Correlation analysis of sampled wafer profile maps based on a deep reconstruction model

In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of multiple types of wafer maps, especially for the wafer bin maps (WBMs) and the wafer profile maps, the faulty inline manufacturing steps strong...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 159; p. 111634
Main Authors Kong, Yuting, Ni, Dong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2024.111634

Cover

Loading…
Abstract In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of multiple types of wafer maps, especially for the wafer bin maps (WBMs) and the wafer profile maps, the faulty inline manufacturing steps strongly correlated with end-of-line yield can be found for yield improvement. This paper proposes a correlation analysis method based on a deep reconstruction model to integrate the knowledge among multiple types of wafer maps for root cause analysis. First, the sparsely sampled wafer profile maps are restored to original wafer profile maps through the deep reconstruction model for obtaining more information. And then, the correlation between the WBMs and the reconstructed profile maps is calculated. The process step whose wafer profile maps have the highest correlation with WBMs is highly related to the fault. Experiments on the real-world dataset demonstrate that the proposed method can restore the wafer profile map well and has high accuracy in matching the relevant process wafer profile map based on the WBMs. •The deep reconstruction model reconstructs full wafer profile maps.•The correlation analysis framework correlates wafer maps from different domains.•The deep reconstruction model’s effectiveness is proven compared to existing methods.
AbstractList In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of multiple types of wafer maps, especially for the wafer bin maps (WBMs) and the wafer profile maps, the faulty inline manufacturing steps strongly correlated with end-of-line yield can be found for yield improvement. This paper proposes a correlation analysis method based on a deep reconstruction model to integrate the knowledge among multiple types of wafer maps for root cause analysis. First, the sparsely sampled wafer profile maps are restored to original wafer profile maps through the deep reconstruction model for obtaining more information. And then, the correlation between the WBMs and the reconstructed profile maps is calculated. The process step whose wafer profile maps have the highest correlation with WBMs is highly related to the fault. Experiments on the real-world dataset demonstrate that the proposed method can restore the wafer profile map well and has high accuracy in matching the relevant process wafer profile map based on the WBMs. •The deep reconstruction model reconstructs full wafer profile maps.•The correlation analysis framework correlates wafer maps from different domains.•The deep reconstruction model’s effectiveness is proven compared to existing methods.
ArticleNumber 111634
Author Ni, Dong
Kong, Yuting
Author_xml – sequence: 1
  givenname: Yuting
  surname: Kong
  fullname: Kong, Yuting
– sequence: 2
  givenname: Dong
  orcidid: 0000-0002-2227-2555
  surname: Ni
  fullname: Ni, Dong
  email: dni@zju.edu.cn
BookMark eNp9kM9KxDAQh4MouLv6Ap7yAq2ZNGkb8CKL_2DBi-IxZJMJZGmbklRl397W9expBma-HzPfmpwPcUBCboCVwKC-PZQmR1tyxkUJAHUlzsgK2oYXqm7hfO5l3RZCifqSrHM-sBlSvF2Rj21MCTszhThQM5jumEOm0dNs-rFDR7-Nx0THFH3okPZmzHRv8jxY9qlDHGlCG4c8pU_7m9JHh90VufCmy3j9Vzfk_fHhbftc7F6fXrb3u8JyCVOhwPF9LaEV3PGKo5B7h145KU0rGlGBqKy3zFiGxjFfQYMVcK-Est7Ltqk2hJ9ybYo5J_R6TKE36aiB6UWNPuhFjV7U6JOaGbo7QThf9hUw6WwDDhZdmH-ZtIvhP_wHbH5vvA
Cites_doi 10.1016/j.ifacol.2018.06.246
10.1109/ICCAD.2010.5654349
10.1109/ASMC.2012.6212875
10.1111/j.2517-6161.1972.tb00917.x
10.2307/2685263
10.1109/TSM.2020.2964581
10.1002/qre.2627
10.1109/TSM.2018.2795466
10.1109/TIE.2020.3013492
10.1016/j.compind.2019.04.015
10.1109/TSM.2018.2806931
10.1109/TSM.2019.2937793
10.1080/07408170304431
10.1109/TPAMI.2017.2648792
10.1109/TASE.2017.2786213
10.1109/TC.1977.1674847
10.1109/TASE.2019.2929193
10.1117/12.2034199
10.1007/978-3-319-10590-1_53
10.1109/TSM.2015.2405252
10.1007/s10845-020-01540-x
10.1109/TPAMI.1987.4767941
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111634
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111634
S1568494624004083
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c251t-91d2b651842d232e45bdef9d55a84743143cfc0ac0ead0f317e312f949cff5873
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:25 EDT 2025
Sat May 25 15:41:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Wafer map reconstruction
Multi-type wafer maps
Semiconductor manufacturing
Correlation analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-91d2b651842d232e45bdef9d55a84743143cfc0ac0ead0f317e312f949cff5873
ORCID 0000-0002-2227-2555
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111634
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hsu, Chien (b6) 2020
Susto, Maggipinto, Zocco, Mcloone (b16) 2020; 17
Rodgers, Nicewander (b21) 1988; 42
Haralick, Sternberg, Zhuang (b24) 1987; 9
W. Zhang, L. Xin, E. Acar, F. Liu, R.A. Rutenbar, Multi-Wafer Virtual Probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation, in: Proceedings of IEEE International Conference on Computer-Aided Design, Vol. 23, 2010, pp. 47–54, (3).
Kingma, Ba (b25) 2014
P. Prakash, B. Honari, A. Johnston, S.F. Mcloone, Optimal wafer site selection using forward selection component analysis, in: Advanced Semiconductor Manufacturing Conference, 2012, pp. 91–96.
Kong, Ni (b19) 2020; 33
Yu, Liu (b4) 2021; 68
Jin, Kim, Piao, Li, Piao (b7) 2020; 31
Shi, Chang, Jin (b10) 2012; 44
McLoone, Zocco, Maggipinto, Susto (b13) 2018; 51
Wang, Chen (b5) 2020; 36
M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Neural Networks, in: Computer Vision – ECCV 2014, 2014, pp. 818–833.
Yu, Zheng, Liu (b3) 2019; 109
Puggini, Mcloone (b14) 2017; 39
Piao, Jin, Lee, Byun (b9) 2018; 31
W. Nan, Y. Wei, An algorithm for restoring the wafer surface based on B-spline surface reconstruction, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 2013, p. 89110G.
Mcloone, Johnston, Susto (b15) 2018; 15
Adly, Yoo, Muhaidat, Al-Hammadi, Lee, Ismail (b8) 2015; 28
Dolby (b23) 1972; 34
Yu, Xu, Wang (b2) 2019; 32
Fisher Box (b26) 1987; 2
Nakazawa, Kulkarni (b1) 2018
Vanderbrug, Rosenfeld (b18) 1977; C-26
N.L. Johnson, F.C. Leone, Statistics and Experimental Design, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 1977.
Puggini (10.1016/j.asoc.2024.111634_b14) 2017; 39
McLoone (10.1016/j.asoc.2024.111634_b13) 2018; 51
Nakazawa (10.1016/j.asoc.2024.111634_b1) 2018
Piao (10.1016/j.asoc.2024.111634_b9) 2018; 31
Shi (10.1016/j.asoc.2024.111634_b10) 2012; 44
10.1016/j.asoc.2024.111634_b11
10.1016/j.asoc.2024.111634_b12
Susto (10.1016/j.asoc.2024.111634_b16) 2020; 17
Fisher Box (10.1016/j.asoc.2024.111634_b26) 1987; 2
Jin (10.1016/j.asoc.2024.111634_b7) 2020; 31
10.1016/j.asoc.2024.111634_b17
Kong (10.1016/j.asoc.2024.111634_b19) 2020; 33
Rodgers (10.1016/j.asoc.2024.111634_b21) 1988; 42
Hsu (10.1016/j.asoc.2024.111634_b6) 2020
Adly (10.1016/j.asoc.2024.111634_b8) 2015; 28
Vanderbrug (10.1016/j.asoc.2024.111634_b18) 1977; C-26
Kingma (10.1016/j.asoc.2024.111634_b25) 2014
10.1016/j.asoc.2024.111634_b20
10.1016/j.asoc.2024.111634_b22
Yu (10.1016/j.asoc.2024.111634_b4) 2021; 68
Haralick (10.1016/j.asoc.2024.111634_b24) 1987; 9
Yu (10.1016/j.asoc.2024.111634_b3) 2019; 109
Wang (10.1016/j.asoc.2024.111634_b5) 2020; 36
Dolby (10.1016/j.asoc.2024.111634_b23) 1972; 34
Yu (10.1016/j.asoc.2024.111634_b2) 2019; 32
Mcloone (10.1016/j.asoc.2024.111634_b15) 2018; 15
References_xml – volume: 31
  start-page: 1861
  year: 2020
  end-page: 1875
  ident: b7
  article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes
  publication-title: J. Intell. Manuf.
– volume: 28
  start-page: 145
  year: 2015
  end-page: 152
  ident: b8
  article-title: Randomized general regression network for identification of defect patterns in semiconductor wafer maps
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 31
  start-page: 250
  year: 2018
  end-page: 257
  ident: b9
  article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features
  publication-title: IEEE Trans. Semicond. Manuf.
– year: 2014
  ident: b25
  article-title: Adam: A method for stochastic optimization
– volume: 39
  start-page: 2395
  year: 2017
  end-page: 2408
  ident: b14
  article-title: Forward selection component analysis: Algorithms and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: N.L. Johnson, F.C. Leone, Statistics and Experimental Design, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 1977.
– start-page: 309
  year: 2018
  end-page: 314
  ident: b1
  article-title: Wafer map defect pattern classification and image retrieval using convolutional neural network
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 42
  start-page: 59
  year: 1988
  end-page: 66
  ident: b21
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Amer. Statist.
– volume: C-26
  start-page: 384
  year: 1977
  end-page: 393
  ident: b18
  article-title: Two-stage template matching
  publication-title: IEEE Trans. Comput.
– reference: W. Nan, Y. Wei, An algorithm for restoring the wafer surface based on B-spline surface reconstruction, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 2013, p. 89110G.
– volume: 68
  start-page: 8789
  year: 2021
  end-page: 8797
  ident: b4
  article-title: Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection
  publication-title: IEEE Trans. Ind. Electron.
– reference: P. Prakash, B. Honari, A. Johnston, S.F. Mcloone, Optimal wafer site selection using forward selection component analysis, in: Advanced Semiconductor Manufacturing Conference, 2012, pp. 91–96.
– volume: 32
  start-page: 566
  year: 2019
  end-page: 573
  ident: b2
  article-title: Wafer defect pattern recognition and analysis based on convolutional neural network
  publication-title: IEEE Trans. Semicond. Manuf.
– reference: W. Zhang, L. Xin, E. Acar, F. Liu, R.A. Rutenbar, Multi-Wafer Virtual Probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation, in: Proceedings of IEEE International Conference on Computer-Aided Design, Vol. 23, 2010, pp. 47–54, (3).
– volume: 44
  start-page: 1
  year: 2012
  end-page: 12
  ident: b10
  article-title: Sequential measurement strategy for wafer geometric profile estimation
  publication-title: IIE Trans.
– volume: 33
  start-page: 62
  year: 2020
  end-page: 71
  ident: b19
  article-title: A semi-supervised and incremental modeling framework for wafer map classification
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 15
  start-page: 1692
  year: 2018
  end-page: 1703
  ident: b15
  article-title: A methodology for efficient dynamic spatial sampling and reconstruction of wafer profiles
  publication-title: IEEE Trans. Autom. Sci. Eng.
– reference: M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Neural Networks, in: Computer Vision – ECCV 2014, 2014, pp. 818–833.
– volume: 36
  start-page: 1245
  year: 2020
  end-page: 1257
  ident: b5
  article-title: Defect pattern recognition on wafers using convolutional neural networks
  publication-title: Qual. Reliab. Eng. Int.
– volume: 17
  start-page: 418
  year: 2020
  end-page: 432
  ident: b16
  article-title: Induced start dynamic sampling for wafer metrology optimization
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 34
  start-page: 393
  year: 1972
  end-page: 400
  ident: b23
  article-title: Generalized least squares and maximum likelihood estimation of non-linear functional relationships
  publication-title: J. R. Stat. Soc.
– volume: 9
  start-page: 532
  year: 1987
  end-page: 550
  ident: b24
  article-title: Image analysis using mathematical morphology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 109
  start-page: 121
  year: 2019
  end-page: 133
  ident: b3
  article-title: Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map
  publication-title: Comput. Ind.
– volume: 51
  start-page: 115
  year: 2018
  end-page: 120
  ident: b13
  article-title: On optimising spatial sampling plans for wafer profile reconstruction
  publication-title: IFAC-PapersOnLine
– volume: 2
  start-page: 45
  year: 1987
  end-page: 52
  ident: b26
  article-title: Guinness, Gosset, Fisher, and small samples
  publication-title: Statist. Sci.
– start-page: 831
  year: 2020
  end-page: 844
  ident: b6
  article-title: Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification
  publication-title: J. Intell. Manuf.
– ident: 10.1016/j.asoc.2024.111634_b22
– volume: 51
  start-page: 115
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2024.111634_b13
  article-title: On optimising spatial sampling plans for wafer profile reconstruction
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.06.246
– ident: 10.1016/j.asoc.2024.111634_b17
  doi: 10.1109/ICCAD.2010.5654349
– ident: 10.1016/j.asoc.2024.111634_b12
  doi: 10.1109/ASMC.2012.6212875
– volume: 34
  start-page: 393
  issue: 3
  year: 1972
  ident: 10.1016/j.asoc.2024.111634_b23
  article-title: Generalized least squares and maximum likelihood estimation of non-linear functional relationships
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1972.tb00917.x
– year: 2014
  ident: 10.1016/j.asoc.2024.111634_b25
– volume: 42
  start-page: 59
  issue: 1
  year: 1988
  ident: 10.1016/j.asoc.2024.111634_b21
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Amer. Statist.
  doi: 10.2307/2685263
– volume: 33
  start-page: 62
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.111634_b19
  article-title: A semi-supervised and incremental modeling framework for wafer map classification
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2020.2964581
– volume: 36
  start-page: 1245
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2024.111634_b5
  article-title: Defect pattern recognition on wafers using convolutional neural networks
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.2627
– start-page: 831
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2024.111634_b6
  article-title: Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification
  publication-title: J. Intell. Manuf.
– start-page: 309
  year: 2018
  ident: 10.1016/j.asoc.2024.111634_b1
  article-title: Wafer map defect pattern classification and image retrieval using convolutional neural network
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2018.2795466
– volume: 68
  start-page: 8789
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2024.111634_b4
  article-title: Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3013492
– volume: 109
  start-page: 121
  year: 2019
  ident: 10.1016/j.asoc.2024.111634_b3
  article-title: Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.04.015
– volume: 31
  start-page: 250
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2024.111634_b9
  article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2018.2806931
– volume: 32
  start-page: 566
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2024.111634_b2
  article-title: Wafer defect pattern recognition and analysis based on convolutional neural network
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2019.2937793
– volume: 44
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2024.111634_b10
  article-title: Sequential measurement strategy for wafer geometric profile estimation
  publication-title: IIE Trans.
  doi: 10.1080/07408170304431
– volume: 39
  start-page: 2395
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2024.111634_b14
  article-title: Forward selection component analysis: Algorithms and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2648792
– volume: 15
  start-page: 1692
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2024.111634_b15
  article-title: A methodology for efficient dynamic spatial sampling and reconstruction of wafer profiles
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2017.2786213
– volume: C-26
  start-page: 384
  issue: 4
  year: 1977
  ident: 10.1016/j.asoc.2024.111634_b18
  article-title: Two-stage template matching
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1977.1674847
– volume: 17
  start-page: 418
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.111634_b16
  article-title: Induced start dynamic sampling for wafer metrology optimization
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2929193
– volume: 2
  start-page: 45
  issue: 1
  year: 1987
  ident: 10.1016/j.asoc.2024.111634_b26
  article-title: Guinness, Gosset, Fisher, and small samples
  publication-title: Statist. Sci.
– ident: 10.1016/j.asoc.2024.111634_b11
  doi: 10.1117/12.2034199
– ident: 10.1016/j.asoc.2024.111634_b20
  doi: 10.1007/978-3-319-10590-1_53
– volume: 28
  start-page: 145
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2024.111634_b8
  article-title: Randomized general regression network for identification of defect patterns in semiconductor wafer maps
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2015.2405252
– volume: 31
  start-page: 1861
  issue: 8
  year: 2020
  ident: 10.1016/j.asoc.2024.111634_b7
  article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01540-x
– volume: 9
  start-page: 532
  issue: 4
  year: 1987
  ident: 10.1016/j.asoc.2024.111634_b24
  article-title: Image analysis using mathematical morphology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1987.4767941
SSID ssj0016928
Score 2.4105484
Snippet In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111634
SubjectTerms Correlation analysis
Deep learning
Multi-type wafer maps
Semiconductor manufacturing
Wafer map reconstruction
Title Correlation analysis of sampled wafer profile maps based on a deep reconstruction model
URI https://dx.doi.org/10.1016/j.asoc.2024.111634
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvXjxW6wfZQ_eJDbJ7ibNsQRL_SqiFnsLm-wuVGgbaMGbv92ZZFMUxIOnkDCB8LJ584a8nQG4tFr6QunIo19Insh17CVacQ_FecyDXBVhNZLlcRyNJuJuKqctSJu9MGSrdNxfc3rF1u5Kz6HZK2ez3gtWHn2RiIhckAKVBO1gFzHZ-q4_NzaPIEqq-aoU7FG02zhTe7wUIoA1YiiIOSIufk9O3xLOcA92nFJkg_ph9qFlFgew20xhYO6jPIS3lAZs1JY2plyPEba0bKWo869mH8pivBvOzeaqXDHKXZpRPNPGlKwqizetZFk1HucIJsOb13TkuXEJHgIarJG2dJhHEku2UKNOMkLm2thES6kwBaFQELywha8KH1ePb1E4GB6ENhFJYa3sx_wY2ovlwpwAQ5mDTBAaa6j5TWH6vJAml7nVnBrZBh24anDKyrorRtbYxd4zQjUjVLMa1Q7IBsrsx7vNkLb_uO_0n_edwTad1abac2gjeuYCpcM671Zrowtbg_T54YmOt_ej8RfOHsSN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeupemqw69FRMvkhMfQ2hwmuXShOYmZEuCFpoYEujvd8aWQwulh15tCcyzNPMGjd4DeLBa-Fzp2KMjJI9nuuslWkUekvNuFGQqD0tLluksThf8eSmWDRjUd2GordLF_iqml9HaPek4NDvF21vnBSuPHk94TF2QHJnEHrRInYo3odUfjdPZ7jAhTkqLVRrv0QR3d6Zq81IIApaJIafgEUf89_z0LecMj-HQkUXWr77nBBpmdQpHtREDc_vyDF4H5LFRdbUx5WRG2NqyjSLxX80-lcXxzp-bfahiwyh9aUbjmTamYGVlvFOTZaVDzjkshk_zQeo5xwQPMQ22GLl0mMUCq7ZQI1UyXGTa2EQLoTALIVfgUW5zX-U-LiDfIncwURDahCe5taLXjS6guVqvzCUwZDoYDEJjDenf5KYX5cJkIrM6Ii3boA2PNU6yqIQxZN0x9i4JVUmoygrVNogaSvnj90qM3H_Mu_rnvHvYT-fTiZyMZuNrOKA3VY_tDTQRSXOLTGKb3bmV8gV19sWp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+analysis+of+sampled+wafer+profile+maps+based+on+a+deep+reconstruction+model&rft.jtitle=Applied+soft+computing&rft.au=Kong%2C+Yuting&rft.au=Ni%2C+Dong&rft.date=2024-07-01&rft.issn=1568-4946&rft.volume=159&rft.spage=111634&rft_id=info:doi/10.1016%2Fj.asoc.2024.111634&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon