Tensile responses of polycrystalline Mo via molecular dynamics simulation: Grain size and temperature effects
Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series of molecular dynamic (MD) simulations has been executed to investigate the mechanical features of monocrystalline and polycrystalline Mo und...
Saved in:
Published in | Materials chemistry and physics Vol. 296; p. 127270 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series of molecular dynamic (MD) simulations has been executed to investigate the mechanical features of monocrystalline and polycrystalline Mo under tensile loading. The influences of mean grain size from 5.00 to 27.10 nm and temperature in the range of 10–1500 K on mechanical parameters are studied. The findings demonstrate that Young's modulus and yield strength increase with mean grain size. For ultimate tensile strength (UTS), the average grain size of 20.43 nm is an inversion point of the relation between UTS and the reciprocal of the square root of mean grain size d−1/2 at 300K. The average shear strain of polycrystalline Mo is higher than that of monocrystalline due to the existence of grain boundaries (GBs). We also found that the mechanical properties, including Young's modulus, UTS, and yield strength, decrease with the increase of temperature. Monocrystalline Mo is more sensitive to temperature than polycrystalline. At high temperatures above 900 K, the mechanical properties of monocrystalline Mo are lower than these of polycrystalline Mo. The results in the present work will accelerate the industrial application of polycrystalline Mo.
material science, computational material.
[Display omitted]
•Tensile behaviors of monocrystalline and nanocrystalline Mo have been studied by MD simulations.•An inversion point of the relation between ultimate tensile strength and d−1/2 is observed.•The transformations that "BCC to FCC to BCC" and the growth of twin bands dominate the deformation of monocrystalline Mo.•The mechanical properties of monocrystalline Mo are more sensitive to temperature than nanocrystalline. |
---|---|
AbstractList | Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series of molecular dynamic (MD) simulations has been executed to investigate the mechanical features of monocrystalline and polycrystalline Mo under tensile loading. The influences of mean grain size from 5.00 to 27.10 nm and temperature in the range of 10–1500 K on mechanical parameters are studied. The findings demonstrate that Young's modulus and yield strength increase with mean grain size. For ultimate tensile strength (UTS), the average grain size of 20.43 nm is an inversion point of the relation between UTS and the reciprocal of the square root of mean grain size d−1/2 at 300K. The average shear strain of polycrystalline Mo is higher than that of monocrystalline due to the existence of grain boundaries (GBs). We also found that the mechanical properties, including Young's modulus, UTS, and yield strength, decrease with the increase of temperature. Monocrystalline Mo is more sensitive to temperature than polycrystalline. At high temperatures above 900 K, the mechanical properties of monocrystalline Mo are lower than these of polycrystalline Mo. The results in the present work will accelerate the industrial application of polycrystalline Mo.
material science, computational material.
[Display omitted]
•Tensile behaviors of monocrystalline and nanocrystalline Mo have been studied by MD simulations.•An inversion point of the relation between ultimate tensile strength and d−1/2 is observed.•The transformations that "BCC to FCC to BCC" and the growth of twin bands dominate the deformation of monocrystalline Mo.•The mechanical properties of monocrystalline Mo are more sensitive to temperature than nanocrystalline. |
ArticleNumber | 127270 |
Author | Hu, Yiqun Ding, Suhang Xu, Jianfei Shen, Yanhua Zhang, Yuhang Xia, Re Su, Lei |
Author_xml | – sequence: 1 givenname: Yiqun surname: Hu fullname: Hu, Yiqun organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China – sequence: 2 givenname: Jianfei surname: Xu fullname: Xu, Jianfei organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China – sequence: 3 givenname: Lei surname: Su fullname: Su, Lei organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China – sequence: 4 givenname: Yuhang surname: Zhang fullname: Zhang, Yuhang organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China – sequence: 5 givenname: Suhang surname: Ding fullname: Ding, Suhang organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China – sequence: 6 givenname: Yanhua surname: Shen fullname: Shen, Yanhua email: shenyh@scut.edu.cn organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 7 givenname: Re orcidid: 0000-0001-7180-408X surname: Xia fullname: Xia, Re email: xiare@whu.edu.cn organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China |
BookMark | eNqNkMFKAzEQhnOoYFt9h_gAuybZpNv1IlK0ChUv9RxidkJTdpMlSQvr05taD-LJuQwM_B__fDM0cd4BQjeUlJTQxe2-7FXSO-iH3RhLRhgrKatZTSZoSpjgBRFLfolmMe4JoTWl1RT1W3DRdoADxMG7CBF7gwffjTqMMamusw7wq8dHq3DvO9CHTgXcjk71VkccbZ8PyXp3h9dBWZcvn4CVa3HKRSCodAiAwRjQKV6hC6O6CNc_e47enx63q-di87Z-WT1sCs0ETYWiualZ8uUH5aZWvFamqZZ8sRB1TUQeQjgxrF20RLQNbyuhhG4qIAwqXXFRzdH9mauDjzGAkdqm75Ypd-wkJfJkTO7lL2PyZEyejWVC84cwBNurMP4ruzpnIb94tBBk1BachtaGbEG23v6D8gUbL5Qp |
CitedBy_id | crossref_primary_10_1016_j_ijrmhm_2023_106450 crossref_primary_10_1016_j_jmrt_2023_11_240 crossref_primary_10_1021_acs_nanolett_4c00292 crossref_primary_10_1016_j_ssc_2023_115421 crossref_primary_10_1016_j_scriptamat_2024_116258 crossref_primary_10_1016_j_jmrt_2023_05_245 crossref_primary_10_1016_j_ijmecsci_2025_110000 crossref_primary_10_1016_j_scriptamat_2024_116429 crossref_primary_10_1063_5_0217406 crossref_primary_10_1016_j_matchemphys_2024_129538 crossref_primary_10_1016_j_jpcs_2023_111617 crossref_primary_10_1016_j_vacuum_2023_112498 crossref_primary_10_1016_j_compstruct_2023_117322 crossref_primary_10_1016_j_cap_2023_12_018 crossref_primary_10_1016_j_physleta_2023_129000 crossref_primary_10_1007_s10853_024_09943_4 crossref_primary_10_1016_j_mtcomm_2024_108075 crossref_primary_10_3390_ma16134618 |
Cites_doi | 10.1016/j.physe.2008.03.013 10.1016/j.jnucmat.2016.09.024 10.1016/j.matchemphys.2021.125560 10.1063/5.0065441 10.1016/j.matdes.2017.09.019 10.1103/PhysRev.159.98 10.1016/j.commatsci.2010.01.010 10.1016/j.matdes.2019.107998 10.1016/j.commatsci.2017.02.033 10.1016/j.matchemphys.2021.125559 10.1016/j.commatsci.2013.05.053 10.1016/j.actamat.2012.08.029 10.1016/j.scriptamat.2019.10.046 10.1016/j.matchemphys.2021.125111 10.3390/nano8100785 10.1103/PhysRev.130.1324 10.1016/j.matchemphys.2020.123263 10.1103/PhysRevB.60.11971 10.1103/PhysRevB.43.6500 10.1126/science.1143719 10.1016/j.matchemphys.2021.125010 10.1016/j.engfracmech.2020.107292 10.1103/PhysRevB.69.144113 10.1557/jmr.2018.93 10.1038/srep16275 10.1103/PhysRevB.72.085414 10.1088/1361-651X/aafd13 10.1103/PhysRevLett.107.215501 10.1016/j.surfcoat.2020.125333 10.1088/1361-651X/ab2621 10.1016/j.mssp.2018.12.008 10.1021/acsanm.8b02219 10.1016/j.jnucmat.2012.08.018 10.1103/PhysRevB.66.094110 10.1016/j.ijplas.2021.102997 10.1016/j.actamat.2004.07.025 10.1016/S0168-583X(96)00939-1 10.1016/j.cpc.2015.07.012 10.1088/0965-0393/20/4/045021 10.1016/j.apsusc.2022.153524 10.1016/j.msea.2017.02.105 10.1002/pssa.202100834 10.1016/j.matchemphys.2019.121831 10.1016/j.msea.2014.07.066 10.1016/j.mssp.2017.08.033 10.1088/0965-0393/18/1/015012 10.1088/1361-6641/aafccd 10.1007/s00466-008-0339-2 10.1016/j.ijplas.2011.05.015 10.1016/j.mtla.2021.101043 10.1038/35328 10.1016/j.actamat.2020.07.054 10.1080/08957950601151626 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matchemphys.2022.127270 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_matchemphys_2022_127270 S0254058422015760 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSH SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29M AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SMS SPG WUQ |
ID | FETCH-LOGICAL-c251t-a1058f848b14f7a47af938466577055550040f2d6d05d94d35a5c93e02e3c3453 |
IEDL.DBID | .~1 |
ISSN | 0254-0584 |
IngestDate | Tue Jul 01 00:05:27 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Sun Apr 06 06:56:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Grain size effect Mechanical properties Molecular dynamics Polycrystalline Mo Temperature effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-a1058f848b14f7a47af938466577055550040f2d6d05d94d35a5c93e02e3c3453 |
ORCID | 0000-0001-7180-408X |
ParticipantIDs | crossref_citationtrail_10_1016_j_matchemphys_2022_127270 crossref_primary_10_1016_j_matchemphys_2022_127270 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2022_127270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Wang, Du (bib50) 2014; 5 Tian, Li, Yu (bib54) 2017; 690 Joshi, Gupta (bib43) 2007; 27 Dehaghani, Salmankhani, Mashhadzadeh (bib41) 2021; 244 Csikor, Motz, Weygand (bib38) 2007; 318 Liu, Xie, Wang (bib13) 2020; 252 Zhao, Song, An (bib14) 2022 Gao, Wang, Ogata (bib47) 2013; 79 Reddy, Meraj, Pal (bib16) 2019; 237 Zhou, Johnson, Wadley (bib33) 2004; 69 Jakob, Leitner, Lorich (bib9) 2019; 182 Zou, Zhang, Guan (bib10) 2020; 384 Luo, Roundy, Cohen (bib45) 2002; 66 Hua, Xia, Wang (bib58) 2021; 142 Featherston, Neighbours (bib44) 1963; 130 Shinde, Owhal, Sharma (bib12) 2022; 277 Zhou, Li, Xian (bib22) 2018; 8 Reddy, Pal (bib20) 2021; 272 Lysogorskiy, Hammerschmidt, Janssen (bib35) 2019; 27 Stukowski (bib32) 2012; 20 Chen, Kecskes, Zhu (bib37) 2016; 481 Alouani, Albers, Methfessel (bib42) 1991; 43 Sharma, Kositski, Kovalenko (bib7) 2020; 198 Zhang, Rao, Kim (bib24) 2021; 16 Tran (bib15) 2020; 239 Nguyen, Fang (bib21) 2022; 595 Ju, Li (bib52) 2022 Zhou, Liu, Yao (bib48) 2014; 615 Fritzen, Böhlke, Schnack (bib29) 2009; 43 Loup (bib36) 1967; 159 Stukowski (bib31) 2010; 18 Baek, Yang, Hur (bib6) 2019; 91 Chen, Zhang, Liu (bib57) 2019; 27 Schiøtz, Di Tolla, Jacobsen (bib39) 1998; 391 He, Abdolrahim (bib23) 2019; 2 Spielmannová, Machová, Hora (bib51) 2010; 48 Li, Zhang, Zou (bib4) 2019; 34 Sun, Singh (bib49) 2020; 178 Rieth, Dudarev, De Vicente (bib1) 2013; 432 Rodriguez, Famulok, Le Friec (bib5) 2017; 71 Zhang, Millett, Tonks (bib53) 2012; 60 Zhang, Li, Hu (bib30) 2021; 130 Frederiksen, Jacobsen, Schiøtz (bib46) 2004; 52 Murali, Guo, Zhang (bib55) 2011; 107 Zhang, Li, Hu (bib60) 2021; 130 Jiang, Chen, Qiu (bib19) 2021; 273 Li, Hu, Xiao (bib25) 2008; 40 Dehaghani, Safa, Yousefi (bib40) 2021; 251 Kim, Jang, Greer (bib8) 2012; 28 Leitner, Felfer, Holec (bib11) 2017; 135 Koh, Lee, Lu (bib59) 2005; 72 Atomsk (bib26) 2015; 197 Schiøtz, Vegge, Di Tolla (bib28) 1999; 60 Zinn (bib2) 1994 Hale, Becker (bib34) 2017; 135 Schloesser, Jakubowski, Kluge (bib3) 2008 Du, Zhao, Zhang (bib56) 2015; 5 Robbemond, Thijsse (bib27) 1997; 127 Rezaei, Shariati, Tavakoli-Anbaran (bib17) 2018; 33 Katakam, Yedla (bib18) 2022; 277 Reddy (10.1016/j.matchemphys.2022.127270_bib20) 2021; 272 Schiøtz (10.1016/j.matchemphys.2022.127270_bib28) 1999; 60 Sun (10.1016/j.matchemphys.2022.127270_bib49) 2020; 178 Zhang (10.1016/j.matchemphys.2022.127270_bib60) 2021; 130 Katakam (10.1016/j.matchemphys.2022.127270_bib18) 2022; 277 Schloesser (10.1016/j.matchemphys.2022.127270_bib3) 2008 Luo (10.1016/j.matchemphys.2022.127270_bib45) 2002; 66 Zhang (10.1016/j.matchemphys.2022.127270_bib30) 2021; 130 Stukowski (10.1016/j.matchemphys.2022.127270_bib31) 2010; 18 Chen (10.1016/j.matchemphys.2022.127270_bib37) 2016; 481 Hua (10.1016/j.matchemphys.2022.127270_bib58) 2021; 142 Zhou (10.1016/j.matchemphys.2022.127270_bib33) 2004; 69 Schiøtz (10.1016/j.matchemphys.2022.127270_bib39) 1998; 391 Zhang (10.1016/j.matchemphys.2022.127270_bib24) 2021; 16 Sharma (10.1016/j.matchemphys.2022.127270_bib7) 2020; 198 Leitner (10.1016/j.matchemphys.2022.127270_bib11) 2017; 135 He (10.1016/j.matchemphys.2022.127270_bib23) 2019; 2 Rezaei (10.1016/j.matchemphys.2022.127270_bib17) 2018; 33 Jakob (10.1016/j.matchemphys.2022.127270_bib9) 2019; 182 Dehaghani (10.1016/j.matchemphys.2022.127270_bib40) 2021; 251 Gao (10.1016/j.matchemphys.2022.127270_bib47) 2013; 79 Li (10.1016/j.matchemphys.2022.127270_bib4) 2019; 34 Csikor (10.1016/j.matchemphys.2022.127270_bib38) 2007; 318 Reddy (10.1016/j.matchemphys.2022.127270_bib16) 2019; 237 Ju (10.1016/j.matchemphys.2022.127270_bib52) 2022 Dehaghani (10.1016/j.matchemphys.2022.127270_bib41) 2021; 244 Tian (10.1016/j.matchemphys.2022.127270_bib54) 2017; 690 Lysogorskiy (10.1016/j.matchemphys.2022.127270_bib35) 2019; 27 Rodriguez (10.1016/j.matchemphys.2022.127270_bib5) 2017; 71 Zhao (10.1016/j.matchemphys.2022.127270_bib14) 2022 Stukowski (10.1016/j.matchemphys.2022.127270_bib32) 2012; 20 Kim (10.1016/j.matchemphys.2022.127270_bib8) 2012; 28 Alouani (10.1016/j.matchemphys.2022.127270_bib42) 1991; 43 Du (10.1016/j.matchemphys.2022.127270_bib56) 2015; 5 Shinde (10.1016/j.matchemphys.2022.127270_bib12) 2022; 277 Jiang (10.1016/j.matchemphys.2022.127270_bib19) 2021; 273 Loup (10.1016/j.matchemphys.2022.127270_bib36) 1967; 159 Liu (10.1016/j.matchemphys.2022.127270_bib13) 2020; 252 Fritzen (10.1016/j.matchemphys.2022.127270_bib29) 2009; 43 Tran (10.1016/j.matchemphys.2022.127270_bib15) 2020; 239 Atomsk (10.1016/j.matchemphys.2022.127270_bib26) 2015; 197 Zhou (10.1016/j.matchemphys.2022.127270_bib48) 2014; 615 Koh (10.1016/j.matchemphys.2022.127270_bib59) 2005; 72 Joshi (10.1016/j.matchemphys.2022.127270_bib43) 2007; 27 Rieth (10.1016/j.matchemphys.2022.127270_bib1) 2013; 432 Featherston (10.1016/j.matchemphys.2022.127270_bib44) 1963; 130 Wang (10.1016/j.matchemphys.2022.127270_bib50) 2014; 5 Zinn (10.1016/j.matchemphys.2022.127270_bib2) 1994 Baek (10.1016/j.matchemphys.2022.127270_bib6) 2019; 91 Li (10.1016/j.matchemphys.2022.127270_bib25) 2008; 40 Zhou (10.1016/j.matchemphys.2022.127270_bib22) 2018; 8 Spielmannová (10.1016/j.matchemphys.2022.127270_bib51) 2010; 48 Hale (10.1016/j.matchemphys.2022.127270_bib34) 2017; 135 Nguyen (10.1016/j.matchemphys.2022.127270_bib21) 2022; 595 Zou (10.1016/j.matchemphys.2022.127270_bib10) 2020; 384 Chen (10.1016/j.matchemphys.2022.127270_bib57) 2019; 27 Frederiksen (10.1016/j.matchemphys.2022.127270_bib46) 2004; 52 Murali (10.1016/j.matchemphys.2022.127270_bib55) 2011; 107 Zhang (10.1016/j.matchemphys.2022.127270_bib53) 2012; 60 Robbemond (10.1016/j.matchemphys.2022.127270_bib27) 1997; 127 |
References_xml | – volume: 178 start-page: 71 year: 2020 end-page: 76 ident: bib49 article-title: Temperature dependence of grain boundary excess free volume[J] publication-title: Scripta Mater. – volume: 72 year: 2005 ident: bib59 article-title: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects[J] publication-title: Phys. Rev. B – volume: 277 year: 2022 ident: bib12 article-title: Comparative analysis of mechanical properties for mono and poly-crystalline copper under nanoindentation–Insights from molecular dynamics simulations[J] publication-title: Mater. Chem. Phys. – volume: 71 start-page: 433 year: 2017 end-page: 440 ident: bib5 article-title: Advanced characterizations of fluorine-free W film and its application as low resistance liner for PCRAM[J] publication-title: Mater. Sci. Semicond. Process. – volume: 182 year: 2019 ident: bib9 article-title: Influence of crystal orientation and Berkovich tip rotation on the mechanical characterization of grain boundaries in Mo[J] publication-title: Mater. Des. – volume: 52 start-page: 5019 year: 2004 end-page: 5029 ident: bib46 article-title: Simulations of intergranular fracture in nanocrystalline Mo[J] publication-title: Acta Mater. – volume: 2 start-page: 1890 year: 2019 end-page: 1897 ident: bib23 article-title: Stress-assisted structural phase transformation enhances ductility in Mo/Cu bicontinuous intertwined composites[J] publication-title: ACS Appl. Nano Mater. – volume: 20 year: 2012 ident: bib32 article-title: Structure identification methods for atomistic simulations of crystalline materials[J] publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 27 year: 2019 ident: bib35 article-title: Transferability of interatomic potentials for Mo and silicon[J] publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 40 start-page: 3030 year: 2008 end-page: 3036 ident: bib25 article-title: Molecular dynamics simulation of nanocrystalline Mo nanowires under uniaxial tensile strain: size effects[J] publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 130 start-page: 1324 year: 1963 ident: bib44 article-title: Elastic constants of tantalum, W, and Mo[J] publication-title: Phys. Rev. – volume: 60 start-page: 6421 year: 2012 end-page: 6428 ident: bib53 article-title: Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations[J] publication-title: Acta Mater. – volume: 690 start-page: 277 year: 2017 end-page: 282 ident: bib54 article-title: Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo[J] publication-title: Mater. Sci. Eng., A – volume: 481 start-page: 190 year: 2016 end-page: 200 ident: bib37 article-title: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten[J] publication-title: J. Nucl. Mater. – volume: 239 year: 2020 ident: bib15 article-title: Phase transformation and interface fracture of Cu/Ta multilayers: a molecular dynamics study[J] publication-title: Eng. Fract. Mech. – volume: 5 start-page: 1 year: 2014 end-page: 9 ident: bib50 article-title: Deformation-induced structural transition in body-centred cubic Mo[J] publication-title: Nat. Commun. – year: 2022 ident: bib52 article-title: Role of local FCC structure to the BCC polycrystalline NbMoTaWV high‐entropy refractory alloy under plastic deformation[J] publication-title: Phys. Status Solidi – year: 2022 ident: bib14 article-title: Effect of graphene on the mechanical properties of metallic glasses: insight from molecular dynamics simulation[J] publication-title: Mater. Chem. Phys. – volume: 244 year: 2021 ident: bib41 article-title: Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis[J] publication-title: Eng. Fract. Mech. – volume: 60 year: 1999 ident: bib28 article-title: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J] publication-title: Phys. Rev. B – volume: 159 start-page: 98 year: 1967 end-page: 103 ident: bib36 article-title: Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules publication-title: Phys. Rev. – volume: 318 start-page: 251 year: 2007 end-page: 254 ident: bib38 article-title: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale[J] publication-title: Science – volume: 8 start-page: 785 year: 2018 ident: bib22 article-title: Nanoscale assembly of copper bearing-sleeve via cold-welding: a molecular dynamics study publication-title: J. Nanomater. – volume: 107 year: 2011 ident: bib55 article-title: Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses publication-title: Phys. Rev. Lett. – volume: 197 start-page: 212 year: 2015 end-page: 219 ident: bib26 article-title: A tool for manipulating and converting atomic data files[J] publication-title: Comput. Phys. Commun. – volume: 237 year: 2019 ident: bib16 article-title: Molecular dynamics simulation based investigation of strain induced crystallization of nickel metallic glass[J] publication-title: Mater. Chem. Phys. – volume: 595 year: 2022 ident: bib21 article-title: Revealing the mechanisms for inactive rolling and wear behaviour on chemical mechanical planarization[J] publication-title: Appl. Surf. Sci. – volume: 251 year: 2021 ident: bib40 article-title: Fracture behavior of SiGe nanosheets: mechanics of monocrystalline vs. polycrystalline structure[J] publication-title: Eng. Fract. Mech. – volume: 135 start-page: 1 year: 2017 end-page: 8 ident: bib34 article-title: Vacancy dissociation in body-centered cubic screw dislocation cores[J] publication-title: Comput. Mater. Sci. – volume: 198 start-page: 72 year: 2020 end-page: 84 ident: bib7 article-title: Giant shape-and size-dependent compressive strength of Mo nano-and microparticles[J] publication-title: Acta Mater. – volume: 33 start-page: 1733 year: 2018 end-page: 1741 ident: bib17 article-title: Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations[J] publication-title: J. Mater. Res. – volume: 43 start-page: 701 year: 2009 end-page: 713 ident: bib29 article-title: Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations[J] publication-title: Comput. Mech. – volume: 615 start-page: 92 year: 2014 end-page: 97 ident: bib48 article-title: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics[J] publication-title: Mater. Sci. Eng., A – volume: 130 year: 2021 ident: bib30 article-title: Mechanical properties and scaling laws of nanocrystalline CuZr shape memory alloy[J] publication-title: J. Appl. Phys. – volume: 43 start-page: 6500 year: 1991 ident: bib42 article-title: Calculated elastic constants and structural properties of Mo and MoSi 2[J] publication-title: Phys. Rev. B – volume: 69 year: 2004 ident: bib33 article-title: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J] publication-title: Phys. Rev. B – volume: 273 year: 2021 ident: bib19 article-title: Dynamic mechanical contact behaviors and sintering mechanism of Al nanoparticles subjected to high-speed impact[J] publication-title: Mater. Chem. Phys. – volume: 18 year: 2010 ident: bib31 article-title: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool publication-title: Model. Simulat. Mater. Sci. Eng. – start-page: 105 year: 1994 end-page: 174 ident: bib2 article-title: Chemical Vapor Deposition of W[J] – volume: 27 year: 2019 ident: bib57 article-title: Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation[J] publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 391 start-page: 561 year: 1998 end-page: 563 ident: bib39 article-title: Softening of nanocrystalline metals at very small grain sizes[J] publication-title: Nature – volume: 432 start-page: 482 year: 2013 end-page: 500 ident: bib1 article-title: Recent progress in research on W materials for nuclear fusion applications in Europe[J] publication-title: J. Nucl. Mater. – volume: 277 year: 2022 ident: bib18 article-title: Tensile and creep behavior of nickel nanowires containing volume defects: insight into the deformation mechanisms and microstructural evolution using molecular dynamics simulations[J] publication-title: Mater. Chem. Phys. – volume: 27 start-page: 259 year: 2007 end-page: 268 ident: bib43 article-title: On mechanical stability of Mo[J] publication-title: High Pres. Res. – volume: 48 start-page: 296 year: 2010 end-page: 302 ident: bib51 article-title: Transonic twins in 3D bcc iron crystal[J] publication-title: Comput. Mater. Sci. – start-page: 1 year: 2008 end-page: 4 ident: bib3 article-title: 6F2 Buried Word Line DRAM Cell for 40nm and beyond[C]//2008 IEEE International Electron Devices Meeting – volume: 127 start-page: 273 year: 1997 end-page: 277 ident: bib27 article-title: Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation[J] publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 16 year: 2021 ident: bib24 article-title: Molecular dynamics simulation of stress induced by energetic particle bombardment in Mo thin films[J] publication-title: Materialia – volume: 130 year: 2021 ident: bib60 article-title: Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy[J] publication-title: J. Appl. Phys. – volume: 384 year: 2020 ident: bib10 article-title: Effect on mechanics properties and microstructure of Mo by high intensity pulsed ion beam irradiation[J] publication-title: Surf. Coating. Technol. – volume: 252 year: 2020 ident: bib13 article-title: Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation[J] publication-title: Mater. Chem. Phys. – volume: 91 start-page: 392 year: 2019 end-page: 398 ident: bib6 article-title: Representative volume element analysis for wafer-level warpage using Finite Element methods[J] publication-title: Mater. Sci. Semicond. Process. – volume: 28 start-page: 46 year: 2012 end-page: 52 ident: bib8 article-title: Crystallographic orientation and size dependence of tension–compression asymmetry in Mo nano-pillars[J] publication-title: Int. J. Plast. – volume: 135 start-page: 204 year: 2017 end-page: 212 ident: bib11 article-title: On grain boundary segregation in Mo materials[J] publication-title: Mater. Des. – volume: 142 year: 2021 ident: bib58 article-title: Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation[J] publication-title: Int. J. Plast. – volume: 34 year: 2019 ident: bib4 article-title: Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory[J] publication-title: Semicond. Sci. Technol. – volume: 79 start-page: 56 year: 2013 end-page: 62 ident: bib47 article-title: Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains[J] publication-title: Comput. Mater. Sci. – volume: 272 year: 2021 ident: bib20 article-title: Cold-rolling induced residual stress effect on the shock response of crystalline-metallic glass (Cu–CuZr) nanolaminates by molecular dynamics simulation[J] publication-title: Mater. Chem. Phys. – volume: 5 start-page: 1 year: 2015 end-page: 11 ident: bib56 article-title: Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature[J] publication-title: Sci. Rep. – volume: 66 year: 2002 ident: bib45 article-title: Ideal strength of bcc Mo and niobium[J] publication-title: Phys. Rev. B – volume: 40 start-page: 3030 issue: 10 year: 2008 ident: 10.1016/j.matchemphys.2022.127270_bib25 article-title: Molecular dynamics simulation of nanocrystalline Mo nanowires under uniaxial tensile strain: size effects[J] publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2008.03.013 – volume: 481 start-page: 190 year: 2016 ident: 10.1016/j.matchemphys.2022.127270_bib37 article-title: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten[J] publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2016.09.024 – volume: 277 year: 2022 ident: 10.1016/j.matchemphys.2022.127270_bib18 article-title: Tensile and creep behavior of nickel nanowires containing volume defects: insight into the deformation mechanisms and microstructural evolution using molecular dynamics simulations[J] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125560 – volume: 130 issue: 15 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib60 article-title: Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy[J] publication-title: J. Appl. Phys. doi: 10.1063/5.0065441 – volume: 135 start-page: 204 year: 2017 ident: 10.1016/j.matchemphys.2022.127270_bib11 article-title: On grain boundary segregation in Mo materials[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.09.019 – volume: 159 start-page: 98 issue: 1 year: 1967 ident: 10.1016/j.matchemphys.2022.127270_bib36 article-title: Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.98 – volume: 48 start-page: 296 issue: 2 year: 2010 ident: 10.1016/j.matchemphys.2022.127270_bib51 article-title: Transonic twins in 3D bcc iron crystal[J] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.01.010 – volume: 182 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib9 article-title: Influence of crystal orientation and Berkovich tip rotation on the mechanical characterization of grain boundaries in Mo[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107998 – volume: 135 start-page: 1 year: 2017 ident: 10.1016/j.matchemphys.2022.127270_bib34 article-title: Vacancy dissociation in body-centered cubic screw dislocation cores[J] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.02.033 – volume: 277 year: 2022 ident: 10.1016/j.matchemphys.2022.127270_bib12 article-title: Comparative analysis of mechanical properties for mono and poly-crystalline copper under nanoindentation–Insights from molecular dynamics simulations[J] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125559 – volume: 79 start-page: 56 year: 2013 ident: 10.1016/j.matchemphys.2022.127270_bib47 article-title: Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains[J] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.05.053 – volume: 60 start-page: 6421 issue: 18 year: 2012 ident: 10.1016/j.matchemphys.2022.127270_bib53 article-title: Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.08.029 – volume: 178 start-page: 71 year: 2020 ident: 10.1016/j.matchemphys.2022.127270_bib49 article-title: Temperature dependence of grain boundary excess free volume[J] publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2019.10.046 – volume: 273 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib19 article-title: Dynamic mechanical contact behaviors and sintering mechanism of Al nanoparticles subjected to high-speed impact[J] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125111 – volume: 8 start-page: 785 issue: 10 year: 2018 ident: 10.1016/j.matchemphys.2022.127270_bib22 article-title: Nanoscale assembly of copper bearing-sleeve via cold-welding: a molecular dynamics study publication-title: J. Nanomater. doi: 10.3390/nano8100785 – start-page: 1 year: 2008 ident: 10.1016/j.matchemphys.2022.127270_bib3 – volume: 130 start-page: 1324 issue: 4 year: 1963 ident: 10.1016/j.matchemphys.2022.127270_bib44 article-title: Elastic constants of tantalum, W, and Mo[J] publication-title: Phys. Rev. doi: 10.1103/PhysRev.130.1324 – year: 2022 ident: 10.1016/j.matchemphys.2022.127270_bib14 article-title: Effect of graphene on the mechanical properties of metallic glasses: insight from molecular dynamics simulation[J] publication-title: Mater. Chem. Phys. – volume: 252 year: 2020 ident: 10.1016/j.matchemphys.2022.127270_bib13 article-title: Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation[J] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123263 – volume: 251 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib40 article-title: Fracture behavior of SiGe nanosheets: mechanics of monocrystalline vs. polycrystalline structure[J] publication-title: Eng. Fract. Mech. – volume: 60 issue: 17 year: 1999 ident: 10.1016/j.matchemphys.2022.127270_bib28 article-title: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.11971 – volume: 43 start-page: 6500 issue: 8 year: 1991 ident: 10.1016/j.matchemphys.2022.127270_bib42 article-title: Calculated elastic constants and structural properties of Mo and MoSi 2[J] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.6500 – volume: 318 start-page: 251 issue: 5848 year: 2007 ident: 10.1016/j.matchemphys.2022.127270_bib38 article-title: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale[J] publication-title: Science doi: 10.1126/science.1143719 – volume: 272 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib20 article-title: Cold-rolling induced residual stress effect on the shock response of crystalline-metallic glass (Cu–CuZr) nanolaminates by molecular dynamics simulation[J] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125010 – volume: 239 year: 2020 ident: 10.1016/j.matchemphys.2022.127270_bib15 article-title: Phase transformation and interface fracture of Cu/Ta multilayers: a molecular dynamics study[J] publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107292 – volume: 69 issue: 14 year: 2004 ident: 10.1016/j.matchemphys.2022.127270_bib33 article-title: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.144113 – volume: 33 start-page: 1733 issue: 12 year: 2018 ident: 10.1016/j.matchemphys.2022.127270_bib17 article-title: Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations[J] publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.93 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.matchemphys.2022.127270_bib56 article-title: Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature[J] publication-title: Sci. Rep. doi: 10.1038/srep16275 – volume: 72 issue: 8 year: 2005 ident: 10.1016/j.matchemphys.2022.127270_bib59 article-title: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects[J] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.085414 – volume: 27 issue: 2 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib35 article-title: Transferability of interatomic potentials for Mo and silicon[J] publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/1361-651X/aafd13 – volume: 107 issue: 21 year: 2011 ident: 10.1016/j.matchemphys.2022.127270_bib55 article-title: Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.215501 – volume: 384 year: 2020 ident: 10.1016/j.matchemphys.2022.127270_bib10 article-title: Effect on mechanics properties and microstructure of Mo by high intensity pulsed ion beam irradiation[J] publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2020.125333 – volume: 27 issue: 6 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib57 article-title: Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation[J] publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/1361-651X/ab2621 – volume: 91 start-page: 392 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib6 article-title: Representative volume element analysis for wafer-level warpage using Finite Element methods[J] publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2018.12.008 – volume: 2 start-page: 1890 issue: 4 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib23 article-title: Stress-assisted structural phase transformation enhances ductility in Mo/Cu bicontinuous intertwined composites[J] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02219 – volume: 432 start-page: 482 issue: 1–3 year: 2013 ident: 10.1016/j.matchemphys.2022.127270_bib1 article-title: Recent progress in research on W materials for nuclear fusion applications in Europe[J] publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.08.018 – volume: 66 issue: 9 year: 2002 ident: 10.1016/j.matchemphys.2022.127270_bib45 article-title: Ideal strength of bcc Mo and niobium[J] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.094110 – volume: 142 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib58 article-title: Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation[J] publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.102997 – volume: 52 start-page: 5019 issue: 17 year: 2004 ident: 10.1016/j.matchemphys.2022.127270_bib46 article-title: Simulations of intergranular fracture in nanocrystalline Mo[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.07.025 – volume: 127 start-page: 273 year: 1997 ident: 10.1016/j.matchemphys.2022.127270_bib27 article-title: Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation[J] publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/S0168-583X(96)00939-1 – volume: 197 start-page: 212 year: 2015 ident: 10.1016/j.matchemphys.2022.127270_bib26 article-title: A tool for manipulating and converting atomic data files[J] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.07.012 – volume: 20 issue: 4 year: 2012 ident: 10.1016/j.matchemphys.2022.127270_bib32 article-title: Structure identification methods for atomistic simulations of crystalline materials[J] publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/0965-0393/20/4/045021 – volume: 595 year: 2022 ident: 10.1016/j.matchemphys.2022.127270_bib21 article-title: Revealing the mechanisms for inactive rolling and wear behaviour on chemical mechanical planarization[J] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153524 – volume: 690 start-page: 277 year: 2017 ident: 10.1016/j.matchemphys.2022.127270_bib54 article-title: Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo[J] publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2017.02.105 – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.matchemphys.2022.127270_bib50 article-title: Deformation-induced structural transition in body-centred cubic Mo[J] publication-title: Nat. Commun. – year: 2022 ident: 10.1016/j.matchemphys.2022.127270_bib52 article-title: Role of local FCC structure to the BCC polycrystalline NbMoTaWV high‐entropy refractory alloy under plastic deformation[J] publication-title: Phys. Status Solidi doi: 10.1002/pssa.202100834 – volume: 237 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib16 article-title: Molecular dynamics simulation based investigation of strain induced crystallization of nickel metallic glass[J] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.121831 – start-page: 105 year: 1994 ident: 10.1016/j.matchemphys.2022.127270_bib2 – volume: 615 start-page: 92 year: 2014 ident: 10.1016/j.matchemphys.2022.127270_bib48 article-title: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics[J] publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2014.07.066 – volume: 71 start-page: 433 year: 2017 ident: 10.1016/j.matchemphys.2022.127270_bib5 article-title: Advanced characterizations of fluorine-free W film and its application as low resistance liner for PCRAM[J] publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2017.08.033 – volume: 18 issue: 1 year: 2010 ident: 10.1016/j.matchemphys.2022.127270_bib31 article-title: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 34 issue: 2 year: 2019 ident: 10.1016/j.matchemphys.2022.127270_bib4 article-title: Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory[J] publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aafccd – volume: 43 start-page: 701 issue: 5 year: 2009 ident: 10.1016/j.matchemphys.2022.127270_bib29 article-title: Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations[J] publication-title: Comput. Mech. doi: 10.1007/s00466-008-0339-2 – volume: 28 start-page: 46 issue: 1 year: 2012 ident: 10.1016/j.matchemphys.2022.127270_bib8 article-title: Crystallographic orientation and size dependence of tension–compression asymmetry in Mo nano-pillars[J] publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.05.015 – volume: 16 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib24 article-title: Molecular dynamics simulation of stress induced by energetic particle bombardment in Mo thin films[J] publication-title: Materialia doi: 10.1016/j.mtla.2021.101043 – volume: 391 start-page: 561 issue: 6667 year: 1998 ident: 10.1016/j.matchemphys.2022.127270_bib39 article-title: Softening of nanocrystalline metals at very small grain sizes[J] publication-title: Nature doi: 10.1038/35328 – volume: 130 issue: 15 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib30 article-title: Mechanical properties and scaling laws of nanocrystalline CuZr shape memory alloy[J] publication-title: J. Appl. Phys. doi: 10.1063/5.0065441 – volume: 198 start-page: 72 year: 2020 ident: 10.1016/j.matchemphys.2022.127270_bib7 article-title: Giant shape-and size-dependent compressive strength of Mo nano-and microparticles[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.07.054 – volume: 244 year: 2021 ident: 10.1016/j.matchemphys.2022.127270_bib41 article-title: Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis[J] publication-title: Eng. Fract. Mech. – volume: 27 start-page: 259 issue: 2 year: 2007 ident: 10.1016/j.matchemphys.2022.127270_bib43 article-title: On mechanical stability of Mo[J] publication-title: High Pres. Res. doi: 10.1080/08957950601151626 |
SSID | ssj0017113 |
Score | 2.4951196 |
Snippet | Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127270 |
SubjectTerms | Grain size effect Mechanical properties Molecular dynamics Polycrystalline Mo Temperature effect |
Title | Tensile responses of polycrystalline Mo via molecular dynamics simulation: Grain size and temperature effects |
URI | https://dx.doi.org/10.1016/j.matchemphys.2022.127270 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6Kgo-DaFWsLyJ4XbvdJPsQL1LUqtiLLXhb0iQLlb5oq1AP_nZn3GytICh4DRkIs7MzX3a_mQ_gVOuO4rENPauk72GExF4n8ZVHPzl1okOfK-odfmiGjba4e5JPJagXvTBEq3S5P8_pn9narVSdN6ujbrf6SH3cPtbPAGsYoma6twsRUZSfvc9pHrWolksk42aPdq_AyRfHC0EhuqZPHxHwqhgEZ3jEgHSLf6pRC3XnehM2HGBkl_mZtqBkB2VYrRc6bWVYXxgpuA39FjHSe5aNc_KrnbBhxkbD3kyPZ4gEaQS3ZQ9D9tpVrF9o4zKTC9NP2KTbd4Je5-yG5CNw5c0yNTCMpli5EczM0UB2oH191ao3PCep4GkEMlNPIZyKs1jEnZrIIiUilSUcIUgoIxqrg9cVfKmzwITGlyYRhksldcKtH1iuuZB8F5YGw4HdA8ajSFmO6dGPrTBSqMyEmtCW9o3FPFiBuHBiqt28cZK96KUFsew5XfB_Sv5Pc_9XIJibjvKhG38xuiieVPotglIsDr-b7__P_ADWSIie-Nw1eQhL0_GLPUK4Mu0cf8bjMSxf3t43mh_gxu1g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgtWD-MT6jOB17Xaz2Yd4KcVaH-3FFnpb0iQLlb5oq6C_3hk3WysICl7DDoTZ7MyXzZfvA7hQqid5ZALHSOE6uEIipxe70qFDThWrwOWS7g43W0Gj4993RXcFavldGKJV2tqf1fTPam1Hyjab5Um_X36ie9wu9k8PexiiZty3r5I6lSjAavXuodFaHCaElcwlGZ93KGANzr9oXogLMTtD-o-Au0XPu8RZemRd_FObWmo99S3YtJiRVbNpbcOKGe1AsZZbte3AxpKq4C4M20RKHxg2zfivZsbGKZuMB29q-oZgkFS4DWuO2WtfsmFuj8t05k0_Y7P-0Hp6XbFbcpDAkXfD5EgzErKyKszMMkH2oFO_adcajnVVcBRimbkjEVFFaeRHvYqfhtIPZRpzRCGBCElZB3cs-F2nng60K3Tsay6kUDE3rme44r7g-1AYjUfmABgPQ2k4Vkg3Mr4Wvkx1oAhwKVcbLIUliPIkJspKjpPzxSDJuWXPyVL-E8p_kuW_BN4idJLpbvwl6Dp_U8m3RZRgf_g9_PB_4WdQbLSbj8njXevhCNbJl57o3RVxDIX59MWcIHqZ907t6vwA_rjwEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensile+responses+of+polycrystalline+Mo+via+molecular+dynamics+simulation%3A+Grain+size+and+temperature+effects&rft.jtitle=Materials+chemistry+and+physics&rft.au=Hu%2C+Yiqun&rft.au=Xu%2C+Jianfei&rft.au=Su%2C+Lei&rft.au=Zhang%2C+Yuhang&rft.date=2023-02-15&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.volume=296&rft_id=info:doi/10.1016%2Fj.matchemphys.2022.127270&rft.externalDocID=S0254058422015760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |