Nd doping effect on Bi1−xNdxFe0.97Co0.03O3 thin films: Microstructural, electrical, optical and enhanced multiferroic properties

Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The microstructure, chemical state, leakage mechanism, ferroelectric and magnetic properties were investigated. XRD analysis and Raman scattering...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 146; no. 1-2; pp. 183 - 191
Main Authors Xue, Xu, Tan, Guoqiang, Liu, Wenlong, Ren, Huijun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2014
Subjects
Online AccessGet full text
ISSN0254-0584
1879-3312
DOI10.1016/j.matchemphys.2014.03.020

Cover

Loading…
Abstract Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The microstructure, chemical state, leakage mechanism, ferroelectric and magnetic properties were investigated. XRD analysis and Raman scattering spectra reveal that Nd doping gives rise to a triclinic structure transition for BNFCO films with respect to the original rhombohedral structure of BFO film. XPS analysis shows that the number of unoccupied states in the Bi 5d and Fe 3d orbits are increased with the increase of Nd content, which probably demonstrates a Fe/Bi-to-Nd electron transfer process. Fowler–Nordheim tunneling conduction mechanism associated with oxygen vacancies is responsible for the low breakdown voltage of BFO. The leakage mechanism of BNFCO is subject to trap-free Ohmic conduction due to the high bond strength among the Bi, O and Fe ions and the low concentration of oxygen vacancies, therefore, improves the resistivity in the high electric field. Highly enhanced ferroelectric properties with giant remanent polarization of 107.5 μC cm−2 is obtained via 15% Nd doping. The magnetic property is also increased by Nd doping, which is ascribed to the modified spiral spin structure and the small grain size effect. The band gap values of the BNFCO films are gradually decreased with the increase of Nd content. •Nd doping gives rise to triclinic structure transition for BNFCO.•BNFCO shows the coexistence of ferroelectricity and magnetism at RT.•The bond strength of BNFCO is increased with the increase in Nd content.•Leakage currents of BNFCO are found to be subject to trap-free Ohmic conduction.•The band gap of BNFCO is decreased with the increase in Nd content.
AbstractList Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The microstructure, chemical state, leakage mechanism, ferroelectric and magnetic properties were investigated. XRD analysis and Raman scattering spectra reveal that Nd doping gives rise to a triclinic structure transition for BNFCO films with respect to the original rhombohedral structure of BFO film. XPS analysis shows that the number of unoccupied states in the Bi 5d and Fe 3d orbits are increased with the increase of Nd content, which probably demonstrates a Fe/Bi-to-Nd electron transfer process. Fowler–Nordheim tunneling conduction mechanism associated with oxygen vacancies is responsible for the low breakdown voltage of BFO. The leakage mechanism of BNFCO is subject to trap-free Ohmic conduction due to the high bond strength among the Bi, O and Fe ions and the low concentration of oxygen vacancies, therefore, improves the resistivity in the high electric field. Highly enhanced ferroelectric properties with giant remanent polarization of 107.5 μC cm−2 is obtained via 15% Nd doping. The magnetic property is also increased by Nd doping, which is ascribed to the modified spiral spin structure and the small grain size effect. The band gap values of the BNFCO films are gradually decreased with the increase of Nd content. •Nd doping gives rise to triclinic structure transition for BNFCO.•BNFCO shows the coexistence of ferroelectricity and magnetism at RT.•The bond strength of BNFCO is increased with the increase in Nd content.•Leakage currents of BNFCO are found to be subject to trap-free Ohmic conduction.•The band gap of BNFCO is decreased with the increase in Nd content.
Author Tan, Guoqiang
Ren, Huijun
Liu, Wenlong
Xue, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Xue
  fullname: Xue, Xu
  email: xuexu9@163.com, xuexu_2010@163.com
– sequence: 2
  givenname: Guoqiang
  surname: Tan
  fullname: Tan, Guoqiang
  email: tan3114@163.com
– sequence: 3
  givenname: Wenlong
  surname: Liu
  fullname: Liu, Wenlong
– sequence: 4
  givenname: Huijun
  surname: Ren
  fullname: Ren, Huijun
BookMark eNqNkD1v2zAQhokgBeJ8_Admj1RSpCwpS9EYSVsgsZdmJmjyGJ8hkQJJB8naqXN_Yn9JJaRD0SnTvcO9D-6eU3LsgwdCLjkrOePLj_ty0NnsYBh3r6msGJclEyWr2BFZ8LbpCiF4dUwWrKplwepWnpDTlPaM8YZzsSA_1pbaMKJ_ouAcmEyDpzfIf__89bK2L3fAyq5ZBTZRN4LmHXrqsB_SNX1AE0PK8WDyIer-ikI_1SOaOYcxz4Fqbyn4nfYGLB0OfUYHMQY0dIxhhJgR0jn54HSf4OLvPCOPd7ffV1-L-82Xb6vP94Wpap6Lpm1l2zZWdF1VNUIw0bQCalMztwXR2a2d1iSvZVub7bISVkrptFlCbcGB2Ioz8umNO9-dIjhlMOuMweeosVecqVmp2qt_lKpZqWJCTUonQvcfYYw46Pj6ru7qrQvTi88IUSWDMHvBOHlTNuA7KH8AzuedKw
CitedBy_id crossref_primary_10_1016_j_apmt_2024_102074
crossref_primary_10_1016_j_surfin_2025_105767
crossref_primary_10_1039_D4RA01850H
crossref_primary_10_1007_s10854_018_0042_9
crossref_primary_10_1039_D2NJ05962B
crossref_primary_10_1016_j_jallcom_2022_165303
crossref_primary_10_1016_j_apsusc_2015_07_167
crossref_primary_10_1007_s10971_017_4441_9
crossref_primary_10_1016_j_matchemphys_2020_124001
crossref_primary_10_1016_j_ceramint_2015_09_061
crossref_primary_10_1016_j_tsf_2018_07_029
crossref_primary_10_1007_s10854_017_7660_5
crossref_primary_10_1007_s10854_015_3371_y
crossref_primary_10_1088_1402_4896_ad156b
crossref_primary_10_1080_00150193_2016_1255125
crossref_primary_10_1016_j_mtcomm_2024_110543
Cites_doi 10.1063/1.2939101
10.1063/1.2822826
10.1063/1.3283919
10.1016/j.matchemphys.2012.04.053
10.1002/adma.200602377
10.1016/j.ceramint.2013.01.042
10.1016/j.materresbull.2009.03.015
10.1002/adma.200800218
10.1063/1.2345825
10.1063/1.2918130
10.1016/j.matchemphys.2011.04.081
10.1016/j.ceramint.2012.10.182
10.1016/j.scriptamat.2010.06.013
10.1016/j.apsusc.2007.07.076
10.1021/am2003747
10.1126/science.1080615
10.7567/JJAP.50.09NE10
10.1002/adma.200502711
10.1021/nl063039w
10.1063/1.3000478
10.1016/j.jcrysgro.2004.06.018
10.1103/PhysRevLett.95.257601
10.1016/j.matlet.2010.11.002
10.1063/1.3672212
10.1088/0953-8984/23/7/073201
10.1103/PhysRevB.71.014113
10.1063/1.1881775
10.1016/j.jmmm.2007.07.016
10.1016/j.jallcom.2010.10.135
10.1016/0025-5408(70)90112-1
10.1016/j.tsf.2010.08.004
10.1063/1.3610428
10.1063/1.3000013
10.1063/1.3364133
10.1088/0022-3727/42/11/115409
10.1063/1.3296226
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.matchemphys.2014.03.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3312
EndPage 191
ExternalDocumentID 10_1016_j_matchemphys_2014_03_020
S025405841400176X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
ID FETCH-LOGICAL-c251t-7884887d3992273303783e5c50fbe39dbd251415485cb623d444fac6e5defe3b3
IEDL.DBID .~1
ISSN 0254-0584
IngestDate Thu Apr 24 22:56:04 EDT 2025
Tue Jul 01 00:24:38 EDT 2025
Fri Feb 23 02:26:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Thin films
Semiconductors
Electrical characterization
Magnetic properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-7884887d3992273303783e5c50fbe39dbd251415485cb623d444fac6e5defe3b3
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_matchemphys_2014_03_020
crossref_primary_10_1016_j_matchemphys_2014_03_020
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2014_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-15
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Materials chemistry and physics
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Wu (bib28) 2010; 519
Wu, Wang (bib29) 2010; 107
Hu, Cheng, Wu, Yang (bib19) 2007; 91
Wu, Wang, Xiao, Zhu (bib11) 2011; 3
Hauser, Zhang, Mier, Ricciardo (bib10) 2008; 92
Néel (bib33) 1961; 252
Park, Papaefthymiou, Viescas, Moodenbaugh, Wong (bib21) 2007; 7
Huang, Shannigrahi (bib25) 2011; 509
Gao, Yuan, Wang, Chen (bib37) 2006; 89
Gautam, Singh, Sen, Kotnala, Singh (bib18) 2011; 65
Hu, Fan, Yang, Wu (bib26) 2008; 92
Lee, Kim, Park, Kim (bib12) 2007; 254
Pradhan, Zhang, Hunter, Dadson (bib14) 2005; 97
Wang, Hu, Cheng, Yang, Wu (bib27) 2011; 99
Carmignano, Osada, Noguchi, Kitanaka, Miyayama (bib31) 2011; 50
Tauc (bib35) 1970; 5
Kothari, Reddy, Sathe, Gupta, Banerjee, Awasthi (bib20) 2008; 320
Wang, Neaton, Zheng, Nagarajan (bib3) 2003; 299
Quan, Liu, Hu, Xu (bib22) 2008; 104
Sverre, Thomas, Mari-Ann, Tor (bib1) 2008; 20
Ostos, Raymond, Suarez-Almodovar, Bueno-Baqués, Mestres, Siqueiros (bib23) 2011; 110
Xue, Tan, Ren, Xia (bib17) 2013; 39
Yang, Wang, Zou, Jain, Suvorova (bib24) 2008; 93
Liu, Li, Pei (bib2) 2009; 42
Zhou, Lu, Gu, Wang, Xiu, Chang (bib34) 2004; 270
Chen, Podraza, Xu, Melville (bib9) 2010; 96
Yan, Zhu, Lai, Lu (bib8) 2010; 7
Lahmar, Habouti, Solterbeck, Dietze, Es-Sounia (bib15) 2010; 107
Gao, Chen, Yin, Dong (bib36) 2007; 19
Wang, Zhu, Xu, Sui, Peng, Tang (bib7) 2012; 135
Giri, Patra, Majumdar (bib32) 2011; 23
Ederer, Spaldin (bib5) 2005; 95
Vrejoiu, Rhun, Pintilie, Hesse, Alexe, Gösele (bib30) 2006; 18
Neaton, Ederer, Waghmare, Spaldin, Rabe (bib4) 2005; 71
Gonjal, Castrejon, Fuentes, Moran (bib16) 2009; 44
Cao, Zhang, Fang, Dong, Zheng, Shen (bib6) 2011; 129
Raghavan, Kim, Kim (bib13) 2013; 39
Pradhan (10.1016/j.matchemphys.2014.03.020_bib14) 2005; 97
Huang (10.1016/j.matchemphys.2014.03.020_bib25) 2011; 509
Ostos (10.1016/j.matchemphys.2014.03.020_bib23) 2011; 110
Chen (10.1016/j.matchemphys.2014.03.020_bib9) 2010; 96
Liu (10.1016/j.matchemphys.2014.03.020_bib2) 2009; 42
Néel (10.1016/j.matchemphys.2014.03.020_bib33) 1961; 252
Yan (10.1016/j.matchemphys.2014.03.020_bib8) 2010; 7
Raghavan (10.1016/j.matchemphys.2014.03.020_bib13) 2013; 39
Gonjal (10.1016/j.matchemphys.2014.03.020_bib16) 2009; 44
Kothari (10.1016/j.matchemphys.2014.03.020_bib20) 2008; 320
Cao (10.1016/j.matchemphys.2014.03.020_bib6) 2011; 129
Hauser (10.1016/j.matchemphys.2014.03.020_bib10) 2008; 92
Wu (10.1016/j.matchemphys.2014.03.020_bib29) 2010; 107
Sverre (10.1016/j.matchemphys.2014.03.020_bib1) 2008; 20
Hu (10.1016/j.matchemphys.2014.03.020_bib26) 2008; 92
Wu (10.1016/j.matchemphys.2014.03.020_bib11) 2011; 3
Yang (10.1016/j.matchemphys.2014.03.020_bib24) 2008; 93
Ederer (10.1016/j.matchemphys.2014.03.020_bib5) 2005; 95
Tauc (10.1016/j.matchemphys.2014.03.020_bib35) 1970; 5
Wang (10.1016/j.matchemphys.2014.03.020_bib7) 2012; 135
Giri (10.1016/j.matchemphys.2014.03.020_bib32) 2011; 23
Carmignano (10.1016/j.matchemphys.2014.03.020_bib31) 2011; 50
Gao (10.1016/j.matchemphys.2014.03.020_bib37) 2006; 89
Zhou (10.1016/j.matchemphys.2014.03.020_bib34) 2004; 270
Lee (10.1016/j.matchemphys.2014.03.020_bib12) 2007; 254
Park (10.1016/j.matchemphys.2014.03.020_bib21) 2007; 7
Wang (10.1016/j.matchemphys.2014.03.020_bib3) 2003; 299
Xue (10.1016/j.matchemphys.2014.03.020_bib17) 2013; 39
Vrejoiu (10.1016/j.matchemphys.2014.03.020_bib30) 2006; 18
Lahmar (10.1016/j.matchemphys.2014.03.020_bib15) 2010; 107
Quan (10.1016/j.matchemphys.2014.03.020_bib22) 2008; 104
Gautam (10.1016/j.matchemphys.2014.03.020_bib18) 2011; 65
Chen (10.1016/j.matchemphys.2014.03.020_bib28) 2010; 519
Neaton (10.1016/j.matchemphys.2014.03.020_bib4) 2005; 71
Hu (10.1016/j.matchemphys.2014.03.020_bib19) 2007; 91
Gao (10.1016/j.matchemphys.2014.03.020_bib36) 2007; 19
Wang (10.1016/j.matchemphys.2014.03.020_bib27) 2011; 99
References_xml – volume: 135
  start-page: 330
  year: 2012
  ident: bib7
  publication-title: Mater. Chem. Phys.
– volume: 44
  start-page: 1734
  year: 2009
  ident: bib16
  publication-title: Mater. Res. Bull.
– volume: 519
  start-page: 499
  year: 2010
  ident: bib28
  publication-title: Thin Solid Films
– volume: 91
  start-page: 232909
  year: 2007
  ident: bib19
  publication-title: Appl. Phys. Lett.
– volume: 95
  start-page: 257601
  year: 2005
  ident: bib5
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 222901
  year: 2008
  ident: bib10
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 766
  year: 2007
  ident: bib21
  publication-title: Nano Lett.
– volume: 252
  start-page: 4075
  year: 1961
  ident: bib33
  publication-title: C. R. Acad. Sci.
– volume: 129
  start-page: 783
  year: 2011
  ident: bib6
  publication-title: Mater. Chem. Phys.
– volume: 20
  start-page: 3692
  year: 2008
  ident: bib1
  publication-title: Adv. Mater.
– volume: 7
  start-page: 780
  year: 2010
  ident: bib8
  publication-title: Scr. Mater.
– volume: 97
  start-page: 093903
  year: 2005
  ident: bib14
  publication-title: J. Appl. Phys.
– volume: 107
  start-page: 024104
  year: 2010
  ident: bib15
  publication-title: J. Appl. Phys.
– volume: 39
  start-page: 6223
  year: 2013
  ident: bib17
  publication-title: Ceram. Int.
– volume: 18
  start-page: 1657
  year: 2006
  ident: bib30
  publication-title: Adv. Mater.
– volume: 23
  start-page: 073201
  year: 2011
  ident: bib32
  publication-title: J. Phys. Condens. Matter
– volume: 19
  start-page: 2889
  year: 2007
  ident: bib36
  publication-title: Adv. Mater.
– volume: 92
  start-page: 192905
  year: 2008
  ident: bib26
  publication-title: Appl. Phys. Lett.
– volume: 42
  start-page: 115409
  year: 2009
  ident: bib2
  publication-title: J. Phys. D Appl. Phys.
– volume: 50
  start-page: 09NE10
  year: 2011
  ident: bib31
  publication-title: Jpn. J. Appl. Phys.
– volume: 89
  start-page: 102506
  year: 2006
  ident: bib37
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 131907
  year: 2010
  ident: bib9
  publication-title: Appl. Phys. Lett.
– volume: 270
  start-page: 283
  year: 2004
  ident: bib34
  publication-title: J. Cryst. Growth
– volume: 299
  start-page: 1719
  year: 2003
  ident: bib3
  publication-title: Science
– volume: 320
  start-page: 548
  year: 2008
  ident: bib20
  publication-title: J. Magn. Magn. Mater.
– volume: 99
  start-page: 262901
  year: 2011
  ident: bib27
  publication-title: Appl. Phys. Lett.
– volume: 107
  start-page: 034103
  year: 2010
  ident: bib29
  publication-title: J. Appl. Phys.
– volume: 71
  start-page: 014113
  year: 2005
  ident: bib4
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 2504
  year: 2011
  ident: bib11
  publication-title: ACS Appl. Mater. Interfaces
– volume: 93
  start-page: 142904
  year: 2008
  ident: bib24
  publication-title: Appl. Phys. Lett.
– volume: 254
  start-page: 1493
  year: 2007
  ident: bib12
  publication-title: Appl. Surf. Sci.
– volume: 104
  start-page: 084106
  year: 2008
  ident: bib22
  publication-title: J. Appl. Phys.
– volume: 110
  start-page: 024114
  year: 2011
  ident: bib23
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 721
  year: 1970
  ident: bib35
  publication-title: Mater. Res. Bull.
– volume: 509
  start-page: 2054
  year: 2011
  ident: bib25
  publication-title: J. Alloys Compd.
– volume: 65
  start-page: 591
  year: 2011
  ident: bib18
  publication-title: Mater. Lett.
– volume: 39
  start-page: 3563
  year: 2013
  ident: bib13
  publication-title: Ceram. Int.
– volume: 92
  start-page: 222901
  year: 2008
  ident: 10.1016/j.matchemphys.2014.03.020_bib10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2939101
– volume: 91
  start-page: 232909
  year: 2007
  ident: 10.1016/j.matchemphys.2014.03.020_bib19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2822826
– volume: 107
  start-page: 024104
  year: 2010
  ident: 10.1016/j.matchemphys.2014.03.020_bib15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3283919
– volume: 135
  start-page: 330
  year: 2012
  ident: 10.1016/j.matchemphys.2014.03.020_bib7
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.04.053
– volume: 19
  start-page: 2889
  year: 2007
  ident: 10.1016/j.matchemphys.2014.03.020_bib36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602377
– volume: 39
  start-page: 6223
  year: 2013
  ident: 10.1016/j.matchemphys.2014.03.020_bib17
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.01.042
– volume: 44
  start-page: 1734
  year: 2009
  ident: 10.1016/j.matchemphys.2014.03.020_bib16
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2009.03.015
– volume: 252
  start-page: 4075
  year: 1961
  ident: 10.1016/j.matchemphys.2014.03.020_bib33
  publication-title: C. R. Acad. Sci.
– volume: 20
  start-page: 3692
  year: 2008
  ident: 10.1016/j.matchemphys.2014.03.020_bib1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800218
– volume: 89
  start-page: 102506
  year: 2006
  ident: 10.1016/j.matchemphys.2014.03.020_bib37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2345825
– volume: 92
  start-page: 192905
  year: 2008
  ident: 10.1016/j.matchemphys.2014.03.020_bib26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2918130
– volume: 129
  start-page: 783
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib6
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.04.081
– volume: 39
  start-page: 3563
  year: 2013
  ident: 10.1016/j.matchemphys.2014.03.020_bib13
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.10.182
– volume: 7
  start-page: 780
  year: 2010
  ident: 10.1016/j.matchemphys.2014.03.020_bib8
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.06.013
– volume: 254
  start-page: 1493
  year: 2007
  ident: 10.1016/j.matchemphys.2014.03.020_bib12
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.07.076
– volume: 3
  start-page: 2504
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am2003747
– volume: 299
  start-page: 1719
  year: 2003
  ident: 10.1016/j.matchemphys.2014.03.020_bib3
  publication-title: Science
  doi: 10.1126/science.1080615
– volume: 50
  start-page: 09NE10
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib31
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.50.09NE10
– volume: 18
  start-page: 1657
  year: 2006
  ident: 10.1016/j.matchemphys.2014.03.020_bib30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502711
– volume: 7
  start-page: 766
  year: 2007
  ident: 10.1016/j.matchemphys.2014.03.020_bib21
  publication-title: Nano Lett.
  doi: 10.1021/nl063039w
– volume: 104
  start-page: 084106
  year: 2008
  ident: 10.1016/j.matchemphys.2014.03.020_bib22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3000478
– volume: 270
  start-page: 283
  year: 2004
  ident: 10.1016/j.matchemphys.2014.03.020_bib34
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.06.018
– volume: 95
  start-page: 257601
  year: 2005
  ident: 10.1016/j.matchemphys.2014.03.020_bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.257601
– volume: 65
  start-page: 591
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib18
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2010.11.002
– volume: 99
  start-page: 262901
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3672212
– volume: 23
  start-page: 073201
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib32
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/23/7/073201
– volume: 71
  start-page: 014113
  year: 2005
  ident: 10.1016/j.matchemphys.2014.03.020_bib4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.014113
– volume: 97
  start-page: 093903
  year: 2005
  ident: 10.1016/j.matchemphys.2014.03.020_bib14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1881775
– volume: 320
  start-page: 548
  year: 2008
  ident: 10.1016/j.matchemphys.2014.03.020_bib20
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.07.016
– volume: 509
  start-page: 2054
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib25
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.10.135
– volume: 5
  start-page: 721
  year: 1970
  ident: 10.1016/j.matchemphys.2014.03.020_bib35
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(70)90112-1
– volume: 519
  start-page: 499
  year: 2010
  ident: 10.1016/j.matchemphys.2014.03.020_bib28
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.08.004
– volume: 110
  start-page: 024114
  year: 2011
  ident: 10.1016/j.matchemphys.2014.03.020_bib23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3610428
– volume: 93
  start-page: 142904
  year: 2008
  ident: 10.1016/j.matchemphys.2014.03.020_bib24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3000013
– volume: 96
  start-page: 131907
  year: 2010
  ident: 10.1016/j.matchemphys.2014.03.020_bib9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3364133
– volume: 42
  start-page: 115409
  year: 2009
  ident: 10.1016/j.matchemphys.2014.03.020_bib2
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/11/115409
– volume: 107
  start-page: 034103
  year: 2010
  ident: 10.1016/j.matchemphys.2014.03.020_bib29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3296226
SSID ssj0017113
Score 2.191788
Snippet Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Electrical characterization
Magnetic properties
Semiconductors
Thin films
Title Nd doping effect on Bi1−xNdxFe0.97Co0.03O3 thin films: Microstructural, electrical, optical and enhanced multiferroic properties
URI https://dx.doi.org/10.1016/j.matchemphys.2014.03.020
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0hkAocEOVD0Ba0SBxxso7XXqfqBaJGaRHhAJFys7wfVozAjtIcOHHg1DM_kV_SmbUNQarUShxt7Uirfbs7s6M3bwCOMxmJUIfKUx3KVknJ8UiFqafSSMRhbFRsHct3GA1G4uc4HC9Br6mFIVplffdXd7q7res_7Xo129M8b19RHTdH_4lPBNxW0Zgq2IUkWl_r4YXm4Uu_apGMgz0a_QGOXjleGBTi0txREoFYXsLpnVLr77_5qAW_09-EjTpgZKfVnD7Cki22YLXX9GnbgvUFScFteBwaZlwRFKuoGqws2FnuP_9-uh-a-77lra7slRzncBmw-SQvWJbf3v36yi6ImlfJyZIUxwmrOuQQiCesnLqcN0sLw2wxcbQB5siImZ3NylyzKWX1ZyTPugOj_vfr3sCr-yx4GqObOREK8RhL4zRqZYBOTcaBRQR5pmzQNcrgMEFvm1ArDJeMECJLdWRDYzMbqGAXlouysHvAtOXG8JSn2u8Kmdo4E0bquGsjfPrEfroPcbOyia5FyKkXxm3SsM1ukgVQEgIl4UGCoOxD58V0Wilx_I_Rtwa-5M22StBj_Nv80_vMP8MafVEq2A-_wDJCaA8whpmrQ7dJD2Hl9Mf5YPgHe8f0Wg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIkF7qAqlKvRlJI6k6xAnzqJetquullc4ANLerPgRkQqS1bKHPffEmZ_YX8JMHnSRkKjUa-yRLH-2Zzz5_A3AbiYjEZpQe3qfslVSctxSYerpNBJxGFsdu4rlm0SjS3E0DsdLMGjfwhCtsjn76zO9Oq2bL91mNruTPO-e0ztujv4Trwi4rKLxMqyQOpXowEr_8HiUPP5MkH5dJRn7e2SwCjt_aV4YF-Ls3FAegYheopI8perfz7mpBdczfAtvmpiR9ethrcOSKzZgbdCWatuA1wuqgu_gd2KZrd5BsZqtwcqC_cj9P3f388TOh45_68lByXEMZwGbXeUFy_Lrm9sDdkrsvFpRltQ49lhdJIdw3GPlpEp7s7SwzBVXFXOAVXzEzE2nZW7YhBL7U1Jo3YTL4c-LwchrSi14BgOcGXEKcSdLW8nUygD9mowDhyDyTLugZ7XFboKuN6HRGDFZIUSWmsiF1mUu0MF76BRl4T4AM45by1OeGr8nZOriTFhp4p6L8PYT--kWxO3MKtPokFM5jGvVEs5-qQVQFIGieKAQlC3YfzSd1GIc_2L0vYVPPVlZCp3Gy-bb_2f-FdZGF6cn6uQwOf4Ir6iFMsN--Ak6CKf7jCHNTH9pluwD0pD3Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nd+doping+effect+on+Bi1%E2%88%92xNdxFe0.97Co0.03O3+thin+films%3A+Microstructural%2C+electrical%2C+optical+and+enhanced+multiferroic+properties&rft.jtitle=Materials+chemistry+and+physics&rft.au=Xue%2C+Xu&rft.au=Tan%2C+Guoqiang&rft.au=Liu%2C+Wenlong&rft.au=Ren%2C+Huijun&rft.date=2014-07-15&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=146&rft.issue=1-2&rft.spage=183&rft.epage=191&rft_id=info:doi/10.1016%2Fj.matchemphys.2014.03.020&rft.externalDocID=S025405841400176X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon