Short-term load forecasting based on temporal importance analysis and feature extraction
•An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of extreme points, the morphological features of load curves are captured, particularly those of the intervals between extreme points.•This paper focu...
Saved in:
Published in | Electric power systems research Vol. 244; p. 111551 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of extreme points, the morphological features of load curves are captured, particularly those of the intervals between extreme points.•This paper focuses on the prediction accuracy of extreme points. Using the extreme importance features extracted by the EIIR algorithm proposed in this paper, machine learning models can pay more attention to one or more extreme regions without relying on attention mechanisms, thereby improving the prediction accuracy of these regions.•In order to guarantee the reliability of model prediction, the Gaussian distribution is used to generate a total of 25 groups of noise with different degrees to interfere with the original Drybulb and THI data. The experimental results show that K-E-CNN-LSTM has good robustness to data noise.
Efficient and accurate short-term load forecasting plays a crucial role in ensuring the safe and stable operation of power systems and achieving economic management. This paper proposes an EIIR (Enhanced Importance Index Recognize) importance marking algorithm. This algorithm can extract the importance of each point in the load series, especially extreme points, so that machine learning models can focus on areas of high importance during training. This fills the research gap in the morphological characteristics of time series for peak and valley prediction. First, the K-Medoids algorithm is used to cluster the daily load curve, and then the EIIR algorithm is used to extract the numerical features of the extreme value points of various cluster centers. Then the importance features and historical data are reconstructed into a new feature set and input them into the CNN-LSTM hybrid neural network for prediction. Finally, the ISONE public power load data set is taken as an example for analysis and verification. In order to verify the reliability of the model prediction, the robustness of the model was analyzed and verified by adding input interference. The results show that this method can achieve more accurate short-term load prediction, and the model has good stability and robustness. |
---|---|
AbstractList | •An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of extreme points, the morphological features of load curves are captured, particularly those of the intervals between extreme points.•This paper focuses on the prediction accuracy of extreme points. Using the extreme importance features extracted by the EIIR algorithm proposed in this paper, machine learning models can pay more attention to one or more extreme regions without relying on attention mechanisms, thereby improving the prediction accuracy of these regions.•In order to guarantee the reliability of model prediction, the Gaussian distribution is used to generate a total of 25 groups of noise with different degrees to interfere with the original Drybulb and THI data. The experimental results show that K-E-CNN-LSTM has good robustness to data noise.
Efficient and accurate short-term load forecasting plays a crucial role in ensuring the safe and stable operation of power systems and achieving economic management. This paper proposes an EIIR (Enhanced Importance Index Recognize) importance marking algorithm. This algorithm can extract the importance of each point in the load series, especially extreme points, so that machine learning models can focus on areas of high importance during training. This fills the research gap in the morphological characteristics of time series for peak and valley prediction. First, the K-Medoids algorithm is used to cluster the daily load curve, and then the EIIR algorithm is used to extract the numerical features of the extreme value points of various cluster centers. Then the importance features and historical data are reconstructed into a new feature set and input them into the CNN-LSTM hybrid neural network for prediction. Finally, the ISONE public power load data set is taken as an example for analysis and verification. In order to verify the reliability of the model prediction, the robustness of the model was analyzed and verified by adding input interference. The results show that this method can achieve more accurate short-term load prediction, and the model has good stability and robustness. |
ArticleNumber | 111551 |
Author | Ping, He An, An Lu, Zhang Yuqi, Ji Xiaomei, Liu |
Author_xml | – sequence: 1 givenname: Ji orcidid: 0000-0002-1151-2322 surname: Yuqi fullname: Yuqi, Ji email: jiyuqi1989@163.com organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China – sequence: 2 givenname: An orcidid: 0009-0004-0055-8773 surname: An fullname: An, An organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China – sequence: 3 givenname: Zhang surname: Lu fullname: Lu, Zhang organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China – sequence: 4 givenname: He surname: Ping fullname: Ping, He organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China – sequence: 5 givenname: Liu surname: Xiaomei fullname: Xiaomei, Liu organization: School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China |
BookMark | eNp9kMtKAzEUhrOoYFt9AVd5gRlzmSQdcCPFGxRcqOAupMkZTZkmJYli394Mde3q_8_iO5zzLdAsxAAIXVHSUkLl9a6FQ04tI0y0lFIh6AzNCVerRqlenqNFzjtCiOyVmKP3l8-YSlMg7fEYjcNDTGBNLj584K3J4HAMuMD-EJMZsZ-ymGABm2DGY_a5lkqBKV8JMPyUZGzxMVygs8GMGS7_cone7u9e14_N5vnhaX27aSwTtDS9oxw6rkjHmOTSAHNGKoCtXRlVi-X90A2sV7LbWiWmCbqVEMpSpzgBvkTstNemmHOCQR-S35t01JToyYfe6cmHnnzok48K3ZwgqJd9e0g6Ww_1K-fr90W76P_DfwGDyG6v |
Cites_doi | 10.3390/en16247964 10.1016/j.ins.2024.120967 10.1109/TSG.2022.3158387 10.1016/j.egyr.2023.05.048 10.1016/j.energy.2023.129638 10.1016/j.egyr.2023.05.041 10.1016/j.egyr.2023.08.003 10.1016/j.epsr.2022.108067 10.1016/j.ijepes.2021.107818 10.1109/TSP.2019.2901370 10.1080/15325008.2019.1587648 10.1109/TSG.2018.2844307 10.1016/j.asoc.2023.110461 10.1016/j.energy.2019.03.081 10.3390/en16135099 10.3390/atmos15070741 10.1109/ACCESS.2019.2949838 10.1109/TIA.2024.3443243 10.1016/j.eswa.2021.115748 10.1016/j.jclepro.2019.118447 10.1016/j.egyr.2024.10.017 10.3390/en17205186 10.1007/s12065-018-00196-0 10.1007/s10489-020-01932-9 10.1016/j.energy.2020.118874 10.3390/en15207584 10.1016/j.enbuild.2019.05.043 10.1109/TPWRS.2019.2963109 10.1016/j.segan.2024.101311 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.epsr.2025.111551 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_epsr_2025_111551 S0378779625001439 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c251t-9d13e4370422636ae2da67eebc8a767ec39f4f29764bc7539f4e48557c1d730e3 |
IEDL.DBID | .~1 |
ISSN | 0378-7796 |
IngestDate | Sun Jul 06 05:04:11 EDT 2025 Sat Mar 22 15:52:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Short-term load forecasting Convolution neural network load feature extraction EIIR importance algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-9d13e4370422636ae2da67eebc8a767ec39f4f29764bc7539f4e48557c1d730e3 |
ORCID | 0000-0002-1151-2322 0009-0004-0055-8773 |
ParticipantIDs | crossref_primary_10_1016_j_epsr_2025_111551 elsevier_sciencedirect_doi_10_1016_j_epsr_2025_111551 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Electric power systems research |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sheng, An, Wang, Chen, Tian (bib0036) 2023; 144 Zhang (bib0005) 2021 Abdoli (bib0014) 2021 Y.Q. Ji, Y.B. Yan, et al., CNN-LSTM short-term load forecasting based on K-Medoid clustering and grid method to extract load curve features, power system protection and control. 51 (8) (2023) 81–93. Zheng, Bai, Zeng, Jin (bib0033) 2024; 287 Wu, Peng, Chen, Su, Quan, Liu (bib0019) 2023; 9 Jin, Zeng, Lu, Peng, Luo, Yang, Zhu, Liu, Hybrid (bib0023) 2022; 15 Al-Ja'afreh, Mokryani (bib0029) 2023; 10 Murali, Saini, Abhinav, Shankar, Parida (bib0010) 2024; 60 Wang, Li, Bucci, Liang, Chen, Varshney (bib0030) 2019; 67 Liao, Pan, Huang, Mo (bib0034) 2021; 186 X.F. Xu, Y. Zhao, Z.Z. Liu, et al., Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting, power grid technology. 46 (4) (2022) 1548–1556. Hou, Liu, Wang, Wu, Tang, Shi, Xie (bib0002) 2022; 210 Sias, Gantassi, Choi, Bae (bib0008) 2024; 17 Yu, Wang, Wang, Wang (bib0006) 2024; 677 Li, Zhao, Tseng, Tan (bib0013) 2020; 242 Kim, Park, Lee, Choi (bib0018) 2022; 13 Sheng, Wang, Chen (bib0037) 2021; 51 Lu (bib0003) 2019; 47 Ozdemir (bib0035) 2024; 38 Massaoudi, Refaat, Chihi, Trabelsi, Oueslati (bib0038) 2021; 214 Chen, Chen, Wang, He, Hu, He (bib0012) 2019; 10 Ke, Hongbin, Chengkang (bib0011) 2019; 12 Hossein, Sadaei, Cândido de Lima e Silva, Gadelha Guimarães, Hisyam (bib0026) 2019; 175 Fan, Ding (bib0007) 2019; 197 Chen, Zhu, Hu, Wang, Sun, Yang (bib0004) 2023; 9 Zhang (bib0016) 2021 . Lin, Ma, Zhu, Cui (bib0028) 2022; 137 Duan, Li, He, Zhang, An, Ali, Vazifedoust (bib0032) 2024; 15 Pannakkong W., Vinh V.T., Tuyen N.N.M., Buddhakulsomsiri J., A. Reinforcement Learning approach for ensemble machine Learning models in peak electricity forecasting, energies. 16 (2023) 5099. Wang, Sun, Cai (bib0021) 2023; 16 X.G. Peng, K.D. Pan Keda, Zhang Dan, Multi-segment short-term load forecasting based on adaptive seasonal load division and important point division, power grid technology. 44 (02) (2020) 603–613. Li, Guo, Li, Wu, Mao, Nie (bib0015) 2019; 7 Akinola, Sun, Adebayo, Wang (bib0022) 2024; 12 Gao (bib0009) 2019 Kim, Park, Lee, Choi (bib0001) 2022; 13 Sheng, Wang, Chen (bib0025) 2021; 51 Tan, Yuan, Li, Su, Li, He (bib0027) 2020; 35 Gao (10.1016/j.epsr.2025.111551_bib0009) 2019 Murali (10.1016/j.epsr.2025.111551_bib0010) 2024; 60 Ke (10.1016/j.epsr.2025.111551_bib0011) 2019; 12 Sheng (10.1016/j.epsr.2025.111551_bib0025) 2021; 51 Liao (10.1016/j.epsr.2025.111551_bib0034) 2021; 186 Sheng (10.1016/j.epsr.2025.111551_bib0036) 2023; 144 Zhang (10.1016/j.epsr.2025.111551_bib0005) 2021 Yu (10.1016/j.epsr.2025.111551_bib0006) 2024; 677 Zhang (10.1016/j.epsr.2025.111551_bib0016) 2021 Sheng (10.1016/j.epsr.2025.111551_bib0037) 2021; 51 Li (10.1016/j.epsr.2025.111551_bib0015) 2019; 7 Wu (10.1016/j.epsr.2025.111551_bib0019) 2023; 9 Akinola (10.1016/j.epsr.2025.111551_bib0022) 2024; 12 10.1016/j.epsr.2025.111551_bib0017 Jin (10.1016/j.epsr.2025.111551_bib0023) 2022; 15 Abdoli (10.1016/j.epsr.2025.111551_bib0014) 2021 10.1016/j.epsr.2025.111551_bib0031 Hossein (10.1016/j.epsr.2025.111551_bib0026) 2019; 175 Wang (10.1016/j.epsr.2025.111551_bib0030) 2019; 67 Zheng (10.1016/j.epsr.2025.111551_bib0033) 2024; 287 Al-Ja'afreh (10.1016/j.epsr.2025.111551_bib0029) 2023; 10 Wang (10.1016/j.epsr.2025.111551_bib0021) 2023; 16 Chen (10.1016/j.epsr.2025.111551_bib0012) 2019; 10 Kim (10.1016/j.epsr.2025.111551_bib0018) 2022; 13 Duan (10.1016/j.epsr.2025.111551_bib0032) 2024; 15 Hou (10.1016/j.epsr.2025.111551_bib0002) 2022; 210 Tan (10.1016/j.epsr.2025.111551_bib0027) 2020; 35 Massaoudi (10.1016/j.epsr.2025.111551_bib0038) 2021; 214 Lin (10.1016/j.epsr.2025.111551_bib0028) 2022; 137 Li (10.1016/j.epsr.2025.111551_bib0013) 2020; 242 Fan (10.1016/j.epsr.2025.111551_bib0007) 2019; 197 Chen (10.1016/j.epsr.2025.111551_bib0004) 2023; 9 Sias (10.1016/j.epsr.2025.111551_bib0008) 2024; 17 Ozdemir (10.1016/j.epsr.2025.111551_bib0035) 2024; 38 Lu (10.1016/j.epsr.2025.111551_bib0003) 2019; 47 10.1016/j.epsr.2025.111551_bib0024 Kim (10.1016/j.epsr.2025.111551_bib0001) 2022; 13 10.1016/j.epsr.2025.111551_bib0020 |
References_xml | – volume: 10 start-page: 3943 year: 2019 end-page: 3952 ident: bib0012 article-title: Short-term load forecasting with deep residual networks publication-title: IEEe Trans. Smart. Grid. – volume: 15 start-page: 7584 year: 2022 ident: bib0023 article-title: BPNN-to-BPNN model considering multi-source information for forecasting medium- and long-term electricity peak load publication-title: Energies. – volume: 67 start-page: 2093 year: 2019 end-page: 2106 ident: bib0030 article-title: K-medoids clustering of data sequences with composite distributions publication-title: IEEE Trans. Signal Process. – volume: 677 year: 2024 ident: bib0006 article-title: A common feature-driven prediction model for multivariate time series data publication-title: Inf. Sci. – volume: 9 start-page: 1022 year: 2023 end-page: 1031 ident: bib0004 article-title: Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors publication-title: Energy Reports – year: 2021 ident: bib0014 article-title: Time Series Data Mining Algorithms Towards Scalable and Real-Time Behavior Monitoring – reference: X.G. Peng, K.D. Pan Keda, Zhang Dan, Multi-segment short-term load forecasting based on adaptive seasonal load division and important point division, power grid technology. 44 (02) (2020) 603–613. – volume: 13 start-page: 2999 year: 2022 end-page: 3013 ident: bib0001 article-title: Short-term electrical load forecasting with multidimensional feature extraction publication-title: IEEe Trans. Smart. Grid. – volume: 197 start-page: 7 year: 2019 end-page: 17 ident: bib0007 article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model publication-title: Energy Build. – volume: 38 year: 2024 ident: bib0035 article-title: Probabilistic CDF-based load forecasting model in a power distribution system publication-title: Sustain. Energy, Grids Networks – volume: 144 year: 2023 ident: bib0036 article-title: Residual LSTM based short-term load forecasting publication-title: Appl. Soft. Comput. – start-page: 3375 year: 2021 end-page: 3379 ident: bib0005 article-title: POLA: online time series prediction by adaptive learning rates publication-title: ICASSP 2021 - 2021 IEEE international conference on acoustics – reference: Pannakkong W., Vinh V.T., Tuyen N.N.M., Buddhakulsomsiri J., A. Reinforcement Learning approach for ensemble machine Learning models in peak electricity forecasting, energies. 16 (2023) 5099. – volume: 13 start-page: 2999 year: 2022 end-page: 3013 ident: bib0018 article-title: Short-term electrical load forecasting with multidimensional feature extraction publication-title: IEEe Trans. Smart. Grid. – volume: 186 year: 2021 ident: bib0034 article-title: Xiaoping Fan, short-term load forecasting with dense average network publication-title: Expert. Syst. Appl. – volume: 17 start-page: 5186 year: 2024 ident: bib0008 article-title: Recurrence multilinear regression technique for improving accuracy of energy prediction in power systems publication-title: Energies. – start-page: 151 year: 2019 end-page: 155 ident: bib0009 article-title: Application of improved Grey theory prediction model in medium-term load forecasting of distribution network publication-title: 2019 Seventh International Conference on Advanced Cloud and Big Data – volume: 9 start-page: 1013 year: 2023 end-page: 1022 ident: bib0019 article-title: A novel short-term household load forecasting method combined BiLSTM with trend feature extraction publication-title: Energy Reports – volume: 16 start-page: 7964 year: 2023 ident: bib0021 article-title: Daily peak-valley electric-load forecasting based on an SSA-LSTM-RF algorithm publication-title: Energies. – volume: 7 start-page: 163644 year: 2019 end-page: 163653 ident: bib0015 article-title: Speed up similarity search of time series under dynamic time warping publication-title: IEEe Access. – volume: 137 year: 2022 ident: bib0028 article-title: Short-term load forecasting based on LSTM networks considering attention mechanism publication-title: Int. J. Electric. Power Energy Syst. – volume: 287 year: 2024 ident: bib0033 article-title: A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination publication-title: Energy – volume: 242 year: 2020 ident: bib0013 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J. Clean. Prod. – volume: 175 start-page: 365 year: 2019 end-page: 377 ident: bib0026 article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series publication-title: Energy – volume: 10 start-page: 1387 year: 2023 end-page: 1408 ident: bib0029 article-title: Bilal Amjad, an enhanced CNN-LSTM based multi-stage framework for PV and load short-term forecasting: DSO scenarios publication-title: Energy Reports – volume: 51 start-page: 2485 year: 2021 end-page: 2499 ident: bib0025 article-title: Convolutional residual network to short-term load forecasting publication-title: Appl. Inell – volume: 214 year: 2021 ident: bib0038 article-title: Haitham Abu-Rub, A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-term load forecasting publication-title: Energy – volume: 15 start-page: 741 year: 2024 ident: bib0032 article-title: Climate classification for major cities in China using cluster analysis publication-title: Atmosphere – volume: 35 start-page: 2937 year: 2020 end-page: 2948 ident: bib0027 article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning publication-title: IEEE Trans. Power Syst. – volume: 210 year: 2022 ident: bib0002 article-title: Review of load forecasting based on artificial intelligence methodologies, models, and challenges publication-title: Electric. Power Syst. Res. – volume: 47 start-page: 619 year: 2019 end-page: 628 ident: bib0003 article-title: Load prediction in power system with grey theory and its diagnosis of stabilization publication-title: Electric. Power Compon. Syst. – volume: 51 year: 2021 ident: bib0037 article-title: Convolutional residual network to short-term load forecasting publication-title: Appl. Intell – volume: 60 start-page: 8213 year: 2024 end-page: 8227 ident: bib0010 article-title: Improved LSTM-based load forecasting embedded 3DOF (FOPI)-FOPD controller for proactive frequency regulation in power system publication-title: IEEe Trans. Ind. Appl. – reference: . – reference: X.F. Xu, Y. Zhao, Z.Z. Liu, et al., Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting, power grid technology. 46 (4) (2022) 1548–1556. – start-page: 17 year: 2021 end-page: 22 ident: bib0016 article-title: Research on similarity search technique of variable long time series data mining publication-title: 2021 5th ICDSBA – volume: 12 start-page: 4438 year: 2024 end-page: 4448 ident: bib0022 article-title: Daily peak demand forecasting using pelican algorithm optimised support vector machine (POA-SVM) publication-title: Energy Reports – reference: Y.Q. Ji, Y.B. Yan, et al., CNN-LSTM short-term load forecasting based on K-Medoid clustering and grid method to extract load curve features, power system protection and control. 51 (8) (2023) 81–93. – volume: 12 start-page: 385 year: 2019 end-page: 394 ident: bib0011 article-title: Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network publication-title: Evol. Intell. – start-page: 3375 year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0005 article-title: POLA: online time series prediction by adaptive learning rates – volume: 16 start-page: 7964 year: 2023 ident: 10.1016/j.epsr.2025.111551_bib0021 article-title: Daily peak-valley electric-load forecasting based on an SSA-LSTM-RF algorithm publication-title: Energies. doi: 10.3390/en16247964 – volume: 677 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0006 article-title: A common feature-driven prediction model for multivariate time series data publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120967 – volume: 13 start-page: 2999 year: 2022 ident: 10.1016/j.epsr.2025.111551_bib0001 article-title: Short-term electrical load forecasting with multidimensional feature extraction publication-title: IEEe Trans. Smart. Grid. doi: 10.1109/TSG.2022.3158387 – volume: 9 start-page: 1022 issue: 10 year: 2023 ident: 10.1016/j.epsr.2025.111551_bib0004 article-title: Research on short-term load forecasting of new-type power system based on GCN-LSTM considering multiple influencing factors publication-title: Energy Reports doi: 10.1016/j.egyr.2023.05.048 – volume: 287 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0033 article-title: A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination publication-title: Energy doi: 10.1016/j.energy.2023.129638 – volume: 9 start-page: 1013 year: 2023 ident: 10.1016/j.epsr.2025.111551_bib0019 article-title: A novel short-term household load forecasting method combined BiLSTM with trend feature extraction publication-title: Energy Reports doi: 10.1016/j.egyr.2023.05.041 – volume: 10 start-page: 1387 year: 2023 ident: 10.1016/j.epsr.2025.111551_bib0029 article-title: Bilal Amjad, an enhanced CNN-LSTM based multi-stage framework for PV and load short-term forecasting: DSO scenarios publication-title: Energy Reports doi: 10.1016/j.egyr.2023.08.003 – volume: 210 year: 2022 ident: 10.1016/j.epsr.2025.111551_bib0002 article-title: Review of load forecasting based on artificial intelligence methodologies, models, and challenges publication-title: Electric. Power Syst. Res. doi: 10.1016/j.epsr.2022.108067 – volume: 137 year: 2022 ident: 10.1016/j.epsr.2025.111551_bib0028 article-title: Short-term load forecasting based on LSTM networks considering attention mechanism publication-title: Int. J. Electric. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107818 – volume: 67 start-page: 2093 issue: 8 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0030 article-title: K-medoids clustering of data sequences with composite distributions publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2901370 – year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0014 – ident: 10.1016/j.epsr.2025.111551_bib0017 – volume: 47 start-page: 619 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0003 article-title: Load prediction in power system with grey theory and its diagnosis of stabilization publication-title: Electric. Power Compon. Syst. doi: 10.1080/15325008.2019.1587648 – volume: 10 start-page: 3943 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0012 article-title: Short-term load forecasting with deep residual networks publication-title: IEEe Trans. Smart. Grid. doi: 10.1109/TSG.2018.2844307 – volume: 144 year: 2023 ident: 10.1016/j.epsr.2025.111551_bib0036 article-title: Residual LSTM based short-term load forecasting publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110461 – volume: 175 start-page: 365 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0026 article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series publication-title: Energy doi: 10.1016/j.energy.2019.03.081 – ident: 10.1016/j.epsr.2025.111551_bib0024 doi: 10.3390/en16135099 – volume: 15 start-page: 741 issue: 7 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0032 article-title: Climate classification for major cities in China using cluster analysis publication-title: Atmosphere doi: 10.3390/atmos15070741 – start-page: 17 year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0016 article-title: Research on similarity search technique of variable long time series data mining – volume: 7 start-page: 163644 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0015 article-title: Speed up similarity search of time series under dynamic time warping publication-title: IEEe Access. doi: 10.1109/ACCESS.2019.2949838 – volume: 60 start-page: 8213 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0010 article-title: Improved LSTM-based load forecasting embedded 3DOF (FOPI)-FOPD controller for proactive frequency regulation in power system publication-title: IEEe Trans. Ind. Appl. doi: 10.1109/TIA.2024.3443243 – volume: 13 start-page: 2999 year: 2022 ident: 10.1016/j.epsr.2025.111551_bib0018 article-title: Short-term electrical load forecasting with multidimensional feature extraction publication-title: IEEe Trans. Smart. Grid. doi: 10.1109/TSG.2022.3158387 – volume: 186 year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0034 article-title: Xiaoping Fan, short-term load forecasting with dense average network publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2021.115748 – volume: 242 year: 2020 ident: 10.1016/j.epsr.2025.111551_bib0013 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118447 – volume: 12 start-page: 4438 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0022 article-title: Daily peak demand forecasting using pelican algorithm optimised support vector machine (POA-SVM) publication-title: Energy Reports doi: 10.1016/j.egyr.2024.10.017 – volume: 17 start-page: 5186 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0008 article-title: Recurrence multilinear regression technique for improving accuracy of energy prediction in power systems publication-title: Energies. doi: 10.3390/en17205186 – start-page: 151 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0009 article-title: Application of improved Grey theory prediction model in medium-term load forecasting of distribution network – volume: 12 start-page: 385 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0011 article-title: Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network publication-title: Evol. Intell. doi: 10.1007/s12065-018-00196-0 – volume: 51 year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0037 article-title: Convolutional residual network to short-term load forecasting publication-title: Appl. Intell doi: 10.1007/s10489-020-01932-9 – ident: 10.1016/j.epsr.2025.111551_bib0031 – volume: 51 start-page: 2485 year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0025 article-title: Convolutional residual network to short-term load forecasting publication-title: Appl. Inell doi: 10.1007/s10489-020-01932-9 – volume: 214 year: 2021 ident: 10.1016/j.epsr.2025.111551_bib0038 article-title: Haitham Abu-Rub, A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-term load forecasting publication-title: Energy doi: 10.1016/j.energy.2020.118874 – volume: 15 start-page: 7584 year: 2022 ident: 10.1016/j.epsr.2025.111551_bib0023 article-title: BPNN-to-BPNN model considering multi-source information for forecasting medium- and long-term electricity peak load publication-title: Energies. doi: 10.3390/en15207584 – volume: 197 start-page: 7 year: 2019 ident: 10.1016/j.epsr.2025.111551_bib0007 article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.05.043 – volume: 35 start-page: 2937 issue: 4 year: 2020 ident: 10.1016/j.epsr.2025.111551_bib0027 article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2963109 – ident: 10.1016/j.epsr.2025.111551_bib0020 – volume: 38 year: 2024 ident: 10.1016/j.epsr.2025.111551_bib0035 article-title: Probabilistic CDF-based load forecasting model in a power distribution system publication-title: Sustain. Energy, Grids Networks doi: 10.1016/j.segan.2024.101311 |
SSID | ssj0006975 |
Score | 2.511217 |
Snippet | •An algorithm for extracting the importance of extreme points based on time series is proposed. Through the marking and calculation of the importance of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111551 |
SubjectTerms | Convolution neural network EIIR importance algorithm load feature extraction Short-term load forecasting |
Title | Short-term load forecasting based on temporal importance analysis and feature extraction |
URI | https://dx.doi.org/10.1016/j.epsr.2025.111551 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6xR68ydoku9k0x1IsVbGXWuht2a9ipaalrVd_uzPJBiuIB2-7YReSl8mbF5h5S8iNTjrSQBpm2kvHRB47ZrgzzMjEQfpLJZfY4Pw8lIOxeJykkwbp1b0wWFYZuL_i9JKtw5V2QLO9nM3ao4hDsGU5CHjU-Ryb-ITIMMrvPr_LPGRemu3iYoarQ-NMVePll2v0BE1SZI40jX9PTlsJp39A9oNSpN3qZg5JwxdHZG_LP_CYTEavoJ4ZsiudL7SjoEC91WssZaaYnxxdFDS4T83p7L0U2_CIVAcvEhjALl-6e1Lg6VXV53BCxv37l96AhaMSmAWBsmG5i7kXPENHL4BX-8RpmXlvbEdnMLA8n4ppAtpDGAt_KDDzaAuT2djBN-75KWkWi8KfEaqjWLs4smLqvIiE0FZ2Iid1JGwei9S0yG2NkVpWjhiqLhV7U4ioQkRVhWiLpDWM6sd7VUDZf-w7_-e-C7KLs6qg9pI0N6sPfwWyYWOuy7i4Jjvdh6fB8Au8TcKJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL0qZQAGxFOUpweYkGkejtMMDAioWvpY2krdgmO7oqi0VVuEWPgpfpDrxBVFQgxI3ZxEjpyTm3tOpHuPAc6FV-IJ0jAVmivKIlfRxFcJTbinkP4C7nPT4Nxo8kqHPXSDbg4-570wpqzS5v4sp6fZ2p4pWjSL436_2HJ8DLYwQgFvdL4f2crKmn5_w_-26XX1Dl_yheeV79u3FWq3FqASCX1GI-X6mvmhccDC5QjtKcFDrRNZEiEOpB_1WM9DrmaJREWPR9rYqITSVfhNaB_vuwKrDNOF2Tbh6uO7roRHqbuvWR01y7OdOllRmR5PjQmpF5hUFQTu72y4wHDlLdi00pTcZE-_DTk93IGNBcPCXei2nlCuU5POyWAkFEHJq6WYmtppYghRkdGQWLurAem_pOoeMSXCmp_gAGfp1E6UIDFMssaKPegsBcB9yA9HQ30ARDiuUK4jWU9p5jAmJC85iguHychlQVKAyzlG8Tiz4IjntWnPsUE0NojGGaIFCOYwxj8CKUaO-GPe4T_nncFapd2ox_Vqs3YE6-ZKVs17DPnZ5FWfoGaZJadpjBB4XHZQfgEwZf1f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+load+forecasting+based+on+temporal+importance+analysis+and+feature+extraction&rft.jtitle=Electric+power+systems+research&rft.au=Yuqi%2C+Ji&rft.au=An%2C+An&rft.au=Lu%2C+Zhang&rft.au=Ping%2C+He&rft.date=2025-07-01&rft.issn=0378-7796&rft.volume=244&rft.spage=111551&rft_id=info:doi/10.1016%2Fj.epsr.2025.111551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2025_111551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |