Using machine learning for production scheduling problems in the supply chain: A review
[Display omitted] •Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for real-time decision-making.•Supervised and unsupervised learning enhance accuracy and uncover hidden patterns.•Job Shop Scheduling’s predominance re...
Saved in:
Published in | Computers & industrial engineering Vol. 206; p. 111243 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-8352 |
DOI | 10.1016/j.cie.2025.111243 |
Cover
Abstract | [Display omitted]
•Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for real-time decision-making.•Supervised and unsupervised learning enhance accuracy and uncover hidden patterns.•Job Shop Scheduling’s predominance reflects its importance in scheduling studies.•Data dependence and computational complexity challenge ML adoption in SCM.
Supply Chain Management (SCM) faces significant complexities and challenges in its operational processes, particularly in production scheduling. These challengeshave been the subject of a great deal of research. Machine learning (ML) is widely and successfully used in various fields, including SCM, to help decision-makers cope with complex situations. This article provides a historical overview of research into the application of ML to production scheduling within SCM. It also discusses the major contributions, limitations and future directions of the field. This study shows that (i) the integration of ML algorithms with traditional optimization methods offers significant advantages in terms of flexibility and efficiency for solving complex scheduling problems; (ii) hybrid approaches combining ML techniques with heuristic and metaheuristic methods are particularly effective for dealing with dynamic and uncertain production environments; (iii) although reinforcement learning techniques dominate applications in this field, supervised and unsupervised learning algorithms also play an important role in improving the accuracy and performance of planning models; and (iv) the main limitations identified include dependence on high-quality data, computational complexity, complexity of model generalization, and the difficulty of adapting models to rapid and unforeseen changes in the production environment. Although ML algorithms provide promising solutions for optimizing scheduling processes in SCM, challenges persist, requiring ongoing research to enhance the efficiency, robustness, and interpretability of these systems. Future research should prioritize the development of more efficient hybrid methods, improvements in data quality, and the adaptability of ML models to diverse production environments. |
---|---|
AbstractList | [Display omitted]
•Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for real-time decision-making.•Supervised and unsupervised learning enhance accuracy and uncover hidden patterns.•Job Shop Scheduling’s predominance reflects its importance in scheduling studies.•Data dependence and computational complexity challenge ML adoption in SCM.
Supply Chain Management (SCM) faces significant complexities and challenges in its operational processes, particularly in production scheduling. These challengeshave been the subject of a great deal of research. Machine learning (ML) is widely and successfully used in various fields, including SCM, to help decision-makers cope with complex situations. This article provides a historical overview of research into the application of ML to production scheduling within SCM. It also discusses the major contributions, limitations and future directions of the field. This study shows that (i) the integration of ML algorithms with traditional optimization methods offers significant advantages in terms of flexibility and efficiency for solving complex scheduling problems; (ii) hybrid approaches combining ML techniques with heuristic and metaheuristic methods are particularly effective for dealing with dynamic and uncertain production environments; (iii) although reinforcement learning techniques dominate applications in this field, supervised and unsupervised learning algorithms also play an important role in improving the accuracy and performance of planning models; and (iv) the main limitations identified include dependence on high-quality data, computational complexity, complexity of model generalization, and the difficulty of adapting models to rapid and unforeseen changes in the production environment. Although ML algorithms provide promising solutions for optimizing scheduling processes in SCM, challenges persist, requiring ongoing research to enhance the efficiency, robustness, and interpretability of these systems. Future research should prioritize the development of more efficient hybrid methods, improvements in data quality, and the adaptability of ML models to diverse production environments. |
ArticleNumber | 111243 |
Author | Elfirdoussi, Selwa Jarir, Zahi Ben Hamou, Khalid Ait |
Author_xml | – sequence: 1 givenname: Khalid Ait surname: Ben Hamou fullname: Ben Hamou, Khalid Ait email: khalid.aitbenhamou@ced.uca.ma organization: Computer Sciences Engineering Laboratory, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco – sequence: 2 givenname: Zahi surname: Jarir fullname: Jarir, Zahi email: jarir@uca.ac.ma organization: Computer Sciences Engineering Laboratory, Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco – sequence: 3 givenname: Selwa orcidid: 0000-0002-2110-2482 surname: Elfirdoussi fullname: Elfirdoussi, Selwa email: Selwa.ELFIRDOUSSI@emines.um6p.ma organization: Emines - University Mohammed VI Polytechnic, Benguerir, Morocco |
BookMark | eNp9kMtqwzAQRbVIoUnaD-hOP2BXI1m2065C6AsC3TR0KWRpXMs4spGclvx9bdJ1VwN35gyXsyIL33sk5A5YCgzy-zY1DlPOuEwBgGdiQZZM5CwpheTXZBVjyxjL5AaW5PMQnf-iR20a55F2qIOfg7oPdAi9PZnR9Z5G06A9dfNmSqsOj5E6T8cGaTwNQ3emptHOP9AtDfjt8OeGXNW6i3j7N9fk8Pz0sXtN9u8vb7vtPjFcwpgUObPcSptlpeBVJXLBCqMrKznXtsokoqmEgBKFLYs81xYk6BJ1YSwTfMPFmsDlrwl9jAFrNQR31OGsgKnZhmrVZEPNNtTFxsQ8Xhicik1lg4rTiTdoXUAzKtu7f-hfz2BsQg |
Cites_doi | 10.1007/s00521-019-04571-5 10.1007/s10951-023-00795-5 10.1016/j.asoc.2023.110596 10.1016/j.swevo.2019.100575 10.1109/COASE.2016.7743572 10.1080/00207543.2019.1581954 10.1109/21.23085 10.1049/iet-cim.2018.0009 10.1016/j.eswa.2021.114666 10.1016/j.cor.2016.10.003 10.1023/B:TIME.0000045315.61234.1e 10.1016/0166-218X(95)80004-N 10.1080/00207543.2020.1790686 10.1016/j.ijinfomgt.2019.05.020 10.1016/j.eswa.2022.117796 10.1109/ACCESS.2021.3111306 10.1007/s10845-022-02069-x 10.1109/TSM.2020.2965293 10.3390/a15060205 10.1016/j.asoc.2023.110658 10.1016/j.eswa.2020.114116 10.1016/j.jik.2022.100276 10.1007/978-3-031-19958-5_99 10.1109/TII.2022.3189725 10.1109/ACCESS.2020.3029868 10.1016/j.jii.2024.100582 10.1016/j.jmsy.2020.02.011 10.1007/s10951-008-0090-8 10.1016/j.promfg.2019.02.006 10.1016/j.ijpe.2021.108250 10.1016/j.compchemeng.2020.106982 10.3390/math11204306 10.1016/j.orp.2021.100196 10.1016/j.ejor.2012.03.020 10.1287/mnsc.2022.4564 10.1016/j.procir.2022.05.117 10.1016/j.ifacol.2019.11.385 10.1016/j.cor.2022.106122 10.1109/ACCESS.2020.2997663 10.3390/app112411725 10.1016/j.ejor.2009.09.024 10.1016/j.comnet.2021.107969 10.1016/j.resourpol.2022.102727 10.1016/j.compind.2020.103244 10.1016/j.resourpol.2022.102693 10.1016/j.cie.2023.109255 10.1016/j.eswa.2010.04.055 10.1080/00207543.2013.793476 10.1080/00207543.2015.1057297 10.3390/app12052366 10.1155/2021/1476043 10.1007/s13042-019-01050-0 10.1016/j.asoc.2023.110695 10.1016/j.trpro.2020.03.185 10.1007/s10668-022-02783-9 10.1016/j.promfg.2020.01.254 10.3390/app12199472 10.3390/su132313016 10.1016/j.engappai.2023.107790 10.1016/j.procir.2020.05.210 10.1080/00207543.2022.2058432 10.1109/ACCESS.2021.3097254 10.1016/j.knosys.2022.109190 10.1016/j.jmsy.2021.02.006 10.1016/j.procir.2018.03.212 10.1016/j.ifacol.2023.10.1420 10.1016/j.ejor.2021.05.004 10.1016/j.future.2018.04.029 10.1016/j.engappai.2023.107188 10.1016/j.cie.2017.05.026 10.1007/s00170-020-05850-5 10.1016/j.procs.2022.12.347 10.1108/BIJ-10-2020-0514 10.1016/j.compchemeng.2024.108649 10.23919/CSMS.2021.0027 10.1080/00207543.2016.1178406 10.1016/j.procs.2022.12.301 10.1080/00207543.2021.1987550 10.1109/TSMC.2023.3289322 10.1016/j.eswa.2020.114060 10.1016/j.ifacol.2022.04.186 10.1016/j.cie.2018.03.039 10.1016/j.eswa.2024.123226 10.1016/j.omega.2013.07.004 10.1080/00207543.2011.571443 10.1016/j.eswa.2023.121723 10.1016/j.cor.2021.105488 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cie.2025.111243 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
ExternalDocumentID | 10_1016_j_cie_2025_111243 S0360835225003894 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c251t-760d2d5d44832bb36307cabd522adb45eecb3318e3d8766ad151a8ea7cd032923 |
IEDL.DBID | AIKHN |
ISSN | 0360-8352 |
IngestDate | Thu Aug 14 00:19:02 EDT 2025 Sat Sep 06 17:19:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Production scheduling Supply Chain Management Machine Learning Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-760d2d5d44832bb36307cabd522adb45eecb3318e3d8766ad151a8ea7cd032923 |
ORCID | 0000-0002-2110-2482 |
ParticipantIDs | crossref_primary_10_1016_j_cie_2025_111243 elsevier_sciencedirect_doi_10_1016_j_cie_2025_111243 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b0495) 2018; 72 Chen, Zhao, Cheng, Wu, Zhu, Meng, Liu (b0060) 2024; 09544089241234117 Lang, Reggelin, Schmidt, Müller, Nahhas (b0200) 2021; 172 Zhang, Lu, Hu, Amaitik, Xu (b0535) 2022; 14 Arviv, Stern, Edan (b0030) 2016; 54 Ghasemi, Farajzadeh, Heavey, Fowler, Papadopoulos (b0105) 2024; 100599 Shiue, Lee, Su (b0395) 2018; 125 Yenisey, Yagmahan (b0525) 2014; 45 Takeda-Berger, Frazzon, Broda, Freitag (b0435) 2020 De Jong, Rubrico, Adachi, Nakamura, Ota (b0070) 2017 Rodammer, F. A., & White, K. P. (1988). A recent survey of production scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 18(6), 841–851. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/21.23085. Snoeck, Merchán, Winkenbach (b0400) 2020; 46 Wang, L., Pan, Z., & Wang, J. (2021). A review of reinforcement learning based intelligent optimization for manufacturing scheduling. Complex System Modeling and Simulation, 1(4), 257–270. Complex System Modeling and Simulation. https://doi.org/10.23919/CSMS.2021.0027. Zhai, Gehring, Reinhart (b0530) 2021; 61 Subramaniyan, Skoogh, Muhammad, Bokrantz, Johansson, Roser (b0425) 2020; 55 Cai, Bian, Liu (b0040) 2023; 85 Li, Carabelli, Fadda, Manerba, Tadei, Terzo (b0215) 2020; 110 Alexopoulos, Nikolakis, Bakopoulos, Siatras, Mavrothalassitis (b0015) 2023; 56 Schlenkrich, Parragh (b0370) 2023; 217 Arisha, Young, Baradie (b0025) 2002 Carrilho, Oliveira, Hamacher (b0050) 2024; 184 Lei, Guo, Zhao, Wang, Qian, Meng, Tang (b0210) 2022; 205 Dogan, Birant (b0075) 2021; 166 Ouelhadj, Petrovic (b0315) 2009; 12 Yamashiro, Nonaka (b0515) 2021; 8 Mihoubi, Bouzouia, Gaham (b0270) 2021; 59 Malviya, Bhandari (b0265) 2024; 12 Dong, Ren, Weng, Qi, Wang (b0080) 2022; 12 Grumbach, Müller, Reusch, Trojahn (b0115) 2024; 35 Wenzel, H., Smit, D., & Sardesai, S. (2019). A literature review on machine learning in supply chain management. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27 (pp. 413–441). Berlin: epubli GmbH. https://doi.org/10.15480/882.2478. Tirkolaee, Sadeghi, Mooseloo, Vandchali, Aeini (b0445) 2021; 2021 Qu, Chu, Wang, Leckie, Jian (b0345) 2015 Su, Zhang, Xia, Han, Wang, Chen, Xie (b0420) 2023; 145 Layeb, S. B., Jaoua, A., Bouasker, H., & Baklouti, Y. (2023). Reinforcement learning based graphical user interface to solve the permutation flow shop problem. Lecture Notes in Networks and Systems, 569 LNNS, 1058–1068. Scopus. https://doi.org/10.1007/978-3-031-19958-5_99. Hubbs, Li, Sahinidis, Grossmann, Wassick (b0160) 2020; 141 Mahmud, Abbasi, Chakrabortty, Ryan (b0255) 2022; 251 Golmohammadi (b0110) 2013; 51 Liu, Piplani, Toro (b0245) 2022; 60 Xie, Gao, Peng, Li, Li (b0510) 2019; 1 Tremblet, Thevenin, Dolgui (b0455) 2023 Kardos, Laflamme, Gallina, Sihn (b0190) 2021; 97 Liu (b0235) 2010; 37 Ruiz, Vázquez-Rodríguez (b0365) 2010; 205 Arisha, Young, Baradie (b0020) 2001 Ni, Xiao, Lim (b0300) 2020; 11 Juros, Brcic, Koncic, Kovac (b0185) 2022 Guo, Yang, Zhu (b0130) 2020; 32 Kim, H., Lim, D.-E., & Lee, S. (2020). Deep learning-based dynamic scheduling for semiconductor manufacturing with high uncertainty of automated material handling system capability. IEEE Transactions on Semiconductor Manufacturing, 33(1), 13–22. IEEE Transactions on Semiconductor Manufacturing. https://doi.org/10.1109/TSM.2020.2965293. Han, B.-A., & Yang, J.-J. (2020). Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access, 8, 186474–186495. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3029868. Liu, C.-L., Tseng, C.-J., Huang, T.-H., & Wang, J.-W. (2023). dynamic parallel machine scheduling with deep Q-network. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2023.3289322. Rohaninejad, Tavakkoli-Moghaddam, Vahedi-Nouri, Hanzálek, Shirazian (b0360) 2022; 60 Shi, Ma, Ren, Wu, Yu (b0390) 2021; 136 Serrano-Ruiz, Mula, Poler (b0375) 2024; 38 Yang, Wang, Zhang, Ma, Yang, Liu, Zhang, Yang (b0520) 2022; 15 Pournader, Ghaderi, Hassanzadegan, Fahimnia (b0335) 2021; 241 Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b0490) 2018 Habib, Khan, Uddin (b0135) 2016 Togo, Asanuma, Nishi, Liu (b0450) 2022; 12 Pinedo, Hadavi (b0330) 1992 He, Li, Zhang, Cao (b0150) 2019; 51 Zhang, Song, Cao, Zhang, Tan, Chi (b0545) 2020; 33 Camur, Ravi, Saleh (b0045) 2024; 247 Min, Lu, Liu, Su, Wang (b0275) 2019; 49 Guo, Vanhoucke, Coelho, Luo (b0125) 2021; 167 Wang, Hu, Wang, Xu, Ma, Yang, Liu, Wang (b0470) 2021; 190 Tang, Xiao, Zhang, Lei, Wang, Xu (b0440) 2024; 237 Naimi, Nouiri, Cardin (b0295) 2021; 13 Đumić, Šišejković, Čorić, Jakobović (b0085) 2018; 86 Li, Liao, Wang, Xiao, Cao, Guo (b0220) 2023; 146 Zhang, Qian, Hu, Yang (b0540) 2023; 146 Lin, Lin, Wang (b0230) 2022; 7 Sha, L., Abdelzaher, T., årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., & Mok, A. K. (2004). Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems, 28(2), 101–155. https://doi.org/10.1023/B:TIME.0000045315.61234.1e. Akbari, Do (b0010) 2021; 28 Ostermeier, Deuse (b0310) 2024; 27 Ma, Y., Qiao, F., & Lu, J. (2016). Learning-based dynamic scheduling of semiconductor manufacturing system. 2016-November, 1394–1399. Scopus. https://doi.org/10.1109/COASE.2016.7743572. Qi, Shi, Qi, Ma, Yuan, Wu, Shen (Max) (b0340) 2023; 69 Shahrabi, Adibi, Mahootchi (b0385) 2017; 110 Song, W., Chen, X., Li, Q., & Cao, Z. (2023). flexible job-shop scheduling via graph neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19(2), 1600–1610. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2022.3189725. Sotskov, Shakhlevich (b0415) 1995; 59 Morariu, Morariu, Răileanu, Borangiu (b0285) 2020; 120 Paeng, B., Park, I.-B., & Park, J. (2021). Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups. IEEE Access, 9, 101390–101401. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3097254. Pérez, Climent, Nicoló, Arbelaez, Salido (b0325) 2023; 126 Gui, Tang, Zhu, Zhang, Zhang (b0120) 2023; 180 Chelliah, Latchoumi, Senthilselvi (b0055) 2024; 26 Ingimundardottir, Runarsson (b0165) 2011 Chimunhu, Topal, Ajak, Asad (b0065) 2022; 77 Jun, Lee, Chun (b0175) 2019; 57 Wang, Zhang, Yu, Zhang (b0485) 2014 Hartmann, Briskorn (b0145) 2022; 297 Wu, Yan, Guan, Wei (b0505) 2024; 131 Mohan, Lanka, Rao (b0280) 2019; 30 Uzunoglu, Gahm, Wahl, Tuma (b0460) 2023; 151 Wang, Tang (b0480) 2017; 79 Li, Wang, Sawhney (b0225) 2012; 221 Wang, Laili, Zhang, Liu (b0475) 2024 Morinaga, Tang, Iwamura, Hirabayashi (b0290) 2023; 217 Rinciog, Meyer (b0350) 2022; 107 Takeda Berger, Zanella, Frazzon (b0430) 2019; 52 Zhang, Xu, Qiao (b0550) 2023; 11 Abidi, M. H., Alkhalefah, H., Mohammed, M. K., Umer, U., & Qudeiri, J. E. A. (2020). Optimal scheduling of flexible manufacturing system using improved lion-based hybrid machine learning approach. IEEE Access, 8, 96088–96114. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2997663. Sobottka, Kamhuber, Faezirad, Sihn (b0405) 2019; 39 Jungbluth, Gafur, Popper, Yfantis, Ruskowski (b0180) 2022; 55 Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2021). An advanced LSTM model for optimal scheduling in smart logistic environment: E-commerce case. IEEE Access, 9, 126337–126356. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3111306. Mahraz, Benabbou, Berrado (b0260) 2022; 9 Gabel, Riedmiller (b0100) 2012; 50 Noriega, Pourrahimian (b0305) 2022; 77 Azab, Nafea, Shihata, Mashaly (b0035) 2021; 11 Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016). Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times. International Journal of Production Research, 54(22), 6812–6824. Scopus. https://doi.org/10.1080/00207543.2016.1178406. Dogan (10.1016/j.cie.2025.111243_b0075) 2021; 166 Shiue (10.1016/j.cie.2025.111243_b0395) 2018; 125 Lang (10.1016/j.cie.2025.111243_b0200) 2021; 172 Zhang (10.1016/j.cie.2025.111243_b0535) 2022; 14 Zhang (10.1016/j.cie.2025.111243_b0545) 2020; 33 Liu (10.1016/j.cie.2025.111243_b0245) 2022; 60 Min (10.1016/j.cie.2025.111243_b0275) 2019; 49 Arisha (10.1016/j.cie.2025.111243_b0020) 2001 Qi (10.1016/j.cie.2025.111243_b0340) 2023; 69 Camur (10.1016/j.cie.2025.111243_b0045) 2024; 247 Jungbluth (10.1016/j.cie.2025.111243_b0180) 2022; 55 Malviya (10.1016/j.cie.2025.111243_b0265) 2024; 12 Takeda Berger (10.1016/j.cie.2025.111243_b0430) 2019; 52 De Jong (10.1016/j.cie.2025.111243_b0070) 2017 Dong (10.1016/j.cie.2025.111243_b0080) 2022; 12 10.1016/j.cie.2025.111243_b0195 Lei (10.1016/j.cie.2025.111243_b0210) 2022; 205 Xie (10.1016/j.cie.2025.111243_b0510) 2019; 1 Togo (10.1016/j.cie.2025.111243_b0450) 2022; 12 Morinaga (10.1016/j.cie.2025.111243_b0290) 2023; 217 Pournader (10.1016/j.cie.2025.111243_b0335) 2021; 241 10.1016/j.cie.2025.111243_b0500 Subramaniyan (10.1016/j.cie.2025.111243_b0425) 2020; 55 10.1016/j.cie.2025.111243_b0465 Gabel (10.1016/j.cie.2025.111243_b0100) 2012; 50 Waschneck (10.1016/j.cie.2025.111243_b0495) 2018; 72 Mihoubi (10.1016/j.cie.2025.111243_b0270) 2021; 59 Mohan (10.1016/j.cie.2025.111243_b0280) 2019; 30 Pinedo (10.1016/j.cie.2025.111243_b0330) 1992 Serrano-Ruiz (10.1016/j.cie.2025.111243_b0375) 2024; 38 Tirkolaee (10.1016/j.cie.2025.111243_b0445) 2021; 2021 Noriega (10.1016/j.cie.2025.111243_b0305) 2022; 77 Arisha (10.1016/j.cie.2025.111243_b0025) 2002 Habib (10.1016/j.cie.2025.111243_b0135) 2016 Ostermeier (10.1016/j.cie.2025.111243_b0310) 2024; 27 Grumbach (10.1016/j.cie.2025.111243_b0115) 2024; 35 Kardos (10.1016/j.cie.2025.111243_b0190) 2021; 97 Mahraz (10.1016/j.cie.2025.111243_b0260) 2022; 9 10.1016/j.cie.2025.111243_b0155 Wang (10.1016/j.cie.2025.111243_b0480) 2017; 79 Azab (10.1016/j.cie.2025.111243_b0035) 2021; 11 Wu (10.1016/j.cie.2025.111243_b0505) 2024; 131 Gui (10.1016/j.cie.2025.111243_b0120) 2023; 180 Yenisey (10.1016/j.cie.2025.111243_b0525) 2014; 45 Golmohammadi (10.1016/j.cie.2025.111243_b0110) 2013; 51 Snoeck (10.1016/j.cie.2025.111243_b0400) 2020; 46 Hartmann (10.1016/j.cie.2025.111243_b0145) 2022; 297 Tang (10.1016/j.cie.2025.111243_b0440) 2024; 237 10.1016/j.cie.2025.111243_b0170 He (10.1016/j.cie.2025.111243_b0150) 2019; 51 Yang (10.1016/j.cie.2025.111243_b0520) 2022; 15 Li (10.1016/j.cie.2025.111243_b0225) 2012; 221 Uzunoglu (10.1016/j.cie.2025.111243_b0460) 2023; 151 Guo (10.1016/j.cie.2025.111243_b0130) 2020; 32 Mahmud (10.1016/j.cie.2025.111243_b0255) 2022; 251 10.1016/j.cie.2025.111243_b0320 Shahrabi (10.1016/j.cie.2025.111243_b0385) 2017; 110 Wang (10.1016/j.cie.2025.111243_b0485) 2014 10.1016/j.cie.2025.111243_b0205 Ingimundardottir (10.1016/j.cie.2025.111243_b0165) 2011 Naimi (10.1016/j.cie.2025.111243_b0295) 2021; 13 10.1016/j.cie.2025.111243_b0140 10.1016/j.cie.2025.111243_b0380 Wang (10.1016/j.cie.2025.111243_b0470) 2021; 190 10.1016/j.cie.2025.111243_b0410 Yamashiro (10.1016/j.cie.2025.111243_b0515) 2021; 8 Chen (10.1016/j.cie.2025.111243_b0060) 2024; 09544089241234117 Arviv (10.1016/j.cie.2025.111243_b0030) 2016; 54 Zhang (10.1016/j.cie.2025.111243_b0550) 2023; 11 Li (10.1016/j.cie.2025.111243_b0220) 2023; 146 Takeda-Berger (10.1016/j.cie.2025.111243_b0435) 2020 Pérez (10.1016/j.cie.2025.111243_b0325) 2023; 126 Ruiz (10.1016/j.cie.2025.111243_b0365) 2010; 205 Cai (10.1016/j.cie.2025.111243_b0040) 2023; 85 Zhai (10.1016/j.cie.2025.111243_b0530) 2021; 61 Juros (10.1016/j.cie.2025.111243_b0185) 2022 Sotskov (10.1016/j.cie.2025.111243_b0415) 1995; 59 Waschneck (10.1016/j.cie.2025.111243_b0490) 2018 Morariu (10.1016/j.cie.2025.111243_b0285) 2020; 120 Su (10.1016/j.cie.2025.111243_b0420) 2023; 145 Akbari (10.1016/j.cie.2025.111243_b0010) 2021; 28 Tremblet (10.1016/j.cie.2025.111243_b0455) 2023 Rinciog (10.1016/j.cie.2025.111243_b0350) 2022; 107 Schlenkrich (10.1016/j.cie.2025.111243_b0370) 2023; 217 Carrilho (10.1016/j.cie.2025.111243_b0050) 2024; 184 Lin (10.1016/j.cie.2025.111243_b0230) 2022; 7 Wang (10.1016/j.cie.2025.111243_b0475) 2024 Qu (10.1016/j.cie.2025.111243_b0345) 2015 Rohaninejad (10.1016/j.cie.2025.111243_b0360) 2022; 60 Alexopoulos (10.1016/j.cie.2025.111243_b0015) 2023; 56 10.1016/j.cie.2025.111243_b0240 Đumić (10.1016/j.cie.2025.111243_b0085) 2018; 86 10.1016/j.cie.2025.111243_b0355 Chimunhu (10.1016/j.cie.2025.111243_b0065) 2022; 77 Ouelhadj (10.1016/j.cie.2025.111243_b0315) 2009; 12 Hubbs (10.1016/j.cie.2025.111243_b0160) 2020; 141 Liu (10.1016/j.cie.2025.111243_b0235) 2010; 37 Guo (10.1016/j.cie.2025.111243_b0125) 2021; 167 Shi (10.1016/j.cie.2025.111243_b0390) 2021; 136 Chelliah (10.1016/j.cie.2025.111243_b0055) 2024; 26 10.1016/j.cie.2025.111243_b0250 Zhang (10.1016/j.cie.2025.111243_b0540) 2023; 146 Li (10.1016/j.cie.2025.111243_b0215) 2020; 110 10.1016/j.cie.2025.111243_b0005 Ghasemi (10.1016/j.cie.2025.111243_b0105) 2024; 100599 Ni (10.1016/j.cie.2025.111243_b0300) 2020; 11 Jun (10.1016/j.cie.2025.111243_b0175) 2019; 57 Sobottka (10.1016/j.cie.2025.111243_b0405) 2019; 39 |
References_xml | – reference: Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016). Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times. International Journal of Production Research, 54(22), 6812–6824. Scopus. https://doi.org/10.1080/00207543.2016.1178406. – volume: 136 year: 2021 ident: b0390 article-title: A learning-based two-stage optimization method for customer order scheduling publication-title: Computers & Operations Research – volume: 12 start-page: 5 year: 2022 ident: b0080 article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach publication-title: Applied Sciences – year: 2001 ident: b0020 article-title: Job shop scheduling problem: An overview publication-title: Conference Papers – volume: 61 start-page: 830 year: 2021 end-page: 855 ident: b0530 article-title: Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning publication-title: Journal of Manufacturing Systems – volume: 38 year: 2024 ident: b0375 article-title: Job shop smart manufacturing scheduling by deep reinforcement learning publication-title: Journal of Industrial Information Integration – volume: 60 start-page: 4049 year: 2022 end-page: 4069 ident: b0245 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: International Journal of Production Research – volume: 33 start-page: 1621 year: 2020 end-page: 1632 ident: b0545 article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning publication-title: Advances in Neural Information Processing Systems – reference: Abidi, M. H., Alkhalefah, H., Mohammed, M. K., Umer, U., & Qudeiri, J. E. A. (2020). Optimal scheduling of flexible manufacturing system using improved lion-based hybrid machine learning approach. IEEE Access, 8, 96088–96114. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2997663. – volume: 97 start-page: 104 year: 2021 end-page: 109 ident: b0190 article-title: Dynamic scheduling in a job-shop production system with reinforcement learning publication-title: Procedia CIRP – volume: 166 year: 2021 ident: b0075 article-title: Machine learning and data mining in manufacturing publication-title: Expert Systems with Applications – reference: Paeng, B., Park, I.-B., & Park, J. (2021). Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups. IEEE Access, 9, 101390–101401. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3097254. – volume: 131 year: 2024 ident: b0505 article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time publication-title: Engineering Applications of Artificial Intelligence – volume: 32 start-page: 1857 year: 2020 end-page: 1868 ident: b0130 article-title: Application research of improved genetic algorithm based on machine learning in production scheduling publication-title: Neural Computing & Applications – start-page: 1 year: 2015 end-page: 8 ident: b0345 article-title: A centralized reinforcement learning approach for proactive scheduling in manufacturing publication-title: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA) – volume: 60 start-page: 6205 year: 2022 end-page: 6225 ident: b0360 article-title: A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines publication-title: International Journal of Production Research – reference: Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2021). An advanced LSTM model for optimal scheduling in smart logistic environment: E-commerce case. IEEE Access, 9, 126337–126356. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3111306. – reference: Ma, Y., Qiao, F., & Lu, J. (2016). Learning-based dynamic scheduling of semiconductor manufacturing system. 2016-November, 1394–1399. Scopus. https://doi.org/10.1109/COASE.2016.7743572. – start-page: 170 year: 2016 end-page: 175 ident: b0135 article-title: Optimal route selection in complex multi-stage supply chain networks using SARSA(λ) publication-title: 2016 19th International Conference on Computer and Information Technology (ICCIT) – volume: 77 year: 2022 ident: b0065 article-title: A review of machine learning applications for underground mine planning and scheduling publication-title: Resources Policy – volume: 49 start-page: 502 year: 2019 end-page: 519 ident: b0275 article-title: Machine learning based digital twin framework for production optimization in petrochemical industry publication-title: International Journal of Information Management – volume: 27 start-page: 29 year: 2024 end-page: 49 ident: b0310 article-title: A review and classification of scheduling objectives in unpaced flow shops for discrete manufacturing publication-title: Journal of Scheduling – volume: 69 start-page: 759 year: 2023 end-page: 773 ident: b0340 article-title: A practical end-to-end inventory management model with deep learning publication-title: Management Science – volume: 141 year: 2020 ident: b0160 article-title: A deep reinforcement learning approach for chemical production scheduling publication-title: Computers & Chemical Engineering – volume: 51 year: 2019 ident: b0150 article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times publication-title: Swarm and Evolutionary Computation – volume: 77 year: 2022 ident: b0305 article-title: A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning publication-title: Resources Policy – volume: 13 start-page: 23 year: 2021 ident: b0295 article-title: A Q-learning rescheduling approach to the flexible job shop problem combining energy and productivity objectives publication-title: Sustainability – volume: 100599 year: 2024 ident: b0105 article-title: Simulation optimization applied to production scheduling in the era of industry 4.0: A review and future roadmap publication-title: Journal of Industrial Information Integration – volume: 297 start-page: 1 year: 2022 end-page: 14 ident: b0145 article-title: An updated survey of variants and extensions of the resource-constrained project scheduling problem publication-title: European Journal of Operational Research – volume: 110 start-page: 75 year: 2017 end-page: 82 ident: b0385 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering – volume: 125 start-page: 604 year: 2018 end-page: 614 ident: b0395 article-title: Real-time scheduling for a smart factory using a reinforcement learning approach publication-title: Computers & Industrial Engineering – start-page: 1516 year: 2017 end-page: 1521 ident: b0070 article-title: Big data in automation: Towards generalized makespan estimation in shop scheduling problems publication-title: 2017 13th IEEE Conference on Automation Science and Engineering (CASE) – volume: 09544089241234117 year: 2024 ident: b0060 article-title: Optimizing production logistics through advanced machine learning techniques: A study on resource allocation for small-batch and multi-variety challenges publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering – start-page: 865 year: 2022 end-page: 870 ident: b0185 article-title: Exact solving scheduling problems accelerated by graph neural networks publication-title: 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO) – reference: Kim, H., Lim, D.-E., & Lee, S. (2020). Deep learning-based dynamic scheduling for semiconductor manufacturing with high uncertainty of automated material handling system capability. IEEE Transactions on Semiconductor Manufacturing, 33(1), 13–22. IEEE Transactions on Semiconductor Manufacturing. https://doi.org/10.1109/TSM.2020.2965293. – start-page: 761 year: 2014 end-page: 771 ident: b0485 publication-title: Data mining based approach for jobshop scheduling – volume: 8 year: 2021 ident: b0515 article-title: Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem publication-title: Operations Research Perspectives – volume: 12 start-page: 417 year: 2009 end-page: 431 ident: b0315 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: Journal of Scheduling – volume: 50 start-page: 41 year: 2012 end-page: 61 ident: b0100 article-title: Distributed policy search reinforcement learning for job-shop scheduling tasks publication-title: International Journal of Production Research – volume: 172 year: 2021 ident: b0200 article-title: NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies publication-title: Expert Systems with Applications – volume: 45 start-page: 119 year: 2014 end-page: 135 ident: b0525 article-title: Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends publication-title: Omega – volume: 79 start-page: 60 year: 2017 end-page: 77 ident: b0480 article-title: A machine-learning based memetic algorithm for the multi-objective permutation flowshop scheduling problem publication-title: Computers & Operations Research – volume: 11 year: 2021 ident: b0035 article-title: A Machine-learning-assisted simulation approach for incorporating predictive maintenance in dynamic flow-shop scheduling publication-title: Applied Sciences – volume: 237 year: 2024 ident: b0440 article-title: A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem publication-title: Expert Systems with Applications – reference: Liu, C.-L., Tseng, C.-J., Huang, T.-H., & Wang, J.-W. (2023). dynamic parallel machine scheduling with deep Q-network. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2023.3289322. – start-page: 1 year: 2023 end-page: 17 ident: b0455 article-title: Makespan estimation in a flexible job-shop scheduling environment using machine learning publication-title: International Journal of Production Research – year: 2024 ident: b0475 article-title: Hybrid task scheduling in cloud manufacturing with sparse-reward deep reinforcement learning publication-title: IEEE Transactions on Automation Science and Engineering, 1–15. IEEE Transactions on Automation Science and Engineering – volume: 7 year: 2022 ident: b0230 article-title: An innovative machine learning model for supply chain management publication-title: Journal of Innovation & Knowledge – start-page: 35 year: 1992 end-page: 42 ident: b0330 article-title: Scheduling: Theory, algorithms and systems development publication-title: Operations Research Proceedings 1991 – volume: 241 year: 2021 ident: b0335 article-title: Artificial intelligence applications in supply chain management publication-title: International Journal of Production Economics – volume: 59 start-page: 5790 year: 2021 end-page: 5808 ident: b0270 article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem publication-title: International Journal of Production Research – volume: 54 start-page: 1196 year: 2016 end-page: 1209 ident: b0030 article-title: Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem publication-title: International Journal of Production Research – volume: 145 year: 2023 ident: b0420 article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem publication-title: Applied Soft Computing – reference: Wenzel, H., Smit, D., & Sardesai, S. (2019). A literature review on machine learning in supply chain management. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27 (pp. 413–441). Berlin: epubli GmbH. https://doi.org/10.15480/882.2478. – volume: 247 year: 2024 ident: b0045 article-title: Enhancing supply chain resilience: A machine learning approach for predicting product availability dates under disruption publication-title: Expert Systems with Applications – volume: 205 year: 2022 ident: b0210 article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem publication-title: Expert Systems with Applications – volume: 120 year: 2020 ident: b0285 article-title: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems publication-title: Computers in Industry – volume: 205 start-page: 1 year: 2010 end-page: 18 ident: b0365 article-title: The hybrid flow shop scheduling problem publication-title: European Journal of Operational Research – year: 2002 ident: b0025 article-title: Flow shop scheduling problem: A computational study publication-title: Conference Papers – volume: 26 start-page: 1731 year: 2024 end-page: 1747 ident: b0055 article-title: Analysis of demand forecasting of agriculture using machine learning algorithm publication-title: Environment, Development and Sustainability – volume: 46 start-page: 229 year: 2020 end-page: 236 ident: b0400 article-title: Route learning: A machine learning-based approach to infer constrained customers in delivery routes publication-title: Transportation Research Procedia – reference: Rodammer, F. A., & White, K. P. (1988). A recent survey of production scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 18(6), 841–851. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/21.23085. – volume: 1 start-page: 67 year: 2019 end-page: 77 ident: b0510 article-title: Review on flexible job shop scheduling publication-title: IET Collaborative Intelligent Manufacturing – volume: 35 start-page: 667 year: 2024 end-page: 686 ident: b0115 article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning publication-title: Journal of Intelligent Manufacturing – volume: 28 start-page: 2977 year: 2021 end-page: 3005 ident: b0010 article-title: A systematic review of machine learning in logistics and supply chain management: Current trends and future directions publication-title: Benchmarking: An International Journal – volume: 107 start-page: 1112 year: 2022 end-page: 1119 ident: b0350 article-title: Towards standardising reinforcement learning approaches for production scheduling problems publication-title: Procedia CIRP – start-page: 409 year: 2020 end-page: 419 ident: b0435 article-title: Machine learning in production scheduling: An overview of the academic literature publication-title: Dynamics in Logistics – volume: 180 year: 2023 ident: b0120 article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach publication-title: Computers & Industrial Engineering – volume: 57 start-page: 3290 year: 2019 end-page: 3310 ident: b0175 article-title: Learning dispatching rules using random forest in flexible job shop scheduling problems publication-title: International Journal of Production Research – volume: 14 start-page: 9 year: 2022 ident: b0535 article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization publication-title: Sustainability – volume: 30 start-page: 34 year: 2019 end-page: 39 ident: b0280 article-title: A review of dynamic job shop scheduling techniques publication-title: Procedia Manufacturing – volume: 251 year: 2022 ident: b0255 article-title: A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems publication-title: Knowledge-Based Systems – volume: 72 start-page: 1264 year: 2018 end-page: 1269 ident: b0495 article-title: Optimization of global production scheduling with deep reinforcement learning publication-title: Procedia CIRP – volume: 2021 year: 2021 ident: b0445 article-title: Application of machine learning in supply chain management: A comprehensive overview of the main areas publication-title: Mathematical Problems in Engineering – volume: 151 year: 2023 ident: b0460 article-title: Learning-augmented heuristics for scheduling parallel serial-batch processing machines publication-title: Computers & Operations Research – volume: 146 year: 2023 ident: b0540 article-title: Q-learning-based hyper-heuristic evolutionary algorithm for the distributed assembly blocking flowshop scheduling problem publication-title: Applied Soft Computing – reference: Layeb, S. B., Jaoua, A., Bouasker, H., & Baklouti, Y. (2023). Reinforcement learning based graphical user interface to solve the permutation flow shop problem. Lecture Notes in Networks and Systems, 569 LNNS, 1058–1068. Scopus. https://doi.org/10.1007/978-3-031-19958-5_99. – reference: Sha, L., Abdelzaher, T., årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., & Mok, A. K. (2004). Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems, 28(2), 101–155. https://doi.org/10.1023/B:TIME.0000045315.61234.1e. – volume: 217 start-page: 1479 year: 2023 end-page: 1486 ident: b0290 article-title: An improved method of job shop scheduling using machine learning and mathematical optimization publication-title: Procedia Computer Science – volume: 56 start-page: 2963 year: 2023 end-page: 2968 ident: b0015 article-title: Machine learning agents augmented by digital twinning for smart production scheduling publication-title: IFAC-PapersOnLine – volume: 12 start-page: 1 year: 2024 ident: b0265 article-title: A systematic study on effective demand prediction using machine learning. Journal of Integrated publication-title: Science and Technology – volume: 52 start-page: 1343 year: 2019 end-page: 1348 ident: b0430 article-title: Towards a data-driven predictive-reactive production scheduling approach based on inventory availability publication-title: IFAC-PapersOnLine – volume: 11 start-page: 20 year: 2023 ident: b0550 article-title: Multi-objective Q-learning-based brain storm optimization for integrated distributed flow shop and distribution scheduling problems publication-title: Mathematics – volume: 9 start-page: 398 year: 2022 end-page: 416 ident: b0260 article-title: Machine learning in supply chain management: A systematic literature review publication-title: International Journal of Supply and Operations Management – volume: 59 start-page: 237 year: 1995 end-page: 266 ident: b0415 article-title: NP-hardness of shop-scheduling problems with three jobs publication-title: Discrete Applied Mathematics – volume: 12 start-page: 19 year: 2022 ident: b0450 article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems publication-title: Applied Sciences – reference: Han, B.-A., & Yang, J.-J. (2020). Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access, 8, 186474–186495. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3029868. – volume: 190 year: 2021 ident: b0470 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Computer Networks – volume: 126 year: 2023 ident: b0325 article-title: A hybrid metaheuristic with learning for a real supply chain scheduling problem publication-title: Engineering Applications of Artificial Intelligence – volume: 217 start-page: 1028 year: 2023 end-page: 1037 ident: b0370 article-title: Solving large scale industrial production scheduling problems with complex constraints: An overview of the state-of-the-art publication-title: Procedia Computer Science – volume: 167 year: 2021 ident: b0125 article-title: Automatic detection of the best performing priority rule for the resource-constrained project scheduling problem publication-title: Expert Systems with Applications – volume: 221 start-page: 99 year: 2012 end-page: 109 ident: b0225 article-title: Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems publication-title: European Journal of Operational Research – start-page: 301 year: 2018 end-page: 306 ident: b0490 article-title: Deep reinforcement learning for semiconductor production scheduling publication-title: 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) – volume: 86 start-page: 211 year: 2018 end-page: 221 ident: b0085 article-title: Evolving priority rules for resource constrained project scheduling problem with genetic programming publication-title: Future Generation Computer Systems – volume: 184 year: 2024 ident: b0050 article-title: A novel exact formulation for parallel machine scheduling problems publication-title: Computers and Chemical Engineering – volume: 110 start-page: 2445 year: 2020 end-page: 2463 ident: b0215 article-title: Machine learning and optimization for production rescheduling in Industry 4.0 publication-title: The International Journal of Advanced Manufacturing Technology – volume: 85 year: 2023 ident: b0040 article-title: Deep reinforcement learning for solving resource constrained project scheduling problems with resource disruptions publication-title: Robotics and Computer-Integrated Manufacturing – volume: 55 start-page: 156 year: 2022 end-page: 162 ident: b0180 article-title: Reinforcement learning-based scheduling of a job-shop process with distributedly controlled robotic manipulators for transport operations publication-title: IFAC-PapersOnLine – volume: 146 year: 2023 ident: b0220 article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming publication-title: Applied Soft Computing – volume: 15 year: 2022 ident: b0520 article-title: A review: Machine learning for combinatorial optimization problems in energy areas publication-title: Algorithms – start-page: 263 year: 2011 end-page: 277 ident: b0165 article-title: Supervised learning linear priority dispatch rules for job-shop scheduling publication-title: Learning and Intelligent Optimization – reference: Song, W., Chen, X., Li, Q., & Cao, Z. (2023). flexible job-shop scheduling via graph neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19(2), 1600–1610. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2022.3189725. – volume: 51 start-page: 5142 year: 2013 end-page: 5157 ident: b0110 article-title: A neural network decision-making model for job-shop scheduling publication-title: International Journal of Production Research – volume: 11 start-page: 1463 year: 2020 end-page: 1482 ident: b0300 article-title: A systematic review of the research trends of machine learning in supply chain management publication-title: International Journal of Machine Learning and Cybernetics – volume: 55 start-page: 143 year: 2020 end-page: 158 ident: b0425 article-title: A generic hierarchical clustering approach for detecting bottlenecks in manufacturing publication-title: Journal of Manufacturing Systems – reference: Wang, L., Pan, Z., & Wang, J. (2021). A review of reinforcement learning based intelligent optimization for manufacturing scheduling. Complex System Modeling and Simulation, 1(4), 257–270. Complex System Modeling and Simulation. https://doi.org/10.23919/CSMS.2021.0027. – volume: 37 start-page: 7831 year: 2010 end-page: 7837 ident: b0235 article-title: A coordinated scheduling system for customer orders scheduling problem in job shop environments publication-title: Expert Systems with Applications – volume: 39 start-page: 1844 year: 2019 end-page: 1853 ident: b0405 article-title: Potential for machine learning in optimized production planning with hybrid simulation publication-title: Procedia Manufacturing – volume: 32 start-page: 1857 issue: 7 year: 2020 ident: 10.1016/j.cie.2025.111243_b0130 article-title: Application research of improved genetic algorithm based on machine learning in production scheduling publication-title: Neural Computing & Applications doi: 10.1007/s00521-019-04571-5 – volume: 27 start-page: 29 issue: 1 year: 2024 ident: 10.1016/j.cie.2025.111243_b0310 article-title: A review and classification of scheduling objectives in unpaced flow shops for discrete manufacturing publication-title: Journal of Scheduling doi: 10.1007/s10951-023-00795-5 – volume: 145 year: 2023 ident: 10.1016/j.cie.2025.111243_b0420 article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110596 – volume: 51 year: 2019 ident: 10.1016/j.cie.2025.111243_b0150 article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.100575 – ident: 10.1016/j.cie.2025.111243_b0250 doi: 10.1109/COASE.2016.7743572 – volume: 57 start-page: 3290 issue: 10 year: 2019 ident: 10.1016/j.cie.2025.111243_b0175 article-title: Learning dispatching rules using random forest in flexible job shop scheduling problems publication-title: International Journal of Production Research doi: 10.1080/00207543.2019.1581954 – ident: 10.1016/j.cie.2025.111243_b0355 doi: 10.1109/21.23085 – volume: 1 start-page: 67 issue: 3 year: 2019 ident: 10.1016/j.cie.2025.111243_b0510 article-title: Review on flexible job shop scheduling publication-title: IET Collaborative Intelligent Manufacturing doi: 10.1049/iet-cim.2018.0009 – volume: 172 year: 2021 ident: 10.1016/j.cie.2025.111243_b0200 article-title: NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114666 – volume: 79 start-page: 60 year: 2017 ident: 10.1016/j.cie.2025.111243_b0480 article-title: A machine-learning based memetic algorithm for the multi-objective permutation flowshop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2016.10.003 – ident: 10.1016/j.cie.2025.111243_b0380 doi: 10.1023/B:TIME.0000045315.61234.1e – volume: 59 start-page: 237 issue: 3 year: 1995 ident: 10.1016/j.cie.2025.111243_b0415 article-title: NP-hardness of shop-scheduling problems with three jobs publication-title: Discrete Applied Mathematics doi: 10.1016/0166-218X(95)80004-N – volume: 59 start-page: 5790 issue: 19 year: 2021 ident: 10.1016/j.cie.2025.111243_b0270 article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem publication-title: International Journal of Production Research doi: 10.1080/00207543.2020.1790686 – volume: 49 start-page: 502 year: 2019 ident: 10.1016/j.cie.2025.111243_b0275 article-title: Machine learning based digital twin framework for production optimization in petrochemical industry publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2019.05.020 – volume: 205 year: 2022 ident: 10.1016/j.cie.2025.111243_b0210 article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117796 – ident: 10.1016/j.cie.2025.111243_b0170 doi: 10.1109/ACCESS.2021.3111306 – volume: 9 start-page: 398 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.111243_b0260 article-title: Machine learning in supply chain management: A systematic literature review publication-title: International Journal of Supply and Operations Management – volume: 85 year: 2023 ident: 10.1016/j.cie.2025.111243_b0040 article-title: Deep reinforcement learning for solving resource constrained project scheduling problems with resource disruptions publication-title: Robotics and Computer-Integrated Manufacturing – volume: 35 start-page: 667 issue: 2 year: 2024 ident: 10.1016/j.cie.2025.111243_b0115 article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-02069-x – ident: 10.1016/j.cie.2025.111243_b0195 doi: 10.1109/TSM.2020.2965293 – volume: 15 issue: 6 year: 2022 ident: 10.1016/j.cie.2025.111243_b0520 article-title: A review: Machine learning for combinatorial optimization problems in energy areas publication-title: Algorithms doi: 10.3390/a15060205 – start-page: 865 year: 2022 ident: 10.1016/j.cie.2025.111243_b0185 article-title: Exact solving scheduling problems accelerated by graph neural networks – volume: 146 year: 2023 ident: 10.1016/j.cie.2025.111243_b0220 article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110658 – volume: 167 year: 2021 ident: 10.1016/j.cie.2025.111243_b0125 article-title: Automatic detection of the best performing priority rule for the resource-constrained project scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114116 – volume: 7 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.111243_b0230 article-title: An innovative machine learning model for supply chain management publication-title: Journal of Innovation & Knowledge doi: 10.1016/j.jik.2022.100276 – ident: 10.1016/j.cie.2025.111243_b0205 doi: 10.1007/978-3-031-19958-5_99 – start-page: 409 year: 2020 ident: 10.1016/j.cie.2025.111243_b0435 article-title: Machine learning in production scheduling: An overview of the academic literature – ident: 10.1016/j.cie.2025.111243_b0410 doi: 10.1109/TII.2022.3189725 – ident: 10.1016/j.cie.2025.111243_b0140 doi: 10.1109/ACCESS.2020.3029868 – volume: 38 year: 2024 ident: 10.1016/j.cie.2025.111243_b0375 article-title: Job shop smart manufacturing scheduling by deep reinforcement learning publication-title: Journal of Industrial Information Integration doi: 10.1016/j.jii.2024.100582 – volume: 55 start-page: 143 year: 2020 ident: 10.1016/j.cie.2025.111243_b0425 article-title: A generic hierarchical clustering approach for detecting bottlenecks in manufacturing publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.02.011 – ident: 10.1016/j.cie.2025.111243_b0500 – volume: 12 start-page: 417 issue: 4 year: 2009 ident: 10.1016/j.cie.2025.111243_b0315 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: Journal of Scheduling doi: 10.1007/s10951-008-0090-8 – year: 2002 ident: 10.1016/j.cie.2025.111243_b0025 article-title: Flow shop scheduling problem: A computational study publication-title: Conference Papers – volume: 30 start-page: 34 year: 2019 ident: 10.1016/j.cie.2025.111243_b0280 article-title: A review of dynamic job shop scheduling techniques publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2019.02.006 – volume: 241 year: 2021 ident: 10.1016/j.cie.2025.111243_b0335 article-title: Artificial intelligence applications in supply chain management publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2021.108250 – volume: 141 year: 2020 ident: 10.1016/j.cie.2025.111243_b0160 article-title: A deep reinforcement learning approach for chemical production scheduling publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2020.106982 – volume: 11 start-page: 20 issue: 20 year: 2023 ident: 10.1016/j.cie.2025.111243_b0550 article-title: Multi-objective Q-learning-based brain storm optimization for integrated distributed flow shop and distribution scheduling problems publication-title: Mathematics doi: 10.3390/math11204306 – volume: 8 year: 2021 ident: 10.1016/j.cie.2025.111243_b0515 article-title: Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2021.100196 – volume: 221 start-page: 99 issue: 1 year: 2012 ident: 10.1016/j.cie.2025.111243_b0225 article-title: Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.03.020 – volume: 69 start-page: 759 issue: 2 year: 2023 ident: 10.1016/j.cie.2025.111243_b0340 article-title: A practical end-to-end inventory management model with deep learning publication-title: Management Science doi: 10.1287/mnsc.2022.4564 – start-page: 1 year: 2023 ident: 10.1016/j.cie.2025.111243_b0455 article-title: Makespan estimation in a flexible job-shop scheduling environment using machine learning publication-title: International Journal of Production Research – volume: 14 start-page: 9 issue: 9 year: 2022 ident: 10.1016/j.cie.2025.111243_b0535 article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization publication-title: Sustainability – volume: 107 start-page: 1112 year: 2022 ident: 10.1016/j.cie.2025.111243_b0350 article-title: Towards standardising reinforcement learning approaches for production scheduling problems publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.05.117 – volume: 52 start-page: 1343 issue: 13 year: 2019 ident: 10.1016/j.cie.2025.111243_b0430 article-title: Towards a data-driven predictive-reactive production scheduling approach based on inventory availability publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.11.385 – year: 2001 ident: 10.1016/j.cie.2025.111243_b0020 article-title: Job shop scheduling problem: An overview publication-title: Conference Papers – volume: 151 year: 2023 ident: 10.1016/j.cie.2025.111243_b0460 article-title: Learning-augmented heuristics for scheduling parallel serial-batch processing machines publication-title: Computers & Operations Research doi: 10.1016/j.cor.2022.106122 – ident: 10.1016/j.cie.2025.111243_b0005 doi: 10.1109/ACCESS.2020.2997663 – volume: 11 issue: 24 year: 2021 ident: 10.1016/j.cie.2025.111243_b0035 article-title: A Machine-learning-assisted simulation approach for incorporating predictive maintenance in dynamic flow-shop scheduling publication-title: Applied Sciences doi: 10.3390/app112411725 – volume: 12 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.cie.2025.111243_b0265 article-title: A systematic study on effective demand prediction using machine learning. Journal of Integrated publication-title: Science and Technology – start-page: 35 year: 1992 ident: 10.1016/j.cie.2025.111243_b0330 article-title: Scheduling: Theory, algorithms and systems development – volume: 205 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.cie.2025.111243_b0365 article-title: The hybrid flow shop scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.09.024 – volume: 190 year: 2021 ident: 10.1016/j.cie.2025.111243_b0470 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Computer Networks doi: 10.1016/j.comnet.2021.107969 – volume: 09544089241234117 year: 2024 ident: 10.1016/j.cie.2025.111243_b0060 article-title: Optimizing production logistics through advanced machine learning techniques: A study on resource allocation for small-batch and multi-variety challenges publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering – volume: 77 year: 2022 ident: 10.1016/j.cie.2025.111243_b0305 article-title: A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning publication-title: Resources Policy doi: 10.1016/j.resourpol.2022.102727 – volume: 120 year: 2020 ident: 10.1016/j.cie.2025.111243_b0285 article-title: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems publication-title: Computers in Industry doi: 10.1016/j.compind.2020.103244 – volume: 77 year: 2022 ident: 10.1016/j.cie.2025.111243_b0065 article-title: A review of machine learning applications for underground mine planning and scheduling publication-title: Resources Policy doi: 10.1016/j.resourpol.2022.102693 – volume: 180 year: 2023 ident: 10.1016/j.cie.2025.111243_b0120 article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109255 – volume: 37 start-page: 7831 issue: 12 year: 2010 ident: 10.1016/j.cie.2025.111243_b0235 article-title: A coordinated scheduling system for customer orders scheduling problem in job shop environments publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.04.055 – volume: 51 start-page: 5142 issue: 17 year: 2013 ident: 10.1016/j.cie.2025.111243_b0110 article-title: A neural network decision-making model for job-shop scheduling publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.793476 – volume: 54 start-page: 1196 issue: 4 year: 2016 ident: 10.1016/j.cie.2025.111243_b0030 article-title: Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem publication-title: International Journal of Production Research doi: 10.1080/00207543.2015.1057297 – volume: 12 start-page: 5 issue: 5 year: 2022 ident: 10.1016/j.cie.2025.111243_b0080 article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach publication-title: Applied Sciences doi: 10.3390/app12052366 – volume: 2021 year: 2021 ident: 10.1016/j.cie.2025.111243_b0445 article-title: Application of machine learning in supply chain management: A comprehensive overview of the main areas publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/1476043 – volume: 100599 year: 2024 ident: 10.1016/j.cie.2025.111243_b0105 article-title: Simulation optimization applied to production scheduling in the era of industry 4.0: A review and future roadmap publication-title: Journal of Industrial Information Integration – volume: 11 start-page: 1463 issue: 7 year: 2020 ident: 10.1016/j.cie.2025.111243_b0300 article-title: A systematic review of the research trends of machine learning in supply chain management publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-019-01050-0 – volume: 146 year: 2023 ident: 10.1016/j.cie.2025.111243_b0540 article-title: Q-learning-based hyper-heuristic evolutionary algorithm for the distributed assembly blocking flowshop scheduling problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110695 – volume: 33 start-page: 1621 year: 2020 ident: 10.1016/j.cie.2025.111243_b0545 article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning publication-title: Advances in Neural Information Processing Systems – start-page: 1516 year: 2017 ident: 10.1016/j.cie.2025.111243_b0070 article-title: Big data in automation: Towards generalized makespan estimation in shop scheduling problems – volume: 46 start-page: 229 year: 2020 ident: 10.1016/j.cie.2025.111243_b0400 article-title: Route learning: A machine learning-based approach to infer constrained customers in delivery routes publication-title: Transportation Research Procedia doi: 10.1016/j.trpro.2020.03.185 – year: 2024 ident: 10.1016/j.cie.2025.111243_b0475 article-title: Hybrid task scheduling in cloud manufacturing with sparse-reward deep reinforcement learning – volume: 26 start-page: 1731 issue: 1 year: 2024 ident: 10.1016/j.cie.2025.111243_b0055 article-title: Analysis of demand forecasting of agriculture using machine learning algorithm publication-title: Environment, Development and Sustainability doi: 10.1007/s10668-022-02783-9 – volume: 39 start-page: 1844 year: 2019 ident: 10.1016/j.cie.2025.111243_b0405 article-title: Potential for machine learning in optimized production planning with hybrid simulation publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2020.01.254 – volume: 12 start-page: 19 issue: 19 year: 2022 ident: 10.1016/j.cie.2025.111243_b0450 article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems publication-title: Applied Sciences doi: 10.3390/app12199472 – start-page: 263 year: 2011 ident: 10.1016/j.cie.2025.111243_b0165 article-title: Supervised learning linear priority dispatch rules for job-shop scheduling – volume: 13 start-page: 23 issue: 23 year: 2021 ident: 10.1016/j.cie.2025.111243_b0295 article-title: A Q-learning rescheduling approach to the flexible job shop problem combining energy and productivity objectives publication-title: Sustainability doi: 10.3390/su132313016 – volume: 131 year: 2024 ident: 10.1016/j.cie.2025.111243_b0505 article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107790 – volume: 97 start-page: 104 year: 2021 ident: 10.1016/j.cie.2025.111243_b0190 article-title: Dynamic scheduling in a job-shop production system with reinforcement learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.05.210 – volume: 60 start-page: 4049 issue: 13 year: 2022 ident: 10.1016/j.cie.2025.111243_b0245 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: International Journal of Production Research doi: 10.1080/00207543.2022.2058432 – ident: 10.1016/j.cie.2025.111243_b0320 doi: 10.1109/ACCESS.2021.3097254 – volume: 251 year: 2022 ident: 10.1016/j.cie.2025.111243_b0255 article-title: A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109190 – volume: 61 start-page: 830 year: 2021 ident: 10.1016/j.cie.2025.111243_b0530 article-title: Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.02.006 – start-page: 170 year: 2016 ident: 10.1016/j.cie.2025.111243_b0135 article-title: Optimal route selection in complex multi-stage supply chain networks using SARSA(λ) – volume: 72 start-page: 1264 year: 2018 ident: 10.1016/j.cie.2025.111243_b0495 article-title: Optimization of global production scheduling with deep reinforcement learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.212 – volume: 56 start-page: 2963 issue: 2 year: 2023 ident: 10.1016/j.cie.2025.111243_b0015 article-title: Machine learning agents augmented by digital twinning for smart production scheduling publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2023.10.1420 – volume: 297 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.cie.2025.111243_b0145 article-title: An updated survey of variants and extensions of the resource-constrained project scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2021.05.004 – start-page: 301 year: 2018 ident: 10.1016/j.cie.2025.111243_b0490 article-title: Deep reinforcement learning for semiconductor production scheduling – volume: 86 start-page: 211 year: 2018 ident: 10.1016/j.cie.2025.111243_b0085 article-title: Evolving priority rules for resource constrained project scheduling problem with genetic programming publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.04.029 – volume: 126 year: 2023 ident: 10.1016/j.cie.2025.111243_b0325 article-title: A hybrid metaheuristic with learning for a real supply chain scheduling problem publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107188 – volume: 110 start-page: 75 year: 2017 ident: 10.1016/j.cie.2025.111243_b0385 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.05.026 – volume: 110 start-page: 2445 issue: 9 year: 2020 ident: 10.1016/j.cie.2025.111243_b0215 article-title: Machine learning and optimization for production rescheduling in Industry 4.0 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-020-05850-5 – volume: 217 start-page: 1479 year: 2023 ident: 10.1016/j.cie.2025.111243_b0290 article-title: An improved method of job shop scheduling using machine learning and mathematical optimization publication-title: Procedia Computer Science doi: 10.1016/j.procs.2022.12.347 – volume: 28 start-page: 2977 issue: 10 year: 2021 ident: 10.1016/j.cie.2025.111243_b0010 article-title: A systematic review of machine learning in logistics and supply chain management: Current trends and future directions publication-title: Benchmarking: An International Journal doi: 10.1108/BIJ-10-2020-0514 – volume: 184 year: 2024 ident: 10.1016/j.cie.2025.111243_b0050 article-title: A novel exact formulation for parallel machine scheduling problems publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2024.108649 – ident: 10.1016/j.cie.2025.111243_b0465 doi: 10.23919/CSMS.2021.0027 – ident: 10.1016/j.cie.2025.111243_b0155 doi: 10.1080/00207543.2016.1178406 – volume: 217 start-page: 1028 year: 2023 ident: 10.1016/j.cie.2025.111243_b0370 article-title: Solving large scale industrial production scheduling problems with complex constraints: An overview of the state-of-the-art publication-title: Procedia Computer Science doi: 10.1016/j.procs.2022.12.301 – volume: 60 start-page: 6205 issue: 20 year: 2022 ident: 10.1016/j.cie.2025.111243_b0360 article-title: A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines publication-title: International Journal of Production Research doi: 10.1080/00207543.2021.1987550 – ident: 10.1016/j.cie.2025.111243_b0240 doi: 10.1109/TSMC.2023.3289322 – volume: 166 year: 2021 ident: 10.1016/j.cie.2025.111243_b0075 article-title: Machine learning and data mining in manufacturing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114060 – start-page: 761 year: 2014 ident: 10.1016/j.cie.2025.111243_b0485 – volume: 55 start-page: 156 issue: 2 year: 2022 ident: 10.1016/j.cie.2025.111243_b0180 article-title: Reinforcement learning-based scheduling of a job-shop process with distributedly controlled robotic manipulators for transport operations publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.04.186 – volume: 125 start-page: 604 year: 2018 ident: 10.1016/j.cie.2025.111243_b0395 article-title: Real-time scheduling for a smart factory using a reinforcement learning approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.03.039 – volume: 247 year: 2024 ident: 10.1016/j.cie.2025.111243_b0045 article-title: Enhancing supply chain resilience: A machine learning approach for predicting product availability dates under disruption publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123226 – volume: 45 start-page: 119 year: 2014 ident: 10.1016/j.cie.2025.111243_b0525 article-title: Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends publication-title: Omega doi: 10.1016/j.omega.2013.07.004 – volume: 50 start-page: 41 issue: 1 year: 2012 ident: 10.1016/j.cie.2025.111243_b0100 article-title: Distributed policy search reinforcement learning for job-shop scheduling tasks publication-title: International Journal of Production Research doi: 10.1080/00207543.2011.571443 – start-page: 1 year: 2015 ident: 10.1016/j.cie.2025.111243_b0345 article-title: A centralized reinforcement learning approach for proactive scheduling in manufacturing – volume: 237 year: 2024 ident: 10.1016/j.cie.2025.111243_b0440 article-title: A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121723 – volume: 136 year: 2021 ident: 10.1016/j.cie.2025.111243_b0390 article-title: A learning-based two-stage optimization method for customer order scheduling publication-title: Computers & Operations Research doi: 10.1016/j.cor.2021.105488 |
SSID | ssj0004591 |
Score | 2.448623 |
Snippet | [Display omitted]
•Hybrid approaches with ML improve scheduling flexibility in dynamic environments.•Reinforcement learning dominates SCM scheduling for... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111243 |
SubjectTerms | Machine Learning Optimization Production scheduling Supply Chain Management |
Title | Using machine learning for production scheduling problems in the supply chain: A review |
URI | https://dx.doi.org/10.1016/j.cie.2025.111243 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH7qscDAUUCUo_LAhBTa-khatqqiKiC6QEW3yFchSISKloGF385z7EhFgoUtiewo-hx_73vyOwDOmJHWoHKI5micI57wXiSNFpHmSJNzhZeJSxS-m8TjKb-ZiVkFhmUujAurDNzvOb1g6_CkHdBsL7KsfY_c6_WDcMdbfV6FOmX9WNSgPri-HU_Wiob7xnk4PnITysPNIswL34xeIhWOOyhnv5unNZMz2oGtoBXJwH_OLlRs3oDtoBtJ2JXLBmyuFRXcg8ciCoC8FlGSloS2EE8E1SlZ-PquuBYEvVq0Mi4ZnYSmMkuS5QT1IFm6Tp-fRD_LLL8kA-LTW_ZhOrp6GI6j0D4h0ihaVlESdww1wqADxqhSLMbtrKUyiJg0igtrtWK4pS0zSImxNGj8Zc_KRJsOoyj8DqCWv-X2EIjzguau0mDCBac0UVrFrptfN0nirhG9JpyXqKULXyUjLcPHXlKEI3UQpx7iJvAS1_THUqfI4n9PO_rftGPYcHc-Zu8Eaqv3D3uKOmKlWlC9-Oq2wt_yDT8GxXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgADHwVE-fTAhGTaxnZc2KqKqkDbhVZ0s-LYhSIRKloGFn4759iRigQLW5TYUXSO372T390BnDOTWIPMgU7QOVMueZMmJhU05QiTE42X0iUK9wdxd8TvxmJcgnaRC-NklQH7PabnaB3u1II1a7PptPaA2Ov5g3DHW1d8BVa5YNLp-i6_Gkslw33bPBxN3fDiaDMXeeF7MUaMhEOOiLPfndOSw-lsw2ZgiqTlP2YHSjarwFZgjSTsyXkFNpZKCu7CY64BIK-5RtKS0BTiiSA3JTNf3RVXgmBMiz7GpaKT0FJmTqYZQTZI5q7P5ydJn5Npdk1axCe37MGoczNsd2lonkBTpCwLKuO6iYwwGH6xSGsW42ZOE23QXonRXFibaoYb2jKDgBgnBl1_0rSJTE2dRUj79qGcvWX2AIiLgSauzqDkgkeR1KmOXS-_hpRxw4hmFS4Kq6mZr5GhCvHYi0JzKGdi5U1cBV7YVf1YaIUY_ve0w_9NO4O17rDfU73bwf0RrLsnXr13DOXF-4c9QUax0Kf5H_MN4CzGQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+for+production+scheduling+problems+in+the+supply+chain%3A+A+review&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ben+Hamou%2C+Khalid+Ait&rft.au=Jarir%2C+Zahi&rft.au=Elfirdoussi%2C+Selwa&rft.date=2025-08-01&rft.issn=0360-8352&rft.volume=206&rft.spage=111243&rft_id=info:doi/10.1016%2Fj.cie.2025.111243&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2025_111243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |