications and Systems Engineering, University of Oviedo, 33204 Gijón, Spain
BookMark eNp9kMtqwzAQRbVIoUnbH-hKP-BUL1sKdFNCmhYC2fQB3QhJHscKtmQkE8jf1yFddzUw3HOZOQs0CzEAQo-ULCmh1dNxafPglowwMS0kl2yG5lSKqlBkJW7RIucjIUJJKuboa7PfYhf7IUHOPgbsAx5id86xD_GQzNB6hxO4mGofDhlbk6HGU25sAe-gH6Arfvyp-IbOtdh0h5j82Pb36KYxXYaHv3mHPl83H-u3Yrffvq9fdoVjJR0LY5VhatVwJriVFhRrTOWqRolSlLyxgqgp4CpqCWO8UlA6UFIaZaVgnAG_Q-za61LMOUGjh-R7k86aEn2xoY_6YkNfbOirjQl6vkIwXXbykHR2HoKD2k-fjrqO_j_8F9QPbRM
Cites_doi 10.1109/ACCESS.2020.2986397
10.1109/NTMS.2015.7266469
10.1164/ajrccm.162.3.9908002
10.1109/TENCON54134.2021.9707201
10.1109/MC.1984.1659158
10.1007/s40031-021-00686-3
10.1378/chest.124.4.1543
10.1109/I2MTC50364.2021.9459880
10.1109/I2MTC60896.2024.10560680
10.1109/ACCESS.2020.3023915
10.1109/NGCT.2015.7375242
10.1111/coa.12549
10.1109/TBCAS.2018.2824659
10.1109/TIT.1977.1055714
10.1016/j.dib.2017.09.033
10.4018/jalr.2011070102
10.1371/journal.pone.0218948
10.1007/978-3-540-68017-8_111
10.1016/j.compeleceng.2019.106462
10.1109/WESCAN.1991.160551
10.1109/DATE.2003.1253596
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.bspc.2024.107372
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_107372
S1746809424014307
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c251t-ab8a289f3243b7be82fa6c6f845453fb4088a2c61b022368e5ce877a8b74232e3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 04:57:11 EDT 2025
Sat Jun 07 17:01:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Compression performance
Root-mean-square difference
Electrooculography
L2 energy retained
Polysomnography
Lempel-Ziv-Welch algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-ab8a289f3243b7be82fa6c6f845453fb4088a2c61b022368e5ce877a8b74232e3
ORCID 0000-0003-3551-8160
0000-0002-4268-3482
0009-0000-0920-3099
0000-0003-3572-7632
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1746809424014307
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_107372
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_107372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References A. Bhandari, V. Khare, J. Santhosh, and S. Anand, “Wavelet based compression technique of Electro-oculogram signals,” in Proc. of the 3rd Kuala Lumpur International Conference on Biomedical Engineering, vol. 15, pp. 440–443, 2006.
S.T.-B. Hamida and B. Ahmed, “A remote deep sleep monitoring system based on a single channel for in-home insomnia diagnosis,” in Proc. of the 7th International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 27–29 July 2015.
Liu, Imtiaz (b0070) 2020; 8
M.J. Knieser, F.G. Wolff, C.A. Papachristou, D.J. Weyer, and D.R. McIntyre, “A technique for high ratio LZW compression,” in Proc. of the Design, Automation and Test in Europe Conference (DATE), Munich, Germany, 7 March 2003, pp. 116–121.
Wissel, Palaniappan (b0080) 2011; 2
Surrel, Aminifar, Rincon, Murali, Atienza (b0020) 2018; 12
A. Rechtschaffen and A. Kales, “A manual of standarized terminology. Techniques and scoring system for sleep stages of human subjects,” National Institutes of Health, USA, no. 204, Eds. A. Rechtschaffenn and A. Kales, 1968.
A. López, S. Mian, F. J. Ferrero, and R. Yahiaoui, “Electrooculogram compression based on wavelet packet decomposition,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024.
U. Pratap and R. Kumar, “ECG compression using compressed sensing with Lempel-Ziv-Welch technique,” in Proc. of the International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4−5 September 2015, pp. 863−867.
Elakkiya, Thivya (b0120) 2022; 103
Flemons, Littner, Rowley, Gay, Anderson, Hudgel, McEvoy, Loube (b0040) 2003; 124
Welch (b0110) 1984; 17
W. Kinsner and R. H. Greenfield, “The Lempel-Ziv-Welch (LZW) data compression algorithm for packet radio,” in Proc. of the IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Environment (Wescanex), Regina, Saskatchewan, Canada, 29–30 May 1991, pp. 225–229.
Leigh, Zee (b0100) 2015
Y.-L. Tsai and J.-J. Ding, “An improved LZW algorithm for large data size and low bitwidth per code,” in Proc. of the IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021, pp. 203–208.
Qaisar, Khan, Dallet, Tadeusiewicz, Pławiak (b0135) 2022; 42
McPartland, Kupfer, Coble, Shaw, Spiker (b0010) 1979; 14
Qaisar (b0130) 2019; 79
Culebras (b0035) 2004; 1
J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Infonn. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977.
S.-F. Liang, Y.-H. Shih, P.-Y. Chen, and C.-E. Kuo, “Development of a human-computer collaborative sleep scoring system for polysomnography recordings,” PLoS ONE, vol. 14, no. 7, 2019.
Rezaei, Mohammadi, Khazaie (b0075) 2017; 15
Portier, Portmann, Czernichow, Vascaut, Devin, Benhamou, Cuvelier, Muir (b0050) 2000; 162
SOMNOscreen™ plus PSG. SOMNOmedics. https://www.sanro.com/producto/somnoscreen-plus-psg-somnomedics.
Lee, Hsu, Chang, Lin, Kang (b0015) 2016; 41
Kuo, Chen (b0025) 2020; 8
A. López, F.J. Ferrero, and J.R. Villar, “EOG signal compression using turning point algorithm,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 17–20 May 2021.
10.1016/j.bspc.2024.107372_b0090
10.1016/j.bspc.2024.107372_b0030
Portier (10.1016/j.bspc.2024.107372_b0050) 2000; 162
10.1016/j.bspc.2024.107372_b0095
Rezaei (10.1016/j.bspc.2024.107372_b0075) 2017; 15
Kuo (10.1016/j.bspc.2024.107372_b0025) 2020; 8
10.1016/j.bspc.2024.107372_b0055
10.1016/j.bspc.2024.107372_b0005
10.1016/j.bspc.2024.107372_b0105
10.1016/j.bspc.2024.107372_b0125
McPartland (10.1016/j.bspc.2024.107372_b0010) 1979; 14
Liu (10.1016/j.bspc.2024.107372_b0070) 2020; 8
Welch (10.1016/j.bspc.2024.107372_b0110) 1984; 17
Elakkiya (10.1016/j.bspc.2024.107372_b0120) 2022; 103
Wissel (10.1016/j.bspc.2024.107372_b0080) 2011; 2
10.1016/j.bspc.2024.107372_b0060
Qaisar (10.1016/j.bspc.2024.107372_b0135) 2022; 42
Lee (10.1016/j.bspc.2024.107372_b0015) 2016; 41
10.1016/j.bspc.2024.107372_b0085
Culebras (10.1016/j.bspc.2024.107372_b0035) 2004; 1
10.1016/j.bspc.2024.107372_b0045
10.1016/j.bspc.2024.107372_b0065
Leigh (10.1016/j.bspc.2024.107372_b0100) 2015
10.1016/j.bspc.2024.107372_b0115
Flemons (10.1016/j.bspc.2024.107372_b0040) 2003; 124
Qaisar (10.1016/j.bspc.2024.107372_b0130) 2019; 79
Surrel (10.1016/j.bspc.2024.107372_b0020) 2018; 12
References_xml – reference: S.-F. Liang, Y.-H. Shih, P.-Y. Chen, and C.-E. Kuo, “Development of a human-computer collaborative sleep scoring system for polysomnography recordings,” PLoS ONE, vol. 14, no. 7, 2019.
– reference: A. López, F.J. Ferrero, and J.R. Villar, “EOG signal compression using turning point algorithm,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 17–20 May 2021.
– volume: 2
  start-page: 6
  year: 2011
  end-page: 21
  ident: b0080
  article-title: Considerations on strategies to improve EOG signal analysis
  publication-title: Int. J. of Artif. Life Res.
– reference: U. Pratap and R. Kumar, “ECG compression using compressed sensing with Lempel-Ziv-Welch technique,” in Proc. of the International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4−5 September 2015, pp. 863−867.
– volume: 8
  start-page: 168486
  year: 2020
  end-page: 168501
  ident: b0070
  article-title: Studying the effects of compression in EEG-based wearable sleep monitoring systems
  publication-title: IEEE Access
– reference: Y.-L. Tsai and J.-J. Ding, “An improved LZW algorithm for large data size and low bitwidth per code,” in Proc. of the IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021, pp. 203–208.
– reference: A. Rechtschaffen and A. Kales, “A manual of standarized terminology. Techniques and scoring system for sleep stages of human subjects,” National Institutes of Health, USA, no. 204, Eds. A. Rechtschaffenn and A. Kales, 1968.
– reference: J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Infonn. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977.
– volume: 15
  start-page: 314
  year: 2017
  end-page: 319
  ident: b0075
  article-title: EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects
  publication-title: Data Brief
– volume: 42
  start-page: 681
  year: 2022
  end-page: 694
  ident: b0135
  article-title: Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare
  publication-title: Biocyb. Biomed. Eng.
– volume: 1
  start-page: 124
  year: 2004
  end-page: 132
  ident: b0035
  article-title: Who should be tested in the sleep laboratory?
  publication-title: Rev. Neurol. Dis.
– volume: 162
  start-page: 814
  year: 2000
  end-page: 818
  ident: b0050
  article-title: Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome
  publication-title: Am. J. Respir. Crit. Care. Med.
– reference: A. López, S. Mian, F. J. Ferrero, and R. Yahiaoui, “Electrooculogram compression based on wavelet packet decomposition,” in Proc. of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024.
– reference: W. Kinsner and R. H. Greenfield, “The Lempel-Ziv-Welch (LZW) data compression algorithm for packet radio,” in Proc. of the IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Environment (Wescanex), Regina, Saskatchewan, Canada, 29–30 May 1991, pp. 225–229.
– reference: M.J. Knieser, F.G. Wolff, C.A. Papachristou, D.J. Weyer, and D.R. McIntyre, “A technique for high ratio LZW compression,” in Proc. of the Design, Automation and Test in Europe Conference (DATE), Munich, Germany, 7 March 2003, pp. 116–121.
– volume: 17
  start-page: 8
  year: 1984
  end-page: 19
  ident: b0110
  article-title: A technique for high-performance data compression
  publication-title: IEEE Comput.
– volume: 14
  start-page: 767
  year: 1979
  end-page: 776
  ident: b0010
  article-title: An automated analysis of REM sleep in primary depression
  publication-title: Biol. Psych.
– volume: 8
  start-page: 69763
  year: 2020
  end-page: 69773
  ident: b0025
  article-title: A short-time insomnia detection system based on sleep EOG with RCMSE analysis
  publication-title: IEEE Access
– volume: 79
  year: 2019
  ident: b0130
  article-title: Efficient mobile systems based on adaptive rate signal processing
  publication-title: Comput. Electr. Eng.
– reference: S.T.-B. Hamida and B. Ahmed, “A remote deep sleep monitoring system based on a single channel for in-home insomnia diagnosis,” in Proc. of the 7th International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 27–29 July 2015.
– reference: SOMNOscreen™ plus PSG. SOMNOmedics. https://www.sanro.com/producto/somnoscreen-plus-psg-somnomedics.
– volume: 41
  start-page: 498
  year: 2016
  end-page: 510
  ident: b0015
  article-title: Polysomnographic findings after adenotonsillectomy for obstructive sleep apnea in obese and non-obese children: a systemic review and meta-analysis
  publication-title: Clin. Otolaryngol.
– year: 2015
  ident: b0100
  article-title: The neurology of eye movements. Encyclopedia of biomedical engineering
– volume: 103
  start-page: 1003
  year: 2022
  end-page: 1012
  ident: b0120
  article-title: Comprehensive review on lossy and lossless compression techniques
  publication-title: J. Inst. Eng. India Ser. B
– volume: 124
  start-page: 1543
  year: 2003
  end-page: 1579
  ident: b0040
  article-title: Home diagnosis of sleep apnea: A systematic review of the literature
  publication-title: Chest
– reference: A. Bhandari, V. Khare, J. Santhosh, and S. Anand, “Wavelet based compression technique of Electro-oculogram signals,” in Proc. of the 3rd Kuala Lumpur International Conference on Biomedical Engineering, vol. 15, pp. 440–443, 2006.
– volume: 12
  start-page: 762
  year: 2018
  end-page: 773
  ident: b0020
  article-title: Online obstructive sleep apnea detection on medical wearable sensors
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 8
  start-page: 69763
  year: 2020
  ident: 10.1016/j.bspc.2024.107372_b0025
  article-title: A short-time insomnia detection system based on sleep EOG with RCMSE analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986397
– ident: 10.1016/j.bspc.2024.107372_b0045
  doi: 10.1109/NTMS.2015.7266469
– ident: 10.1016/j.bspc.2024.107372_b0095
– volume: 162
  start-page: 814
  year: 2000
  ident: 10.1016/j.bspc.2024.107372_b0050
  article-title: Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome
  publication-title: Am. J. Respir. Crit. Care. Med.
  doi: 10.1164/ajrccm.162.3.9908002
– ident: 10.1016/j.bspc.2024.107372_b0125
  doi: 10.1109/TENCON54134.2021.9707201
– volume: 14
  start-page: 767
  year: 1979
  ident: 10.1016/j.bspc.2024.107372_b0010
  article-title: An automated analysis of REM sleep in primary depression
  publication-title: Biol. Psych.
– volume: 17
  start-page: 8
  issue: 6
  year: 1984
  ident: 10.1016/j.bspc.2024.107372_b0110
  article-title: A technique for high-performance data compression
  publication-title: IEEE Comput.
  doi: 10.1109/MC.1984.1659158
– volume: 103
  start-page: 1003
  year: 2022
  ident: 10.1016/j.bspc.2024.107372_b0120
  article-title: Comprehensive review on lossy and lossless compression techniques
  publication-title: J. Inst. Eng. India Ser. B
  doi: 10.1007/s40031-021-00686-3
– volume: 124
  start-page: 1543
  issue: 4
  year: 2003
  ident: 10.1016/j.bspc.2024.107372_b0040
  article-title: Home diagnosis of sleep apnea: A systematic review of the literature
  publication-title: Chest
  doi: 10.1378/chest.124.4.1543
– ident: 10.1016/j.bspc.2024.107372_b0065
  doi: 10.1109/I2MTC50364.2021.9459880
– volume: 1
  start-page: 124
  year: 2004
  ident: 10.1016/j.bspc.2024.107372_b0035
  article-title: Who should be tested in the sleep laboratory?
  publication-title: Rev. Neurol. Dis.
– ident: 10.1016/j.bspc.2024.107372_b0060
  doi: 10.1109/I2MTC60896.2024.10560680
– volume: 8
  start-page: 168486
  year: 2020
  ident: 10.1016/j.bspc.2024.107372_b0070
  article-title: Studying the effects of compression in EEG-based wearable sleep monitoring systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023915
– ident: 10.1016/j.bspc.2024.107372_b0085
  doi: 10.1109/NGCT.2015.7375242
– volume: 41
  start-page: 498
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2024.107372_b0015
  article-title: Polysomnographic findings after adenotonsillectomy for obstructive sleep apnea in obese and non-obese children: a systemic review and meta-analysis
  publication-title: Clin. Otolaryngol.
  doi: 10.1111/coa.12549
– volume: 12
  start-page: 762
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2024.107372_b0020
  article-title: Online obstructive sleep apnea detection on medical wearable sensors
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2018.2824659
– year: 2015
  ident: 10.1016/j.bspc.2024.107372_b0100
– ident: 10.1016/j.bspc.2024.107372_b0105
  doi: 10.1109/TIT.1977.1055714
– volume: 42
  start-page: 681
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.107372_b0135
  article-title: Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare
  publication-title: Biocyb. Biomed. Eng.
– volume: 15
  start-page: 314
  year: 2017
  ident: 10.1016/j.bspc.2024.107372_b0075
  article-title: EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects
  publication-title: Data Brief
  doi: 10.1016/j.dib.2017.09.033
– volume: 2
  start-page: 6
  issue: 3
  year: 2011
  ident: 10.1016/j.bspc.2024.107372_b0080
  article-title: Considerations on strategies to improve EOG signal analysis
  publication-title: Int. J. of Artif. Life Res.
  doi: 10.4018/jalr.2011070102
– ident: 10.1016/j.bspc.2024.107372_b0005
  doi: 10.1371/journal.pone.0218948
– ident: 10.1016/j.bspc.2024.107372_b0055
  doi: 10.1007/978-3-540-68017-8_111
– volume: 79
  year: 2019
  ident: 10.1016/j.bspc.2024.107372_b0130
  article-title: Efficient mobile systems based on adaptive rate signal processing
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.106462
– ident: 10.1016/j.bspc.2024.107372_b0030
– ident: 10.1016/j.bspc.2024.107372_b0115
  doi: 10.1109/WESCAN.1991.160551
– ident: 10.1016/j.bspc.2024.107372_b0090
  doi: 10.1109/DATE.2003.1253596
SSID ssj0048714
Score 2.366132
Snippet •To compress large electrooculograms (EOGs) for polysomnographic recordings.•To show the performance of the Lempel-Ziv-Welch compression algorithm on EOGs.•To...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107372
SubjectTerms Compression performance
Electrooculography
L2 energy retained
Lempel-Ziv-Welch algorithm
Polysomnography
Root-mean-square difference
Title EOG compression in polysomnographic recordings based on the Lempel-Ziv-Welch algorithm
URI https://dx.doi.org/10.1016/j.bspc.2024.107372
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdPQ2I4Zq6qlvMoAhYolih2bBrVJ1AYkFn475zxQkRADq3WWos_W3XfOd3cIHTPJXSWMIiFzHEI1U0RCGkGAO2jDjTROXi52O-SDEb0as3ENdataGCurLH1_4dNzb12utEo0W2kUte6BS3MB2QnEJAj6eUU5pZ695aef3zIP4ON5f29rTKx1WThTaLzkIrVtDNsUFuy8lt-D01LA6W-g9ZIp4k7xMZuopuMttLbUP3AbPfbuLrAVhRdi1hhHMU6T6ccimcVFK-pI4eIZxj6IYxuyQgx2wPrwjQbGPCXP0Tt50lM1wcH0JZlH2WS2g0b93kN3QMpBCUQBPclIIEUAiZMBcuRKT2rRNgFX3AgK_Mg1AL4AA8XPJERslws4ES08LxAy_0-r3V1Uj5NY7yGshAP7tDEscKmnQulQyZg511SHPKBBA51UCPlp0Q_Dr4Rir77F07d4-gWeDcQqEP0fp-qDw_5j3_4_9x2g1badz5sLEg9RPZu_6SMgDZls5reiiVY6l9eD4RfU9sG2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwc2ZDU0sWPGqmpp6YOBFiqWKHZsGtSmUVuQ-Pec40QqEmJgte4k63N099n57g6hayqYK7mWJKKOQzxFJRFwjSDAHZRmWmgnKxcbDFln7D1M6KSEmkUtjJFV5rHfxvQsWucrtRzNWhrHtSfg0ozD7QRyEiR9U1FeMd2paBlVGt1eZ1gEZKDkWYtvY0-MQ147Y2VeYpWaToZ1DxbMyJbf89NGzmnvod2cLOKG3c8-KqnkAO1stBA8RM-tx3tsdOFWz5rgOMHpYva1WswT2406lti-xJg3cWyyVoTBDogf7isgzTPyGn-SFzWTUxzO3hbLeD2dH6FxuzVqdkg-K4FIYChrEgoewt1JAz9yhS8Ur-uQSaY5QEJdDfhzMJDsVkDSdhmHQ1Hc90Musl-1yj1G5WSRqBOEJXfAT2lNQ9fzZSQcT1Cq75SnIhZ6YRXdFAgFqW2JERRasffA4BkYPAOLZxXRAsTgx8EGELP_8Dv9p98V2uqMBv2g3x32ztB23YzrzfSJ56i8Xn6oC-AQa3GZfyPfjz3EZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EOG+compression+in+polysomnographic+recordings+based+on+the+Lempel-Ziv-Welch+algorithm&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=L%C3%B3pez%2C+Alberto&rft.au=Garc%C3%ADa%2C+Gonzalo&rft.au=Qaisar%2C+Saeed+Mian&rft.au=Ferrero%2C+Francisco&rft.date=2025-05-01&rft.issn=1746-8094&rft.volume=103&rft.spage=107372&rft_id=info:doi/10.1016%2Fj.bspc.2024.107372&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_107372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon