Short-term load forecasting based on temporal importance analysis and feature extraction

•An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of extreme points, the morphological features of load curves are captured, particularly those of the intervals between extreme points.•This paper focu...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 244; p. 111551
Main Authors Yuqi, Ji, An, An, Lu, Zhang, Ping, He, Xiaomei, Liu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of extreme points, the morphological features of load curves are captured, particularly those of the intervals between extreme points.•This paper focuses on the prediction accuracy of extreme points. Using the extreme importance features extracted by the EIIR algorithm proposed in this paper, machine learning models can pay more attention to one or more extreme regions without relying on attention mechanisms, thereby improving the prediction accuracy of these regions.•In order to guarantee the reliability of model prediction, the Gaussian distribution is used to generate a total of 25 groups of noise with different degrees to interfere with the original Drybulb and THI data. The experimental results show that K-E-CNN-LSTM has good robustness to data noise. Efficient and accurate short-term load forecasting plays a crucial role in ensuring the safe and stable operation of power systems and achieving economic management. This paper proposes an EIIR (Enhanced Importance Index Recognize) importance marking algorithm. This algorithm can extract the importance of each point in the load series, especially extreme points, so that machine learning models can focus on areas of high importance during training. This fills the research gap in the morphological characteristics of time series for peak and valley prediction. First, the K-Medoids algorithm is used to cluster the daily load curve, and then the EIIR algorithm is used to extract the numerical features of the extreme value points of various cluster centers. Then the importance features and historical data are reconstructed into a new feature set and input them into the CNN-LSTM hybrid neural network for prediction. Finally, the ISONE public power load data set is taken as an example for analysis and verification. In order to verify the reliability of the model prediction, the robustness of the model was analyzed and verified by adding input interference. The results show that this method can achieve more accurate short-term load prediction, and the model has good stability and robustness.
AbstractList •An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of extreme points, the morphological features of load curves are captured, particularly those of the intervals between extreme points.•This paper focuses on the prediction accuracy of extreme points. Using the extreme importance features extracted by the EIIR algorithm proposed in this paper, machine learning models can pay more attention to one or more extreme regions without relying on attention mechanisms, thereby improving the prediction accuracy of these regions.•In order to guarantee the reliability of model prediction, the Gaussian distribution is used to generate a total of 25 groups of noise with different degrees to interfere with the original Drybulb and THI data. The experimental results show that K-E-CNN-LSTM has good robustness to data noise. Efficient and accurate short-term load forecasting plays a crucial role in ensuring the safe and stable operation of power systems and achieving economic management. This paper proposes an EIIR (Enhanced Importance Index Recognize) importance marking algorithm. This algorithm can extract the importance of each point in the load series, especially extreme points, so that machine learning models can focus on areas of high importance during training. This fills the research gap in the morphological characteristics of time series for peak and valley prediction. First, the K-Medoids algorithm is used to cluster the daily load curve, and then the EIIR algorithm is used to extract the numerical features of the extreme value points of various cluster centers. Then the importance features and historical data are reconstructed into a new feature set and input them into the CNN-LSTM hybrid neural network for prediction. Finally, the ISONE public power load data set is taken as an example for analysis and verification. In order to verify the reliability of the model prediction, the robustness of the model was analyzed and verified by adding input interference. The results show that this method can achieve more accurate short-term load prediction, and the model has good stability and robustness.
ArticleNumber 111551
Author Ping, He
An, An
Lu, Zhang
Yuqi, Ji
Xiaomei, Liu
Author_xml – sequence: 1
  givenname: Ji
  orcidid: 0000-0002-1151-2322
  surname: Yuqi
  fullname: Yuqi, Ji
  email: jiyuqi1989@163.com
  organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
– sequence: 2
  givenname: An
  orcidid: 0009-0004-0055-8773
  surname: An
  fullname: An, An
  organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
– sequence: 3
  givenname: Zhang
  surname: Lu
  fullname: Lu, Zhang
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 4
  givenname: He
  surname: Ping
  fullname: Ping, He
  organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
– sequence: 5
  givenname: Liu
  surname: Xiaomei
  fullname: Xiaomei, Liu
  organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
BookMark eNp9kMtKAzEUhrOoYFt9AVd5gRlzmSQdcCPFGxRcqOAupMkZTZkmJYli394Mde3q_8_iO5zzLdAsxAAIXVHSUkLl9a6FQ04tI0y0lFIh6AzNCVerRqlenqNFzjtCiOyVmKP3l8-YSlMg7fEYjcNDTGBNLj584K3J4HAMuMD-EJMZsZ-ymGABm2DGY_a5lkqBKV8JMPyUZGzxMVygs8GMGS7_cone7u9e14_N5vnhaX27aSwTtDS9oxw6rkjHmOTSAHNGKoCtXRlVi-X90A2sV7LbWiWmCbqVEMpSpzgBvkTstNemmHOCQR-S35t01JToyYfe6cmHnnzok48K3ZwgqJd9e0g6Ww_1K-fr90W76P_DfwGDyG6v
Cites_doi 10.3390/en16247964
10.1016/j.ins.2024.120967
10.1109/TSG.2022.3158387
10.1016/j.egyr.2023.05.048
10.1016/j.energy.2023.129638
10.1016/j.egyr.2023.05.041
10.1016/j.egyr.2023.08.003
10.1016/j.epsr.2022.108067
10.1016/j.ijepes.2021.107818
10.1109/TSP.2019.2901370
10.1080/15325008.2019.1587648
10.1109/TSG.2018.2844307
10.1016/j.asoc.2023.110461
10.1016/j.energy.2019.03.081
10.3390/en16135099
10.3390/atmos15070741
10.1109/ACCESS.2019.2949838
10.1109/TIA.2024.3443243
10.1016/j.eswa.2021.115748
10.1016/j.jclepro.2019.118447
10.1016/j.egyr.2024.10.017
10.3390/en17205186
10.1007/s12065-018-00196-0
10.1007/s10489-020-01932-9
10.1016/j.energy.2020.118874
10.3390/en15207584
10.1016/j.enbuild.2019.05.043
10.1109/TPWRS.2019.2963109
10.1016/j.segan.2024.101311
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2025.111551
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2025_111551
S0378779625001439
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c251t-9d13e4370422636ae2da67eebc8a767ec39f4f29764bc7539f4e48557c1d730e3
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Sun Jul 06 05:04:11 EDT 2025
Sat Mar 22 15:52:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Short-term load forecasting
Convolution neural network
load feature extraction
EIIR importance algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-9d13e4370422636ae2da67eebc8a767ec39f4f29764bc7539f4e48557c1d730e3
ORCID 0000-0002-1151-2322
0009-0004-0055-8773
ParticipantIDs crossref_primary_10_1016_j_epsr_2025_111551
elsevier_sciencedirect_doi_10_1016_j_epsr_2025_111551
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sheng, An, Wang, Chen, Tian (bib0036) 2023; 144
Zhang (bib0005) 2021
Abdoli (bib0014) 2021
Y.Q. Ji, Y.B. Yan, et al., CNN-LSTM short-term load forecasting based on K-Medoid clustering and grid method to extract load curve features, power system protection and control. 51 (8) (2023) 81–93.
Zheng, Bai, Zeng, Jin (bib0033) 2024; 287
Wu, Peng, Chen, Su, Quan, Liu (bib0019) 2023; 9
Jin, Zeng, Lu, Peng, Luo, Yang, Zhu, Liu, Hybrid (bib0023) 2022; 15
Al-Ja'afreh, Mokryani (bib0029) 2023; 10
Murali, Saini, Abhinav, Shankar, Parida (bib0010) 2024; 60
Wang, Li, Bucci, Liang, Chen, Varshney (bib0030) 2019; 67
Liao, Pan, Huang, Mo (bib0034) 2021; 186
X.F. Xu, Y. Zhao, Z.Z. Liu, et al., Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting, power grid technology. 46 (4) (2022) 1548–1556.
Hou, Liu, Wang, Wu, Tang, Shi, Xie (bib0002) 2022; 210
Sias, Gantassi, Choi, Bae (bib0008) 2024; 17
Yu, Wang, Wang, Wang (bib0006) 2024; 677
Li, Zhao, Tseng, Tan (bib0013) 2020; 242
Kim, Park, Lee, Choi (bib0018) 2022; 13
Sheng, Wang, Chen (bib0037) 2021; 51
Lu (bib0003) 2019; 47
Ozdemir (bib0035) 2024; 38
Massaoudi, Refaat, Chihi, Trabelsi, Oueslati (bib0038) 2021; 214
Chen, Chen, Wang, He, Hu, He (bib0012) 2019; 10
Ke, Hongbin, Chengkang (bib0011) 2019; 12
Hossein, Sadaei, Cândido de Lima e Silva, Gadelha Guimarães, Hisyam (bib0026) 2019; 175
Fan, Ding (bib0007) 2019; 197
Chen, Zhu, Hu, Wang, Sun, Yang (bib0004) 2023; 9
Zhang (bib0016) 2021
.
Lin, Ma, Zhu, Cui (bib0028) 2022; 137
Duan, Li, He, Zhang, An, Ali, Vazifedoust (bib0032) 2024; 15
Pannakkong W., Vinh V.T., Tuyen N.N.M., Buddhakulsomsiri J., A. Reinforcement Learning approach for ensemble machine Learning models in peak electricity forecasting, energies. 16 (2023) 5099.
Wang, Sun, Cai (bib0021) 2023; 16
X.G. Peng, K.D. Pan Keda, Zhang Dan, Multi-segment short-term load forecasting based on adaptive seasonal load division and important point division, power grid technology. 44 (02) (2020) 603–613.
Li, Guo, Li, Wu, Mao, Nie (bib0015) 2019; 7
Akinola, Sun, Adebayo, Wang (bib0022) 2024; 12
Gao (bib0009) 2019
Kim, Park, Lee, Choi (bib0001) 2022; 13
Sheng, Wang, Chen (bib0025) 2021; 51
Tan, Yuan, Li, Su, Li, He (bib0027) 2020; 35
Gao (10.1016/j.epsr.2025.111551_bib0009) 2019
Murali (10.1016/j.epsr.2025.111551_bib0010) 2024; 60
Ke (10.1016/j.epsr.2025.111551_bib0011) 2019; 12
Sheng (10.1016/j.epsr.2025.111551_bib0025) 2021; 51
Liao (10.1016/j.epsr.2025.111551_bib0034) 2021; 186
Sheng (10.1016/j.epsr.2025.111551_bib0036) 2023; 144
Zhang (10.1016/j.epsr.2025.111551_bib0005) 2021
Yu (10.1016/j.epsr.2025.111551_bib0006) 2024; 677
Zhang (10.1016/j.epsr.2025.111551_bib0016) 2021
Sheng (10.1016/j.epsr.2025.111551_bib0037) 2021; 51
Li (10.1016/j.epsr.2025.111551_bib0015) 2019; 7
Wu (10.1016/j.epsr.2025.111551_bib0019) 2023; 9
Akinola (10.1016/j.epsr.2025.111551_bib0022) 2024; 12
10.1016/j.epsr.2025.111551_bib0017
Jin (10.1016/j.epsr.2025.111551_bib0023) 2022; 15
Abdoli (10.1016/j.epsr.2025.111551_bib0014) 2021
10.1016/j.epsr.2025.111551_bib0031
Hossein (10.1016/j.epsr.2025.111551_bib0026) 2019; 175
Wang (10.1016/j.epsr.2025.111551_bib0030) 2019; 67
Zheng (10.1016/j.epsr.2025.111551_bib0033) 2024; 287
Al-Ja'afreh (10.1016/j.epsr.2025.111551_bib0029) 2023; 10
Wang (10.1016/j.epsr.2025.111551_bib0021) 2023; 16
Chen (10.1016/j.epsr.2025.111551_bib0012) 2019; 10
Kim (10.1016/j.epsr.2025.111551_bib0018) 2022; 13
Duan (10.1016/j.epsr.2025.111551_bib0032) 2024; 15
Hou (10.1016/j.epsr.2025.111551_bib0002) 2022; 210
Tan (10.1016/j.epsr.2025.111551_bib0027) 2020; 35
Massaoudi (10.1016/j.epsr.2025.111551_bib0038) 2021; 214
Lin (10.1016/j.epsr.2025.111551_bib0028) 2022; 137
Li (10.1016/j.epsr.2025.111551_bib0013) 2020; 242
Fan (10.1016/j.epsr.2025.111551_bib0007) 2019; 197
Chen (10.1016/j.epsr.2025.111551_bib0004) 2023; 9
Sias (10.1016/j.epsr.2025.111551_bib0008) 2024; 17
Ozdemir (10.1016/j.epsr.2025.111551_bib0035) 2024; 38
Lu (10.1016/j.epsr.2025.111551_bib0003) 2019; 47
10.1016/j.epsr.2025.111551_bib0024
Kim (10.1016/j.epsr.2025.111551_bib0001) 2022; 13
10.1016/j.epsr.2025.111551_bib0020
References_xml – volume: 10
  start-page: 3943
  year: 2019
  end-page: 3952
  ident: bib0012
  article-title: Short-term load forecasting with deep residual networks
  publication-title: IEEe Trans. Smart. Grid.
– volume: 15
  start-page: 7584
  year: 2022
  ident: bib0023
  article-title: BPNN-to-BPNN model considering multi-source information for forecasting medium- and long-term electricity peak load
  publication-title: Energies.
– volume: 67
  start-page: 2093
  year: 2019
  end-page: 2106
  ident: bib0030
  article-title: K-medoids clustering of data sequences with composite distributions
  publication-title: IEEE Trans. Signal Process.
– volume: 677
  year: 2024
  ident: bib0006
  article-title: A common feature-driven prediction model for multivariate time series data
  publication-title: Inf. Sci.
– volume: 9
  start-page: 1022
  year: 2023
  end-page: 1031
  ident: bib0004
  article-title: Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors
  publication-title: Energy Reports
– year: 2021
  ident: bib0014
  article-title: Time Series Data Mining Algorithms Towards Scalable and Real-Time Behavior Monitoring
– reference: X.G. Peng, K.D. Pan Keda, Zhang Dan, Multi-segment short-term load forecasting based on adaptive seasonal load division and important point division, power grid technology. 44 (02) (2020) 603–613.
– volume: 13
  start-page: 2999
  year: 2022
  end-page: 3013
  ident: bib0001
  article-title: Short-term electrical load forecasting with multidimensional feature extraction
  publication-title: IEEe Trans. Smart. Grid.
– volume: 197
  start-page: 7
  year: 2019
  end-page: 17
  ident: bib0007
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energy Build.
– volume: 38
  year: 2024
  ident: bib0035
  article-title: Probabilistic CDF-based load forecasting model in a power distribution system
  publication-title: Sustain. Energy, Grids Networks
– volume: 144
  year: 2023
  ident: bib0036
  article-title: Residual LSTM based short-term load forecasting
  publication-title: Appl. Soft. Comput.
– start-page: 3375
  year: 2021
  end-page: 3379
  ident: bib0005
  article-title: POLA: online time series prediction by adaptive learning rates
  publication-title: ICASSP 2021 - 2021 IEEE international conference on acoustics
– reference: Pannakkong W., Vinh V.T., Tuyen N.N.M., Buddhakulsomsiri J., A. Reinforcement Learning approach for ensemble machine Learning models in peak electricity forecasting, energies. 16 (2023) 5099.
– volume: 13
  start-page: 2999
  year: 2022
  end-page: 3013
  ident: bib0018
  article-title: Short-term electrical load forecasting with multidimensional feature extraction
  publication-title: IEEe Trans. Smart. Grid.
– volume: 186
  year: 2021
  ident: bib0034
  article-title: Xiaoping Fan, short-term load forecasting with dense average network
  publication-title: Expert. Syst. Appl.
– volume: 17
  start-page: 5186
  year: 2024
  ident: bib0008
  article-title: Recurrence multilinear regression technique for improving accuracy of energy prediction in power systems
  publication-title: Energies.
– start-page: 151
  year: 2019
  end-page: 155
  ident: bib0009
  article-title: Application of improved Grey theory prediction model in medium-term load forecasting of distribution network
  publication-title: 2019 Seventh International Conference on Advanced Cloud and Big Data
– volume: 9
  start-page: 1013
  year: 2023
  end-page: 1022
  ident: bib0019
  article-title: A novel short-term household load forecasting method combined BiLSTM with trend feature extraction
  publication-title: Energy Reports
– volume: 16
  start-page: 7964
  year: 2023
  ident: bib0021
  article-title: Daily peak-valley electric-load forecasting based on an SSA-LSTM-RF algorithm
  publication-title: Energies.
– volume: 7
  start-page: 163644
  year: 2019
  end-page: 163653
  ident: bib0015
  article-title: Speed up similarity search of time series under dynamic time warping
  publication-title: IEEe Access.
– volume: 137
  year: 2022
  ident: bib0028
  article-title: Short-term load forecasting based on LSTM networks considering attention mechanism
  publication-title: Int. J. Electric. Power Energy Syst.
– volume: 287
  year: 2024
  ident: bib0033
  article-title: A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination
  publication-title: Energy
– volume: 242
  year: 2020
  ident: bib0013
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J. Clean. Prod.
– volume: 175
  start-page: 365
  year: 2019
  end-page: 377
  ident: bib0026
  article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
  publication-title: Energy
– volume: 10
  start-page: 1387
  year: 2023
  end-page: 1408
  ident: bib0029
  article-title: Bilal Amjad, an enhanced CNN-LSTM based multi-stage framework for PV and load short-term forecasting: DSO scenarios
  publication-title: Energy Reports
– volume: 51
  start-page: 2485
  year: 2021
  end-page: 2499
  ident: bib0025
  article-title: Convolutional residual network to short-term load forecasting
  publication-title: Appl. Inell
– volume: 214
  year: 2021
  ident: bib0038
  article-title: Haitham Abu-Rub, A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-term load forecasting
  publication-title: Energy
– volume: 15
  start-page: 741
  year: 2024
  ident: bib0032
  article-title: Climate classification for major cities in China using cluster analysis
  publication-title: Atmosphere
– volume: 35
  start-page: 2937
  year: 2020
  end-page: 2948
  ident: bib0027
  article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning
  publication-title: IEEE Trans. Power Syst.
– volume: 210
  year: 2022
  ident: bib0002
  article-title: Review of load forecasting based on artificial intelligence methodologies, models, and challenges
  publication-title: Electric. Power Syst. Res.
– volume: 47
  start-page: 619
  year: 2019
  end-page: 628
  ident: bib0003
  article-title: Load prediction in power system with grey theory and its diagnosis of stabilization
  publication-title: Electric. Power Compon. Syst.
– volume: 51
  year: 2021
  ident: bib0037
  article-title: Convolutional residual network to short-term load forecasting
  publication-title: Appl. Intell
– volume: 60
  start-page: 8213
  year: 2024
  end-page: 8227
  ident: bib0010
  article-title: Improved LSTM-based load forecasting embedded 3DOF (FOPI)-FOPD controller for proactive frequency regulation in power system
  publication-title: IEEe Trans. Ind. Appl.
– reference: .
– reference: X.F. Xu, Y. Zhao, Z.Z. Liu, et al., Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting, power grid technology. 46 (4) (2022) 1548–1556.
– start-page: 17
  year: 2021
  end-page: 22
  ident: bib0016
  article-title: Research on similarity search technique of variable long time series data mining
  publication-title: 2021 5th ICDSBA
– volume: 12
  start-page: 4438
  year: 2024
  end-page: 4448
  ident: bib0022
  article-title: Daily peak demand forecasting using pelican algorithm optimised support vector machine (POA-SVM)
  publication-title: Energy Reports
– reference: Y.Q. Ji, Y.B. Yan, et al., CNN-LSTM short-term load forecasting based on K-Medoid clustering and grid method to extract load curve features, power system protection and control. 51 (8) (2023) 81–93.
– volume: 12
  start-page: 385
  year: 2019
  end-page: 394
  ident: bib0011
  article-title: Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network
  publication-title: Evol. Intell.
– start-page: 3375
  year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0005
  article-title: POLA: online time series prediction by adaptive learning rates
– volume: 16
  start-page: 7964
  year: 2023
  ident: 10.1016/j.epsr.2025.111551_bib0021
  article-title: Daily peak-valley electric-load forecasting based on an SSA-LSTM-RF algorithm
  publication-title: Energies.
  doi: 10.3390/en16247964
– volume: 677
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0006
  article-title: A common feature-driven prediction model for multivariate time series data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120967
– volume: 13
  start-page: 2999
  year: 2022
  ident: 10.1016/j.epsr.2025.111551_bib0001
  article-title: Short-term electrical load forecasting with multidimensional feature extraction
  publication-title: IEEe Trans. Smart. Grid.
  doi: 10.1109/TSG.2022.3158387
– volume: 9
  start-page: 1022
  issue: 10
  year: 2023
  ident: 10.1016/j.epsr.2025.111551_bib0004
  article-title: Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2023.05.048
– volume: 287
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0033
  article-title: A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129638
– volume: 9
  start-page: 1013
  year: 2023
  ident: 10.1016/j.epsr.2025.111551_bib0019
  article-title: A novel short-term household load forecasting method combined BiLSTM with trend feature extraction
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2023.05.041
– volume: 10
  start-page: 1387
  year: 2023
  ident: 10.1016/j.epsr.2025.111551_bib0029
  article-title: Bilal Amjad, an enhanced CNN-LSTM based multi-stage framework for PV and load short-term forecasting: DSO scenarios
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2023.08.003
– volume: 210
  year: 2022
  ident: 10.1016/j.epsr.2025.111551_bib0002
  article-title: Review of load forecasting based on artificial intelligence methodologies, models, and challenges
  publication-title: Electric. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108067
– volume: 137
  year: 2022
  ident: 10.1016/j.epsr.2025.111551_bib0028
  article-title: Short-term load forecasting based on LSTM networks considering attention mechanism
  publication-title: Int. J. Electric. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107818
– volume: 67
  start-page: 2093
  issue: 8
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0030
  article-title: K-medoids clustering of data sequences with composite distributions
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2901370
– year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0014
– ident: 10.1016/j.epsr.2025.111551_bib0017
– volume: 47
  start-page: 619
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0003
  article-title: Load prediction in power system with grey theory and its diagnosis of stabilization
  publication-title: Electric. Power Compon. Syst.
  doi: 10.1080/15325008.2019.1587648
– volume: 10
  start-page: 3943
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0012
  article-title: Short-term load forecasting with deep residual networks
  publication-title: IEEe Trans. Smart. Grid.
  doi: 10.1109/TSG.2018.2844307
– volume: 144
  year: 2023
  ident: 10.1016/j.epsr.2025.111551_bib0036
  article-title: Residual LSTM based short-term load forecasting
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110461
– volume: 175
  start-page: 365
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0026
  article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.081
– ident: 10.1016/j.epsr.2025.111551_bib0024
  doi: 10.3390/en16135099
– volume: 15
  start-page: 741
  issue: 7
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0032
  article-title: Climate classification for major cities in China using cluster analysis
  publication-title: Atmosphere
  doi: 10.3390/atmos15070741
– start-page: 17
  year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0016
  article-title: Research on similarity search technique of variable long time series data mining
– volume: 7
  start-page: 163644
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0015
  article-title: Speed up similarity search of time series under dynamic time warping
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2019.2949838
– volume: 60
  start-page: 8213
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0010
  article-title: Improved LSTM-based load forecasting embedded 3DOF (FOPI)-FOPD controller for proactive frequency regulation in power system
  publication-title: IEEe Trans. Ind. Appl.
  doi: 10.1109/TIA.2024.3443243
– volume: 13
  start-page: 2999
  year: 2022
  ident: 10.1016/j.epsr.2025.111551_bib0018
  article-title: Short-term electrical load forecasting with multidimensional feature extraction
  publication-title: IEEe Trans. Smart. Grid.
  doi: 10.1109/TSG.2022.3158387
– volume: 186
  year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0034
  article-title: Xiaoping Fan, short-term load forecasting with dense average network
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2021.115748
– volume: 242
  year: 2020
  ident: 10.1016/j.epsr.2025.111551_bib0013
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118447
– volume: 12
  start-page: 4438
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0022
  article-title: Daily peak demand forecasting using pelican algorithm optimised support vector machine (POA-SVM)
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2024.10.017
– volume: 17
  start-page: 5186
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0008
  article-title: Recurrence multilinear regression technique for improving accuracy of energy prediction in power systems
  publication-title: Energies.
  doi: 10.3390/en17205186
– start-page: 151
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0009
  article-title: Application of improved Grey theory prediction model in medium-term load forecasting of distribution network
– volume: 12
  start-page: 385
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0011
  article-title: Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-018-00196-0
– volume: 51
  year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0037
  article-title: Convolutional residual network to short-term load forecasting
  publication-title: Appl. Intell
  doi: 10.1007/s10489-020-01932-9
– ident: 10.1016/j.epsr.2025.111551_bib0031
– volume: 51
  start-page: 2485
  year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0025
  article-title: Convolutional residual network to short-term load forecasting
  publication-title: Appl. Inell
  doi: 10.1007/s10489-020-01932-9
– volume: 214
  year: 2021
  ident: 10.1016/j.epsr.2025.111551_bib0038
  article-title: Haitham Abu-Rub, A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-term load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118874
– volume: 15
  start-page: 7584
  year: 2022
  ident: 10.1016/j.epsr.2025.111551_bib0023
  article-title: BPNN-to-BPNN model considering multi-source information for forecasting medium- and long-term electricity peak load
  publication-title: Energies.
  doi: 10.3390/en15207584
– volume: 197
  start-page: 7
  year: 2019
  ident: 10.1016/j.epsr.2025.111551_bib0007
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.043
– volume: 35
  start-page: 2937
  issue: 4
  year: 2020
  ident: 10.1016/j.epsr.2025.111551_bib0027
  article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2963109
– ident: 10.1016/j.epsr.2025.111551_bib0020
– volume: 38
  year: 2024
  ident: 10.1016/j.epsr.2025.111551_bib0035
  article-title: Probabilistic CDF-based load forecasting model in a power distribution system
  publication-title: Sustain. Energy, Grids Networks
  doi: 10.1016/j.segan.2024.101311
SSID ssj0006975
Score 2.511217
Snippet •An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111551
SubjectTerms Convolution neural network
EIIR importance algorithm
load feature extraction
Short-term load forecasting
Title Short-term load forecasting based on temporal importance analysis and feature extraction
URI https://dx.doi.org/10.1016/j.epsr.2025.111551
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6xR68ydoku9k0x1IsVbGXWuht2a9ipaalrVd_uzPJBiuIB2-7YReSl8mbF5h5S8iNTjrSQBpm2kvHRB47ZrgzzMjEQfpLJZfY4Pw8lIOxeJykkwbp1b0wWFYZuL_i9JKtw5V2QLO9nM3ao4hDsGU5CHjU-Ryb-ITIMMrvPr_LPGRemu3iYoarQ-NMVePll2v0BE1SZI40jX9PTlsJp39A9oNSpN3qZg5JwxdHZG_LP_CYTEavoJ4ZsiudL7SjoEC91WssZaaYnxxdFDS4T83p7L0U2_CIVAcvEhjALl-6e1Lg6VXV53BCxv37l96AhaMSmAWBsmG5i7kXPENHL4BX-8RpmXlvbEdnMLA8n4ppAtpDGAt_KDDzaAuT2djBN-75KWkWi8KfEaqjWLs4smLqvIiE0FZ2Iid1JGwei9S0yG2NkVpWjhiqLhV7U4ioQkRVhWiLpDWM6sd7VUDZf-w7_-e-C7KLs6qg9pI0N6sPfwWyYWOuy7i4Jjvdh6fB8Au8TcKJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL0qZQAGxFOUpweYkGkejtMMDAioWvpY2krdgmO7oqi0VVuEWPgpfpDrxBVFQgxI3ZxEjpyTm3tOpHuPAc6FV-IJ0jAVmivKIlfRxFcJTbinkP4C7nPT4Nxo8kqHPXSDbg4-570wpqzS5v4sp6fZ2p4pWjSL436_2HJ8DLYwQgFvdL4f2crKmn5_w_-26XX1Dl_yheeV79u3FWq3FqASCX1GI-X6mvmhccDC5QjtKcFDrRNZEiEOpB_1WM9DrmaJREWPR9rYqITSVfhNaB_vuwKrDNOF2Tbh6uO7roRHqbuvWR01y7OdOllRmR5PjQmpF5hUFQTu72y4wHDlLdi00pTcZE-_DTk93IGNBcPCXei2nlCuU5POyWAkFEHJq6WYmtppYghRkdGQWLurAem_pOoeMSXCmp_gAGfp1E6UIDFMssaKPegsBcB9yA9HQ30ARDiuUK4jWU9p5jAmJC85iguHychlQVKAyzlG8Tiz4IjntWnPsUE0NojGGaIFCOYwxj8CKUaO-GPe4T_nncFapd2ox_Vqs3YE6-ZKVs17DPnZ5FWfoGaZJadpjBB4XHZQfgEwZf1f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+load+forecasting+based+on+temporal+importance+analysis+and+feature+extraction&rft.jtitle=Electric+power+systems+research&rft.au=Yuqi%2C+Ji&rft.au=An%2C+An&rft.au=Lu%2C+Zhang&rft.au=Ping%2C+He&rft.date=2025-07-01&rft.issn=0378-7796&rft.volume=244&rft.spage=111551&rft_id=info:doi/10.1016%2Fj.epsr.2025.111551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2025_111551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon