Correlation analysis of sampled wafer profile maps based on a deep reconstruction model
In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of multiple types of wafer maps, especially for the wafer bin maps (WBMs) and the wafer profile maps, the faulty inline manufacturing steps strong...
Saved in:
Published in | Applied soft computing Vol. 159; p. 111634 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2024.111634 |
Cover
Loading…
Abstract | In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of multiple types of wafer maps, especially for the wafer bin maps (WBMs) and the wafer profile maps, the faulty inline manufacturing steps strongly correlated with end-of-line yield can be found for yield improvement. This paper proposes a correlation analysis method based on a deep reconstruction model to integrate the knowledge among multiple types of wafer maps for root cause analysis. First, the sparsely sampled wafer profile maps are restored to original wafer profile maps through the deep reconstruction model for obtaining more information. And then, the correlation between the WBMs and the reconstructed profile maps is calculated. The process step whose wafer profile maps have the highest correlation with WBMs is highly related to the fault. Experiments on the real-world dataset demonstrate that the proposed method can restore the wafer profile map well and has high accuracy in matching the relevant process wafer profile map based on the WBMs.
•The deep reconstruction model reconstructs full wafer profile maps.•The correlation analysis framework correlates wafer maps from different domains.•The deep reconstruction model’s effectiveness is proven compared to existing methods. |
---|---|
AbstractList | In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of multiple types of wafer maps, especially for the wafer bin maps (WBMs) and the wafer profile maps, the faulty inline manufacturing steps strongly correlated with end-of-line yield can be found for yield improvement. This paper proposes a correlation analysis method based on a deep reconstruction model to integrate the knowledge among multiple types of wafer maps for root cause analysis. First, the sparsely sampled wafer profile maps are restored to original wafer profile maps through the deep reconstruction model for obtaining more information. And then, the correlation between the WBMs and the reconstructed profile maps is calculated. The process step whose wafer profile maps have the highest correlation with WBMs is highly related to the fault. Experiments on the real-world dataset demonstrate that the proposed method can restore the wafer profile map well and has high accuracy in matching the relevant process wafer profile map based on the WBMs.
•The deep reconstruction model reconstructs full wafer profile maps.•The correlation analysis framework correlates wafer maps from different domains.•The deep reconstruction model’s effectiveness is proven compared to existing methods. |
ArticleNumber | 111634 |
Author | Ni, Dong Kong, Yuting |
Author_xml | – sequence: 1 givenname: Yuting surname: Kong fullname: Kong, Yuting – sequence: 2 givenname: Dong orcidid: 0000-0002-2227-2555 surname: Ni fullname: Ni, Dong email: dni@zju.edu.cn |
BookMark | eNp9kM9KxDAQh4MouLv6Ap7yAq2ZNGkb8CKL_2DBi-IxZJMJZGmbklRl397W9expBma-HzPfmpwPcUBCboCVwKC-PZQmR1tyxkUJAHUlzsgK2oYXqm7hfO5l3RZCifqSrHM-sBlSvF2Rj21MCTszhThQM5jumEOm0dNs-rFDR7-Nx0THFH3okPZmzHRv8jxY9qlDHGlCG4c8pU_7m9JHh90VufCmy3j9Vzfk_fHhbftc7F6fXrb3u8JyCVOhwPF9LaEV3PGKo5B7h145KU0rGlGBqKy3zFiGxjFfQYMVcK-Est7Ltqk2hJ9ybYo5J_R6TKE36aiB6UWNPuhFjV7U6JOaGbo7QThf9hUw6WwDDhZdmH-ZtIvhP_wHbH5vvA |
Cites_doi | 10.1016/j.ifacol.2018.06.246 10.1109/ICCAD.2010.5654349 10.1109/ASMC.2012.6212875 10.1111/j.2517-6161.1972.tb00917.x 10.2307/2685263 10.1109/TSM.2020.2964581 10.1002/qre.2627 10.1109/TSM.2018.2795466 10.1109/TIE.2020.3013492 10.1016/j.compind.2019.04.015 10.1109/TSM.2018.2806931 10.1109/TSM.2019.2937793 10.1080/07408170304431 10.1109/TPAMI.2017.2648792 10.1109/TASE.2017.2786213 10.1109/TC.1977.1674847 10.1109/TASE.2019.2929193 10.1117/12.2034199 10.1007/978-3-319-10590-1_53 10.1109/TSM.2015.2405252 10.1007/s10845-020-01540-x 10.1109/TPAMI.1987.4767941 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2024.111634 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2024_111634 S1568494624004083 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c251t-91d2b651842d232e45bdef9d55a84743143cfc0ac0ead0f317e312f949cff5873 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:25 EDT 2025 Sat May 25 15:41:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Wafer map reconstruction Multi-type wafer maps Semiconductor manufacturing Correlation analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-91d2b651842d232e45bdef9d55a84743143cfc0ac0ead0f317e312f949cff5873 |
ORCID | 0000-0002-2227-2555 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_111634 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hsu, Chien (b6) 2020 Susto, Maggipinto, Zocco, Mcloone (b16) 2020; 17 Rodgers, Nicewander (b21) 1988; 42 Haralick, Sternberg, Zhuang (b24) 1987; 9 W. Zhang, L. Xin, E. Acar, F. Liu, R.A. Rutenbar, Multi-Wafer Virtual Probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation, in: Proceedings of IEEE International Conference on Computer-Aided Design, Vol. 23, 2010, pp. 47–54, (3). Kingma, Ba (b25) 2014 P. Prakash, B. Honari, A. Johnston, S.F. Mcloone, Optimal wafer site selection using forward selection component analysis, in: Advanced Semiconductor Manufacturing Conference, 2012, pp. 91–96. Kong, Ni (b19) 2020; 33 Yu, Liu (b4) 2021; 68 Jin, Kim, Piao, Li, Piao (b7) 2020; 31 Shi, Chang, Jin (b10) 2012; 44 McLoone, Zocco, Maggipinto, Susto (b13) 2018; 51 Wang, Chen (b5) 2020; 36 M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Neural Networks, in: Computer Vision – ECCV 2014, 2014, pp. 818–833. Yu, Zheng, Liu (b3) 2019; 109 Puggini, Mcloone (b14) 2017; 39 Piao, Jin, Lee, Byun (b9) 2018; 31 W. Nan, Y. Wei, An algorithm for restoring the wafer surface based on B-spline surface reconstruction, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 2013, p. 89110G. Mcloone, Johnston, Susto (b15) 2018; 15 Adly, Yoo, Muhaidat, Al-Hammadi, Lee, Ismail (b8) 2015; 28 Dolby (b23) 1972; 34 Yu, Xu, Wang (b2) 2019; 32 Fisher Box (b26) 1987; 2 Nakazawa, Kulkarni (b1) 2018 Vanderbrug, Rosenfeld (b18) 1977; C-26 N.L. Johnson, F.C. Leone, Statistics and Experimental Design, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 1977. Puggini (10.1016/j.asoc.2024.111634_b14) 2017; 39 McLoone (10.1016/j.asoc.2024.111634_b13) 2018; 51 Nakazawa (10.1016/j.asoc.2024.111634_b1) 2018 Piao (10.1016/j.asoc.2024.111634_b9) 2018; 31 Shi (10.1016/j.asoc.2024.111634_b10) 2012; 44 10.1016/j.asoc.2024.111634_b11 10.1016/j.asoc.2024.111634_b12 Susto (10.1016/j.asoc.2024.111634_b16) 2020; 17 Fisher Box (10.1016/j.asoc.2024.111634_b26) 1987; 2 Jin (10.1016/j.asoc.2024.111634_b7) 2020; 31 10.1016/j.asoc.2024.111634_b17 Kong (10.1016/j.asoc.2024.111634_b19) 2020; 33 Rodgers (10.1016/j.asoc.2024.111634_b21) 1988; 42 Hsu (10.1016/j.asoc.2024.111634_b6) 2020 Adly (10.1016/j.asoc.2024.111634_b8) 2015; 28 Vanderbrug (10.1016/j.asoc.2024.111634_b18) 1977; C-26 Kingma (10.1016/j.asoc.2024.111634_b25) 2014 10.1016/j.asoc.2024.111634_b20 10.1016/j.asoc.2024.111634_b22 Yu (10.1016/j.asoc.2024.111634_b4) 2021; 68 Haralick (10.1016/j.asoc.2024.111634_b24) 1987; 9 Yu (10.1016/j.asoc.2024.111634_b3) 2019; 109 Wang (10.1016/j.asoc.2024.111634_b5) 2020; 36 Dolby (10.1016/j.asoc.2024.111634_b23) 1972; 34 Yu (10.1016/j.asoc.2024.111634_b2) 2019; 32 Mcloone (10.1016/j.asoc.2024.111634_b15) 2018; 15 |
References_xml | – volume: 31 start-page: 1861 year: 2020 end-page: 1875 ident: b7 article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes publication-title: J. Intell. Manuf. – volume: 28 start-page: 145 year: 2015 end-page: 152 ident: b8 article-title: Randomized general regression network for identification of defect patterns in semiconductor wafer maps publication-title: IEEE Trans. Semicond. Manuf. – volume: 31 start-page: 250 year: 2018 end-page: 257 ident: b9 article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features publication-title: IEEE Trans. Semicond. Manuf. – year: 2014 ident: b25 article-title: Adam: A method for stochastic optimization – volume: 39 start-page: 2395 year: 2017 end-page: 2408 ident: b14 article-title: Forward selection component analysis: Algorithms and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: N.L. Johnson, F.C. Leone, Statistics and Experimental Design, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 1977. – start-page: 309 year: 2018 end-page: 314 ident: b1 article-title: Wafer map defect pattern classification and image retrieval using convolutional neural network publication-title: IEEE Trans. Semicond. Manuf. – volume: 42 start-page: 59 year: 1988 end-page: 66 ident: b21 article-title: Thirteen ways to look at the correlation coefficient publication-title: Amer. Statist. – volume: C-26 start-page: 384 year: 1977 end-page: 393 ident: b18 article-title: Two-stage template matching publication-title: IEEE Trans. Comput. – reference: W. Nan, Y. Wei, An algorithm for restoring the wafer surface based on B-spline surface reconstruction, in: International Symposium on Photoelectronic Detection and Imaging: Micro/Nano Optical Imaging Technologies and Applications, 2013, p. 89110G. – volume: 68 start-page: 8789 year: 2021 end-page: 8797 ident: b4 article-title: Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection publication-title: IEEE Trans. Ind. Electron. – reference: P. Prakash, B. Honari, A. Johnston, S.F. Mcloone, Optimal wafer site selection using forward selection component analysis, in: Advanced Semiconductor Manufacturing Conference, 2012, pp. 91–96. – volume: 32 start-page: 566 year: 2019 end-page: 573 ident: b2 article-title: Wafer defect pattern recognition and analysis based on convolutional neural network publication-title: IEEE Trans. Semicond. Manuf. – reference: W. Zhang, L. Xin, E. Acar, F. Liu, R.A. Rutenbar, Multi-Wafer Virtual Probe: Minimum-cost variation characterization by exploring wafer-to-wafer correlation, in: Proceedings of IEEE International Conference on Computer-Aided Design, Vol. 23, 2010, pp. 47–54, (3). – volume: 44 start-page: 1 year: 2012 end-page: 12 ident: b10 article-title: Sequential measurement strategy for wafer geometric profile estimation publication-title: IIE Trans. – volume: 33 start-page: 62 year: 2020 end-page: 71 ident: b19 article-title: A semi-supervised and incremental modeling framework for wafer map classification publication-title: IEEE Trans. Semicond. Manuf. – volume: 15 start-page: 1692 year: 2018 end-page: 1703 ident: b15 article-title: A methodology for efficient dynamic spatial sampling and reconstruction of wafer profiles publication-title: IEEE Trans. Autom. Sci. Eng. – reference: M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Neural Networks, in: Computer Vision – ECCV 2014, 2014, pp. 818–833. – volume: 36 start-page: 1245 year: 2020 end-page: 1257 ident: b5 article-title: Defect pattern recognition on wafers using convolutional neural networks publication-title: Qual. Reliab. Eng. Int. – volume: 17 start-page: 418 year: 2020 end-page: 432 ident: b16 article-title: Induced start dynamic sampling for wafer metrology optimization publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 34 start-page: 393 year: 1972 end-page: 400 ident: b23 article-title: Generalized least squares and maximum likelihood estimation of non-linear functional relationships publication-title: J. R. Stat. Soc. – volume: 9 start-page: 532 year: 1987 end-page: 550 ident: b24 article-title: Image analysis using mathematical morphology publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 109 start-page: 121 year: 2019 end-page: 133 ident: b3 article-title: Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map publication-title: Comput. Ind. – volume: 51 start-page: 115 year: 2018 end-page: 120 ident: b13 article-title: On optimising spatial sampling plans for wafer profile reconstruction publication-title: IFAC-PapersOnLine – volume: 2 start-page: 45 year: 1987 end-page: 52 ident: b26 article-title: Guinness, Gosset, Fisher, and small samples publication-title: Statist. Sci. – start-page: 831 year: 2020 end-page: 844 ident: b6 article-title: Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification publication-title: J. Intell. Manuf. – ident: 10.1016/j.asoc.2024.111634_b22 – volume: 51 start-page: 115 issue: 10 year: 2018 ident: 10.1016/j.asoc.2024.111634_b13 article-title: On optimising spatial sampling plans for wafer profile reconstruction publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.06.246 – ident: 10.1016/j.asoc.2024.111634_b17 doi: 10.1109/ICCAD.2010.5654349 – ident: 10.1016/j.asoc.2024.111634_b12 doi: 10.1109/ASMC.2012.6212875 – volume: 34 start-page: 393 issue: 3 year: 1972 ident: 10.1016/j.asoc.2024.111634_b23 article-title: Generalized least squares and maximum likelihood estimation of non-linear functional relationships publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1972.tb00917.x – year: 2014 ident: 10.1016/j.asoc.2024.111634_b25 – volume: 42 start-page: 59 issue: 1 year: 1988 ident: 10.1016/j.asoc.2024.111634_b21 article-title: Thirteen ways to look at the correlation coefficient publication-title: Amer. Statist. doi: 10.2307/2685263 – volume: 33 start-page: 62 issue: 1 year: 2020 ident: 10.1016/j.asoc.2024.111634_b19 article-title: A semi-supervised and incremental modeling framework for wafer map classification publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2020.2964581 – volume: 36 start-page: 1245 issue: 4 year: 2020 ident: 10.1016/j.asoc.2024.111634_b5 article-title: Defect pattern recognition on wafers using convolutional neural networks publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.2627 – start-page: 831 issue: 4 year: 2020 ident: 10.1016/j.asoc.2024.111634_b6 article-title: Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification publication-title: J. Intell. Manuf. – start-page: 309 year: 2018 ident: 10.1016/j.asoc.2024.111634_b1 article-title: Wafer map defect pattern classification and image retrieval using convolutional neural network publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2018.2795466 – volume: 68 start-page: 8789 issue: 9 year: 2021 ident: 10.1016/j.asoc.2024.111634_b4 article-title: Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3013492 – volume: 109 start-page: 121 year: 2019 ident: 10.1016/j.asoc.2024.111634_b3 article-title: Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.04.015 – volume: 31 start-page: 250 issue: 2 year: 2018 ident: 10.1016/j.asoc.2024.111634_b9 article-title: Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2018.2806931 – volume: 32 start-page: 566 issue: 4 year: 2019 ident: 10.1016/j.asoc.2024.111634_b2 article-title: Wafer defect pattern recognition and analysis based on convolutional neural network publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2019.2937793 – volume: 44 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.asoc.2024.111634_b10 article-title: Sequential measurement strategy for wafer geometric profile estimation publication-title: IIE Trans. doi: 10.1080/07408170304431 – volume: 39 start-page: 2395 issue: 12 year: 2017 ident: 10.1016/j.asoc.2024.111634_b14 article-title: Forward selection component analysis: Algorithms and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2648792 – volume: 15 start-page: 1692 issue: 4 year: 2018 ident: 10.1016/j.asoc.2024.111634_b15 article-title: A methodology for efficient dynamic spatial sampling and reconstruction of wafer profiles publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2786213 – volume: C-26 start-page: 384 issue: 4 year: 1977 ident: 10.1016/j.asoc.2024.111634_b18 article-title: Two-stage template matching publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1977.1674847 – volume: 17 start-page: 418 issue: 1 year: 2020 ident: 10.1016/j.asoc.2024.111634_b16 article-title: Induced start dynamic sampling for wafer metrology optimization publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2929193 – volume: 2 start-page: 45 issue: 1 year: 1987 ident: 10.1016/j.asoc.2024.111634_b26 article-title: Guinness, Gosset, Fisher, and small samples publication-title: Statist. Sci. – ident: 10.1016/j.asoc.2024.111634_b11 doi: 10.1117/12.2034199 – ident: 10.1016/j.asoc.2024.111634_b20 doi: 10.1007/978-3-319-10590-1_53 – volume: 28 start-page: 145 issue: 2 year: 2015 ident: 10.1016/j.asoc.2024.111634_b8 article-title: Randomized general regression network for identification of defect patterns in semiconductor wafer maps publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2015.2405252 – volume: 31 start-page: 1861 issue: 8 year: 2020 ident: 10.1016/j.asoc.2024.111634_b7 article-title: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01540-x – volume: 9 start-page: 532 issue: 4 year: 1987 ident: 10.1016/j.asoc.2024.111634_b24 article-title: Image analysis using mathematical morphology publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1987.4767941 |
SSID | ssj0016928 |
Score | 2.4105484 |
Snippet | In the semiconductor manufacturing process, various kinds of metrology and test data can form different types of wafer maps. By analyzing the correlation of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111634 |
SubjectTerms | Correlation analysis Deep learning Multi-type wafer maps Semiconductor manufacturing Wafer map reconstruction |
Title | Correlation analysis of sampled wafer profile maps based on a deep reconstruction model |
URI | https://dx.doi.org/10.1016/j.asoc.2024.111634 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvXjxW6wfZQ_eJDbJ7ibNsQRL_SqiFnsLm-wuVGgbaMGbv92ZZFMUxIOnkDCB8LJ584a8nQG4tFr6QunIo19Insh17CVacQ_FecyDXBVhNZLlcRyNJuJuKqctSJu9MGSrdNxfc3rF1u5Kz6HZK2ez3gtWHn2RiIhckAKVBO1gFzHZ-q4_NzaPIEqq-aoU7FG02zhTe7wUIoA1YiiIOSIufk9O3xLOcA92nFJkg_ph9qFlFgew20xhYO6jPIS3lAZs1JY2plyPEba0bKWo869mH8pivBvOzeaqXDHKXZpRPNPGlKwqizetZFk1HucIJsOb13TkuXEJHgIarJG2dJhHEku2UKNOMkLm2thES6kwBaFQELywha8KH1ePb1E4GB6ENhFJYa3sx_wY2ovlwpwAQ5mDTBAaa6j5TWH6vJAml7nVnBrZBh24anDKyrorRtbYxd4zQjUjVLMa1Q7IBsrsx7vNkLb_uO_0n_edwTad1abac2gjeuYCpcM671Zrowtbg_T54YmOt_ej8RfOHsSN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeupemqw69FRMvkhMfQ2hwmuXShOYmZEuCFpoYEujvd8aWQwulh15tCcyzNPMGjd4DeLBa-Fzp2KMjJI9nuuslWkUekvNuFGQqD0tLluksThf8eSmWDRjUd2GordLF_iqml9HaPek4NDvF21vnBSuPHk94TF2QHJnEHrRInYo3odUfjdPZ7jAhTkqLVRrv0QR3d6Zq81IIApaJIafgEUf89_z0LecMj-HQkUXWr77nBBpmdQpHtREDc_vyDF4H5LFRdbUx5WRG2NqyjSLxX80-lcXxzp-bfahiwyh9aUbjmTamYGVlvFOTZaVDzjkshk_zQeo5xwQPMQ22GLl0mMUCq7ZQI1UyXGTa2EQLoTALIVfgUW5zX-U-LiDfIncwURDahCe5taLXjS6guVqvzCUwZDoYDEJjDenf5KYX5cJkIrM6Ii3boA2PNU6yqIQxZN0x9i4JVUmoygrVNogaSvnj90qM3H_Mu_rnvHvYT-fTiZyMZuNrOKA3VY_tDTQRSXOLTGKb3bmV8gV19sWp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+analysis+of+sampled+wafer+profile+maps+based+on+a+deep+reconstruction+model&rft.jtitle=Applied+soft+computing&rft.au=Kong%2C+Yuting&rft.au=Ni%2C+Dong&rft.date=2024-07-01&rft.issn=1568-4946&rft.volume=159&rft.spage=111634&rft_id=info:doi/10.1016%2Fj.asoc.2024.111634&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |