Nd doping effect on Bi1−xNdxFe0.97Co0.03O3 thin films: Microstructural, electrical, optical and enhanced multiferroic properties
Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The microstructure, chemical state, leakage mechanism, ferroelectric and magnetic properties were investigated. XRD analysis and Raman scattering...
Saved in:
Published in | Materials chemistry and physics Vol. 146; no. 1-2; pp. 183 - 191 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-0584 1879-3312 |
DOI | 10.1016/j.matchemphys.2014.03.020 |
Cover
Loading…
Abstract | Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The microstructure, chemical state, leakage mechanism, ferroelectric and magnetic properties were investigated. XRD analysis and Raman scattering spectra reveal that Nd doping gives rise to a triclinic structure transition for BNFCO films with respect to the original rhombohedral structure of BFO film. XPS analysis shows that the number of unoccupied states in the Bi 5d and Fe 3d orbits are increased with the increase of Nd content, which probably demonstrates a Fe/Bi-to-Nd electron transfer process. Fowler–Nordheim tunneling conduction mechanism associated with oxygen vacancies is responsible for the low breakdown voltage of BFO. The leakage mechanism of BNFCO is subject to trap-free Ohmic conduction due to the high bond strength among the Bi, O and Fe ions and the low concentration of oxygen vacancies, therefore, improves the resistivity in the high electric field. Highly enhanced ferroelectric properties with giant remanent polarization of 107.5 μC cm−2 is obtained via 15% Nd doping. The magnetic property is also increased by Nd doping, which is ascribed to the modified spiral spin structure and the small grain size effect. The band gap values of the BNFCO films are gradually decreased with the increase of Nd content.
•Nd doping gives rise to triclinic structure transition for BNFCO.•BNFCO shows the coexistence of ferroelectricity and magnetism at RT.•The bond strength of BNFCO is increased with the increase in Nd content.•Leakage currents of BNFCO are found to be subject to trap-free Ohmic conduction.•The band gap of BNFCO is decreased with the increase in Nd content. |
---|---|
AbstractList | Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The microstructure, chemical state, leakage mechanism, ferroelectric and magnetic properties were investigated. XRD analysis and Raman scattering spectra reveal that Nd doping gives rise to a triclinic structure transition for BNFCO films with respect to the original rhombohedral structure of BFO film. XPS analysis shows that the number of unoccupied states in the Bi 5d and Fe 3d orbits are increased with the increase of Nd content, which probably demonstrates a Fe/Bi-to-Nd electron transfer process. Fowler–Nordheim tunneling conduction mechanism associated with oxygen vacancies is responsible for the low breakdown voltage of BFO. The leakage mechanism of BNFCO is subject to trap-free Ohmic conduction due to the high bond strength among the Bi, O and Fe ions and the low concentration of oxygen vacancies, therefore, improves the resistivity in the high electric field. Highly enhanced ferroelectric properties with giant remanent polarization of 107.5 μC cm−2 is obtained via 15% Nd doping. The magnetic property is also increased by Nd doping, which is ascribed to the modified spiral spin structure and the small grain size effect. The band gap values of the BNFCO films are gradually decreased with the increase of Nd content.
•Nd doping gives rise to triclinic structure transition for BNFCO.•BNFCO shows the coexistence of ferroelectricity and magnetism at RT.•The bond strength of BNFCO is increased with the increase in Nd content.•Leakage currents of BNFCO are found to be subject to trap-free Ohmic conduction.•The band gap of BNFCO is decreased with the increase in Nd content. |
Author | Tan, Guoqiang Ren, Huijun Liu, Wenlong Xue, Xu |
Author_xml | – sequence: 1 givenname: Xu surname: Xue fullname: Xue, Xu email: xuexu9@163.com, xuexu_2010@163.com – sequence: 2 givenname: Guoqiang surname: Tan fullname: Tan, Guoqiang email: tan3114@163.com – sequence: 3 givenname: Wenlong surname: Liu fullname: Liu, Wenlong – sequence: 4 givenname: Huijun surname: Ren fullname: Ren, Huijun |
BookMark | eNqNkD1v2zAQhokgBeJ8_Admj1RSpCwpS9EYSVsgsZdmJmjyGJ8hkQJJB8naqXN_Yn9JJaRD0SnTvcO9D-6eU3LsgwdCLjkrOePLj_ty0NnsYBh3r6msGJclEyWr2BFZ8LbpCiF4dUwWrKplwepWnpDTlPaM8YZzsSA_1pbaMKJ_ouAcmEyDpzfIf__89bK2L3fAyq5ZBTZRN4LmHXrqsB_SNX1AE0PK8WDyIer-ikI_1SOaOYcxz4Fqbyn4nfYGLB0OfUYHMQY0dIxhhJgR0jn54HSf4OLvPCOPd7ffV1-L-82Xb6vP94Wpap6Lpm1l2zZWdF1VNUIw0bQCalMztwXR2a2d1iSvZVub7bISVkrptFlCbcGB2Ioz8umNO9-dIjhlMOuMweeosVecqVmp2qt_lKpZqWJCTUonQvcfYYw46Pj6ru7qrQvTi88IUSWDMHvBOHlTNuA7KH8AzuedKw |
CitedBy_id | crossref_primary_10_1016_j_apmt_2024_102074 crossref_primary_10_1016_j_surfin_2025_105767 crossref_primary_10_1039_D4RA01850H crossref_primary_10_1007_s10854_018_0042_9 crossref_primary_10_1039_D2NJ05962B crossref_primary_10_1016_j_jallcom_2022_165303 crossref_primary_10_1016_j_apsusc_2015_07_167 crossref_primary_10_1007_s10971_017_4441_9 crossref_primary_10_1016_j_matchemphys_2020_124001 crossref_primary_10_1016_j_ceramint_2015_09_061 crossref_primary_10_1016_j_tsf_2018_07_029 crossref_primary_10_1007_s10854_017_7660_5 crossref_primary_10_1007_s10854_015_3371_y crossref_primary_10_1088_1402_4896_ad156b crossref_primary_10_1080_00150193_2016_1255125 crossref_primary_10_1016_j_mtcomm_2024_110543 |
Cites_doi | 10.1063/1.2939101 10.1063/1.2822826 10.1063/1.3283919 10.1016/j.matchemphys.2012.04.053 10.1002/adma.200602377 10.1016/j.ceramint.2013.01.042 10.1016/j.materresbull.2009.03.015 10.1002/adma.200800218 10.1063/1.2345825 10.1063/1.2918130 10.1016/j.matchemphys.2011.04.081 10.1016/j.ceramint.2012.10.182 10.1016/j.scriptamat.2010.06.013 10.1016/j.apsusc.2007.07.076 10.1021/am2003747 10.1126/science.1080615 10.7567/JJAP.50.09NE10 10.1002/adma.200502711 10.1021/nl063039w 10.1063/1.3000478 10.1016/j.jcrysgro.2004.06.018 10.1103/PhysRevLett.95.257601 10.1016/j.matlet.2010.11.002 10.1063/1.3672212 10.1088/0953-8984/23/7/073201 10.1103/PhysRevB.71.014113 10.1063/1.1881775 10.1016/j.jmmm.2007.07.016 10.1016/j.jallcom.2010.10.135 10.1016/0025-5408(70)90112-1 10.1016/j.tsf.2010.08.004 10.1063/1.3610428 10.1063/1.3000013 10.1063/1.3364133 10.1088/0022-3727/42/11/115409 10.1063/1.3296226 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matchemphys.2014.03.020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3312 |
EndPage | 191 |
ExternalDocumentID | 10_1016_j_matchemphys_2014_03_020 S025405841400176X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SMS SPG SSH WUQ |
ID | FETCH-LOGICAL-c251t-7884887d3992273303783e5c50fbe39dbd251415485cb623d444fac6e5defe3b3 |
IEDL.DBID | .~1 |
ISSN | 0254-0584 |
IngestDate | Thu Apr 24 22:56:04 EDT 2025 Tue Jul 01 00:24:38 EDT 2025 Fri Feb 23 02:26:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Thin films Semiconductors Electrical characterization Magnetic properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-7884887d3992273303783e5c50fbe39dbd251415485cb623d444fac6e5defe3b3 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matchemphys_2014_03_020 crossref_primary_10_1016_j_matchemphys_2014_03_020 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2014_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-15 |
PublicationDateYYYYMMDD | 2014-07-15 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Wu (bib28) 2010; 519 Wu, Wang (bib29) 2010; 107 Hu, Cheng, Wu, Yang (bib19) 2007; 91 Wu, Wang, Xiao, Zhu (bib11) 2011; 3 Hauser, Zhang, Mier, Ricciardo (bib10) 2008; 92 Néel (bib33) 1961; 252 Park, Papaefthymiou, Viescas, Moodenbaugh, Wong (bib21) 2007; 7 Huang, Shannigrahi (bib25) 2011; 509 Gao, Yuan, Wang, Chen (bib37) 2006; 89 Gautam, Singh, Sen, Kotnala, Singh (bib18) 2011; 65 Hu, Fan, Yang, Wu (bib26) 2008; 92 Lee, Kim, Park, Kim (bib12) 2007; 254 Pradhan, Zhang, Hunter, Dadson (bib14) 2005; 97 Wang, Hu, Cheng, Yang, Wu (bib27) 2011; 99 Carmignano, Osada, Noguchi, Kitanaka, Miyayama (bib31) 2011; 50 Tauc (bib35) 1970; 5 Kothari, Reddy, Sathe, Gupta, Banerjee, Awasthi (bib20) 2008; 320 Wang, Neaton, Zheng, Nagarajan (bib3) 2003; 299 Quan, Liu, Hu, Xu (bib22) 2008; 104 Sverre, Thomas, Mari-Ann, Tor (bib1) 2008; 20 Ostos, Raymond, Suarez-Almodovar, Bueno-Baqués, Mestres, Siqueiros (bib23) 2011; 110 Xue, Tan, Ren, Xia (bib17) 2013; 39 Yang, Wang, Zou, Jain, Suvorova (bib24) 2008; 93 Liu, Li, Pei (bib2) 2009; 42 Zhou, Lu, Gu, Wang, Xiu, Chang (bib34) 2004; 270 Chen, Podraza, Xu, Melville (bib9) 2010; 96 Yan, Zhu, Lai, Lu (bib8) 2010; 7 Lahmar, Habouti, Solterbeck, Dietze, Es-Sounia (bib15) 2010; 107 Gao, Chen, Yin, Dong (bib36) 2007; 19 Wang, Zhu, Xu, Sui, Peng, Tang (bib7) 2012; 135 Giri, Patra, Majumdar (bib32) 2011; 23 Ederer, Spaldin (bib5) 2005; 95 Vrejoiu, Rhun, Pintilie, Hesse, Alexe, Gösele (bib30) 2006; 18 Neaton, Ederer, Waghmare, Spaldin, Rabe (bib4) 2005; 71 Gonjal, Castrejon, Fuentes, Moran (bib16) 2009; 44 Cao, Zhang, Fang, Dong, Zheng, Shen (bib6) 2011; 129 Raghavan, Kim, Kim (bib13) 2013; 39 Pradhan (10.1016/j.matchemphys.2014.03.020_bib14) 2005; 97 Huang (10.1016/j.matchemphys.2014.03.020_bib25) 2011; 509 Ostos (10.1016/j.matchemphys.2014.03.020_bib23) 2011; 110 Chen (10.1016/j.matchemphys.2014.03.020_bib9) 2010; 96 Liu (10.1016/j.matchemphys.2014.03.020_bib2) 2009; 42 Néel (10.1016/j.matchemphys.2014.03.020_bib33) 1961; 252 Yan (10.1016/j.matchemphys.2014.03.020_bib8) 2010; 7 Raghavan (10.1016/j.matchemphys.2014.03.020_bib13) 2013; 39 Gonjal (10.1016/j.matchemphys.2014.03.020_bib16) 2009; 44 Kothari (10.1016/j.matchemphys.2014.03.020_bib20) 2008; 320 Cao (10.1016/j.matchemphys.2014.03.020_bib6) 2011; 129 Hauser (10.1016/j.matchemphys.2014.03.020_bib10) 2008; 92 Wu (10.1016/j.matchemphys.2014.03.020_bib29) 2010; 107 Sverre (10.1016/j.matchemphys.2014.03.020_bib1) 2008; 20 Hu (10.1016/j.matchemphys.2014.03.020_bib26) 2008; 92 Wu (10.1016/j.matchemphys.2014.03.020_bib11) 2011; 3 Yang (10.1016/j.matchemphys.2014.03.020_bib24) 2008; 93 Ederer (10.1016/j.matchemphys.2014.03.020_bib5) 2005; 95 Tauc (10.1016/j.matchemphys.2014.03.020_bib35) 1970; 5 Wang (10.1016/j.matchemphys.2014.03.020_bib7) 2012; 135 Giri (10.1016/j.matchemphys.2014.03.020_bib32) 2011; 23 Carmignano (10.1016/j.matchemphys.2014.03.020_bib31) 2011; 50 Gao (10.1016/j.matchemphys.2014.03.020_bib37) 2006; 89 Zhou (10.1016/j.matchemphys.2014.03.020_bib34) 2004; 270 Lee (10.1016/j.matchemphys.2014.03.020_bib12) 2007; 254 Park (10.1016/j.matchemphys.2014.03.020_bib21) 2007; 7 Wang (10.1016/j.matchemphys.2014.03.020_bib3) 2003; 299 Xue (10.1016/j.matchemphys.2014.03.020_bib17) 2013; 39 Vrejoiu (10.1016/j.matchemphys.2014.03.020_bib30) 2006; 18 Lahmar (10.1016/j.matchemphys.2014.03.020_bib15) 2010; 107 Quan (10.1016/j.matchemphys.2014.03.020_bib22) 2008; 104 Gautam (10.1016/j.matchemphys.2014.03.020_bib18) 2011; 65 Chen (10.1016/j.matchemphys.2014.03.020_bib28) 2010; 519 Neaton (10.1016/j.matchemphys.2014.03.020_bib4) 2005; 71 Hu (10.1016/j.matchemphys.2014.03.020_bib19) 2007; 91 Gao (10.1016/j.matchemphys.2014.03.020_bib36) 2007; 19 Wang (10.1016/j.matchemphys.2014.03.020_bib27) 2011; 99 |
References_xml | – volume: 135 start-page: 330 year: 2012 ident: bib7 publication-title: Mater. Chem. Phys. – volume: 44 start-page: 1734 year: 2009 ident: bib16 publication-title: Mater. Res. Bull. – volume: 519 start-page: 499 year: 2010 ident: bib28 publication-title: Thin Solid Films – volume: 91 start-page: 232909 year: 2007 ident: bib19 publication-title: Appl. Phys. Lett. – volume: 95 start-page: 257601 year: 2005 ident: bib5 publication-title: Phys. Rev. Lett. – volume: 92 start-page: 222901 year: 2008 ident: bib10 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 766 year: 2007 ident: bib21 publication-title: Nano Lett. – volume: 252 start-page: 4075 year: 1961 ident: bib33 publication-title: C. R. Acad. Sci. – volume: 129 start-page: 783 year: 2011 ident: bib6 publication-title: Mater. Chem. Phys. – volume: 20 start-page: 3692 year: 2008 ident: bib1 publication-title: Adv. Mater. – volume: 7 start-page: 780 year: 2010 ident: bib8 publication-title: Scr. Mater. – volume: 97 start-page: 093903 year: 2005 ident: bib14 publication-title: J. Appl. Phys. – volume: 107 start-page: 024104 year: 2010 ident: bib15 publication-title: J. Appl. Phys. – volume: 39 start-page: 6223 year: 2013 ident: bib17 publication-title: Ceram. Int. – volume: 18 start-page: 1657 year: 2006 ident: bib30 publication-title: Adv. Mater. – volume: 23 start-page: 073201 year: 2011 ident: bib32 publication-title: J. Phys. Condens. Matter – volume: 19 start-page: 2889 year: 2007 ident: bib36 publication-title: Adv. Mater. – volume: 92 start-page: 192905 year: 2008 ident: bib26 publication-title: Appl. Phys. Lett. – volume: 42 start-page: 115409 year: 2009 ident: bib2 publication-title: J. Phys. D Appl. Phys. – volume: 50 start-page: 09NE10 year: 2011 ident: bib31 publication-title: Jpn. J. Appl. Phys. – volume: 89 start-page: 102506 year: 2006 ident: bib37 publication-title: Appl. Phys. Lett. – volume: 96 start-page: 131907 year: 2010 ident: bib9 publication-title: Appl. Phys. Lett. – volume: 270 start-page: 283 year: 2004 ident: bib34 publication-title: J. Cryst. Growth – volume: 299 start-page: 1719 year: 2003 ident: bib3 publication-title: Science – volume: 320 start-page: 548 year: 2008 ident: bib20 publication-title: J. Magn. Magn. Mater. – volume: 99 start-page: 262901 year: 2011 ident: bib27 publication-title: Appl. Phys. Lett. – volume: 107 start-page: 034103 year: 2010 ident: bib29 publication-title: J. Appl. Phys. – volume: 71 start-page: 014113 year: 2005 ident: bib4 publication-title: Phys. Rev. B – volume: 3 start-page: 2504 year: 2011 ident: bib11 publication-title: ACS Appl. Mater. Interfaces – volume: 93 start-page: 142904 year: 2008 ident: bib24 publication-title: Appl. Phys. Lett. – volume: 254 start-page: 1493 year: 2007 ident: bib12 publication-title: Appl. Surf. Sci. – volume: 104 start-page: 084106 year: 2008 ident: bib22 publication-title: J. Appl. Phys. – volume: 110 start-page: 024114 year: 2011 ident: bib23 publication-title: J. Appl. Phys. – volume: 5 start-page: 721 year: 1970 ident: bib35 publication-title: Mater. Res. Bull. – volume: 509 start-page: 2054 year: 2011 ident: bib25 publication-title: J. Alloys Compd. – volume: 65 start-page: 591 year: 2011 ident: bib18 publication-title: Mater. Lett. – volume: 39 start-page: 3563 year: 2013 ident: bib13 publication-title: Ceram. Int. – volume: 92 start-page: 222901 year: 2008 ident: 10.1016/j.matchemphys.2014.03.020_bib10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2939101 – volume: 91 start-page: 232909 year: 2007 ident: 10.1016/j.matchemphys.2014.03.020_bib19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2822826 – volume: 107 start-page: 024104 year: 2010 ident: 10.1016/j.matchemphys.2014.03.020_bib15 publication-title: J. Appl. Phys. doi: 10.1063/1.3283919 – volume: 135 start-page: 330 year: 2012 ident: 10.1016/j.matchemphys.2014.03.020_bib7 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2012.04.053 – volume: 19 start-page: 2889 year: 2007 ident: 10.1016/j.matchemphys.2014.03.020_bib36 publication-title: Adv. Mater. doi: 10.1002/adma.200602377 – volume: 39 start-page: 6223 year: 2013 ident: 10.1016/j.matchemphys.2014.03.020_bib17 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.01.042 – volume: 44 start-page: 1734 year: 2009 ident: 10.1016/j.matchemphys.2014.03.020_bib16 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2009.03.015 – volume: 252 start-page: 4075 year: 1961 ident: 10.1016/j.matchemphys.2014.03.020_bib33 publication-title: C. R. Acad. Sci. – volume: 20 start-page: 3692 year: 2008 ident: 10.1016/j.matchemphys.2014.03.020_bib1 publication-title: Adv. Mater. doi: 10.1002/adma.200800218 – volume: 89 start-page: 102506 year: 2006 ident: 10.1016/j.matchemphys.2014.03.020_bib37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2345825 – volume: 92 start-page: 192905 year: 2008 ident: 10.1016/j.matchemphys.2014.03.020_bib26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2918130 – volume: 129 start-page: 783 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib6 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.04.081 – volume: 39 start-page: 3563 year: 2013 ident: 10.1016/j.matchemphys.2014.03.020_bib13 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.10.182 – volume: 7 start-page: 780 year: 2010 ident: 10.1016/j.matchemphys.2014.03.020_bib8 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.06.013 – volume: 254 start-page: 1493 year: 2007 ident: 10.1016/j.matchemphys.2014.03.020_bib12 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.07.076 – volume: 3 start-page: 2504 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib11 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2003747 – volume: 299 start-page: 1719 year: 2003 ident: 10.1016/j.matchemphys.2014.03.020_bib3 publication-title: Science doi: 10.1126/science.1080615 – volume: 50 start-page: 09NE10 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib31 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.50.09NE10 – volume: 18 start-page: 1657 year: 2006 ident: 10.1016/j.matchemphys.2014.03.020_bib30 publication-title: Adv. Mater. doi: 10.1002/adma.200502711 – volume: 7 start-page: 766 year: 2007 ident: 10.1016/j.matchemphys.2014.03.020_bib21 publication-title: Nano Lett. doi: 10.1021/nl063039w – volume: 104 start-page: 084106 year: 2008 ident: 10.1016/j.matchemphys.2014.03.020_bib22 publication-title: J. Appl. Phys. doi: 10.1063/1.3000478 – volume: 270 start-page: 283 year: 2004 ident: 10.1016/j.matchemphys.2014.03.020_bib34 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.06.018 – volume: 95 start-page: 257601 year: 2005 ident: 10.1016/j.matchemphys.2014.03.020_bib5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.257601 – volume: 65 start-page: 591 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib18 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.11.002 – volume: 99 start-page: 262901 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3672212 – volume: 23 start-page: 073201 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib32 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/23/7/073201 – volume: 71 start-page: 014113 year: 2005 ident: 10.1016/j.matchemphys.2014.03.020_bib4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.014113 – volume: 97 start-page: 093903 year: 2005 ident: 10.1016/j.matchemphys.2014.03.020_bib14 publication-title: J. Appl. Phys. doi: 10.1063/1.1881775 – volume: 320 start-page: 548 year: 2008 ident: 10.1016/j.matchemphys.2014.03.020_bib20 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2007.07.016 – volume: 509 start-page: 2054 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib25 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.10.135 – volume: 5 start-page: 721 year: 1970 ident: 10.1016/j.matchemphys.2014.03.020_bib35 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(70)90112-1 – volume: 519 start-page: 499 year: 2010 ident: 10.1016/j.matchemphys.2014.03.020_bib28 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.08.004 – volume: 110 start-page: 024114 year: 2011 ident: 10.1016/j.matchemphys.2014.03.020_bib23 publication-title: J. Appl. Phys. doi: 10.1063/1.3610428 – volume: 93 start-page: 142904 year: 2008 ident: 10.1016/j.matchemphys.2014.03.020_bib24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3000013 – volume: 96 start-page: 131907 year: 2010 ident: 10.1016/j.matchemphys.2014.03.020_bib9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3364133 – volume: 42 start-page: 115409 year: 2009 ident: 10.1016/j.matchemphys.2014.03.020_bib2 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/11/115409 – volume: 107 start-page: 034103 year: 2010 ident: 10.1016/j.matchemphys.2014.03.020_bib29 publication-title: J. Appl. Phys. doi: 10.1063/1.3296226 |
SSID | ssj0017113 |
Score | 2.191788 |
Snippet | Multiferroic Bi1−xNdxFe0.97Co0.03O3 (BNFCO) thin films with compositions x = 0.06, 0.09, 0.12, and 0.15 were deposited on fluorine-doped SnO2 substrates. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 183 |
SubjectTerms | Electrical characterization Magnetic properties Semiconductors Thin films |
Title | Nd doping effect on Bi1−xNdxFe0.97Co0.03O3 thin films: Microstructural, electrical, optical and enhanced multiferroic properties |
URI | https://dx.doi.org/10.1016/j.matchemphys.2014.03.020 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0hkAocEOVD0Ba0SBxxso7XXqfqBaJGaRHhAJFys7wfVozAjtIcOHHg1DM_kV_SmbUNQarUShxt7Uirfbs7s6M3bwCOMxmJUIfKUx3KVknJ8UiFqafSSMRhbFRsHct3GA1G4uc4HC9Br6mFIVplffdXd7q7res_7Xo129M8b19RHTdH_4lPBNxW0Zgq2IUkWl_r4YXm4Uu_apGMgz0a_QGOXjleGBTi0txREoFYXsLpnVLr77_5qAW_09-EjTpgZKfVnD7Cki22YLXX9GnbgvUFScFteBwaZlwRFKuoGqws2FnuP_9-uh-a-77lra7slRzncBmw-SQvWJbf3v36yi6ImlfJyZIUxwmrOuQQiCesnLqcN0sLw2wxcbQB5siImZ3NylyzKWX1ZyTPugOj_vfr3sCr-yx4GqObOREK8RhL4zRqZYBOTcaBRQR5pmzQNcrgMEFvm1ArDJeMECJLdWRDYzMbqGAXlouysHvAtOXG8JSn2u8Kmdo4E0bquGsjfPrEfroPcbOyia5FyKkXxm3SsM1ukgVQEgIl4UGCoOxD58V0Wilx_I_Rtwa-5M22StBj_Nv80_vMP8MafVEq2A-_wDJCaA8whpmrQ7dJD2Hl9Mf5YPgHe8f0Wg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIkF7qAqlKvRlJI6k6xAnzqJetquullc4ANLerPgRkQqS1bKHPffEmZ_YX8JMHnSRkKjUa-yRLH-2Zzz5_A3AbiYjEZpQe3qfslVSctxSYerpNBJxGFsdu4rlm0SjS3E0DsdLMGjfwhCtsjn76zO9Oq2bL91mNruTPO-e0ztujv4Trwi4rKLxMqyQOpXowEr_8HiUPP5MkH5dJRn7e2SwCjt_aV4YF-Ls3FAegYheopI8perfz7mpBdczfAtvmpiR9ethrcOSKzZgbdCWatuA1wuqgu_gd2KZrd5BsZqtwcqC_cj9P3f388TOh45_68lByXEMZwGbXeUFy_Lrm9sDdkrsvFpRltQ49lhdJIdw3GPlpEp7s7SwzBVXFXOAVXzEzE2nZW7YhBL7U1Jo3YTL4c-LwchrSi14BgOcGXEKcSdLW8nUygD9mowDhyDyTLugZ7XFboKuN6HRGDFZIUSWmsiF1mUu0MF76BRl4T4AM45by1OeGr8nZOriTFhp4p6L8PYT--kWxO3MKtPokFM5jGvVEs5-qQVQFIGieKAQlC3YfzSd1GIc_2L0vYVPPVlZCp3Gy-bb_2f-FdZGF6cn6uQwOf4Ir6iFMsN--Ak6CKf7jCHNTH9pluwD0pD3Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nd+doping+effect+on+Bi1%E2%88%92xNdxFe0.97Co0.03O3+thin+films%3A+Microstructural%2C+electrical%2C+optical+and+enhanced+multiferroic+properties&rft.jtitle=Materials+chemistry+and+physics&rft.au=Xue%2C+Xu&rft.au=Tan%2C+Guoqiang&rft.au=Liu%2C+Wenlong&rft.au=Ren%2C+Huijun&rft.date=2014-07-15&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=146&rft.issue=1-2&rft.spage=183&rft.epage=191&rft_id=info:doi/10.1016%2Fj.matchemphys.2014.03.020&rft.externalDocID=S025405841400176X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |