Tensile responses of polycrystalline Mo via molecular dynamics simulation: Grain size and temperature effects

Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series of molecular dynamic (MD) simulations has been executed to investigate the mechanical features of monocrystalline and polycrystalline Mo und...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 296; p. 127270
Main Authors Hu, Yiqun, Xu, Jianfei, Su, Lei, Zhang, Yuhang, Ding, Suhang, Shen, Yanhua, Xia, Re
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series of molecular dynamic (MD) simulations has been executed to investigate the mechanical features of monocrystalline and polycrystalline Mo under tensile loading. The influences of mean grain size from 5.00 to 27.10 nm and temperature in the range of 10–1500 K on mechanical parameters are studied. The findings demonstrate that Young's modulus and yield strength increase with mean grain size. For ultimate tensile strength (UTS), the average grain size of 20.43 nm is an inversion point of the relation between UTS and the reciprocal of the square root of mean grain size d−1/2 at 300K. The average shear strain of polycrystalline Mo is higher than that of monocrystalline due to the existence of grain boundaries (GBs). We also found that the mechanical properties, including Young's modulus, UTS, and yield strength, decrease with the increase of temperature. Monocrystalline Mo is more sensitive to temperature than polycrystalline. At high temperatures above 900 K, the mechanical properties of monocrystalline Mo are lower than these of polycrystalline Mo. The results in the present work will accelerate the industrial application of polycrystalline Mo. material science, computational material. [Display omitted] •Tensile behaviors of monocrystalline and nanocrystalline Mo have been studied by MD simulations.•An inversion point of the relation between ultimate tensile strength and d−1/2 is observed.•The transformations that "BCC to FCC to BCC" and the growth of twin bands dominate the deformation of monocrystalline Mo.•The mechanical properties of monocrystalline Mo are more sensitive to temperature than nanocrystalline.
AbstractList Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series of molecular dynamic (MD) simulations has been executed to investigate the mechanical features of monocrystalline and polycrystalline Mo under tensile loading. The influences of mean grain size from 5.00 to 27.10 nm and temperature in the range of 10–1500 K on mechanical parameters are studied. The findings demonstrate that Young's modulus and yield strength increase with mean grain size. For ultimate tensile strength (UTS), the average grain size of 20.43 nm is an inversion point of the relation between UTS and the reciprocal of the square root of mean grain size d−1/2 at 300K. The average shear strain of polycrystalline Mo is higher than that of monocrystalline due to the existence of grain boundaries (GBs). We also found that the mechanical properties, including Young's modulus, UTS, and yield strength, decrease with the increase of temperature. Monocrystalline Mo is more sensitive to temperature than polycrystalline. At high temperatures above 900 K, the mechanical properties of monocrystalline Mo are lower than these of polycrystalline Mo. The results in the present work will accelerate the industrial application of polycrystalline Mo. material science, computational material. [Display omitted] •Tensile behaviors of monocrystalline and nanocrystalline Mo have been studied by MD simulations.•An inversion point of the relation between ultimate tensile strength and d−1/2 is observed.•The transformations that "BCC to FCC to BCC" and the growth of twin bands dominate the deformation of monocrystalline Mo.•The mechanical properties of monocrystalline Mo are more sensitive to temperature than nanocrystalline.
ArticleNumber 127270
Author Hu, Yiqun
Ding, Suhang
Xu, Jianfei
Shen, Yanhua
Zhang, Yuhang
Xia, Re
Su, Lei
Author_xml – sequence: 1
  givenname: Yiqun
  surname: Hu
  fullname: Hu, Yiqun
  organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China
– sequence: 2
  givenname: Jianfei
  surname: Xu
  fullname: Xu, Jianfei
  organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China
– sequence: 3
  givenname: Lei
  surname: Su
  fullname: Su, Lei
  organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China
– sequence: 4
  givenname: Yuhang
  surname: Zhang
  fullname: Zhang, Yuhang
  organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China
– sequence: 5
  givenname: Suhang
  surname: Ding
  fullname: Ding, Suhang
  organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China
– sequence: 6
  givenname: Yanhua
  surname: Shen
  fullname: Shen, Yanhua
  email: shenyh@scut.edu.cn
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 7
  givenname: Re
  orcidid: 0000-0001-7180-408X
  surname: Xia
  fullname: Xia, Re
  email: xiare@whu.edu.cn
  organization: Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan, 430072, China
BookMark eNqNkMFKAzEQhnOoYFt9h_gAuybZpNv1IlK0ChUv9RxidkJTdpMlSQvr05taD-LJuQwM_B__fDM0cd4BQjeUlJTQxe2-7FXSO-iH3RhLRhgrKatZTSZoSpjgBRFLfolmMe4JoTWl1RT1W3DRdoADxMG7CBF7gwffjTqMMamusw7wq8dHq3DvO9CHTgXcjk71VkccbZ8PyXp3h9dBWZcvn4CVa3HKRSCodAiAwRjQKV6hC6O6CNc_e47enx63q-di87Z-WT1sCs0ETYWiualZ8uUH5aZWvFamqZZ8sRB1TUQeQjgxrF20RLQNbyuhhG4qIAwqXXFRzdH9mauDjzGAkdqm75Ypd-wkJfJkTO7lL2PyZEyejWVC84cwBNurMP4ruzpnIb94tBBk1BachtaGbEG23v6D8gUbL5Qp
CitedBy_id crossref_primary_10_1016_j_ijrmhm_2023_106450
crossref_primary_10_1016_j_jmrt_2023_11_240
crossref_primary_10_1021_acs_nanolett_4c00292
crossref_primary_10_1016_j_ssc_2023_115421
crossref_primary_10_1016_j_scriptamat_2024_116258
crossref_primary_10_1016_j_jmrt_2023_05_245
crossref_primary_10_1016_j_ijmecsci_2025_110000
crossref_primary_10_1016_j_scriptamat_2024_116429
crossref_primary_10_1063_5_0217406
crossref_primary_10_1016_j_matchemphys_2024_129538
crossref_primary_10_1016_j_jpcs_2023_111617
crossref_primary_10_1016_j_vacuum_2023_112498
crossref_primary_10_1016_j_compstruct_2023_117322
crossref_primary_10_1016_j_cap_2023_12_018
crossref_primary_10_1016_j_physleta_2023_129000
crossref_primary_10_1007_s10853_024_09943_4
crossref_primary_10_1016_j_mtcomm_2024_108075
crossref_primary_10_3390_ma16134618
Cites_doi 10.1016/j.physe.2008.03.013
10.1016/j.jnucmat.2016.09.024
10.1016/j.matchemphys.2021.125560
10.1063/5.0065441
10.1016/j.matdes.2017.09.019
10.1103/PhysRev.159.98
10.1016/j.commatsci.2010.01.010
10.1016/j.matdes.2019.107998
10.1016/j.commatsci.2017.02.033
10.1016/j.matchemphys.2021.125559
10.1016/j.commatsci.2013.05.053
10.1016/j.actamat.2012.08.029
10.1016/j.scriptamat.2019.10.046
10.1016/j.matchemphys.2021.125111
10.3390/nano8100785
10.1103/PhysRev.130.1324
10.1016/j.matchemphys.2020.123263
10.1103/PhysRevB.60.11971
10.1103/PhysRevB.43.6500
10.1126/science.1143719
10.1016/j.matchemphys.2021.125010
10.1016/j.engfracmech.2020.107292
10.1103/PhysRevB.69.144113
10.1557/jmr.2018.93
10.1038/srep16275
10.1103/PhysRevB.72.085414
10.1088/1361-651X/aafd13
10.1103/PhysRevLett.107.215501
10.1016/j.surfcoat.2020.125333
10.1088/1361-651X/ab2621
10.1016/j.mssp.2018.12.008
10.1021/acsanm.8b02219
10.1016/j.jnucmat.2012.08.018
10.1103/PhysRevB.66.094110
10.1016/j.ijplas.2021.102997
10.1016/j.actamat.2004.07.025
10.1016/S0168-583X(96)00939-1
10.1016/j.cpc.2015.07.012
10.1088/0965-0393/20/4/045021
10.1016/j.apsusc.2022.153524
10.1016/j.msea.2017.02.105
10.1002/pssa.202100834
10.1016/j.matchemphys.2019.121831
10.1016/j.msea.2014.07.066
10.1016/j.mssp.2017.08.033
10.1088/0965-0393/18/1/015012
10.1088/1361-6641/aafccd
10.1007/s00466-008-0339-2
10.1016/j.ijplas.2011.05.015
10.1016/j.mtla.2021.101043
10.1038/35328
10.1016/j.actamat.2020.07.054
10.1080/08957950601151626
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.matchemphys.2022.127270
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_matchemphys_2022_127270
S0254058422015760
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
WUQ
ID FETCH-LOGICAL-c251t-a1058f848b14f7a47af938466577055550040f2d6d05d94d35a5c93e02e3c3453
IEDL.DBID .~1
ISSN 0254-0584
IngestDate Tue Jul 01 00:05:27 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Sun Apr 06 06:56:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Grain size effect
Mechanical properties
Molecular dynamics
Polycrystalline Mo
Temperature effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-a1058f848b14f7a47af938466577055550040f2d6d05d94d35a5c93e02e3c3453
ORCID 0000-0001-7180-408X
ParticipantIDs crossref_citationtrail_10_1016_j_matchemphys_2022_127270
crossref_primary_10_1016_j_matchemphys_2022_127270
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2022_127270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Materials chemistry and physics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Wang, Du (bib50) 2014; 5
Tian, Li, Yu (bib54) 2017; 690
Joshi, Gupta (bib43) 2007; 27
Dehaghani, Salmankhani, Mashhadzadeh (bib41) 2021; 244
Csikor, Motz, Weygand (bib38) 2007; 318
Liu, Xie, Wang (bib13) 2020; 252
Zhao, Song, An (bib14) 2022
Gao, Wang, Ogata (bib47) 2013; 79
Reddy, Meraj, Pal (bib16) 2019; 237
Zhou, Johnson, Wadley (bib33) 2004; 69
Jakob, Leitner, Lorich (bib9) 2019; 182
Zou, Zhang, Guan (bib10) 2020; 384
Luo, Roundy, Cohen (bib45) 2002; 66
Hua, Xia, Wang (bib58) 2021; 142
Featherston, Neighbours (bib44) 1963; 130
Shinde, Owhal, Sharma (bib12) 2022; 277
Zhou, Li, Xian (bib22) 2018; 8
Reddy, Pal (bib20) 2021; 272
Lysogorskiy, Hammerschmidt, Janssen (bib35) 2019; 27
Stukowski (bib32) 2012; 20
Chen, Kecskes, Zhu (bib37) 2016; 481
Alouani, Albers, Methfessel (bib42) 1991; 43
Sharma, Kositski, Kovalenko (bib7) 2020; 198
Zhang, Rao, Kim (bib24) 2021; 16
Tran (bib15) 2020; 239
Nguyen, Fang (bib21) 2022; 595
Ju, Li (bib52) 2022
Zhou, Liu, Yao (bib48) 2014; 615
Fritzen, Böhlke, Schnack (bib29) 2009; 43
Loup (bib36) 1967; 159
Stukowski (bib31) 2010; 18
Baek, Yang, Hur (bib6) 2019; 91
Chen, Zhang, Liu (bib57) 2019; 27
Schiøtz, Di Tolla, Jacobsen (bib39) 1998; 391
He, Abdolrahim (bib23) 2019; 2
Spielmannová, Machová, Hora (bib51) 2010; 48
Li, Zhang, Zou (bib4) 2019; 34
Sun, Singh (bib49) 2020; 178
Rieth, Dudarev, De Vicente (bib1) 2013; 432
Rodriguez, Famulok, Le Friec (bib5) 2017; 71
Zhang, Millett, Tonks (bib53) 2012; 60
Zhang, Li, Hu (bib30) 2021; 130
Frederiksen, Jacobsen, Schiøtz (bib46) 2004; 52
Murali, Guo, Zhang (bib55) 2011; 107
Zhang, Li, Hu (bib60) 2021; 130
Jiang, Chen, Qiu (bib19) 2021; 273
Li, Hu, Xiao (bib25) 2008; 40
Dehaghani, Safa, Yousefi (bib40) 2021; 251
Kim, Jang, Greer (bib8) 2012; 28
Leitner, Felfer, Holec (bib11) 2017; 135
Koh, Lee, Lu (bib59) 2005; 72
Atomsk (bib26) 2015; 197
Schiøtz, Vegge, Di Tolla (bib28) 1999; 60
Zinn (bib2) 1994
Hale, Becker (bib34) 2017; 135
Schloesser, Jakubowski, Kluge (bib3) 2008
Du, Zhao, Zhang (bib56) 2015; 5
Robbemond, Thijsse (bib27) 1997; 127
Rezaei, Shariati, Tavakoli-Anbaran (bib17) 2018; 33
Katakam, Yedla (bib18) 2022; 277
Reddy (10.1016/j.matchemphys.2022.127270_bib20) 2021; 272
Schiøtz (10.1016/j.matchemphys.2022.127270_bib28) 1999; 60
Sun (10.1016/j.matchemphys.2022.127270_bib49) 2020; 178
Zhang (10.1016/j.matchemphys.2022.127270_bib60) 2021; 130
Katakam (10.1016/j.matchemphys.2022.127270_bib18) 2022; 277
Schloesser (10.1016/j.matchemphys.2022.127270_bib3) 2008
Luo (10.1016/j.matchemphys.2022.127270_bib45) 2002; 66
Zhang (10.1016/j.matchemphys.2022.127270_bib30) 2021; 130
Stukowski (10.1016/j.matchemphys.2022.127270_bib31) 2010; 18
Chen (10.1016/j.matchemphys.2022.127270_bib37) 2016; 481
Hua (10.1016/j.matchemphys.2022.127270_bib58) 2021; 142
Zhou (10.1016/j.matchemphys.2022.127270_bib33) 2004; 69
Schiøtz (10.1016/j.matchemphys.2022.127270_bib39) 1998; 391
Zhang (10.1016/j.matchemphys.2022.127270_bib24) 2021; 16
Sharma (10.1016/j.matchemphys.2022.127270_bib7) 2020; 198
Leitner (10.1016/j.matchemphys.2022.127270_bib11) 2017; 135
He (10.1016/j.matchemphys.2022.127270_bib23) 2019; 2
Rezaei (10.1016/j.matchemphys.2022.127270_bib17) 2018; 33
Jakob (10.1016/j.matchemphys.2022.127270_bib9) 2019; 182
Dehaghani (10.1016/j.matchemphys.2022.127270_bib40) 2021; 251
Gao (10.1016/j.matchemphys.2022.127270_bib47) 2013; 79
Li (10.1016/j.matchemphys.2022.127270_bib4) 2019; 34
Csikor (10.1016/j.matchemphys.2022.127270_bib38) 2007; 318
Reddy (10.1016/j.matchemphys.2022.127270_bib16) 2019; 237
Ju (10.1016/j.matchemphys.2022.127270_bib52) 2022
Dehaghani (10.1016/j.matchemphys.2022.127270_bib41) 2021; 244
Tian (10.1016/j.matchemphys.2022.127270_bib54) 2017; 690
Lysogorskiy (10.1016/j.matchemphys.2022.127270_bib35) 2019; 27
Rodriguez (10.1016/j.matchemphys.2022.127270_bib5) 2017; 71
Zhao (10.1016/j.matchemphys.2022.127270_bib14) 2022
Stukowski (10.1016/j.matchemphys.2022.127270_bib32) 2012; 20
Kim (10.1016/j.matchemphys.2022.127270_bib8) 2012; 28
Alouani (10.1016/j.matchemphys.2022.127270_bib42) 1991; 43
Du (10.1016/j.matchemphys.2022.127270_bib56) 2015; 5
Shinde (10.1016/j.matchemphys.2022.127270_bib12) 2022; 277
Jiang (10.1016/j.matchemphys.2022.127270_bib19) 2021; 273
Loup (10.1016/j.matchemphys.2022.127270_bib36) 1967; 159
Liu (10.1016/j.matchemphys.2022.127270_bib13) 2020; 252
Fritzen (10.1016/j.matchemphys.2022.127270_bib29) 2009; 43
Tran (10.1016/j.matchemphys.2022.127270_bib15) 2020; 239
Atomsk (10.1016/j.matchemphys.2022.127270_bib26) 2015; 197
Zhou (10.1016/j.matchemphys.2022.127270_bib48) 2014; 615
Koh (10.1016/j.matchemphys.2022.127270_bib59) 2005; 72
Joshi (10.1016/j.matchemphys.2022.127270_bib43) 2007; 27
Rieth (10.1016/j.matchemphys.2022.127270_bib1) 2013; 432
Featherston (10.1016/j.matchemphys.2022.127270_bib44) 1963; 130
Wang (10.1016/j.matchemphys.2022.127270_bib50) 2014; 5
Zinn (10.1016/j.matchemphys.2022.127270_bib2) 1994
Baek (10.1016/j.matchemphys.2022.127270_bib6) 2019; 91
Li (10.1016/j.matchemphys.2022.127270_bib25) 2008; 40
Zhou (10.1016/j.matchemphys.2022.127270_bib22) 2018; 8
Spielmannová (10.1016/j.matchemphys.2022.127270_bib51) 2010; 48
Hale (10.1016/j.matchemphys.2022.127270_bib34) 2017; 135
Nguyen (10.1016/j.matchemphys.2022.127270_bib21) 2022; 595
Zou (10.1016/j.matchemphys.2022.127270_bib10) 2020; 384
Chen (10.1016/j.matchemphys.2022.127270_bib57) 2019; 27
Frederiksen (10.1016/j.matchemphys.2022.127270_bib46) 2004; 52
Murali (10.1016/j.matchemphys.2022.127270_bib55) 2011; 107
Zhang (10.1016/j.matchemphys.2022.127270_bib53) 2012; 60
Robbemond (10.1016/j.matchemphys.2022.127270_bib27) 1997; 127
References_xml – volume: 178
  start-page: 71
  year: 2020
  end-page: 76
  ident: bib49
  article-title: Temperature dependence of grain boundary excess free volume[J]
  publication-title: Scripta Mater.
– volume: 72
  year: 2005
  ident: bib59
  article-title: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects[J]
  publication-title: Phys. Rev. B
– volume: 277
  year: 2022
  ident: bib12
  article-title: Comparative analysis of mechanical properties for mono and poly-crystalline copper under nanoindentation–Insights from molecular dynamics simulations[J]
  publication-title: Mater. Chem. Phys.
– volume: 71
  start-page: 433
  year: 2017
  end-page: 440
  ident: bib5
  article-title: Advanced characterizations of fluorine-free W film and its application as low resistance liner for PCRAM[J]
  publication-title: Mater. Sci. Semicond. Process.
– volume: 182
  year: 2019
  ident: bib9
  article-title: Influence of crystal orientation and Berkovich tip rotation on the mechanical characterization of grain boundaries in Mo[J]
  publication-title: Mater. Des.
– volume: 52
  start-page: 5019
  year: 2004
  end-page: 5029
  ident: bib46
  article-title: Simulations of intergranular fracture in nanocrystalline Mo[J]
  publication-title: Acta Mater.
– volume: 2
  start-page: 1890
  year: 2019
  end-page: 1897
  ident: bib23
  article-title: Stress-assisted structural phase transformation enhances ductility in Mo/Cu bicontinuous intertwined composites[J]
  publication-title: ACS Appl. Nano Mater.
– volume: 20
  year: 2012
  ident: bib32
  article-title: Structure identification methods for atomistic simulations of crystalline materials[J]
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 27
  year: 2019
  ident: bib35
  article-title: Transferability of interatomic potentials for Mo and silicon[J]
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 40
  start-page: 3030
  year: 2008
  end-page: 3036
  ident: bib25
  article-title: Molecular dynamics simulation of nanocrystalline Mo nanowires under uniaxial tensile strain: size effects[J]
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 130
  start-page: 1324
  year: 1963
  ident: bib44
  article-title: Elastic constants of tantalum, W, and Mo[J]
  publication-title: Phys. Rev.
– volume: 60
  start-page: 6421
  year: 2012
  end-page: 6428
  ident: bib53
  article-title: Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations[J]
  publication-title: Acta Mater.
– volume: 690
  start-page: 277
  year: 2017
  end-page: 282
  ident: bib54
  article-title: Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo[J]
  publication-title: Mater. Sci. Eng., A
– volume: 481
  start-page: 190
  year: 2016
  end-page: 200
  ident: bib37
  article-title: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten[J]
  publication-title: J. Nucl. Mater.
– volume: 239
  year: 2020
  ident: bib15
  article-title: Phase transformation and interface fracture of Cu/Ta multilayers: a molecular dynamics study[J]
  publication-title: Eng. Fract. Mech.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib50
  article-title: Deformation-induced structural transition in body-centred cubic Mo[J]
  publication-title: Nat. Commun.
– year: 2022
  ident: bib52
  article-title: Role of local FCC structure to the BCC polycrystalline NbMoTaWV high‐entropy refractory alloy under plastic deformation[J]
  publication-title: Phys. Status Solidi
– year: 2022
  ident: bib14
  article-title: Effect of graphene on the mechanical properties of metallic glasses: insight from molecular dynamics simulation[J]
  publication-title: Mater. Chem. Phys.
– volume: 244
  year: 2021
  ident: bib41
  article-title: Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis[J]
  publication-title: Eng. Fract. Mech.
– volume: 60
  year: 1999
  ident: bib28
  article-title: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J]
  publication-title: Phys. Rev. B
– volume: 159
  start-page: 98
  year: 1967
  end-page: 103
  ident: bib36
  article-title: Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
  publication-title: Phys. Rev.
– volume: 318
  start-page: 251
  year: 2007
  end-page: 254
  ident: bib38
  article-title: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale[J]
  publication-title: Science
– volume: 8
  start-page: 785
  year: 2018
  ident: bib22
  article-title: Nanoscale assembly of copper bearing-sleeve via cold-welding: a molecular dynamics study
  publication-title: J. Nanomater.
– volume: 107
  year: 2011
  ident: bib55
  article-title: Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses
  publication-title: Phys. Rev. Lett.
– volume: 197
  start-page: 212
  year: 2015
  end-page: 219
  ident: bib26
  article-title: A tool for manipulating and converting atomic data files[J]
  publication-title: Comput. Phys. Commun.
– volume: 237
  year: 2019
  ident: bib16
  article-title: Molecular dynamics simulation based investigation of strain induced crystallization of nickel metallic glass[J]
  publication-title: Mater. Chem. Phys.
– volume: 595
  year: 2022
  ident: bib21
  article-title: Revealing the mechanisms for inactive rolling and wear behaviour on chemical mechanical planarization[J]
  publication-title: Appl. Surf. Sci.
– volume: 251
  year: 2021
  ident: bib40
  article-title: Fracture behavior of SiGe nanosheets: mechanics of monocrystalline vs. polycrystalline structure[J]
  publication-title: Eng. Fract. Mech.
– volume: 135
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib34
  article-title: Vacancy dissociation in body-centered cubic screw dislocation cores[J]
  publication-title: Comput. Mater. Sci.
– volume: 198
  start-page: 72
  year: 2020
  end-page: 84
  ident: bib7
  article-title: Giant shape-and size-dependent compressive strength of Mo nano-and microparticles[J]
  publication-title: Acta Mater.
– volume: 33
  start-page: 1733
  year: 2018
  end-page: 1741
  ident: bib17
  article-title: Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations[J]
  publication-title: J. Mater. Res.
– volume: 43
  start-page: 701
  year: 2009
  end-page: 713
  ident: bib29
  article-title: Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations[J]
  publication-title: Comput. Mech.
– volume: 615
  start-page: 92
  year: 2014
  end-page: 97
  ident: bib48
  article-title: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics[J]
  publication-title: Mater. Sci. Eng., A
– volume: 130
  year: 2021
  ident: bib30
  article-title: Mechanical properties and scaling laws of nanocrystalline CuZr shape memory alloy[J]
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 6500
  year: 1991
  ident: bib42
  article-title: Calculated elastic constants and structural properties of Mo and MoSi 2[J]
  publication-title: Phys. Rev. B
– volume: 69
  year: 2004
  ident: bib33
  article-title: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]
  publication-title: Phys. Rev. B
– volume: 273
  year: 2021
  ident: bib19
  article-title: Dynamic mechanical contact behaviors and sintering mechanism of Al nanoparticles subjected to high-speed impact[J]
  publication-title: Mater. Chem. Phys.
– volume: 18
  year: 2010
  ident: bib31
  article-title: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool
  publication-title: Model. Simulat. Mater. Sci. Eng.
– start-page: 105
  year: 1994
  end-page: 174
  ident: bib2
  article-title: Chemical Vapor Deposition of W[J]
– volume: 27
  year: 2019
  ident: bib57
  article-title: Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation[J]
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 391
  start-page: 561
  year: 1998
  end-page: 563
  ident: bib39
  article-title: Softening of nanocrystalline metals at very small grain sizes[J]
  publication-title: Nature
– volume: 432
  start-page: 482
  year: 2013
  end-page: 500
  ident: bib1
  article-title: Recent progress in research on W materials for nuclear fusion applications in Europe[J]
  publication-title: J. Nucl. Mater.
– volume: 277
  year: 2022
  ident: bib18
  article-title: Tensile and creep behavior of nickel nanowires containing volume defects: insight into the deformation mechanisms and microstructural evolution using molecular dynamics simulations[J]
  publication-title: Mater. Chem. Phys.
– volume: 27
  start-page: 259
  year: 2007
  end-page: 268
  ident: bib43
  article-title: On mechanical stability of Mo[J]
  publication-title: High Pres. Res.
– volume: 48
  start-page: 296
  year: 2010
  end-page: 302
  ident: bib51
  article-title: Transonic twins in 3D bcc iron crystal[J]
  publication-title: Comput. Mater. Sci.
– start-page: 1
  year: 2008
  end-page: 4
  ident: bib3
  article-title: 6F2 Buried Word Line DRAM Cell for 40nm and beyond[C]//2008 IEEE International Electron Devices Meeting
– volume: 127
  start-page: 273
  year: 1997
  end-page: 277
  ident: bib27
  article-title: Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation[J]
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– volume: 16
  year: 2021
  ident: bib24
  article-title: Molecular dynamics simulation of stress induced by energetic particle bombardment in Mo thin films[J]
  publication-title: Materialia
– volume: 130
  year: 2021
  ident: bib60
  article-title: Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy[J]
  publication-title: J. Appl. Phys.
– volume: 384
  year: 2020
  ident: bib10
  article-title: Effect on mechanics properties and microstructure of Mo by high intensity pulsed ion beam irradiation[J]
  publication-title: Surf. Coating. Technol.
– volume: 252
  year: 2020
  ident: bib13
  article-title: Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation[J]
  publication-title: Mater. Chem. Phys.
– volume: 91
  start-page: 392
  year: 2019
  end-page: 398
  ident: bib6
  article-title: Representative volume element analysis for wafer-level warpage using Finite Element methods[J]
  publication-title: Mater. Sci. Semicond. Process.
– volume: 28
  start-page: 46
  year: 2012
  end-page: 52
  ident: bib8
  article-title: Crystallographic orientation and size dependence of tension–compression asymmetry in Mo nano-pillars[J]
  publication-title: Int. J. Plast.
– volume: 135
  start-page: 204
  year: 2017
  end-page: 212
  ident: bib11
  article-title: On grain boundary segregation in Mo materials[J]
  publication-title: Mater. Des.
– volume: 142
  year: 2021
  ident: bib58
  article-title: Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation[J]
  publication-title: Int. J. Plast.
– volume: 34
  year: 2019
  ident: bib4
  article-title: Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory[J]
  publication-title: Semicond. Sci. Technol.
– volume: 79
  start-page: 56
  year: 2013
  end-page: 62
  ident: bib47
  article-title: Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains[J]
  publication-title: Comput. Mater. Sci.
– volume: 272
  year: 2021
  ident: bib20
  article-title: Cold-rolling induced residual stress effect on the shock response of crystalline-metallic glass (Cu–CuZr) nanolaminates by molecular dynamics simulation[J]
  publication-title: Mater. Chem. Phys.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib56
  article-title: Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature[J]
  publication-title: Sci. Rep.
– volume: 66
  year: 2002
  ident: bib45
  article-title: Ideal strength of bcc Mo and niobium[J]
  publication-title: Phys. Rev. B
– volume: 40
  start-page: 3030
  issue: 10
  year: 2008
  ident: 10.1016/j.matchemphys.2022.127270_bib25
  article-title: Molecular dynamics simulation of nanocrystalline Mo nanowires under uniaxial tensile strain: size effects[J]
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2008.03.013
– volume: 481
  start-page: 190
  year: 2016
  ident: 10.1016/j.matchemphys.2022.127270_bib37
  article-title: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten[J]
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2016.09.024
– volume: 277
  year: 2022
  ident: 10.1016/j.matchemphys.2022.127270_bib18
  article-title: Tensile and creep behavior of nickel nanowires containing volume defects: insight into the deformation mechanisms and microstructural evolution using molecular dynamics simulations[J]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.125560
– volume: 130
  issue: 15
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib60
  article-title: Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0065441
– volume: 135
  start-page: 204
  year: 2017
  ident: 10.1016/j.matchemphys.2022.127270_bib11
  article-title: On grain boundary segregation in Mo materials[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.09.019
– volume: 159
  start-page: 98
  issue: 1
  year: 1967
  ident: 10.1016/j.matchemphys.2022.127270_bib36
  article-title: Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.98
– volume: 48
  start-page: 296
  issue: 2
  year: 2010
  ident: 10.1016/j.matchemphys.2022.127270_bib51
  article-title: Transonic twins in 3D bcc iron crystal[J]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.01.010
– volume: 182
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib9
  article-title: Influence of crystal orientation and Berkovich tip rotation on the mechanical characterization of grain boundaries in Mo[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107998
– volume: 135
  start-page: 1
  year: 2017
  ident: 10.1016/j.matchemphys.2022.127270_bib34
  article-title: Vacancy dissociation in body-centered cubic screw dislocation cores[J]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.02.033
– volume: 277
  year: 2022
  ident: 10.1016/j.matchemphys.2022.127270_bib12
  article-title: Comparative analysis of mechanical properties for mono and poly-crystalline copper under nanoindentation–Insights from molecular dynamics simulations[J]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.125559
– volume: 79
  start-page: 56
  year: 2013
  ident: 10.1016/j.matchemphys.2022.127270_bib47
  article-title: Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains[J]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.05.053
– volume: 60
  start-page: 6421
  issue: 18
  year: 2012
  ident: 10.1016/j.matchemphys.2022.127270_bib53
  article-title: Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.08.029
– volume: 178
  start-page: 71
  year: 2020
  ident: 10.1016/j.matchemphys.2022.127270_bib49
  article-title: Temperature dependence of grain boundary excess free volume[J]
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2019.10.046
– volume: 273
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib19
  article-title: Dynamic mechanical contact behaviors and sintering mechanism of Al nanoparticles subjected to high-speed impact[J]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.125111
– volume: 8
  start-page: 785
  issue: 10
  year: 2018
  ident: 10.1016/j.matchemphys.2022.127270_bib22
  article-title: Nanoscale assembly of copper bearing-sleeve via cold-welding: a molecular dynamics study
  publication-title: J. Nanomater.
  doi: 10.3390/nano8100785
– start-page: 1
  year: 2008
  ident: 10.1016/j.matchemphys.2022.127270_bib3
– volume: 130
  start-page: 1324
  issue: 4
  year: 1963
  ident: 10.1016/j.matchemphys.2022.127270_bib44
  article-title: Elastic constants of tantalum, W, and Mo[J]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.130.1324
– year: 2022
  ident: 10.1016/j.matchemphys.2022.127270_bib14
  article-title: Effect of graphene on the mechanical properties of metallic glasses: insight from molecular dynamics simulation[J]
  publication-title: Mater. Chem. Phys.
– volume: 252
  year: 2020
  ident: 10.1016/j.matchemphys.2022.127270_bib13
  article-title: Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation[J]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123263
– volume: 251
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib40
  article-title: Fracture behavior of SiGe nanosheets: mechanics of monocrystalline vs. polycrystalline structure[J]
  publication-title: Eng. Fract. Mech.
– volume: 60
  issue: 17
  year: 1999
  ident: 10.1016/j.matchemphys.2022.127270_bib28
  article-title: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.11971
– volume: 43
  start-page: 6500
  issue: 8
  year: 1991
  ident: 10.1016/j.matchemphys.2022.127270_bib42
  article-title: Calculated elastic constants and structural properties of Mo and MoSi 2[J]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.6500
– volume: 318
  start-page: 251
  issue: 5848
  year: 2007
  ident: 10.1016/j.matchemphys.2022.127270_bib38
  article-title: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale[J]
  publication-title: Science
  doi: 10.1126/science.1143719
– volume: 272
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib20
  article-title: Cold-rolling induced residual stress effect on the shock response of crystalline-metallic glass (Cu–CuZr) nanolaminates by molecular dynamics simulation[J]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.125010
– volume: 239
  year: 2020
  ident: 10.1016/j.matchemphys.2022.127270_bib15
  article-title: Phase transformation and interface fracture of Cu/Ta multilayers: a molecular dynamics study[J]
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107292
– volume: 69
  issue: 14
  year: 2004
  ident: 10.1016/j.matchemphys.2022.127270_bib33
  article-title: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.144113
– volume: 33
  start-page: 1733
  issue: 12
  year: 2018
  ident: 10.1016/j.matchemphys.2022.127270_bib17
  article-title: Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations[J]
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.93
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.matchemphys.2022.127270_bib56
  article-title: Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature[J]
  publication-title: Sci. Rep.
  doi: 10.1038/srep16275
– volume: 72
  issue: 8
  year: 2005
  ident: 10.1016/j.matchemphys.2022.127270_bib59
  article-title: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects[J]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.085414
– volume: 27
  issue: 2
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib35
  article-title: Transferability of interatomic potentials for Mo and silicon[J]
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/aafd13
– volume: 107
  issue: 21
  year: 2011
  ident: 10.1016/j.matchemphys.2022.127270_bib55
  article-title: Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.215501
– volume: 384
  year: 2020
  ident: 10.1016/j.matchemphys.2022.127270_bib10
  article-title: Effect on mechanics properties and microstructure of Mo by high intensity pulsed ion beam irradiation[J]
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2020.125333
– volume: 27
  issue: 6
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib57
  article-title: Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation[J]
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/ab2621
– volume: 91
  start-page: 392
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib6
  article-title: Representative volume element analysis for wafer-level warpage using Finite Element methods[J]
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2018.12.008
– volume: 2
  start-page: 1890
  issue: 4
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib23
  article-title: Stress-assisted structural phase transformation enhances ductility in Mo/Cu bicontinuous intertwined composites[J]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02219
– volume: 432
  start-page: 482
  issue: 1–3
  year: 2013
  ident: 10.1016/j.matchemphys.2022.127270_bib1
  article-title: Recent progress in research on W materials for nuclear fusion applications in Europe[J]
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.08.018
– volume: 66
  issue: 9
  year: 2002
  ident: 10.1016/j.matchemphys.2022.127270_bib45
  article-title: Ideal strength of bcc Mo and niobium[J]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.094110
– volume: 142
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib58
  article-title: Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation[J]
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2021.102997
– volume: 52
  start-page: 5019
  issue: 17
  year: 2004
  ident: 10.1016/j.matchemphys.2022.127270_bib46
  article-title: Simulations of intergranular fracture in nanocrystalline Mo[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.07.025
– volume: 127
  start-page: 273
  year: 1997
  ident: 10.1016/j.matchemphys.2022.127270_bib27
  article-title: Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation[J]
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/S0168-583X(96)00939-1
– volume: 197
  start-page: 212
  year: 2015
  ident: 10.1016/j.matchemphys.2022.127270_bib26
  article-title: A tool for manipulating and converting atomic data files[J]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.07.012
– volume: 20
  issue: 4
  year: 2012
  ident: 10.1016/j.matchemphys.2022.127270_bib32
  article-title: Structure identification methods for atomistic simulations of crystalline materials[J]
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/20/4/045021
– volume: 595
  year: 2022
  ident: 10.1016/j.matchemphys.2022.127270_bib21
  article-title: Revealing the mechanisms for inactive rolling and wear behaviour on chemical mechanical planarization[J]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153524
– volume: 690
  start-page: 277
  year: 2017
  ident: 10.1016/j.matchemphys.2022.127270_bib54
  article-title: Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo[J]
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2017.02.105
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.matchemphys.2022.127270_bib50
  article-title: Deformation-induced structural transition in body-centred cubic Mo[J]
  publication-title: Nat. Commun.
– year: 2022
  ident: 10.1016/j.matchemphys.2022.127270_bib52
  article-title: Role of local FCC structure to the BCC polycrystalline NbMoTaWV high‐entropy refractory alloy under plastic deformation[J]
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.202100834
– volume: 237
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib16
  article-title: Molecular dynamics simulation based investigation of strain induced crystallization of nickel metallic glass[J]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.121831
– start-page: 105
  year: 1994
  ident: 10.1016/j.matchemphys.2022.127270_bib2
– volume: 615
  start-page: 92
  year: 2014
  ident: 10.1016/j.matchemphys.2022.127270_bib48
  article-title: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics[J]
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2014.07.066
– volume: 71
  start-page: 433
  year: 2017
  ident: 10.1016/j.matchemphys.2022.127270_bib5
  article-title: Advanced characterizations of fluorine-free W film and its application as low resistance liner for PCRAM[J]
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2017.08.033
– volume: 18
  issue: 1
  year: 2010
  ident: 10.1016/j.matchemphys.2022.127270_bib31
  article-title: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 34
  issue: 2
  year: 2019
  ident: 10.1016/j.matchemphys.2022.127270_bib4
  article-title: Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory[J]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aafccd
– volume: 43
  start-page: 701
  issue: 5
  year: 2009
  ident: 10.1016/j.matchemphys.2022.127270_bib29
  article-title: Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations[J]
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0339-2
– volume: 28
  start-page: 46
  issue: 1
  year: 2012
  ident: 10.1016/j.matchemphys.2022.127270_bib8
  article-title: Crystallographic orientation and size dependence of tension–compression asymmetry in Mo nano-pillars[J]
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.05.015
– volume: 16
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib24
  article-title: Molecular dynamics simulation of stress induced by energetic particle bombardment in Mo thin films[J]
  publication-title: Materialia
  doi: 10.1016/j.mtla.2021.101043
– volume: 391
  start-page: 561
  issue: 6667
  year: 1998
  ident: 10.1016/j.matchemphys.2022.127270_bib39
  article-title: Softening of nanocrystalline metals at very small grain sizes[J]
  publication-title: Nature
  doi: 10.1038/35328
– volume: 130
  issue: 15
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib30
  article-title: Mechanical properties and scaling laws of nanocrystalline CuZr shape memory alloy[J]
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0065441
– volume: 198
  start-page: 72
  year: 2020
  ident: 10.1016/j.matchemphys.2022.127270_bib7
  article-title: Giant shape-and size-dependent compressive strength of Mo nano-and microparticles[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.07.054
– volume: 244
  year: 2021
  ident: 10.1016/j.matchemphys.2022.127270_bib41
  article-title: Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis[J]
  publication-title: Eng. Fract. Mech.
– volume: 27
  start-page: 259
  issue: 2
  year: 2007
  ident: 10.1016/j.matchemphys.2022.127270_bib43
  article-title: On mechanical stability of Mo[J]
  publication-title: High Pres. Res.
  doi: 10.1080/08957950601151626
SSID ssj0017113
Score 2.4951196
Snippet Polycrystalline Mo has excellent application prospects in micro-nano devices, and its mechanical properties play an essential role in the application. A series...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127270
SubjectTerms Grain size effect
Mechanical properties
Molecular dynamics
Polycrystalline Mo
Temperature effect
Title Tensile responses of polycrystalline Mo via molecular dynamics simulation: Grain size and temperature effects
URI https://dx.doi.org/10.1016/j.matchemphys.2022.127270
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6Kgo-DaFWsLyJ4XbvdJPsQL1LUqtiLLXhb0iQLlb5oq1AP_nZn3GytICh4DRkIs7MzX3a_mQ_gVOuO4rENPauk72GExF4n8ZVHPzl1okOfK-odfmiGjba4e5JPJagXvTBEq3S5P8_pn9narVSdN6ujbrf6SH3cPtbPAGsYoma6twsRUZSfvc9pHrWolksk42aPdq_AyRfHC0EhuqZPHxHwqhgEZ3jEgHSLf6pRC3XnehM2HGBkl_mZtqBkB2VYrRc6bWVYXxgpuA39FjHSe5aNc_KrnbBhxkbD3kyPZ4gEaQS3ZQ9D9tpVrF9o4zKTC9NP2KTbd4Je5-yG5CNw5c0yNTCMpli5EczM0UB2oH191ao3PCep4GkEMlNPIZyKs1jEnZrIIiUilSUcIUgoIxqrg9cVfKmzwITGlyYRhksldcKtH1iuuZB8F5YGw4HdA8ajSFmO6dGPrTBSqMyEmtCW9o3FPFiBuHBiqt28cZK96KUFsew5XfB_Sv5Pc_9XIJibjvKhG38xuiieVPotglIsDr-b7__P_ADWSIie-Nw1eQhL0_GLPUK4Mu0cf8bjMSxf3t43mh_gxu1g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgtWD-MT6jOB17Xaz2Yd4KcVaH-3FFnpb0iQLlb5oq6C_3hk3WysICl7DDoTZ7MyXzZfvA7hQqid5ZALHSOE6uEIipxe70qFDThWrwOWS7g43W0Gj4993RXcFavldGKJV2tqf1fTPam1Hyjab5Um_X36ie9wu9k8PexiiZty3r5I6lSjAavXuodFaHCaElcwlGZ93KGANzr9oXogLMTtD-o-Au0XPu8RZemRd_FObWmo99S3YtJiRVbNpbcOKGe1AsZZbte3AxpKq4C4M20RKHxg2zfivZsbGKZuMB29q-oZgkFS4DWuO2WtfsmFuj8t05k0_Y7P-0Hp6XbFbcpDAkXfD5EgzErKyKszMMkH2oFO_adcajnVVcBRimbkjEVFFaeRHvYqfhtIPZRpzRCGBCElZB3cs-F2nng60K3Tsay6kUDE3rme44r7g-1AYjUfmABgPQ2k4Vkg3Mr4Wvkx1oAhwKVcbLIUliPIkJspKjpPzxSDJuWXPyVL-E8p_kuW_BN4idJLpbvwl6Dp_U8m3RZRgf_g9_PB_4WdQbLSbj8njXevhCNbJl57o3RVxDIX59MWcIHqZ907t6vwA_rjwEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensile+responses+of+polycrystalline+Mo+via+molecular+dynamics+simulation%3A+Grain+size+and+temperature+effects&rft.jtitle=Materials+chemistry+and+physics&rft.au=Hu%2C+Yiqun&rft.au=Xu%2C+Jianfei&rft.au=Su%2C+Lei&rft.au=Zhang%2C+Yuhang&rft.date=2023-02-15&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.volume=296&rft_id=info:doi/10.1016%2Fj.matchemphys.2022.127270&rft.externalDocID=S0254058422015760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon