Using machine learning for production scheduling problems in the supply chain: A review

[Display omitted] •Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for real-time decision-making.•Supervised and unsupervised learning enhance accuracy and uncover hidden patterns.•Job Shop Scheduling’s predominance re...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 206; p. 111243
Main Authors Ben Hamou, Khalid Ait, Jarir, Zahi, Elfirdoussi, Selwa
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2025
Subjects
Online AccessGet full text
ISSN0360-8352
DOI10.1016/j.cie.2025.111243

Cover

Abstract [Display omitted] •Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for real-time decision-making.•Supervised and unsupervised learning enhance accuracy and uncover hidden patterns.•Job Shop Scheduling’s predominance reflects its importance in scheduling studies.•Data dependence and computational complexity challenge ML adoption in SCM. Supply Chain Management (SCM) faces significant complexities and challenges in its operational processes, particularly in production scheduling. These challengeshave been the subject of a great deal of research. Machine learning (ML) is widely and successfully used in various fields, including SCM, to help decision-makers cope with complex situations. This article provides a historical overview of research into the application of ML to production scheduling within SCM. It also discusses the major contributions, limitations and future directions of the field. This study shows that (i) the integration of ML algorithms with traditional optimization methods offers significant advantages in terms of flexibility and efficiency for solving complex scheduling problems; (ii) hybrid approaches combining ML techniques with heuristic and metaheuristic methods are particularly effective for dealing with dynamic and uncertain production environments; (iii) although reinforcement learning techniques dominate applications in this field, supervised and unsupervised learning algorithms also play an important role in improving the accuracy and performance of planning models; and (iv) the main limitations identified include dependence on high-quality data, computational complexity, complexity of model generalization, and the difficulty of adapting models to rapid and unforeseen changes in the production environment. Although ML algorithms provide promising solutions for optimizing scheduling processes in SCM, challenges persist, requiring ongoing research to enhance the efficiency, robustness, and interpretability of these systems. Future research should prioritize the development of more efficient hybrid methods, improvements in data quality, and the adaptability of ML models to diverse production environments.
AbstractList [Display omitted] •Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for real-time decision-making.•Supervised and unsupervised learning enhance accuracy and uncover hidden patterns.•Job Shop Scheduling’s predominance reflects its importance in scheduling studies.•Data dependence and computational complexity challenge ML adoption in SCM. Supply Chain Management (SCM) faces significant complexities and challenges in its operational processes, particularly in production scheduling. These challengeshave been the subject of a great deal of research. Machine learning (ML) is widely and successfully used in various fields, including SCM, to help decision-makers cope with complex situations. This article provides a historical overview of research into the application of ML to production scheduling within SCM. It also discusses the major contributions, limitations and future directions of the field. This study shows that (i) the integration of ML algorithms with traditional optimization methods offers significant advantages in terms of flexibility and efficiency for solving complex scheduling problems; (ii) hybrid approaches combining ML techniques with heuristic and metaheuristic methods are particularly effective for dealing with dynamic and uncertain production environments; (iii) although reinforcement learning techniques dominate applications in this field, supervised and unsupervised learning algorithms also play an important role in improving the accuracy and performance of planning models; and (iv) the main limitations identified include dependence on high-quality data, computational complexity, complexity of model generalization, and the difficulty of adapting models to rapid and unforeseen changes in the production environment. Although ML algorithms provide promising solutions for optimizing scheduling processes in SCM, challenges persist, requiring ongoing research to enhance the efficiency, robustness, and interpretability of these systems. Future research should prioritize the development of more efficient hybrid methods, improvements in data quality, and the adaptability of ML models to diverse production environments.
ArticleNumber 111243
Author Elfirdoussi, Selwa
Jarir, Zahi
Ben Hamou, Khalid Ait
Author_xml – sequence: 1
  givenname: Khalid Ait
  surname: Ben Hamou
  fullname: Ben Hamou, Khalid Ait
  email: khalid.aitbenhamou@ced.uca.ma
  organization: Computer Sciences Engineering Laboratory, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
– sequence: 2
  givenname: Zahi
  surname: Jarir
  fullname: Jarir, Zahi
  email: jarir@uca.ac.ma
  organization: Computer Sciences Engineering Laboratory, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
– sequence: 3
  givenname: Selwa
  orcidid: 0000-0002-2110-2482
  surname: Elfirdoussi
  fullname: Elfirdoussi, Selwa
  email: Selwa.ELFIRDOUSSI@emines.um6p.ma
  organization: Emines - University Mohammed VI Polytechnic, Benguerir, Morocco
BookMark eNp9kMtqwzAQRbVIoUnaD-hOP2BXI1m2065C6AsC3TR0KWRpXMs4spGclvx9bdJ1VwN35gyXsyIL33sk5A5YCgzy-zY1DlPOuEwBgGdiQZZM5CwpheTXZBVjyxjL5AaW5PMQnf-iR20a55F2qIOfg7oPdAi9PZnR9Z5G06A9dfNmSqsOj5E6T8cGaTwNQ3emptHOP9AtDfjt8OeGXNW6i3j7N9fk8Pz0sXtN9u8vb7vtPjFcwpgUObPcSptlpeBVJXLBCqMrKznXtsokoqmEgBKFLYs81xYk6BJ1YSwTfMPFmsDlrwl9jAFrNQR31OGsgKnZhmrVZEPNNtTFxsQ8Xhicik1lg4rTiTdoXUAzKtu7f-hfz2BsQg
Cites_doi 10.1007/s00521-019-04571-5
10.1007/s10951-023-00795-5
10.1016/j.asoc.2023.110596
10.1016/j.swevo.2019.100575
10.1109/COASE.2016.7743572
10.1080/00207543.2019.1581954
10.1109/21.23085
10.1049/iet-cim.2018.0009
10.1016/j.eswa.2021.114666
10.1016/j.cor.2016.10.003
10.1023/B:TIME.0000045315.61234.1e
10.1016/0166-218X(95)80004-N
10.1080/00207543.2020.1790686
10.1016/j.ijinfomgt.2019.05.020
10.1016/j.eswa.2022.117796
10.1109/ACCESS.2021.3111306
10.1007/s10845-022-02069-x
10.1109/TSM.2020.2965293
10.3390/a15060205
10.1016/j.asoc.2023.110658
10.1016/j.eswa.2020.114116
10.1016/j.jik.2022.100276
10.1007/978-3-031-19958-5_99
10.1109/TII.2022.3189725
10.1109/ACCESS.2020.3029868
10.1016/j.jii.2024.100582
10.1016/j.jmsy.2020.02.011
10.1007/s10951-008-0090-8
10.1016/j.promfg.2019.02.006
10.1016/j.ijpe.2021.108250
10.1016/j.compchemeng.2020.106982
10.3390/math11204306
10.1016/j.orp.2021.100196
10.1016/j.ejor.2012.03.020
10.1287/mnsc.2022.4564
10.1016/j.procir.2022.05.117
10.1016/j.ifacol.2019.11.385
10.1016/j.cor.2022.106122
10.1109/ACCESS.2020.2997663
10.3390/app112411725
10.1016/j.ejor.2009.09.024
10.1016/j.comnet.2021.107969
10.1016/j.resourpol.2022.102727
10.1016/j.compind.2020.103244
10.1016/j.resourpol.2022.102693
10.1016/j.cie.2023.109255
10.1016/j.eswa.2010.04.055
10.1080/00207543.2013.793476
10.1080/00207543.2015.1057297
10.3390/app12052366
10.1155/2021/1476043
10.1007/s13042-019-01050-0
10.1016/j.asoc.2023.110695
10.1016/j.trpro.2020.03.185
10.1007/s10668-022-02783-9
10.1016/j.promfg.2020.01.254
10.3390/app12199472
10.3390/su132313016
10.1016/j.engappai.2023.107790
10.1016/j.procir.2020.05.210
10.1080/00207543.2022.2058432
10.1109/ACCESS.2021.3097254
10.1016/j.knosys.2022.109190
10.1016/j.jmsy.2021.02.006
10.1016/j.procir.2018.03.212
10.1016/j.ifacol.2023.10.1420
10.1016/j.ejor.2021.05.004
10.1016/j.future.2018.04.029
10.1016/j.engappai.2023.107188
10.1016/j.cie.2017.05.026
10.1007/s00170-020-05850-5
10.1016/j.procs.2022.12.347
10.1108/BIJ-10-2020-0514
10.1016/j.compchemeng.2024.108649
10.23919/CSMS.2021.0027
10.1080/00207543.2016.1178406
10.1016/j.procs.2022.12.301
10.1080/00207543.2021.1987550
10.1109/TSMC.2023.3289322
10.1016/j.eswa.2020.114060
10.1016/j.ifacol.2022.04.186
10.1016/j.cie.2018.03.039
10.1016/j.eswa.2024.123226
10.1016/j.omega.2013.07.004
10.1080/00207543.2011.571443
10.1016/j.eswa.2023.121723
10.1016/j.cor.2021.105488
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2025.111243
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2025_111243
S0360835225003894
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c251t-760d2d5d44832bb36307cabd522adb45eecb3318e3d8766ad151a8ea7cd032923
IEDL.DBID AIKHN
ISSN 0360-8352
IngestDate Thu Aug 14 00:19:02 EDT 2025
Sat Sep 06 17:19:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Production scheduling
Supply Chain Management
Machine Learning
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-760d2d5d44832bb36307cabd522adb45eecb3318e3d8766ad151a8ea7cd032923
ORCID 0000-0002-2110-2482
ParticipantIDs crossref_primary_10_1016_j_cie_2025_111243
elsevier_sciencedirect_doi_10_1016_j_cie_2025_111243
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b0495) 2018; 72
Chen, Zhao, Cheng, Wu, Zhu, Meng, Liu (b0060) 2024; 09544089241234117
Lang, Reggelin, Schmidt, Müller, Nahhas (b0200) 2021; 172
Zhang, Lu, Hu, Amaitik, Xu (b0535) 2022; 14
Arviv, Stern, Edan (b0030) 2016; 54
Ghasemi, Farajzadeh, Heavey, Fowler, Papadopoulos (b0105) 2024; 100599
Shiue, Lee, Su (b0395) 2018; 125
Yenisey, Yagmahan (b0525) 2014; 45
Takeda-Berger, Frazzon, Broda, Freitag (b0435) 2020
De Jong, Rubrico, Adachi, Nakamura, Ota (b0070) 2017
Rodammer, F. A., & White, K. P. (1988). A recent survey of production scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 18(6), 841–851. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/21.23085.
Snoeck, Merchán, Winkenbach (b0400) 2020; 46
Wang, L., Pan, Z., & Wang, J. (2021). A review of reinforcement learning based intelligent optimization for manufacturing scheduling. Complex System Modeling and Simulation, 1(4), 257–270. Complex System Modeling and Simulation. https://doi.org/10.23919/CSMS.2021.0027.
Zhai, Gehring, Reinhart (b0530) 2021; 61
Subramaniyan, Skoogh, Muhammad, Bokrantz, Johansson, Roser (b0425) 2020; 55
Cai, Bian, Liu (b0040) 2023; 85
Li, Carabelli, Fadda, Manerba, Tadei, Terzo (b0215) 2020; 110
Alexopoulos, Nikolakis, Bakopoulos, Siatras, Mavrothalassitis (b0015) 2023; 56
Schlenkrich, Parragh (b0370) 2023; 217
Arisha, Young, Baradie (b0025) 2002
Carrilho, Oliveira, Hamacher (b0050) 2024; 184
Lei, Guo, Zhao, Wang, Qian, Meng, Tang (b0210) 2022; 205
Dogan, Birant (b0075) 2021; 166
Ouelhadj, Petrovic (b0315) 2009; 12
Yamashiro, Nonaka (b0515) 2021; 8
Mihoubi, Bouzouia, Gaham (b0270) 2021; 59
Malviya, Bhandari (b0265) 2024; 12
Dong, Ren, Weng, Qi, Wang (b0080) 2022; 12
Grumbach, Müller, Reusch, Trojahn (b0115) 2024; 35
Wenzel, H., Smit, D., & Sardesai, S. (2019). A literature review on machine learning in supply chain management. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27 (pp. 413–441). Berlin: epubli GmbH. https://doi.org/10.15480/882.2478.
Tirkolaee, Sadeghi, Mooseloo, Vandchali, Aeini (b0445) 2021; 2021
Qu, Chu, Wang, Leckie, Jian (b0345) 2015
Su, Zhang, Xia, Han, Wang, Chen, Xie (b0420) 2023; 145
Layeb, S. B., Jaoua, A., Bouasker, H., & Baklouti, Y. (2023). Reinforcement learning based graphical user interface to solve the permutation flow shop problem. Lecture Notes in Networks and Systems, 569 LNNS, 1058–1068. Scopus. https://doi.org/10.1007/978-3-031-19958-5_99.
Hubbs, Li, Sahinidis, Grossmann, Wassick (b0160) 2020; 141
Mahmud, Abbasi, Chakrabortty, Ryan (b0255) 2022; 251
Golmohammadi (b0110) 2013; 51
Liu, Piplani, Toro (b0245) 2022; 60
Xie, Gao, Peng, Li, Li (b0510) 2019; 1
Tremblet, Thevenin, Dolgui (b0455) 2023
Kardos, Laflamme, Gallina, Sihn (b0190) 2021; 97
Liu (b0235) 2010; 37
Ruiz, Vázquez-Rodríguez (b0365) 2010; 205
Arisha, Young, Baradie (b0020) 2001
Ni, Xiao, Lim (b0300) 2020; 11
Juros, Brcic, Koncic, Kovac (b0185) 2022
Guo, Yang, Zhu (b0130) 2020; 32
Kim, H., Lim, D.-E., & Lee, S. (2020). Deep learning-based dynamic scheduling for semiconductor manufacturing with high uncertainty of automated material handling system capability. IEEE Transactions on Semiconductor Manufacturing, 33(1), 13–22. IEEE Transactions on Semiconductor Manufacturing. https://doi.org/10.1109/TSM.2020.2965293.
Han, B.-A., & Yang, J.-J. (2020). Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access, 8, 186474–186495. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3029868.
Liu, C.-L., Tseng, C.-J., Huang, T.-H., & Wang, J.-W. (2023). dynamic parallel machine scheduling with deep Q-network. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2023.3289322.
Rohaninejad, Tavakkoli-Moghaddam, Vahedi-Nouri, Hanzálek, Shirazian (b0360) 2022; 60
Shi, Ma, Ren, Wu, Yu (b0390) 2021; 136
Serrano-Ruiz, Mula, Poler (b0375) 2024; 38
Yang, Wang, Zhang, Ma, Yang, Liu, Zhang, Yang (b0520) 2022; 15
Pournader, Ghaderi, Hassanzadegan, Fahimnia (b0335) 2021; 241
Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b0490) 2018
Habib, Khan, Uddin (b0135) 2016
Togo, Asanuma, Nishi, Liu (b0450) 2022; 12
Pinedo, Hadavi (b0330) 1992
He, Li, Zhang, Cao (b0150) 2019; 51
Zhang, Song, Cao, Zhang, Tan, Chi (b0545) 2020; 33
Camur, Ravi, Saleh (b0045) 2024; 247
Min, Lu, Liu, Su, Wang (b0275) 2019; 49
Guo, Vanhoucke, Coelho, Luo (b0125) 2021; 167
Wang, Hu, Wang, Xu, Ma, Yang, Liu, Wang (b0470) 2021; 190
Tang, Xiao, Zhang, Lei, Wang, Xu (b0440) 2024; 237
Naimi, Nouiri, Cardin (b0295) 2021; 13
Đumić, Šišejković, Čorić, Jakobović (b0085) 2018; 86
Li, Liao, Wang, Xiao, Cao, Guo (b0220) 2023; 146
Zhang, Qian, Hu, Yang (b0540) 2023; 146
Lin, Lin, Wang (b0230) 2022; 7
Sha, L., Abdelzaher, T., årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., & Mok, A. K. (2004). Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems, 28(2), 101–155. https://doi.org/10.1023/B:TIME.0000045315.61234.1e.
Akbari, Do (b0010) 2021; 28
Ostermeier, Deuse (b0310) 2024; 27
Ma, Y., Qiao, F., & Lu, J. (2016). Learning-based dynamic scheduling of semiconductor manufacturing system. 2016-November, 1394–1399. Scopus. https://doi.org/10.1109/COASE.2016.7743572.
Qi, Shi, Qi, Ma, Yuan, Wu, Shen (Max) (b0340) 2023; 69
Shahrabi, Adibi, Mahootchi (b0385) 2017; 110
Song, W., Chen, X., Li, Q., & Cao, Z. (2023). flexible job-shop scheduling via graph neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19(2), 1600–1610. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2022.3189725.
Sotskov, Shakhlevich (b0415) 1995; 59
Morariu, Morariu, Răileanu, Borangiu (b0285) 2020; 120
Paeng, B., Park, I.-B., & Park, J. (2021). Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups. IEEE Access, 9, 101390–101401. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3097254.
Pérez, Climent, Nicoló, Arbelaez, Salido (b0325) 2023; 126
Gui, Tang, Zhu, Zhang, Zhang (b0120) 2023; 180
Chelliah, Latchoumi, Senthilselvi (b0055) 2024; 26
Ingimundardottir, Runarsson (b0165) 2011
Chimunhu, Topal, Ajak, Asad (b0065) 2022; 77
Jun, Lee, Chun (b0175) 2019; 57
Wang, Zhang, Yu, Zhang (b0485) 2014
Hartmann, Briskorn (b0145) 2022; 297
Wu, Yan, Guan, Wei (b0505) 2024; 131
Mohan, Lanka, Rao (b0280) 2019; 30
Uzunoglu, Gahm, Wahl, Tuma (b0460) 2023; 151
Wang, Tang (b0480) 2017; 79
Li, Wang, Sawhney (b0225) 2012; 221
Wang, Laili, Zhang, Liu (b0475) 2024
Morinaga, Tang, Iwamura, Hirabayashi (b0290) 2023; 217
Rinciog, Meyer (b0350) 2022; 107
Takeda Berger, Zanella, Frazzon (b0430) 2019; 52
Zhang, Xu, Qiao (b0550) 2023; 11
Abidi, M. H., Alkhalefah, H., Mohammed, M. K., Umer, U., & Qudeiri, J. E. A. (2020). Optimal scheduling of flexible manufacturing system using improved lion-based hybrid machine learning approach. IEEE Access, 8, 96088–96114. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2997663.
Sobottka, Kamhuber, Faezirad, Sihn (b0405) 2019; 39
Jungbluth, Gafur, Popper, Yfantis, Ruskowski (b0180) 2022; 55
Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2021). An advanced LSTM model for optimal scheduling in smart logistic environment: E-commerce case. IEEE Access, 9, 126337–126356. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3111306.
Mahraz, Benabbou, Berrado (b0260) 2022; 9
Gabel, Riedmiller (b0100) 2012; 50
Noriega, Pourrahimian (b0305) 2022; 77
Azab, Nafea, Shihata, Mashaly (b0035) 2021; 11
Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016). Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times. International Journal of Production Research, 54(22), 6812–6824. Scopus. https://doi.org/10.1080/00207543.2016.1178406.
Dogan (10.1016/j.cie.2025.111243_b0075) 2021; 166
Shiue (10.1016/j.cie.2025.111243_b0395) 2018; 125
Lang (10.1016/j.cie.2025.111243_b0200) 2021; 172
Zhang (10.1016/j.cie.2025.111243_b0535) 2022; 14
Zhang (10.1016/j.cie.2025.111243_b0545) 2020; 33
Liu (10.1016/j.cie.2025.111243_b0245) 2022; 60
Min (10.1016/j.cie.2025.111243_b0275) 2019; 49
Arisha (10.1016/j.cie.2025.111243_b0020) 2001
Qi (10.1016/j.cie.2025.111243_b0340) 2023; 69
Camur (10.1016/j.cie.2025.111243_b0045) 2024; 247
Jungbluth (10.1016/j.cie.2025.111243_b0180) 2022; 55
Malviya (10.1016/j.cie.2025.111243_b0265) 2024; 12
Takeda Berger (10.1016/j.cie.2025.111243_b0430) 2019; 52
De Jong (10.1016/j.cie.2025.111243_b0070) 2017
Dong (10.1016/j.cie.2025.111243_b0080) 2022; 12
10.1016/j.cie.2025.111243_b0195
Lei (10.1016/j.cie.2025.111243_b0210) 2022; 205
Xie (10.1016/j.cie.2025.111243_b0510) 2019; 1
Togo (10.1016/j.cie.2025.111243_b0450) 2022; 12
Morinaga (10.1016/j.cie.2025.111243_b0290) 2023; 217
Pournader (10.1016/j.cie.2025.111243_b0335) 2021; 241
10.1016/j.cie.2025.111243_b0500
Subramaniyan (10.1016/j.cie.2025.111243_b0425) 2020; 55
10.1016/j.cie.2025.111243_b0465
Gabel (10.1016/j.cie.2025.111243_b0100) 2012; 50
Waschneck (10.1016/j.cie.2025.111243_b0495) 2018; 72
Mihoubi (10.1016/j.cie.2025.111243_b0270) 2021; 59
Mohan (10.1016/j.cie.2025.111243_b0280) 2019; 30
Pinedo (10.1016/j.cie.2025.111243_b0330) 1992
Serrano-Ruiz (10.1016/j.cie.2025.111243_b0375) 2024; 38
Tirkolaee (10.1016/j.cie.2025.111243_b0445) 2021; 2021
Noriega (10.1016/j.cie.2025.111243_b0305) 2022; 77
Arisha (10.1016/j.cie.2025.111243_b0025) 2002
Habib (10.1016/j.cie.2025.111243_b0135) 2016
Ostermeier (10.1016/j.cie.2025.111243_b0310) 2024; 27
Grumbach (10.1016/j.cie.2025.111243_b0115) 2024; 35
Kardos (10.1016/j.cie.2025.111243_b0190) 2021; 97
Mahraz (10.1016/j.cie.2025.111243_b0260) 2022; 9
10.1016/j.cie.2025.111243_b0155
Wang (10.1016/j.cie.2025.111243_b0480) 2017; 79
Azab (10.1016/j.cie.2025.111243_b0035) 2021; 11
Wu (10.1016/j.cie.2025.111243_b0505) 2024; 131
Gui (10.1016/j.cie.2025.111243_b0120) 2023; 180
Yenisey (10.1016/j.cie.2025.111243_b0525) 2014; 45
Golmohammadi (10.1016/j.cie.2025.111243_b0110) 2013; 51
Snoeck (10.1016/j.cie.2025.111243_b0400) 2020; 46
Hartmann (10.1016/j.cie.2025.111243_b0145) 2022; 297
Tang (10.1016/j.cie.2025.111243_b0440) 2024; 237
10.1016/j.cie.2025.111243_b0170
He (10.1016/j.cie.2025.111243_b0150) 2019; 51
Yang (10.1016/j.cie.2025.111243_b0520) 2022; 15
Li (10.1016/j.cie.2025.111243_b0225) 2012; 221
Uzunoglu (10.1016/j.cie.2025.111243_b0460) 2023; 151
Guo (10.1016/j.cie.2025.111243_b0130) 2020; 32
Mahmud (10.1016/j.cie.2025.111243_b0255) 2022; 251
10.1016/j.cie.2025.111243_b0320
Shahrabi (10.1016/j.cie.2025.111243_b0385) 2017; 110
Wang (10.1016/j.cie.2025.111243_b0485) 2014
10.1016/j.cie.2025.111243_b0205
Ingimundardottir (10.1016/j.cie.2025.111243_b0165) 2011
Naimi (10.1016/j.cie.2025.111243_b0295) 2021; 13
10.1016/j.cie.2025.111243_b0140
10.1016/j.cie.2025.111243_b0380
Wang (10.1016/j.cie.2025.111243_b0470) 2021; 190
10.1016/j.cie.2025.111243_b0410
Yamashiro (10.1016/j.cie.2025.111243_b0515) 2021; 8
Chen (10.1016/j.cie.2025.111243_b0060) 2024; 09544089241234117
Arviv (10.1016/j.cie.2025.111243_b0030) 2016; 54
Zhang (10.1016/j.cie.2025.111243_b0550) 2023; 11
Li (10.1016/j.cie.2025.111243_b0220) 2023; 146
Takeda-Berger (10.1016/j.cie.2025.111243_b0435) 2020
Pérez (10.1016/j.cie.2025.111243_b0325) 2023; 126
Ruiz (10.1016/j.cie.2025.111243_b0365) 2010; 205
Cai (10.1016/j.cie.2025.111243_b0040) 2023; 85
Zhai (10.1016/j.cie.2025.111243_b0530) 2021; 61
Juros (10.1016/j.cie.2025.111243_b0185) 2022
Sotskov (10.1016/j.cie.2025.111243_b0415) 1995; 59
Waschneck (10.1016/j.cie.2025.111243_b0490) 2018
Morariu (10.1016/j.cie.2025.111243_b0285) 2020; 120
Su (10.1016/j.cie.2025.111243_b0420) 2023; 145
Akbari (10.1016/j.cie.2025.111243_b0010) 2021; 28
Tremblet (10.1016/j.cie.2025.111243_b0455) 2023
Rinciog (10.1016/j.cie.2025.111243_b0350) 2022; 107
Schlenkrich (10.1016/j.cie.2025.111243_b0370) 2023; 217
Carrilho (10.1016/j.cie.2025.111243_b0050) 2024; 184
Lin (10.1016/j.cie.2025.111243_b0230) 2022; 7
Wang (10.1016/j.cie.2025.111243_b0475) 2024
Qu (10.1016/j.cie.2025.111243_b0345) 2015
Rohaninejad (10.1016/j.cie.2025.111243_b0360) 2022; 60
Alexopoulos (10.1016/j.cie.2025.111243_b0015) 2023; 56
10.1016/j.cie.2025.111243_b0240
Đumić (10.1016/j.cie.2025.111243_b0085) 2018; 86
10.1016/j.cie.2025.111243_b0355
Chimunhu (10.1016/j.cie.2025.111243_b0065) 2022; 77
Ouelhadj (10.1016/j.cie.2025.111243_b0315) 2009; 12
Hubbs (10.1016/j.cie.2025.111243_b0160) 2020; 141
Liu (10.1016/j.cie.2025.111243_b0235) 2010; 37
Guo (10.1016/j.cie.2025.111243_b0125) 2021; 167
Shi (10.1016/j.cie.2025.111243_b0390) 2021; 136
Chelliah (10.1016/j.cie.2025.111243_b0055) 2024; 26
10.1016/j.cie.2025.111243_b0250
Zhang (10.1016/j.cie.2025.111243_b0540) 2023; 146
Li (10.1016/j.cie.2025.111243_b0215) 2020; 110
10.1016/j.cie.2025.111243_b0005
Ghasemi (10.1016/j.cie.2025.111243_b0105) 2024; 100599
Ni (10.1016/j.cie.2025.111243_b0300) 2020; 11
Jun (10.1016/j.cie.2025.111243_b0175) 2019; 57
Sobottka (10.1016/j.cie.2025.111243_b0405) 2019; 39
References_xml – reference: Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016). Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times. International Journal of Production Research, 54(22), 6812–6824. Scopus. https://doi.org/10.1080/00207543.2016.1178406.
– volume: 136
  year: 2021
  ident: b0390
  article-title: A learning-based two-stage optimization method for customer order scheduling
  publication-title: Computers & Operations Research
– volume: 12
  start-page: 5
  year: 2022
  ident: b0080
  article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach
  publication-title: Applied Sciences
– year: 2001
  ident: b0020
  article-title: Job shop scheduling problem: An overview
  publication-title: Conference Papers
– volume: 61
  start-page: 830
  year: 2021
  end-page: 855
  ident: b0530
  article-title: Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning
  publication-title: Journal of Manufacturing Systems
– volume: 38
  year: 2024
  ident: b0375
  article-title: Job shop smart manufacturing scheduling by deep reinforcement learning
  publication-title: Journal of Industrial Information Integration
– volume: 60
  start-page: 4049
  year: 2022
  end-page: 4069
  ident: b0245
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research
– volume: 33
  start-page: 1621
  year: 2020
  end-page: 1632
  ident: b0545
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– reference: Abidi, M. H., Alkhalefah, H., Mohammed, M. K., Umer, U., & Qudeiri, J. E. A. (2020). Optimal scheduling of flexible manufacturing system using improved lion-based hybrid machine learning approach. IEEE Access, 8, 96088–96114. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2997663.
– volume: 97
  start-page: 104
  year: 2021
  end-page: 109
  ident: b0190
  article-title: Dynamic scheduling in a job-shop production system with reinforcement learning
  publication-title: Procedia CIRP
– volume: 166
  year: 2021
  ident: b0075
  article-title: Machine learning and data mining in manufacturing
  publication-title: Expert Systems with Applications
– reference: Paeng, B., Park, I.-B., & Park, J. (2021). Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups. IEEE Access, 9, 101390–101401. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3097254.
– volume: 131
  year: 2024
  ident: b0505
  article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 32
  start-page: 1857
  year: 2020
  end-page: 1868
  ident: b0130
  article-title: Application research of improved genetic algorithm based on machine learning in production scheduling
  publication-title: Neural Computing & Applications
– start-page: 1
  year: 2015
  end-page: 8
  ident: b0345
  article-title: A centralized reinforcement learning approach for proactive scheduling in manufacturing
  publication-title: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)
– volume: 60
  start-page: 6205
  year: 2022
  end-page: 6225
  ident: b0360
  article-title: A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines
  publication-title: International Journal of Production Research
– reference: Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2021). An advanced LSTM model for optimal scheduling in smart logistic environment: E-commerce case. IEEE Access, 9, 126337–126356. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3111306.
– reference: Ma, Y., Qiao, F., & Lu, J. (2016). Learning-based dynamic scheduling of semiconductor manufacturing system. 2016-November, 1394–1399. Scopus. https://doi.org/10.1109/COASE.2016.7743572.
– start-page: 170
  year: 2016
  end-page: 175
  ident: b0135
  article-title: Optimal route selection in complex multi-stage supply chain networks using SARSA(λ)
  publication-title: 2016 19th International Conference on Computer and Information Technology (ICCIT)
– volume: 77
  year: 2022
  ident: b0065
  article-title: A review of machine learning applications for underground mine planning and scheduling
  publication-title: Resources Policy
– volume: 49
  start-page: 502
  year: 2019
  end-page: 519
  ident: b0275
  article-title: Machine learning based digital twin framework for production optimization in petrochemical industry
  publication-title: International Journal of Information Management
– volume: 27
  start-page: 29
  year: 2024
  end-page: 49
  ident: b0310
  article-title: A review and classification of scheduling objectives in unpaced flow shops for discrete manufacturing
  publication-title: Journal of Scheduling
– volume: 69
  start-page: 759
  year: 2023
  end-page: 773
  ident: b0340
  article-title: A practical end-to-end inventory management model with deep learning
  publication-title: Management Science
– volume: 141
  year: 2020
  ident: b0160
  article-title: A deep reinforcement learning approach for chemical production scheduling
  publication-title: Computers & Chemical Engineering
– volume: 51
  year: 2019
  ident: b0150
  article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
– volume: 77
  year: 2022
  ident: b0305
  article-title: A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning
  publication-title: Resources Policy
– volume: 13
  start-page: 23
  year: 2021
  ident: b0295
  article-title: A Q-learning rescheduling approach to the flexible job shop problem combining energy and productivity objectives
  publication-title: Sustainability
– volume: 100599
  year: 2024
  ident: b0105
  article-title: Simulation optimization applied to production scheduling in the era of industry 4.0: A review and future roadmap
  publication-title: Journal of Industrial Information Integration
– volume: 297
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0145
  article-title: An updated survey of variants and extensions of the resource-constrained project scheduling problem
  publication-title: European Journal of Operational Research
– volume: 110
  start-page: 75
  year: 2017
  end-page: 82
  ident: b0385
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
– volume: 125
  start-page: 604
  year: 2018
  end-page: 614
  ident: b0395
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Computers & Industrial Engineering
– start-page: 1516
  year: 2017
  end-page: 1521
  ident: b0070
  article-title: Big data in automation: Towards generalized makespan estimation in shop scheduling problems
  publication-title: 2017 13th IEEE Conference on Automation Science and Engineering (CASE)
– volume: 09544089241234117
  year: 2024
  ident: b0060
  article-title: Optimizing production logistics through advanced machine learning techniques: A study on resource allocation for small-batch and multi-variety challenges
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
– start-page: 865
  year: 2022
  end-page: 870
  ident: b0185
  article-title: Exact solving scheduling problems accelerated by graph neural networks
  publication-title: 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)
– reference: Kim, H., Lim, D.-E., & Lee, S. (2020). Deep learning-based dynamic scheduling for semiconductor manufacturing with high uncertainty of automated material handling system capability. IEEE Transactions on Semiconductor Manufacturing, 33(1), 13–22. IEEE Transactions on Semiconductor Manufacturing. https://doi.org/10.1109/TSM.2020.2965293.
– start-page: 761
  year: 2014
  end-page: 771
  ident: b0485
  publication-title: Data mining based approach for jobshop scheduling
– volume: 8
  year: 2021
  ident: b0515
  article-title: Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem
  publication-title: Operations Research Perspectives
– volume: 12
  start-page: 417
  year: 2009
  end-page: 431
  ident: b0315
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: Journal of Scheduling
– volume: 50
  start-page: 41
  year: 2012
  end-page: 61
  ident: b0100
  article-title: Distributed policy search reinforcement learning for job-shop scheduling tasks
  publication-title: International Journal of Production Research
– volume: 172
  year: 2021
  ident: b0200
  article-title: NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies
  publication-title: Expert Systems with Applications
– volume: 45
  start-page: 119
  year: 2014
  end-page: 135
  ident: b0525
  article-title: Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends
  publication-title: Omega
– volume: 79
  start-page: 60
  year: 2017
  end-page: 77
  ident: b0480
  article-title: A machine-learning based memetic algorithm for the multi-objective permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
– volume: 11
  year: 2021
  ident: b0035
  article-title: A Machine-learning-assisted simulation approach for incorporating predictive maintenance in dynamic flow-shop scheduling
  publication-title: Applied Sciences
– volume: 237
  year: 2024
  ident: b0440
  article-title: A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem
  publication-title: Expert Systems with Applications
– reference: Liu, C.-L., Tseng, C.-J., Huang, T.-H., & Wang, J.-W. (2023). dynamic parallel machine scheduling with deep Q-network. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2023.3289322.
– start-page: 1
  year: 2023
  end-page: 17
  ident: b0455
  article-title: Makespan estimation in a flexible job-shop scheduling environment using machine learning
  publication-title: International Journal of Production Research
– year: 2024
  ident: b0475
  article-title: Hybrid task scheduling in cloud manufacturing with sparse-reward deep reinforcement learning
  publication-title: IEEE Transactions on Automation Science and Engineering, 1–15. IEEE Transactions on Automation Science and Engineering
– volume: 7
  year: 2022
  ident: b0230
  article-title: An innovative machine learning model for supply chain management
  publication-title: Journal of Innovation & Knowledge
– start-page: 35
  year: 1992
  end-page: 42
  ident: b0330
  article-title: Scheduling: Theory, algorithms and systems development
  publication-title: Operations Research Proceedings 1991
– volume: 241
  year: 2021
  ident: b0335
  article-title: Artificial intelligence applications in supply chain management
  publication-title: International Journal of Production Economics
– volume: 59
  start-page: 5790
  year: 2021
  end-page: 5808
  ident: b0270
  article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem
  publication-title: International Journal of Production Research
– volume: 54
  start-page: 1196
  year: 2016
  end-page: 1209
  ident: b0030
  article-title: Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem
  publication-title: International Journal of Production Research
– volume: 145
  year: 2023
  ident: b0420
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Applied Soft Computing
– reference: Wenzel, H., Smit, D., & Sardesai, S. (2019). A literature review on machine learning in supply chain management. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27 (pp. 413–441). Berlin: epubli GmbH. https://doi.org/10.15480/882.2478.
– volume: 247
  year: 2024
  ident: b0045
  article-title: Enhancing supply chain resilience: A machine learning approach for predicting product availability dates under disruption
  publication-title: Expert Systems with Applications
– volume: 205
  year: 2022
  ident: b0210
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 120
  year: 2020
  ident: b0285
  article-title: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems
  publication-title: Computers in Industry
– volume: 205
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0365
  article-title: The hybrid flow shop scheduling problem
  publication-title: European Journal of Operational Research
– year: 2002
  ident: b0025
  article-title: Flow shop scheduling problem: A computational study
  publication-title: Conference Papers
– volume: 26
  start-page: 1731
  year: 2024
  end-page: 1747
  ident: b0055
  article-title: Analysis of demand forecasting of agriculture using machine learning algorithm
  publication-title: Environment, Development and Sustainability
– volume: 46
  start-page: 229
  year: 2020
  end-page: 236
  ident: b0400
  article-title: Route learning: A machine learning-based approach to infer constrained customers in delivery routes
  publication-title: Transportation Research Procedia
– reference: Rodammer, F. A., & White, K. P. (1988). A recent survey of production scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 18(6), 841–851. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/21.23085.
– volume: 1
  start-page: 67
  year: 2019
  end-page: 77
  ident: b0510
  article-title: Review on flexible job shop scheduling
  publication-title: IET Collaborative Intelligent Manufacturing
– volume: 35
  start-page: 667
  year: 2024
  end-page: 686
  ident: b0115
  article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning
  publication-title: Journal of Intelligent Manufacturing
– volume: 28
  start-page: 2977
  year: 2021
  end-page: 3005
  ident: b0010
  article-title: A systematic review of machine learning in logistics and supply chain management: Current trends and future directions
  publication-title: Benchmarking: An International Journal
– volume: 107
  start-page: 1112
  year: 2022
  end-page: 1119
  ident: b0350
  article-title: Towards standardising reinforcement learning approaches for production scheduling problems
  publication-title: Procedia CIRP
– start-page: 409
  year: 2020
  end-page: 419
  ident: b0435
  article-title: Machine learning in production scheduling: An overview of the academic literature
  publication-title: Dynamics in Logistics
– volume: 180
  year: 2023
  ident: b0120
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Computers & Industrial Engineering
– volume: 57
  start-page: 3290
  year: 2019
  end-page: 3310
  ident: b0175
  article-title: Learning dispatching rules using random forest in flexible job shop scheduling problems
  publication-title: International Journal of Production Research
– volume: 14
  start-page: 9
  year: 2022
  ident: b0535
  article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization
  publication-title: Sustainability
– volume: 30
  start-page: 34
  year: 2019
  end-page: 39
  ident: b0280
  article-title: A review of dynamic job shop scheduling techniques
  publication-title: Procedia Manufacturing
– volume: 251
  year: 2022
  ident: b0255
  article-title: A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems
  publication-title: Knowledge-Based Systems
– volume: 72
  start-page: 1264
  year: 2018
  end-page: 1269
  ident: b0495
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Procedia CIRP
– volume: 2021
  year: 2021
  ident: b0445
  article-title: Application of machine learning in supply chain management: A comprehensive overview of the main areas
  publication-title: Mathematical Problems in Engineering
– volume: 151
  year: 2023
  ident: b0460
  article-title: Learning-augmented heuristics for scheduling parallel serial-batch processing machines
  publication-title: Computers & Operations Research
– volume: 146
  year: 2023
  ident: b0540
  article-title: Q-learning-based hyper-heuristic evolutionary algorithm for the distributed assembly blocking flowshop scheduling problem
  publication-title: Applied Soft Computing
– reference: Layeb, S. B., Jaoua, A., Bouasker, H., & Baklouti, Y. (2023). Reinforcement learning based graphical user interface to solve the permutation flow shop problem. Lecture Notes in Networks and Systems, 569 LNNS, 1058–1068. Scopus. https://doi.org/10.1007/978-3-031-19958-5_99.
– reference: Sha, L., Abdelzaher, T., årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., & Mok, A. K. (2004). Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems, 28(2), 101–155. https://doi.org/10.1023/B:TIME.0000045315.61234.1e.
– volume: 217
  start-page: 1479
  year: 2023
  end-page: 1486
  ident: b0290
  article-title: An improved method of job shop scheduling using machine learning and mathematical optimization
  publication-title: Procedia Computer Science
– volume: 56
  start-page: 2963
  year: 2023
  end-page: 2968
  ident: b0015
  article-title: Machine learning agents augmented by digital twinning for smart production scheduling
  publication-title: IFAC-PapersOnLine
– volume: 12
  start-page: 1
  year: 2024
  ident: b0265
  article-title: A systematic study on effective demand prediction using machine learning. Journal of Integrated
  publication-title: Science and Technology
– volume: 52
  start-page: 1343
  year: 2019
  end-page: 1348
  ident: b0430
  article-title: Towards a data-driven predictive-reactive production scheduling approach based on inventory availability
  publication-title: IFAC-PapersOnLine
– volume: 11
  start-page: 20
  year: 2023
  ident: b0550
  article-title: Multi-objective Q-learning-based brain storm optimization for integrated distributed flow shop and distribution scheduling problems
  publication-title: Mathematics
– volume: 9
  start-page: 398
  year: 2022
  end-page: 416
  ident: b0260
  article-title: Machine learning in supply chain management: A systematic literature review
  publication-title: International Journal of Supply and Operations Management
– volume: 59
  start-page: 237
  year: 1995
  end-page: 266
  ident: b0415
  article-title: NP-hardness of shop-scheduling problems with three jobs
  publication-title: Discrete Applied Mathematics
– volume: 12
  start-page: 19
  year: 2022
  ident: b0450
  article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems
  publication-title: Applied Sciences
– reference: Han, B.-A., & Yang, J.-J. (2020). Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access, 8, 186474–186495. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3029868.
– volume: 190
  year: 2021
  ident: b0470
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
– volume: 126
  year: 2023
  ident: b0325
  article-title: A hybrid metaheuristic with learning for a real supply chain scheduling problem
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 217
  start-page: 1028
  year: 2023
  end-page: 1037
  ident: b0370
  article-title: Solving large scale industrial production scheduling problems with complex constraints: An overview of the state-of-the-art
  publication-title: Procedia Computer Science
– volume: 167
  year: 2021
  ident: b0125
  article-title: Automatic detection of the best performing priority rule for the resource-constrained project scheduling problem
  publication-title: Expert Systems with Applications
– volume: 221
  start-page: 99
  year: 2012
  end-page: 109
  ident: b0225
  article-title: Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems
  publication-title: European Journal of Operational Research
– start-page: 301
  year: 2018
  end-page: 306
  ident: b0490
  article-title: Deep reinforcement learning for semiconductor production scheduling
  publication-title: 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
– volume: 86
  start-page: 211
  year: 2018
  end-page: 221
  ident: b0085
  article-title: Evolving priority rules for resource constrained project scheduling problem with genetic programming
  publication-title: Future Generation Computer Systems
– volume: 184
  year: 2024
  ident: b0050
  article-title: A novel exact formulation for parallel machine scheduling problems
  publication-title: Computers and Chemical Engineering
– volume: 110
  start-page: 2445
  year: 2020
  end-page: 2463
  ident: b0215
  article-title: Machine learning and optimization for production rescheduling in Industry 4.0
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 85
  year: 2023
  ident: b0040
  article-title: Deep reinforcement learning for solving resource constrained project scheduling problems with resource disruptions
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 55
  start-page: 156
  year: 2022
  end-page: 162
  ident: b0180
  article-title: Reinforcement learning-based scheduling of a job-shop process with distributedly controlled robotic manipulators for transport operations
  publication-title: IFAC-PapersOnLine
– volume: 146
  year: 2023
  ident: b0220
  article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming
  publication-title: Applied Soft Computing
– volume: 15
  year: 2022
  ident: b0520
  article-title: A review: Machine learning for combinatorial optimization problems in energy areas
  publication-title: Algorithms
– start-page: 263
  year: 2011
  end-page: 277
  ident: b0165
  article-title: Supervised learning linear priority dispatch rules for job-shop scheduling
  publication-title: Learning and Intelligent Optimization
– reference: Song, W., Chen, X., Li, Q., & Cao, Z. (2023). flexible job-shop scheduling via graph neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19(2), 1600–1610. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2022.3189725.
– volume: 51
  start-page: 5142
  year: 2013
  end-page: 5157
  ident: b0110
  article-title: A neural network decision-making model for job-shop scheduling
  publication-title: International Journal of Production Research
– volume: 11
  start-page: 1463
  year: 2020
  end-page: 1482
  ident: b0300
  article-title: A systematic review of the research trends of machine learning in supply chain management
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 55
  start-page: 143
  year: 2020
  end-page: 158
  ident: b0425
  article-title: A generic hierarchical clustering approach for detecting bottlenecks in manufacturing
  publication-title: Journal of Manufacturing Systems
– reference: Wang, L., Pan, Z., & Wang, J. (2021). A review of reinforcement learning based intelligent optimization for manufacturing scheduling. Complex System Modeling and Simulation, 1(4), 257–270. Complex System Modeling and Simulation. https://doi.org/10.23919/CSMS.2021.0027.
– volume: 37
  start-page: 7831
  year: 2010
  end-page: 7837
  ident: b0235
  article-title: A coordinated scheduling system for customer orders scheduling problem in job shop environments
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 1844
  year: 2019
  end-page: 1853
  ident: b0405
  article-title: Potential for machine learning in optimized production planning with hybrid simulation
  publication-title: Procedia Manufacturing
– volume: 32
  start-page: 1857
  issue: 7
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0130
  article-title: Application research of improved genetic algorithm based on machine learning in production scheduling
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-019-04571-5
– volume: 27
  start-page: 29
  issue: 1
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0310
  article-title: A review and classification of scheduling objectives in unpaced flow shops for discrete manufacturing
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-023-00795-5
– volume: 145
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0420
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110596
– volume: 51
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0150
  article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100575
– ident: 10.1016/j.cie.2025.111243_b0250
  doi: 10.1109/COASE.2016.7743572
– volume: 57
  start-page: 3290
  issue: 10
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0175
  article-title: Learning dispatching rules using random forest in flexible job shop scheduling problems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1581954
– ident: 10.1016/j.cie.2025.111243_b0355
  doi: 10.1109/21.23085
– volume: 1
  start-page: 67
  issue: 3
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0510
  article-title: Review on flexible job shop scheduling
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/iet-cim.2018.0009
– volume: 172
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0200
  article-title: NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114666
– volume: 79
  start-page: 60
  year: 2017
  ident: 10.1016/j.cie.2025.111243_b0480
  article-title: A machine-learning based memetic algorithm for the multi-objective permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.10.003
– ident: 10.1016/j.cie.2025.111243_b0380
  doi: 10.1023/B:TIME.0000045315.61234.1e
– volume: 59
  start-page: 237
  issue: 3
  year: 1995
  ident: 10.1016/j.cie.2025.111243_b0415
  article-title: NP-hardness of shop-scheduling problems with three jobs
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(95)80004-N
– volume: 59
  start-page: 5790
  issue: 19
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0270
  article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1790686
– volume: 49
  start-page: 502
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0275
  article-title: Machine learning based digital twin framework for production optimization in petrochemical industry
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2019.05.020
– volume: 205
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0210
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117796
– ident: 10.1016/j.cie.2025.111243_b0170
  doi: 10.1109/ACCESS.2021.3111306
– volume: 9
  start-page: 398
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0260
  article-title: Machine learning in supply chain management: A systematic literature review
  publication-title: International Journal of Supply and Operations Management
– volume: 85
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0040
  article-title: Deep reinforcement learning for solving resource constrained project scheduling problems with resource disruptions
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 35
  start-page: 667
  issue: 2
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0115
  article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-02069-x
– ident: 10.1016/j.cie.2025.111243_b0195
  doi: 10.1109/TSM.2020.2965293
– volume: 15
  issue: 6
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0520
  article-title: A review: Machine learning for combinatorial optimization problems in energy areas
  publication-title: Algorithms
  doi: 10.3390/a15060205
– start-page: 865
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0185
  article-title: Exact solving scheduling problems accelerated by graph neural networks
– volume: 146
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0220
  article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110658
– volume: 167
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0125
  article-title: Automatic detection of the best performing priority rule for the resource-constrained project scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114116
– volume: 7
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0230
  article-title: An innovative machine learning model for supply chain management
  publication-title: Journal of Innovation & Knowledge
  doi: 10.1016/j.jik.2022.100276
– ident: 10.1016/j.cie.2025.111243_b0205
  doi: 10.1007/978-3-031-19958-5_99
– start-page: 409
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0435
  article-title: Machine learning in production scheduling: An overview of the academic literature
– ident: 10.1016/j.cie.2025.111243_b0410
  doi: 10.1109/TII.2022.3189725
– ident: 10.1016/j.cie.2025.111243_b0140
  doi: 10.1109/ACCESS.2020.3029868
– volume: 38
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0375
  article-title: Job shop smart manufacturing scheduling by deep reinforcement learning
  publication-title: Journal of Industrial Information Integration
  doi: 10.1016/j.jii.2024.100582
– volume: 55
  start-page: 143
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0425
  article-title: A generic hierarchical clustering approach for detecting bottlenecks in manufacturing
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.02.011
– ident: 10.1016/j.cie.2025.111243_b0500
– volume: 12
  start-page: 417
  issue: 4
  year: 2009
  ident: 10.1016/j.cie.2025.111243_b0315
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-008-0090-8
– year: 2002
  ident: 10.1016/j.cie.2025.111243_b0025
  article-title: Flow shop scheduling problem: A computational study
  publication-title: Conference Papers
– volume: 30
  start-page: 34
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0280
  article-title: A review of dynamic job shop scheduling techniques
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2019.02.006
– volume: 241
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0335
  article-title: Artificial intelligence applications in supply chain management
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2021.108250
– volume: 141
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0160
  article-title: A deep reinforcement learning approach for chemical production scheduling
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2020.106982
– volume: 11
  start-page: 20
  issue: 20
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0550
  article-title: Multi-objective Q-learning-based brain storm optimization for integrated distributed flow shop and distribution scheduling problems
  publication-title: Mathematics
  doi: 10.3390/math11204306
– volume: 8
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0515
  article-title: Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2021.100196
– volume: 221
  start-page: 99
  issue: 1
  year: 2012
  ident: 10.1016/j.cie.2025.111243_b0225
  article-title: Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.03.020
– volume: 69
  start-page: 759
  issue: 2
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0340
  article-title: A practical end-to-end inventory management model with deep learning
  publication-title: Management Science
  doi: 10.1287/mnsc.2022.4564
– start-page: 1
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0455
  article-title: Makespan estimation in a flexible job-shop scheduling environment using machine learning
  publication-title: International Journal of Production Research
– volume: 14
  start-page: 9
  issue: 9
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0535
  article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization
  publication-title: Sustainability
– volume: 107
  start-page: 1112
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0350
  article-title: Towards standardising reinforcement learning approaches for production scheduling problems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2022.05.117
– volume: 52
  start-page: 1343
  issue: 13
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0430
  article-title: Towards a data-driven predictive-reactive production scheduling approach based on inventory availability
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.385
– year: 2001
  ident: 10.1016/j.cie.2025.111243_b0020
  article-title: Job shop scheduling problem: An overview
  publication-title: Conference Papers
– volume: 151
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0460
  article-title: Learning-augmented heuristics for scheduling parallel serial-batch processing machines
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2022.106122
– ident: 10.1016/j.cie.2025.111243_b0005
  doi: 10.1109/ACCESS.2020.2997663
– volume: 11
  issue: 24
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0035
  article-title: A Machine-learning-assisted simulation approach for incorporating predictive maintenance in dynamic flow-shop scheduling
  publication-title: Applied Sciences
  doi: 10.3390/app112411725
– volume: 12
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0265
  article-title: A systematic study on effective demand prediction using machine learning. Journal of Integrated
  publication-title: Science and Technology
– start-page: 35
  year: 1992
  ident: 10.1016/j.cie.2025.111243_b0330
  article-title: Scheduling: Theory, algorithms and systems development
– volume: 205
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.cie.2025.111243_b0365
  article-title: The hybrid flow shop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.09.024
– volume: 190
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0470
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2021.107969
– volume: 09544089241234117
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0060
  article-title: Optimizing production logistics through advanced machine learning techniques: A study on resource allocation for small-batch and multi-variety challenges
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
– volume: 77
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0305
  article-title: A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2022.102727
– volume: 120
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0285
  article-title: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2020.103244
– volume: 77
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0065
  article-title: A review of machine learning applications for underground mine planning and scheduling
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2022.102693
– volume: 180
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0120
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109255
– volume: 37
  start-page: 7831
  issue: 12
  year: 2010
  ident: 10.1016/j.cie.2025.111243_b0235
  article-title: A coordinated scheduling system for customer orders scheduling problem in job shop environments
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.04.055
– volume: 51
  start-page: 5142
  issue: 17
  year: 2013
  ident: 10.1016/j.cie.2025.111243_b0110
  article-title: A neural network decision-making model for job-shop scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.793476
– volume: 54
  start-page: 1196
  issue: 4
  year: 2016
  ident: 10.1016/j.cie.2025.111243_b0030
  article-title: Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2015.1057297
– volume: 12
  start-page: 5
  issue: 5
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0080
  article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach
  publication-title: Applied Sciences
  doi: 10.3390/app12052366
– volume: 2021
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0445
  article-title: Application of machine learning in supply chain management: A comprehensive overview of the main areas
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2021/1476043
– volume: 100599
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0105
  article-title: Simulation optimization applied to production scheduling in the era of industry 4.0: A review and future roadmap
  publication-title: Journal of Industrial Information Integration
– volume: 11
  start-page: 1463
  issue: 7
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0300
  article-title: A systematic review of the research trends of machine learning in supply chain management
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-01050-0
– volume: 146
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0540
  article-title: Q-learning-based hyper-heuristic evolutionary algorithm for the distributed assembly blocking flowshop scheduling problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110695
– volume: 33
  start-page: 1621
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0545
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1516
  year: 2017
  ident: 10.1016/j.cie.2025.111243_b0070
  article-title: Big data in automation: Towards generalized makespan estimation in shop scheduling problems
– volume: 46
  start-page: 229
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0400
  article-title: Route learning: A machine learning-based approach to infer constrained customers in delivery routes
  publication-title: Transportation Research Procedia
  doi: 10.1016/j.trpro.2020.03.185
– year: 2024
  ident: 10.1016/j.cie.2025.111243_b0475
  article-title: Hybrid task scheduling in cloud manufacturing with sparse-reward deep reinforcement learning
– volume: 26
  start-page: 1731
  issue: 1
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0055
  article-title: Analysis of demand forecasting of agriculture using machine learning algorithm
  publication-title: Environment, Development and Sustainability
  doi: 10.1007/s10668-022-02783-9
– volume: 39
  start-page: 1844
  year: 2019
  ident: 10.1016/j.cie.2025.111243_b0405
  article-title: Potential for machine learning in optimized production planning with hybrid simulation
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2020.01.254
– volume: 12
  start-page: 19
  issue: 19
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0450
  article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems
  publication-title: Applied Sciences
  doi: 10.3390/app12199472
– start-page: 263
  year: 2011
  ident: 10.1016/j.cie.2025.111243_b0165
  article-title: Supervised learning linear priority dispatch rules for job-shop scheduling
– volume: 13
  start-page: 23
  issue: 23
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0295
  article-title: A Q-learning rescheduling approach to the flexible job shop problem combining energy and productivity objectives
  publication-title: Sustainability
  doi: 10.3390/su132313016
– volume: 131
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0505
  article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107790
– volume: 97
  start-page: 104
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0190
  article-title: Dynamic scheduling in a job-shop production system with reinforcement learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.05.210
– volume: 60
  start-page: 4049
  issue: 13
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0245
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2058432
– ident: 10.1016/j.cie.2025.111243_b0320
  doi: 10.1109/ACCESS.2021.3097254
– volume: 251
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0255
  article-title: A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109190
– volume: 61
  start-page: 830
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0530
  article-title: Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.02.006
– start-page: 170
  year: 2016
  ident: 10.1016/j.cie.2025.111243_b0135
  article-title: Optimal route selection in complex multi-stage supply chain networks using SARSA(λ)
– volume: 72
  start-page: 1264
  year: 2018
  ident: 10.1016/j.cie.2025.111243_b0495
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.212
– volume: 56
  start-page: 2963
  issue: 2
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0015
  article-title: Machine learning agents augmented by digital twinning for smart production scheduling
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2023.10.1420
– volume: 297
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0145
  article-title: An updated survey of variants and extensions of the resource-constrained project scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2021.05.004
– start-page: 301
  year: 2018
  ident: 10.1016/j.cie.2025.111243_b0490
  article-title: Deep reinforcement learning for semiconductor production scheduling
– volume: 86
  start-page: 211
  year: 2018
  ident: 10.1016/j.cie.2025.111243_b0085
  article-title: Evolving priority rules for resource constrained project scheduling problem with genetic programming
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.04.029
– volume: 126
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0325
  article-title: A hybrid metaheuristic with learning for a real supply chain scheduling problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107188
– volume: 110
  start-page: 75
  year: 2017
  ident: 10.1016/j.cie.2025.111243_b0385
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.05.026
– volume: 110
  start-page: 2445
  issue: 9
  year: 2020
  ident: 10.1016/j.cie.2025.111243_b0215
  article-title: Machine learning and optimization for production rescheduling in Industry 4.0
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-05850-5
– volume: 217
  start-page: 1479
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0290
  article-title: An improved method of job shop scheduling using machine learning and mathematical optimization
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.12.347
– volume: 28
  start-page: 2977
  issue: 10
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0010
  article-title: A systematic review of machine learning in logistics and supply chain management: Current trends and future directions
  publication-title: Benchmarking: An International Journal
  doi: 10.1108/BIJ-10-2020-0514
– volume: 184
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0050
  article-title: A novel exact formulation for parallel machine scheduling problems
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/j.compchemeng.2024.108649
– ident: 10.1016/j.cie.2025.111243_b0465
  doi: 10.23919/CSMS.2021.0027
– ident: 10.1016/j.cie.2025.111243_b0155
  doi: 10.1080/00207543.2016.1178406
– volume: 217
  start-page: 1028
  year: 2023
  ident: 10.1016/j.cie.2025.111243_b0370
  article-title: Solving large scale industrial production scheduling problems with complex constraints: An overview of the state-of-the-art
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.12.301
– volume: 60
  start-page: 6205
  issue: 20
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0360
  article-title: A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2021.1987550
– ident: 10.1016/j.cie.2025.111243_b0240
  doi: 10.1109/TSMC.2023.3289322
– volume: 166
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0075
  article-title: Machine learning and data mining in manufacturing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114060
– start-page: 761
  year: 2014
  ident: 10.1016/j.cie.2025.111243_b0485
– volume: 55
  start-page: 156
  issue: 2
  year: 2022
  ident: 10.1016/j.cie.2025.111243_b0180
  article-title: Reinforcement learning-based scheduling of a job-shop process with distributedly controlled robotic manipulators for transport operations
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.04.186
– volume: 125
  start-page: 604
  year: 2018
  ident: 10.1016/j.cie.2025.111243_b0395
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.039
– volume: 247
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0045
  article-title: Enhancing supply chain resilience: A machine learning approach for predicting product availability dates under disruption
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123226
– volume: 45
  start-page: 119
  year: 2014
  ident: 10.1016/j.cie.2025.111243_b0525
  article-title: Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends
  publication-title: Omega
  doi: 10.1016/j.omega.2013.07.004
– volume: 50
  start-page: 41
  issue: 1
  year: 2012
  ident: 10.1016/j.cie.2025.111243_b0100
  article-title: Distributed policy search reinforcement learning for job-shop scheduling tasks
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2011.571443
– start-page: 1
  year: 2015
  ident: 10.1016/j.cie.2025.111243_b0345
  article-title: A centralized reinforcement learning approach for proactive scheduling in manufacturing
– volume: 237
  year: 2024
  ident: 10.1016/j.cie.2025.111243_b0440
  article-title: A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121723
– volume: 136
  year: 2021
  ident: 10.1016/j.cie.2025.111243_b0390
  article-title: A learning-based two-stage optimization method for customer order scheduling
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105488
SSID ssj0004591
Score 2.448623
Snippet [Display omitted] •Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111243
SubjectTerms Machine Learning
Optimization
Production scheduling
Supply Chain Management
Title Using machine learning for production scheduling problems in the supply chain: A review
URI https://dx.doi.org/10.1016/j.cie.2025.111243
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH7qscDAUUCUo_LAhBTa-khatqqiKiC6QEW3yFchSISKloGF385z7EhFgoUtiewo-hx_73vyOwDOmJHWoHKI5micI57wXiSNFpHmSJNzhZeJSxS-m8TjKb-ZiVkFhmUujAurDNzvOb1g6_CkHdBsL7KsfY_c6_WDcMdbfV6FOmX9WNSgPri-HU_Wiob7xnk4PnITysPNIswL34xeIhWOOyhnv5unNZMz2oGtoBXJwH_OLlRs3oDtoBtJ2JXLBmyuFRXcg8ciCoC8FlGSloS2EE8E1SlZ-PquuBYEvVq0Mi4ZnYSmMkuS5QT1IFm6Tp-fRD_LLL8kA-LTW_ZhOrp6GI6j0D4h0ihaVlESdww1wqADxqhSLMbtrKUyiJg0igtrtWK4pS0zSImxNGj8Zc_KRJsOoyj8DqCWv-X2EIjzguau0mDCBac0UVrFrptfN0nirhG9JpyXqKULXyUjLcPHXlKEI3UQpx7iJvAS1_THUqfI4n9PO_rftGPYcHc-Zu8Eaqv3D3uKOmKlWlC9-Oq2wt_yDT8GxXg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgADHwVE-fTAhGTaxnZc2KqKqkDbhVZ0s-LYhSIRKloGFn4759iRigQLW5TYUXSO372T390BnDOTWIPMgU7QOVMueZMmJhU05QiTE42X0iUK9wdxd8TvxmJcgnaRC-NklQH7PabnaB3u1II1a7PptPaA2Ov5g3DHW1d8BVa5YNLp-i6_Gkslw33bPBxN3fDiaDMXeeF7MUaMhEOOiLPfndOSw-lsw2ZgiqTlP2YHSjarwFZgjSTsyXkFNpZKCu7CY64BIK-5RtKS0BTiiSA3JTNf3RVXgmBMiz7GpaKT0FJmTqYZQTZI5q7P5ydJn5Npdk1axCe37MGoczNsd2lonkBTpCwLKuO6iYwwGH6xSGsW42ZOE23QXonRXFibaoYb2jKDgBgnBl1_0rSJTE2dRUj79qGcvWX2AIiLgSauzqDkgkeR1KmOXS-_hpRxw4hmFS4Kq6mZr5GhCvHYi0JzKGdi5U1cBV7YVf1YaIUY_ve0w_9NO4O17rDfU73bwf0RrLsnXr13DOXF-4c9QUax0Kf5H_MN4CzGQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+for+production+scheduling+problems+in+the+supply+chain%3A+A+review&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ben+Hamou%2C+Khalid+Ait&rft.au=Jarir%2C+Zahi&rft.au=Elfirdoussi%2C+Selwa&rft.date=2025-08-01&rft.issn=0360-8352&rft.volume=206&rft.spage=111243&rft_id=info:doi/10.1016%2Fj.cie.2025.111243&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2025_111243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon