Integration of multiscale fusion of residual neural network with 2-D gramian angular fields for lower limb movement recognition based on multi-channel sEMG signals

•A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet).•Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 99; p. 106807
Main Authors Zhou, Hao, Feng, Ruliang, Peng, Yinghu, Jin, Dingxun, Li, Xiaohui, Shou, Dahua, Li, Guanglin, Wang, Lin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet).•Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance.•The proposed method was compared with those of the related studies in the recognition performance.•This method provides a viable solution for developing more efficient and reliable lower limb movement recognition systems. The human lower limb movements recognition (LLMR) plays a pivotal role in active lower limb exoskeleton robots. Employing surface electromyography (sEMG) signals for LLMR allows for the convenient, rapid and stable capture of signal variations, facilitating efficient identification of lower limb motion patterns. However, current sEMG-based LLMR methods face challenges such as incomplete feature extraction, limited contextual information and restricted feature extraction scales during feature extraction. This paper proposed a LLMR method based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet). The denoised sEMG time series was transformed into Gramian Angular Difference Field (GADF) matrix based on GAF. The MS-ResNet model, incorporating ResNet and multiscale feature fusion concepts, was proposed to comprehensively capture global and local information through different-scale feature extraction and fusion, so as to improve recognition performance. sEMG signals from 11 muscles of the preferred leg of 15 healthy subjects were recorded during six common lower limb movements. Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance. The study revealed that selecting k as 13, coupled with 11 muscles, yielded optimal model performance with the average cross-individual recognition accuracy reaching 97.62 %, demonstrating the model’s efficiency in LLMR. This method could provide a viable solution for developing more efficient and reliable LLMR systems, applicable to lower limb exoskeleton robots and intelligent prosthetics.
AbstractList •A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet).•Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance.•The proposed method was compared with those of the related studies in the recognition performance.•This method provides a viable solution for developing more efficient and reliable lower limb movement recognition systems. The human lower limb movements recognition (LLMR) plays a pivotal role in active lower limb exoskeleton robots. Employing surface electromyography (sEMG) signals for LLMR allows for the convenient, rapid and stable capture of signal variations, facilitating efficient identification of lower limb motion patterns. However, current sEMG-based LLMR methods face challenges such as incomplete feature extraction, limited contextual information and restricted feature extraction scales during feature extraction. This paper proposed a LLMR method based on Gramian Angular Fields (GAF) and multiscale fusion of Residual Neural Network (MS-ResNet). The denoised sEMG time series was transformed into Gramian Angular Difference Field (GADF) matrix based on GAF. The MS-ResNet model, incorporating ResNet and multiscale feature fusion concepts, was proposed to comprehensively capture global and local information through different-scale feature extraction and fusion, so as to improve recognition performance. sEMG signals from 11 muscles of the preferred leg of 15 healthy subjects were recorded during six common lower limb movements. Experimental analysis investigated the impact of the convolutional kernel size (k × k) in Stream 2 of MS-ResNet and the number of muscles involved on recognition performance. The study revealed that selecting k as 13, coupled with 11 muscles, yielded optimal model performance with the average cross-individual recognition accuracy reaching 97.62 %, demonstrating the model’s efficiency in LLMR. This method could provide a viable solution for developing more efficient and reliable LLMR systems, applicable to lower limb exoskeleton robots and intelligent prosthetics.
ArticleNumber 106807
Author Zhou, Hao
Jin, Dingxun
Shou, Dahua
Feng, Ruliang
Peng, Yinghu
Li, Xiaohui
Wang, Lin
Li, Guanglin
Author_xml – sequence: 1
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
– sequence: 2
  givenname: Ruliang
  surname: Feng
  fullname: Feng, Ruliang
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
– sequence: 3
  givenname: Yinghu
  surname: Peng
  fullname: Peng, Yinghu
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
– sequence: 4
  givenname: Dingxun
  surname: Jin
  fullname: Jin, Dingxun
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
– sequence: 5
  givenname: Xiaohui
  surname: Li
  fullname: Li, Xiaohui
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
– sequence: 6
  givenname: Dahua
  surname: Shou
  fullname: Shou, Dahua
  organization: The Hong Kong Polytechnic University, Hong Kong 999077, China
– sequence: 7
  givenname: Guanglin
  surname: Li
  fullname: Li, Guanglin
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
– sequence: 8
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  email: lin.wang1@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
BookMark eNp9UMtOwzAQ9AEkKPADnPwDKbbjPCxxQaVAJRAXOFu2sy4uiV3ZCRXfw4_itpy57KxGmpndmaETHzwgdE3JnBJa32zmOm3NnBHGM1G3pDlB57ThddESwc_QLKUNIbxtKD9HPys_wjqq0QWPg8XD1I8uGdUDtlP6IyMk102qxx6meIBxF-In3rnxA7PiHmeDwSmPlV9PvYrYOui7hG2IuA87yNMNGg_hCwbwY_YzYe3dIVOrBB3OyyG5MB_Ke-hxWr484uTWXvXpEp3aDHD1hxfo_WH5tngqnl8fV4u758Kwio6FULoSVNfclExwXbJOCKVAM9NUlltiFBOMtbwTVEDTtVVZ0bLWqtSWcsHa8gKxo6-JIaUIVm6jG1T8lpTIfbVyI_fVyn218lhtFt0eRZAv-3IQZTIOvIHO5TdH2QX3n_wXo4mJww
Cites_doi 10.1109/SURV.2012.110112.00192
10.1038/s41598-022-15024-w
10.1371/journal.pone.0180526
10.1016/j.bspc.2022.104443
10.3389/fnbot.2022.913748
10.1007/PL00011669
10.1177/0278364916688253
10.1109/TNSRE.2021.3074154
10.1007/s12369-020-00662-9
10.31436/iiumej.v17i1.571
10.1109/JSEN.2021.3095594
10.1016/j.ifacol.2019.12.108
10.1109/72.363444
10.1109/JBHI.2018.2858789
10.1007/s13534-022-00236-w
10.1109/ACCESS.2020.3008901
10.1109/JTEHM.2020.3023898
10.1109/ICCV.2015.123
10.1007/s11042-020-09004-3
10.1109/HUMANOIDS.2016.7803356
10.1007/s13755-022-00177-9
10.1109/JSEN.2023.3328615
10.1109/AIM.2019.8868529
10.1109/TITB.2012.2226905
10.1126/scitranslmed.aai9084
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106807
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106807
S1746809424008656
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c251t-9ab591b64c3294b32d99aaeb2c75f4f0ca292284d919e7d8535136ba3bf149283
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:26 EDT 2025
Sat Nov 09 16:00:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gramian angular fields
Surface electromyography
Multiscale feature fusion
Lower limb movement recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-9ab591b64c3294b32d99aaeb2c75f4f0ca292284d919e7d8535136ba3bf149283
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106807
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Merletti, Rau, Disselhorst-Klug, Hagg (b0125) 2016
Beddiar, Nini, Sabokrou, Hadid (b0060) 2020; 79
Gautam, Panwar, Biswas, Acharyya (b0095) 2020; 8
K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, Ieee, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2016, 2016, pp. 770–778.
Awad (b0015) 2017; 9
U. N. DEPARTMENT OF ECONOMiC AND SOCiAL AFFAiRS, Leaving No One Behind In An Ageing World, 2023.
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
Tu, Dai, Zhao, Huang (b0190) 2023; 81
Z. Wang, T. Oates, Imaging time-series to improve classification and imputation, in: IJCAI International Joint Conference on Artificial Intelligence, 2015, vol. 2015-January, pp. 3939–3945.
Clark, Boswell (b0170) 1991
Bnou, Raghay, Hakim (b0130) 2020; 1
A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. icml, 2013, vol. 30, no. 1, Atlanta, GA, p. 3.
Feng (b0175) 2023
Keogh, Chakrabarti, Pazzani, Mehrotra (b0135) 2001; 3
Lee (b0020) Sep 2017; 25
B.-S. Yang, S.-T. Liao, Fall detecting using inertial and electromyographic sensors, in: Proceedings of the 36th annual meeting of the American Society of Biomechanics, Gainsville, FL, USA, 2012, pp. 15–18.
Zhao, Shan, Luximon (b0110) 2022; 10
Kalita, Narayan, Dwivedy (b0035) 2021; 13
Fan, Yao, Cai, Miao, Sun, Li (b0105) 2018; 22
D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289, 2015.
D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv: Learning, 2016.
Shi, Qin, Zhu, Zhai, Shi (b0185) 2020; 8
Akhtaruzzaman, Shafie, Khan (b0115) 2016; 17
Masengo, Zhang, Dong, Alhassan, Hamza, Mudaheranwa (b0050) 2023; 16
Lara, Labrador (b0065) 2012; 15
Maniar, Schache, Pizzolato, Opar (b0120) 2022; 12
Y. Tao et al., Multi-channel sEMG based human lower limb motion intention recognition method, in: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2019, pp. 1037–1042.
Hao, Yang, Chen, Geng (b0195) 2019; 533
Zhang (b0180) 2017; 12
Baraglia, Cakmak, Nagai, Rao, Asada (b0045) 2017; 36
Vijayvargiya, Singh, Kumar, Tavares (b0055) 2022; 12
Orr (b0010) 2010/6//.; 46
T. Ito, K. Ayusawa, E. Yoshida, H. Kobayashi, Stationary torque replacement for evaluation of active assistive devices using humanoid, in: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016, pp. 739–744.
Vijayvargiya, Gupta, Kumar, Dey, Tavares (b0080) 2021; 21
Song, Collins (b0025) 2021; 29
Anand, Mehrotra, Mohan, Ranka (b0165) 1995; 6
Zhang, Ling, Li (b0090) 2019; 52
Li, Cao, Liang, Zhang, Cui (b0040) 2023; 23
Cheng, Chen, Shen (b0070) 2012; 17
Lee (10.1016/j.bspc.2024.106807_b0020) 2017; 25
Lara (10.1016/j.bspc.2024.106807_b0065) 2012; 15
Shi (10.1016/j.bspc.2024.106807_b0185) 2020; 8
Baraglia (10.1016/j.bspc.2024.106807_b0045) 2017; 36
Vijayvargiya (10.1016/j.bspc.2024.106807_b0055) 2022; 12
Fan (10.1016/j.bspc.2024.106807_b0105) 2018; 22
10.1016/j.bspc.2024.106807_b0155
Akhtaruzzaman (10.1016/j.bspc.2024.106807_b0115) 2016; 17
Beddiar (10.1016/j.bspc.2024.106807_b0060) 2020; 79
Song (10.1016/j.bspc.2024.106807_b0025) 2021; 29
10.1016/j.bspc.2024.106807_b0030
Orr (10.1016/j.bspc.2024.106807_b0010) 2010; 46
10.1016/j.bspc.2024.106807_b0075
Tu (10.1016/j.bspc.2024.106807_b0190) 2023; 81
10.1016/j.bspc.2024.106807_b0150
10.1016/j.bspc.2024.106807_b0005
Kalita (10.1016/j.bspc.2024.106807_b0035) 2021; 13
Clark (10.1016/j.bspc.2024.106807_b0170) 1991
Zhang (10.1016/j.bspc.2024.106807_b0180) 2017; 12
Cheng (10.1016/j.bspc.2024.106807_b0070) 2012; 17
Masengo (10.1016/j.bspc.2024.106807_b0050) 2023; 16
Maniar (10.1016/j.bspc.2024.106807_b0120) 2022; 12
10.1016/j.bspc.2024.106807_b0100
10.1016/j.bspc.2024.106807_b0145
Merletti (10.1016/j.bspc.2024.106807_b0125) 2016
Hao (10.1016/j.bspc.2024.106807_b0195) 2019; 533
Gautam (10.1016/j.bspc.2024.106807_b0095) 2020; 8
Zhao (10.1016/j.bspc.2024.106807_b0110) 2022; 10
Awad (10.1016/j.bspc.2024.106807_b0015) 2017; 9
Vijayvargiya (10.1016/j.bspc.2024.106807_b0080) 2021; 21
Zhang (10.1016/j.bspc.2024.106807_b0090) 2019; 52
Keogh (10.1016/j.bspc.2024.106807_b0135) 2001; 3
Bnou (10.1016/j.bspc.2024.106807_b0130) 2020; 1
Anand (10.1016/j.bspc.2024.106807_b0165) 1995; 6
10.1016/j.bspc.2024.106807_b0085
10.1016/j.bspc.2024.106807_b0140
Li (10.1016/j.bspc.2024.106807_b0040) 2023; 23
Feng (10.1016/j.bspc.2024.106807_b0175) 2023
10.1016/j.bspc.2024.106807_b0160
References_xml – volume: 9
  start-page: eaai9084
  year: 2017
  ident: b0015
  article-title: A soft robotic exosuit improves walking in patients after stroke
  publication-title: Sci. Translat. Med.
– volume: 23
  start-page: 30007
  year: 2023
  end-page: 30036
  ident: b0040
  article-title: Human lower limb motion intention recognition for exoskeletons: a review
  publication-title: IEEE Sens. J.
– volume: 16
  year: 2023
  ident: b0050
  article-title: Lower limb exoskeleton robot and its cooperative control: a review, trends, and challenges for future research
  publication-title: Front. Neurorob.
– year: 2016
  ident: b0125
  article-title: Surface electromyography for the Non-invasive assessment of muscles (SENIAM),“ Biomedical Health and Research Program (BIOMED II) of the European Union
– volume: 22
  start-page: 1744
  year: 2018
  end-page: 1753
  ident: b0105
  article-title: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings
  publication-title: IEEE J. Biomed. Health Inform.
– reference: B.-S. Yang, S.-T. Liao, Fall detecting using inertial and electromyographic sensors, in: Proceedings of the 36th annual meeting of the American Society of Biomechanics, Gainsville, FL, USA, 2012, pp. 15–18.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0095
  article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG
  publication-title: IEEE J. Translat. Eng. Health Med.
– volume: 21
  start-page: 20431
  year: 2021
  end-page: 20439
  ident: b0080
  article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition
  publication-title: IEEE Sens. J.
– volume: 52
  start-page: 271
  year: 2019
  end-page: 276
  ident: b0090
  article-title: EMG signals based human action recognition via deep belief networks
  publication-title: IFAC-PapersOnLine
– reference: T. Ito, K. Ayusawa, E. Yoshida, H. Kobayashi, Stationary torque replacement for evaluation of active assistive devices using humanoid, in: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016, pp. 739–744.
– volume: 3
  start-page: 263
  year: 2001
  end-page: 286
  ident: b0135
  article-title: Dimensionality reduction for fast similarity search in large time series databases
  publication-title: Knowl. Inf. Syst.
– volume: 17
  start-page: 83
  year: 2016
  end-page: 102
  ident: b0115
  article-title: A review on lower appendicular musculoskeletal system of human body
  publication-title: IIUM Eng. J.
– volume: 25
  start-page: 1549
  year: Sep 2017
  end-page: 1557
  ident: b0020
  article-title: A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 533
  year: 2019
  ident: b0195
  article-title: A gait patterns recognition approach based on surface electromyography and three-axis acceleration signals
  publication-title: IOP Conference Ser.: Mater. Sci. Eng.
– volume: 17
  start-page: 38
  year: 2012
  end-page: 45
  ident: b0070
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
– reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. icml, 2013, vol. 30, no. 1, Atlanta, GA, p. 3.
– volume: 12
  start-page: e0180526
  year: 2017
  ident: b0180
  article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition
  publication-title: PLoS One
– volume: 46
  start-page: 183
  year: 2010/6//.
  end-page: 220
  ident: b0010
  article-title: Contribution of muscle weakness to postural instability in the elderly. A systematic review
  publication-title: Eur. J. Phys. Rehabil. Med.
– reference: U. N. DEPARTMENT OF ECONOMiC AND SOCiAL AFFAiRS, Leaving No One Behind In An Ageing World, 2023.
– volume: 10
  start-page: 11
  year: 2022
  ident: b0110
  article-title: Contributions of individual muscle forces to hip, knee, and ankle contact forces during the stance phase of running: a model-based study
  publication-title: Health Inform. Sci. Syst.
– reference: K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, Ieee, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2016, 2016, pp. 770–778.
– volume: 81
  year: 2023
  ident: b0190
  article-title: Lower limb motion recognition based on surface electromyography
  publication-title: Biomed. Signal Process. Control
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
– reference: D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv: Learning, 2016.
– volume: 15
  start-page: 1192
  year: 2012
  end-page: 1209
  ident: b0065
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 12
  start-page: 343
  year: 2022
  end-page: 358
  ident: b0055
  article-title: Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview
  publication-title: Biomed. Eng. Lett.
– volume: 12
  start-page: 11486
  year: 2022
  ident: b0120
  article-title: Muscle function during single leg landing
  publication-title: Sci. Rep.
– year: 2023
  ident: b0175
  article-title: Research on personalized biomechanical quantification and adjustment for the imbalance of joint muscles, (Chinese), Master’s thesis, Shenzhen Inst
  publication-title: Adv. Technol., Chin. Acad. Sci.
– start-page: 151
  year: 1991
  end-page: 163
  ident: b0170
  article-title: Rule induction with CN2: Some recent improvements
  publication-title: Machine Learning—EWSL-91: European Working Session on Learning Porto, Portugal, March 6–8, 1991 Proceedings 5
– volume: 13
  start-page: 775
  year: 2021
  end-page: 793
  ident: b0035
  article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review
  publication-title: Int. J. Soc. Robot.
– volume: 8
  start-page: 132882
  year: 2020
  end-page: 132892
  ident: b0185
  article-title: Feature extraction and classification of lower limb motion based on sEMG signals
  publication-title: IEEE Access
– volume: 79
  start-page: 30509
  year: 2020
  end-page: 30555
  ident: b0060
  article-title: Vision-based human activity recognition: a survey
  publication-title: Multimed. Tools Appl.
– reference: Y. Tao et al., Multi-channel sEMG based human lower limb motion intention recognition method, in: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2019, pp. 1037–1042.
– reference: D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289, 2015.
– volume: 6
  start-page: 117
  year: 1995
  end-page: 124
  ident: b0165
  article-title: Efficient classification for multiclass problems using modular neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 29
  start-page: 786
  year: 2021
  end-page: 795
  ident: b0025
  article-title: Optimizing exoskeleton assistance for faster self-selected walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 1
  start-page: 2020
  year: 2020
  ident: b0130
  article-title: A wavelet denoising approach based on unsupervised learning model
  publication-title: EURASIP J. Adv. Signal Processing
– volume: 36
  start-page: 563
  year: 2017
  end-page: 579
  ident: b0045
  article-title: Efficient human-robot collaboration: When should a robot take initiative?
  publication-title: Int. J. Robotics Res.
– reference: Z. Wang, T. Oates, Imaging time-series to improve classification and imputation, in: IJCAI International Joint Conference on Artificial Intelligence, 2015, vol. 2015-January, pp. 3939–3945.
– year: 2023
  ident: 10.1016/j.bspc.2024.106807_b0175
  article-title: Research on personalized biomechanical quantification and adjustment for the imbalance of joint muscles, (Chinese), Master’s thesis, Shenzhen Inst
  publication-title: Adv. Technol., Chin. Acad. Sci.
– volume: 15
  start-page: 1192
  issue: 3
  year: 2012
  ident: 10.1016/j.bspc.2024.106807_b0065
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/SURV.2012.110112.00192
– volume: 12
  start-page: 11486
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106807_b0120
  article-title: Muscle function during single leg landing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15024-w
– ident: 10.1016/j.bspc.2024.106807_b0100
– ident: 10.1016/j.bspc.2024.106807_b0160
– volume: 12
  start-page: e0180526
  issue: 7
  year: 2017
  ident: 10.1016/j.bspc.2024.106807_b0180
  article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180526
– volume: 81
  year: 2023
  ident: 10.1016/j.bspc.2024.106807_b0190
  article-title: Lower limb motion recognition based on surface electromyography
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104443
– start-page: 151
  year: 1991
  ident: 10.1016/j.bspc.2024.106807_b0170
  article-title: Rule induction with CN2: Some recent improvements
– year: 2016
  ident: 10.1016/j.bspc.2024.106807_b0125
– volume: 16
  year: 2023
  ident: 10.1016/j.bspc.2024.106807_b0050
  article-title: Lower limb exoskeleton robot and its cooperative control: a review, trends, and challenges for future research
  publication-title: Front. Neurorob.
  doi: 10.3389/fnbot.2022.913748
– volume: 3
  start-page: 263
  year: 2001
  ident: 10.1016/j.bspc.2024.106807_b0135
  article-title: Dimensionality reduction for fast similarity search in large time series databases
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/PL00011669
– volume: 25
  start-page: 1549
  issue: 9
  year: 2017
  ident: 10.1016/j.bspc.2024.106807_b0020
  article-title: A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 36
  start-page: 563
  issue: 5–7
  year: 2017
  ident: 10.1016/j.bspc.2024.106807_b0045
  article-title: Efficient human-robot collaboration: When should a robot take initiative?
  publication-title: Int. J. Robotics Res.
  doi: 10.1177/0278364916688253
– volume: 29
  start-page: 786
  year: 2021
  ident: 10.1016/j.bspc.2024.106807_b0025
  article-title: Optimizing exoskeleton assistance for faster self-selected walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3074154
– volume: 13
  start-page: 775
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2024.106807_b0035
  article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-020-00662-9
– ident: 10.1016/j.bspc.2024.106807_b0155
– volume: 17
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2024.106807_b0115
  article-title: A review on lower appendicular musculoskeletal system of human body
  publication-title: IIUM Eng. J.
  doi: 10.31436/iiumej.v17i1.571
– volume: 21
  start-page: 20431
  issue: 18
  year: 2021
  ident: 10.1016/j.bspc.2024.106807_b0080
  article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3095594
– ident: 10.1016/j.bspc.2024.106807_b0075
– volume: 52
  start-page: 271
  issue: 19
  year: 2019
  ident: 10.1016/j.bspc.2024.106807_b0090
  article-title: EMG signals based human action recognition via deep belief networks
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.12.108
– volume: 6
  start-page: 117
  issue: 1
  year: 1995
  ident: 10.1016/j.bspc.2024.106807_b0165
  article-title: Efficient classification for multiclass problems using modular neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.363444
– volume: 22
  start-page: 1744
  issue: 6
  year: 2018
  ident: 10.1016/j.bspc.2024.106807_b0105
  article-title: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2858789
– volume: 1
  start-page: 2020
  year: 2020
  ident: 10.1016/j.bspc.2024.106807_b0130
  article-title: A wavelet denoising approach based on unsupervised learning model
  publication-title: EURASIP J. Adv. Signal Processing
– volume: 12
  start-page: 343
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2024.106807_b0055
  article-title: Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-022-00236-w
– volume: 8
  start-page: 132882
  year: 2020
  ident: 10.1016/j.bspc.2024.106807_b0185
  article-title: Feature extraction and classification of lower limb motion based on sEMG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008901
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.106807_b0095
  article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG
  publication-title: IEEE J. Translat. Eng. Health Med.
  doi: 10.1109/JTEHM.2020.3023898
– ident: 10.1016/j.bspc.2024.106807_b0140
– ident: 10.1016/j.bspc.2024.106807_b0150
  doi: 10.1109/ICCV.2015.123
– volume: 79
  start-page: 30509
  issue: 41–42
  year: 2020
  ident: 10.1016/j.bspc.2024.106807_b0060
  article-title: Vision-based human activity recognition: a survey
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09004-3
– ident: 10.1016/j.bspc.2024.106807_b0030
  doi: 10.1109/HUMANOIDS.2016.7803356
– volume: 10
  start-page: 11
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106807_b0110
  article-title: Contributions of individual muscle forces to hip, knee, and ankle contact forces during the stance phase of running: a model-based study
  publication-title: Health Inform. Sci. Syst.
  doi: 10.1007/s13755-022-00177-9
– ident: 10.1016/j.bspc.2024.106807_b0145
– volume: 533
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2024.106807_b0195
  article-title: A gait patterns recognition approach based on surface electromyography and three-axis acceleration signals
  publication-title: IOP Conference Ser.: Mater. Sci. Eng.
– volume: 23
  start-page: 30007
  issue: 24
  year: 2023
  ident: 10.1016/j.bspc.2024.106807_b0040
  article-title: Human lower limb motion intention recognition for exoskeletons: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3328615
– ident: 10.1016/j.bspc.2024.106807_b0085
  doi: 10.1109/AIM.2019.8868529
– volume: 17
  start-page: 38
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2024.106807_b0070
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/TITB.2012.2226905
– volume: 9
  start-page: eaai9084
  issue: 400
  year: 2017
  ident: 10.1016/j.bspc.2024.106807_b0015
  article-title: A soft robotic exosuit improves walking in patients after stroke
  publication-title: Sci. Translat. Med.
  doi: 10.1126/scitranslmed.aai9084
– ident: 10.1016/j.bspc.2024.106807_b0005
– volume: 46
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2024.106807_b0010
  article-title: Contribution of muscle weakness to postural instability in the elderly. A systematic review
  publication-title: Eur. J. Phys. Rehabil. Med.
SSID ssj0048714
Score 2.3857381
Snippet •A Multi-channel sEMG-driven lower limb movement recognition (LLMR) method was proposed based on Gramian Angular Fields (GAF) and multiscale fusion of Residual...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106807
SubjectTerms Gramian angular fields
Lower limb movement recognition
Multiscale feature fusion
Surface electromyography
Title Integration of multiscale fusion of residual neural network with 2-D gramian angular fields for lower limb movement recognition based on multi-channel sEMG signals
URI https://dx.doi.org/10.1016/j.bspc.2024.106807
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqG5gQ6GN4zTNWJWWFtQuUKlb5EciFbVpRdKVP8Mf5c5JKpAQA1Mcy3Yi38n3nf3dmbHbQHNtusZ1ZEjHjD46KCpUCl8lmkOp0CrQie5k2hnNxNPcn9dYv4qFIVplufYXa7pdrcuaVjmbrc1i0XpBLN3pondCLMguwhKKYBcBafn9x47mgXjc5vemxg61LgNnCo6XyjaUxpALrMCxgt-N0zeDMzxihyVShF7xM8esFqcn7OBb_sBT9jkukz3g5MI6AcsOzHDWY0i2WVmJ_rQNuAJKXWkflvgNtAML3HkA4mehkgDtXKKfC5bUlgGiWVjSHWqwXKwUrNY2s3gOO8oRDk820AAW7JcdiiJO4yVkg8kjEDMEdfuMzYaD1_7IKW9dcDRindxBAfmhqzpCezwUyuMGZSbRAdeBn4ikrSUPORo1E7phHBg0977rdZT0VILeFqKVc1ZP12l8wUD7yoTKM35bG2GEJxFfScEDadpYVm6D3VXTHW2K5BpRxTp7i0g4EQknKoTTYH4lkeiHikS4-v_R7_Kf_a7YPqfLfu1-yzWr5-_b-AYRSK6aVsWabK83fh5NvwBLed25
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO88YEbqramzboe0RhswHZhk3arkqaVhsY20fGL-KPYaYpAQhw4NY2atrIt-3PyxQG4ilKRmrbxPRXzMqOkBEXHWtOtonCoNEUFXtEdDFu9cfgwkZM16FR7YZhW6Xx_6dOtt3Y9DSfNxnI6bTwTlm61KTthFmSbYMk61Lk6laxB_ab_2BtWDpkguS3xzc97PMDtnSlpXrpYciVDEVIHvS76PT59izl3O7DtwCLelP-zC2vZfA-2vpUQ3IePvqv3QPLFRY6WIFiQ4DPM3wvXSSm13XOFXL3SXiz3G3kSFoV3i0zRIjtBnrykVBctr61AArQ442PUcDZ91fi6sMXFV_jFOqLXcxg0SA37ZY83Es-zGRbdwT0yOYTM-wDGd91Rp-e5gxe8lODOyiMdydjXrTANRBzqQBhSm6IcPI1kHubNVIlYUFwzsR9nkaGIL_2gpVWgc0q4CLAcQm2-mGdHgKnUJtaBkc3UhCYMFEEsFYpImSa1tX8M15W4k2VZXyOpiGcvCSsnYeUkpXKOQVYaSX5YSUIB4I9xJ_8cdwkbvdHgKXnqDx9PYVPw2b92-uUMaqu39-ycAMlKXziD-wTo0eBq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+multiscale+fusion+of+residual+neural+network+with+2-D+gramian+angular+fields+for+lower+limb+movement+recognition+based+on+multi-channel+sEMG+signals&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhou%2C+Hao&rft.au=Feng%2C+Ruliang&rft.au=Peng%2C+Yinghu&rft.au=Jin%2C+Dingxun&rft.date=2025-01-01&rft.issn=1746-8094&rft.volume=99&rft.spage=106807&rft_id=info:doi/10.1016%2Fj.bspc.2024.106807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon