Integration of multiscale fusion of residual neural network with 2-D gramian angular fields for lower limb movement recognition based on multi-channel sEMG signals
•A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet).•Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet...
Saved in:
Published in | Biomedical signal processing and control Vol. 99; p. 106807 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet).•Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance.•The proposed method was compared with those of the related studies in the recognition performance.•This method provides a viable solution for developing more efficient and reliable lower limb movement recognition systems.
The human lower limb movements recognition (LLMR) plays a pivotal role in active lower limb exoskeleton robots. Employing surface electromyography (sEMG) signals for LLMR allows for the convenient, rapid and stable capture of signal variations, facilitating efficient identification of lower limb motion patterns. However, current sEMG-based LLMR methods face challenges such as incomplete feature extraction, limited contextual information and restricted feature extraction scales during feature extraction. This paper proposed a LLMR method based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet). The denoised sEMG time series was transformed into Gramian Angular Difference Field (GADF) matrix based on GAF. The MS-ResNet model, incorporating ResNet and multiscale feature fusion concepts, was proposed to comprehensively capture global and local information through different-scale feature extraction and fusion, so as to improve recognition performance. sEMG signals from 11 muscles of the preferred leg of 15 healthy subjects were recorded during six common lower limb movements. Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance. The study revealed that selecting k as 13, coupled with 11 muscles, yielded optimal model performance with the average cross-individual recognition accuracy reaching 97.62 %, demonstrating the model’s efficiency in LLMR. This method could provide a viable solution for developing more efficient and reliable LLMR systems, applicable to lower limb exoskeleton robots and intelligent prosthetics. |
---|---|
AbstractList | •A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet).•Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance.•The proposed method was compared with those of the related studies in the recognition performance.•This method provides a viable solution for developing more efficient and reliable lower limb movement recognition systems.
The human lower limb movements recognition (LLMR) plays a pivotal role in active lower limb exoskeleton robots. Employing surface electromyography (sEMG) signals for LLMR allows for the convenient, rapid and stable capture of signal variations, facilitating efficient identification of lower limb motion patterns. However, current sEMG-based LLMR methods face challenges such as incomplete feature extraction, limited contextual information and restricted feature extraction scales during feature extraction. This paper proposed a LLMR method based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet). The denoised sEMG time series was transformed into Gramian Angular Difference Field (GADF) matrix based on GAF. The MS-ResNet model, incorporating ResNet and multiscale feature fusion concepts, was proposed to comprehensively capture global and local information through different-scale feature extraction and fusion, so as to improve recognition performance. sEMG signals from 11 muscles of the preferred leg of 15 healthy subjects were recorded during six common lower limb movements. Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance. The study revealed that selecting k as 13, coupled with 11 muscles, yielded optimal model performance with the average cross-individual recognition accuracy reaching 97.62 %, demonstrating the model’s efficiency in LLMR. This method could provide a viable solution for developing more efficient and reliable LLMR systems, applicable to lower limb exoskeleton robots and intelligent prosthetics. |
ArticleNumber | 106807 |
Author | Zhou, Hao Jin, Dingxun Shou, Dahua Feng, Ruliang Peng, Yinghu Li, Xiaohui Wang, Lin Li, Guanglin |
Author_xml | – sequence: 1 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China – sequence: 2 givenname: Ruliang surname: Feng fullname: Feng, Ruliang organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China – sequence: 3 givenname: Yinghu surname: Peng fullname: Peng, Yinghu organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China – sequence: 4 givenname: Dingxun surname: Jin fullname: Jin, Dingxun organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China – sequence: 5 givenname: Xiaohui surname: Li fullname: Li, Xiaohui organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China – sequence: 6 givenname: Dahua surname: Shou fullname: Shou, Dahua organization: The Hong Kong Polytechnic University, Hong Kong 999077, China – sequence: 7 givenname: Guanglin surname: Li fullname: Li, Guanglin organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China – sequence: 8 givenname: Lin surname: Wang fullname: Wang, Lin email: lin.wang1@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China |
BookMark | eNp9UMtOwzAQ9AEkKPADnPwDKbbjPCxxQaVAJRAXOFu2sy4uiV3ZCRXfw4_itpy57KxGmpndmaETHzwgdE3JnBJa32zmOm3NnBHGM1G3pDlB57ThddESwc_QLKUNIbxtKD9HPys_wjqq0QWPg8XD1I8uGdUDtlP6IyMk102qxx6meIBxF-In3rnxA7PiHmeDwSmPlV9PvYrYOui7hG2IuA87yNMNGg_hCwbwY_YzYe3dIVOrBB3OyyG5MB_Ke-hxWr484uTWXvXpEp3aDHD1hxfo_WH5tngqnl8fV4u758Kwio6FULoSVNfclExwXbJOCKVAM9NUlltiFBOMtbwTVEDTtVVZ0bLWqtSWcsHa8gKxo6-JIaUIVm6jG1T8lpTIfbVyI_fVyn218lhtFt0eRZAv-3IQZTIOvIHO5TdH2QX3n_wXo4mJww |
Cites_doi | 10.1109/SURV.2012.110112.00192 10.1038/s41598-022-15024-w 10.1371/journal.pone.0180526 10.1016/j.bspc.2022.104443 10.3389/fnbot.2022.913748 10.1007/PL00011669 10.1177/0278364916688253 10.1109/TNSRE.2021.3074154 10.1007/s12369-020-00662-9 10.31436/iiumej.v17i1.571 10.1109/JSEN.2021.3095594 10.1016/j.ifacol.2019.12.108 10.1109/72.363444 10.1109/JBHI.2018.2858789 10.1007/s13534-022-00236-w 10.1109/ACCESS.2020.3008901 10.1109/JTEHM.2020.3023898 10.1109/ICCV.2015.123 10.1007/s11042-020-09004-3 10.1109/HUMANOIDS.2016.7803356 10.1007/s13755-022-00177-9 10.1109/JSEN.2023.3328615 10.1109/AIM.2019.8868529 10.1109/TITB.2012.2226905 10.1126/scitranslmed.aai9084 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2024.106807 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2024_106807 S1746809424008656 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c251t-9ab591b64c3294b32d99aaeb2c75f4f0ca292284d919e7d8535136ba3bf149283 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:26 EDT 2025 Sat Nov 09 16:00:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gramian angular fields Surface electromyography Multiscale feature fusion Lower limb movement recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-9ab591b64c3294b32d99aaeb2c75f4f0ca292284d919e7d8535136ba3bf149283 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2024_106807 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106807 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Merletti, Rau, Disselhorst-Klug, Hagg (b0125) 2016 Beddiar, Nini, Sabokrou, Hadid (b0060) 2020; 79 Gautam, Panwar, Biswas, Acharyya (b0095) 2020; 8 K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, Ieee, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2016, 2016, pp. 770–778. Awad (b0015) 2017; 9 U. N. DEPARTMENT OF ECONOMiC AND SOCiAL AFFAiRS, Leaving No One Behind In An Ageing World, 2023. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034. Tu, Dai, Zhao, Huang (b0190) 2023; 81 Z. Wang, T. Oates, Imaging time-series to improve classification and imputation, in: IJCAI International Joint Conference on Artificial Intelligence, 2015, vol. 2015-January, pp. 3939–3945. Clark, Boswell (b0170) 1991 Bnou, Raghay, Hakim (b0130) 2020; 1 A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. icml, 2013, vol. 30, no. 1, Atlanta, GA, p. 3. Feng (b0175) 2023 Keogh, Chakrabarti, Pazzani, Mehrotra (b0135) 2001; 3 Lee (b0020) Sep 2017; 25 B.-S. Yang, S.-T. Liao, Fall detecting using inertial and electromyographic sensors, in: Proceedings of the 36th annual meeting of the American Society of Biomechanics, Gainsville, FL, USA, 2012, pp. 15–18. Zhao, Shan, Luximon (b0110) 2022; 10 Kalita, Narayan, Dwivedy (b0035) 2021; 13 Fan, Yao, Cai, Miao, Sun, Li (b0105) 2018; 22 D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289, 2015. D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv: Learning, 2016. Shi, Qin, Zhu, Zhai, Shi (b0185) 2020; 8 Akhtaruzzaman, Shafie, Khan (b0115) 2016; 17 Masengo, Zhang, Dong, Alhassan, Hamza, Mudaheranwa (b0050) 2023; 16 Lara, Labrador (b0065) 2012; 15 Maniar, Schache, Pizzolato, Opar (b0120) 2022; 12 Y. Tao et al., Multi-channel sEMG based human lower limb motion intention recognition method, in: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2019, pp. 1037–1042. Hao, Yang, Chen, Geng (b0195) 2019; 533 Zhang (b0180) 2017; 12 Baraglia, Cakmak, Nagai, Rao, Asada (b0045) 2017; 36 Vijayvargiya, Singh, Kumar, Tavares (b0055) 2022; 12 Orr (b0010) 2010/6//.; 46 T. Ito, K. Ayusawa, E. Yoshida, H. Kobayashi, Stationary torque replacement for evaluation of active assistive devices using humanoid, in: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016, pp. 739–744. Vijayvargiya, Gupta, Kumar, Dey, Tavares (b0080) 2021; 21 Song, Collins (b0025) 2021; 29 Anand, Mehrotra, Mohan, Ranka (b0165) 1995; 6 Zhang, Ling, Li (b0090) 2019; 52 Li, Cao, Liang, Zhang, Cui (b0040) 2023; 23 Cheng, Chen, Shen (b0070) 2012; 17 Lee (10.1016/j.bspc.2024.106807_b0020) 2017; 25 Lara (10.1016/j.bspc.2024.106807_b0065) 2012; 15 Shi (10.1016/j.bspc.2024.106807_b0185) 2020; 8 Baraglia (10.1016/j.bspc.2024.106807_b0045) 2017; 36 Vijayvargiya (10.1016/j.bspc.2024.106807_b0055) 2022; 12 Fan (10.1016/j.bspc.2024.106807_b0105) 2018; 22 10.1016/j.bspc.2024.106807_b0155 Akhtaruzzaman (10.1016/j.bspc.2024.106807_b0115) 2016; 17 Beddiar (10.1016/j.bspc.2024.106807_b0060) 2020; 79 Song (10.1016/j.bspc.2024.106807_b0025) 2021; 29 10.1016/j.bspc.2024.106807_b0030 Orr (10.1016/j.bspc.2024.106807_b0010) 2010; 46 10.1016/j.bspc.2024.106807_b0075 Tu (10.1016/j.bspc.2024.106807_b0190) 2023; 81 10.1016/j.bspc.2024.106807_b0150 10.1016/j.bspc.2024.106807_b0005 Kalita (10.1016/j.bspc.2024.106807_b0035) 2021; 13 Clark (10.1016/j.bspc.2024.106807_b0170) 1991 Zhang (10.1016/j.bspc.2024.106807_b0180) 2017; 12 Cheng (10.1016/j.bspc.2024.106807_b0070) 2012; 17 Masengo (10.1016/j.bspc.2024.106807_b0050) 2023; 16 Maniar (10.1016/j.bspc.2024.106807_b0120) 2022; 12 10.1016/j.bspc.2024.106807_b0100 10.1016/j.bspc.2024.106807_b0145 Merletti (10.1016/j.bspc.2024.106807_b0125) 2016 Hao (10.1016/j.bspc.2024.106807_b0195) 2019; 533 Gautam (10.1016/j.bspc.2024.106807_b0095) 2020; 8 Zhao (10.1016/j.bspc.2024.106807_b0110) 2022; 10 Awad (10.1016/j.bspc.2024.106807_b0015) 2017; 9 Vijayvargiya (10.1016/j.bspc.2024.106807_b0080) 2021; 21 Zhang (10.1016/j.bspc.2024.106807_b0090) 2019; 52 Keogh (10.1016/j.bspc.2024.106807_b0135) 2001; 3 Bnou (10.1016/j.bspc.2024.106807_b0130) 2020; 1 Anand (10.1016/j.bspc.2024.106807_b0165) 1995; 6 10.1016/j.bspc.2024.106807_b0085 10.1016/j.bspc.2024.106807_b0140 Li (10.1016/j.bspc.2024.106807_b0040) 2023; 23 Feng (10.1016/j.bspc.2024.106807_b0175) 2023 10.1016/j.bspc.2024.106807_b0160 |
References_xml | – volume: 9 start-page: eaai9084 year: 2017 ident: b0015 article-title: A soft robotic exosuit improves walking in patients after stroke publication-title: Sci. Translat. Med. – volume: 23 start-page: 30007 year: 2023 end-page: 30036 ident: b0040 article-title: Human lower limb motion intention recognition for exoskeletons: a review publication-title: IEEE Sens. J. – volume: 16 year: 2023 ident: b0050 article-title: Lower limb exoskeleton robot and its cooperative control: a review, trends, and challenges for future research publication-title: Front. Neurorob. – year: 2016 ident: b0125 article-title: Surface electromyography for the Non-invasive assessment of muscles (SENIAM),“ Biomedical Health and Research Program (BIOMED II) of the European Union – volume: 22 start-page: 1744 year: 2018 end-page: 1753 ident: b0105 article-title: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings publication-title: IEEE J. Biomed. Health Inform. – reference: B.-S. Yang, S.-T. Liao, Fall detecting using inertial and electromyographic sensors, in: Proceedings of the 36th annual meeting of the American Society of Biomechanics, Gainsville, FL, USA, 2012, pp. 15–18. – volume: 8 start-page: 1 year: 2020 end-page: 10 ident: b0095 article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG publication-title: IEEE J. Translat. Eng. Health Med. – volume: 21 start-page: 20431 year: 2021 end-page: 20439 ident: b0080 article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition publication-title: IEEE Sens. J. – volume: 52 start-page: 271 year: 2019 end-page: 276 ident: b0090 article-title: EMG signals based human action recognition via deep belief networks publication-title: IFAC-PapersOnLine – reference: T. Ito, K. Ayusawa, E. Yoshida, H. Kobayashi, Stationary torque replacement for evaluation of active assistive devices using humanoid, in: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016, pp. 739–744. – volume: 3 start-page: 263 year: 2001 end-page: 286 ident: b0135 article-title: Dimensionality reduction for fast similarity search in large time series databases publication-title: Knowl. Inf. Syst. – volume: 17 start-page: 83 year: 2016 end-page: 102 ident: b0115 article-title: A review on lower appendicular musculoskeletal system of human body publication-title: IIUM Eng. J. – volume: 25 start-page: 1549 year: Sep 2017 end-page: 1557 ident: b0020 article-title: A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 533 year: 2019 ident: b0195 article-title: A gait patterns recognition approach based on surface electromyography and three-axis acceleration signals publication-title: IOP Conference Ser.: Mater. Sci. Eng. – volume: 17 start-page: 38 year: 2012 end-page: 45 ident: b0070 article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals publication-title: IEEE J. Biomed. Health Inform. – reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. icml, 2013, vol. 30, no. 1, Atlanta, GA, p. 3. – volume: 12 start-page: e0180526 year: 2017 ident: b0180 article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition publication-title: PLoS One – volume: 46 start-page: 183 year: 2010/6//. end-page: 220 ident: b0010 article-title: Contribution of muscle weakness to postural instability in the elderly. A systematic review publication-title: Eur. J. Phys. Rehabil. Med. – reference: U. N. DEPARTMENT OF ECONOMiC AND SOCiAL AFFAiRS, Leaving No One Behind In An Ageing World, 2023. – volume: 10 start-page: 11 year: 2022 ident: b0110 article-title: Contributions of individual muscle forces to hip, knee, and ankle contact forces during the stance phase of running: a model-based study publication-title: Health Inform. Sci. Syst. – reference: K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, Ieee, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2016, 2016, pp. 770–778. – volume: 81 year: 2023 ident: b0190 article-title: Lower limb motion recognition based on surface electromyography publication-title: Biomed. Signal Process. Control – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034. – reference: D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv: Learning, 2016. – volume: 15 start-page: 1192 year: 2012 end-page: 1209 ident: b0065 article-title: A survey on human activity recognition using wearable sensors publication-title: IEEE Commun. Surv. Tutorials – volume: 12 start-page: 343 year: 2022 end-page: 358 ident: b0055 article-title: Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview publication-title: Biomed. Eng. Lett. – volume: 12 start-page: 11486 year: 2022 ident: b0120 article-title: Muscle function during single leg landing publication-title: Sci. Rep. – year: 2023 ident: b0175 article-title: Research on personalized biomechanical quantification and adjustment for the imbalance of joint muscles, (Chinese), Master’s thesis, Shenzhen Inst publication-title: Adv. Technol., Chin. Acad. Sci. – start-page: 151 year: 1991 end-page: 163 ident: b0170 article-title: Rule induction with CN2: Some recent improvements publication-title: Machine Learning—EWSL-91: European Working Session on Learning Porto, Portugal, March 6–8, 1991 Proceedings 5 – volume: 13 start-page: 775 year: 2021 end-page: 793 ident: b0035 article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review publication-title: Int. J. Soc. Robot. – volume: 8 start-page: 132882 year: 2020 end-page: 132892 ident: b0185 article-title: Feature extraction and classification of lower limb motion based on sEMG signals publication-title: IEEE Access – volume: 79 start-page: 30509 year: 2020 end-page: 30555 ident: b0060 article-title: Vision-based human activity recognition: a survey publication-title: Multimed. Tools Appl. – reference: Y. Tao et al., Multi-channel sEMG based human lower limb motion intention recognition method, in: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2019, pp. 1037–1042. – reference: D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289, 2015. – volume: 6 start-page: 117 year: 1995 end-page: 124 ident: b0165 article-title: Efficient classification for multiclass problems using modular neural networks publication-title: IEEE Trans. Neural Netw. – volume: 29 start-page: 786 year: 2021 end-page: 795 ident: b0025 article-title: Optimizing exoskeleton assistance for faster self-selected walking publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 1 start-page: 2020 year: 2020 ident: b0130 article-title: A wavelet denoising approach based on unsupervised learning model publication-title: EURASIP J. Adv. Signal Processing – volume: 36 start-page: 563 year: 2017 end-page: 579 ident: b0045 article-title: Efficient human-robot collaboration: When should a robot take initiative? publication-title: Int. J. Robotics Res. – reference: Z. Wang, T. Oates, Imaging time-series to improve classification and imputation, in: IJCAI International Joint Conference on Artificial Intelligence, 2015, vol. 2015-January, pp. 3939–3945. – year: 2023 ident: 10.1016/j.bspc.2024.106807_b0175 article-title: Research on personalized biomechanical quantification and adjustment for the imbalance of joint muscles, (Chinese), Master’s thesis, Shenzhen Inst publication-title: Adv. Technol., Chin. Acad. Sci. – volume: 15 start-page: 1192 issue: 3 year: 2012 ident: 10.1016/j.bspc.2024.106807_b0065 article-title: A survey on human activity recognition using wearable sensors publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/SURV.2012.110112.00192 – volume: 12 start-page: 11486 issue: 1 year: 2022 ident: 10.1016/j.bspc.2024.106807_b0120 article-title: Muscle function during single leg landing publication-title: Sci. Rep. doi: 10.1038/s41598-022-15024-w – ident: 10.1016/j.bspc.2024.106807_b0100 – ident: 10.1016/j.bspc.2024.106807_b0160 – volume: 12 start-page: e0180526 issue: 7 year: 2017 ident: 10.1016/j.bspc.2024.106807_b0180 article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition publication-title: PLoS One doi: 10.1371/journal.pone.0180526 – volume: 81 year: 2023 ident: 10.1016/j.bspc.2024.106807_b0190 article-title: Lower limb motion recognition based on surface electromyography publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104443 – start-page: 151 year: 1991 ident: 10.1016/j.bspc.2024.106807_b0170 article-title: Rule induction with CN2: Some recent improvements – year: 2016 ident: 10.1016/j.bspc.2024.106807_b0125 – volume: 16 year: 2023 ident: 10.1016/j.bspc.2024.106807_b0050 article-title: Lower limb exoskeleton robot and its cooperative control: a review, trends, and challenges for future research publication-title: Front. Neurorob. doi: 10.3389/fnbot.2022.913748 – volume: 3 start-page: 263 year: 2001 ident: 10.1016/j.bspc.2024.106807_b0135 article-title: Dimensionality reduction for fast similarity search in large time series databases publication-title: Knowl. Inf. Syst. doi: 10.1007/PL00011669 – volume: 25 start-page: 1549 issue: 9 year: 2017 ident: 10.1016/j.bspc.2024.106807_b0020 article-title: A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 36 start-page: 563 issue: 5–7 year: 2017 ident: 10.1016/j.bspc.2024.106807_b0045 article-title: Efficient human-robot collaboration: When should a robot take initiative? publication-title: Int. J. Robotics Res. doi: 10.1177/0278364916688253 – volume: 29 start-page: 786 year: 2021 ident: 10.1016/j.bspc.2024.106807_b0025 article-title: Optimizing exoskeleton assistance for faster self-selected walking publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3074154 – volume: 13 start-page: 775 issue: 4 year: 2021 ident: 10.1016/j.bspc.2024.106807_b0035 article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review publication-title: Int. J. Soc. Robot. doi: 10.1007/s12369-020-00662-9 – ident: 10.1016/j.bspc.2024.106807_b0155 – volume: 17 start-page: 83 issue: 1 year: 2016 ident: 10.1016/j.bspc.2024.106807_b0115 article-title: A review on lower appendicular musculoskeletal system of human body publication-title: IIUM Eng. J. doi: 10.31436/iiumej.v17i1.571 – volume: 21 start-page: 20431 issue: 18 year: 2021 ident: 10.1016/j.bspc.2024.106807_b0080 article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3095594 – ident: 10.1016/j.bspc.2024.106807_b0075 – volume: 52 start-page: 271 issue: 19 year: 2019 ident: 10.1016/j.bspc.2024.106807_b0090 article-title: EMG signals based human action recognition via deep belief networks publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.12.108 – volume: 6 start-page: 117 issue: 1 year: 1995 ident: 10.1016/j.bspc.2024.106807_b0165 article-title: Efficient classification for multiclass problems using modular neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.363444 – volume: 22 start-page: 1744 issue: 6 year: 2018 ident: 10.1016/j.bspc.2024.106807_b0105 article-title: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2858789 – volume: 1 start-page: 2020 year: 2020 ident: 10.1016/j.bspc.2024.106807_b0130 article-title: A wavelet denoising approach based on unsupervised learning model publication-title: EURASIP J. Adv. Signal Processing – volume: 12 start-page: 343 issue: 4 year: 2022 ident: 10.1016/j.bspc.2024.106807_b0055 article-title: Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-022-00236-w – volume: 8 start-page: 132882 year: 2020 ident: 10.1016/j.bspc.2024.106807_b0185 article-title: Feature extraction and classification of lower limb motion based on sEMG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008901 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.bspc.2024.106807_b0095 article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG publication-title: IEEE J. Translat. Eng. Health Med. doi: 10.1109/JTEHM.2020.3023898 – ident: 10.1016/j.bspc.2024.106807_b0140 – ident: 10.1016/j.bspc.2024.106807_b0150 doi: 10.1109/ICCV.2015.123 – volume: 79 start-page: 30509 issue: 41–42 year: 2020 ident: 10.1016/j.bspc.2024.106807_b0060 article-title: Vision-based human activity recognition: a survey publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09004-3 – ident: 10.1016/j.bspc.2024.106807_b0030 doi: 10.1109/HUMANOIDS.2016.7803356 – volume: 10 start-page: 11 issue: 1 year: 2022 ident: 10.1016/j.bspc.2024.106807_b0110 article-title: Contributions of individual muscle forces to hip, knee, and ankle contact forces during the stance phase of running: a model-based study publication-title: Health Inform. Sci. Syst. doi: 10.1007/s13755-022-00177-9 – ident: 10.1016/j.bspc.2024.106807_b0145 – volume: 533 issue: 1 year: 2019 ident: 10.1016/j.bspc.2024.106807_b0195 article-title: A gait patterns recognition approach based on surface electromyography and three-axis acceleration signals publication-title: IOP Conference Ser.: Mater. Sci. Eng. – volume: 23 start-page: 30007 issue: 24 year: 2023 ident: 10.1016/j.bspc.2024.106807_b0040 article-title: Human lower limb motion intention recognition for exoskeletons: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3328615 – ident: 10.1016/j.bspc.2024.106807_b0085 doi: 10.1109/AIM.2019.8868529 – volume: 17 start-page: 38 issue: 1 year: 2012 ident: 10.1016/j.bspc.2024.106807_b0070 article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/TITB.2012.2226905 – volume: 9 start-page: eaai9084 issue: 400 year: 2017 ident: 10.1016/j.bspc.2024.106807_b0015 article-title: A soft robotic exosuit improves walking in patients after stroke publication-title: Sci. Translat. Med. doi: 10.1126/scitranslmed.aai9084 – ident: 10.1016/j.bspc.2024.106807_b0005 – volume: 46 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.bspc.2024.106807_b0010 article-title: Contribution of muscle weakness to postural instability in the elderly. A systematic review publication-title: Eur. J. Phys. Rehabil. Med. |
SSID | ssj0048714 |
Score | 2.3857381 |
Snippet | •A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106807 |
SubjectTerms | Gramian angular fields Lower limb movement recognition Multiscale feature fusion Surface electromyography |
Title | Integration of multiscale fusion of residual neural network with 2-D gramian angular fields for lower limb movement recognition based on multi-channel sEMG signals |
URI | https://dx.doi.org/10.1016/j.bspc.2024.106807 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqG5gQ6GN4zTNWJWWFtQuUKlb5EciFbVpRdKVP8Mf5c5JKpAQA1Mcy3Yi38n3nf3dmbHbQHNtusZ1ZEjHjD46KCpUCl8lmkOp0CrQie5k2hnNxNPcn9dYv4qFIVplufYXa7pdrcuaVjmbrc1i0XpBLN3pondCLMguwhKKYBcBafn9x47mgXjc5vemxg61LgNnCo6XyjaUxpALrMCxgt-N0zeDMzxihyVShF7xM8esFqcn7OBb_sBT9jkukz3g5MI6AcsOzHDWY0i2WVmJ_rQNuAJKXWkflvgNtAML3HkA4mehkgDtXKKfC5bUlgGiWVjSHWqwXKwUrNY2s3gOO8oRDk820AAW7JcdiiJO4yVkg8kjEDMEdfuMzYaD1_7IKW9dcDRindxBAfmhqzpCezwUyuMGZSbRAdeBn4ikrSUPORo1E7phHBg0977rdZT0VILeFqKVc1ZP12l8wUD7yoTKM35bG2GEJxFfScEDadpYVm6D3VXTHW2K5BpRxTp7i0g4EQknKoTTYH4lkeiHikS4-v_R7_Kf_a7YPqfLfu1-yzWr5-_b-AYRSK6aVsWabK83fh5NvwBLed25 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO88YEbqramzboe0RhswHZhk3arkqaVhsY20fGL-KPYaYpAQhw4NY2atrIt-3PyxQG4ilKRmrbxPRXzMqOkBEXHWtOtonCoNEUFXtEdDFu9cfgwkZM16FR7YZhW6Xx_6dOtt3Y9DSfNxnI6bTwTlm61KTthFmSbYMk61Lk6laxB_ab_2BtWDpkguS3xzc97PMDtnSlpXrpYciVDEVIHvS76PT59izl3O7DtwCLelP-zC2vZfA-2vpUQ3IePvqv3QPLFRY6WIFiQ4DPM3wvXSSm13XOFXL3SXiz3G3kSFoV3i0zRIjtBnrykVBctr61AArQ442PUcDZ91fi6sMXFV_jFOqLXcxg0SA37ZY83Es-zGRbdwT0yOYTM-wDGd91Rp-e5gxe8lODOyiMdydjXrTANRBzqQBhSm6IcPI1kHubNVIlYUFwzsR9nkaGIL_2gpVWgc0q4CLAcQm2-mGdHgKnUJtaBkc3UhCYMFEEsFYpImSa1tX8M15W4k2VZXyOpiGcvCSsnYeUkpXKOQVYaSX5YSUIB4I9xJ_8cdwkbvdHgKXnqDx9PYVPw2b92-uUMaqu39-ycAMlKXziD-wTo0eBq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+multiscale+fusion+of+residual+neural+network+with+2-D+gramian+angular+fields+for+lower+limb+movement+recognition+based+on+multi-channel+sEMG+signals&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhou%2C+Hao&rft.au=Feng%2C+Ruliang&rft.au=Peng%2C+Yinghu&rft.au=Jin%2C+Dingxun&rft.date=2025-01-01&rft.issn=1746-8094&rft.volume=99&rft.spage=106807&rft_id=info:doi/10.1016%2Fj.bspc.2024.106807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |