A recent study of natural hydrogels: improving mechanical properties for biomedical applications
Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginat...
Saved in:
Published in | Biomedical materials (Bristol) Vol. 20; no. 2; pp. 22010 - 22027 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies. |
---|---|
AbstractList | Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies. Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies. |
Author | Shukla, Atharva Syaifie, Putri Hawa Rochman, Nurul Taufiqu Jaya Syaifullah, Syahnanda Mardliyati, Etik Jauhar, Muhammad Miftah |
Author_xml | – sequence: 1 givenname: Atharva orcidid: 0009-0005-9129-5709 surname: Shukla fullname: Shukla, Atharva organization: ACS (Anglo Chinese School) Jakarta—Cilangkap , Jl. Bantar Jati, Setu, Kec. Cipayung, Kota Jakarta Timur, Daerah Khusus Ibukota, Jakarta 13880, Indonesia – sequence: 2 givenname: Putri Hawa orcidid: 0000-0001-8566-7960 surname: Syaifie fullname: Syaifie, Putri Hawa organization: Nano Center Indonesia Center of Excellence Life Sciences, South Tangerang, Banten 15314, Indonesia – sequence: 3 givenname: Nurul Taufiqu orcidid: 0000-0003-1929-8188 surname: Rochman fullname: Rochman, Nurul Taufiqu organization: Research Center for Advanced Material , National Research and Innovation Agency (BRIN), Puspiptek, South Tangerang, Banten 15314, Indonesia – sequence: 4 givenname: Syahnanda orcidid: 0000-0003-2923-5826 surname: Jaya Syaifullah fullname: Jaya Syaifullah, Syahnanda organization: Center of Excellence Applied Nanotechnology , Nano Center Indonesia Research Institute Puspiptek Street, South Tangerang, Banten 15314, Indonesia – sequence: 5 givenname: Muhammad Miftah orcidid: 0000-0002-5826-5904 surname: Jauhar fullname: Jauhar, Muhammad Miftah organization: Universitas Gadjah Mada Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia – sequence: 6 givenname: Etik orcidid: 0000-0002-3621-9659 surname: Mardliyati fullname: Mardliyati, Etik organization: National Research and Innovation Agency (BRIN) Research Center for Vaccine and Drug, Cibinong 16911, Indonesia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39908671$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1PwzAQxS1UBC2wMyFvMFDqjyR22BDiS6rEAhKbcWynNUrsYCdI_e9xaekE053ufu_07k3AyHlnADjF6AojzmeYZXxaoPxtJnVFlN4D491otOszfAgmMX4glJc5LQ_AIS1LxAuGx-D9BgajjOth7Ae9gr6GTvZDkA1crnTwC9PEa2jbLvgv6xawNWopnVVpn0adCb01EdY-wMr61uifjey6JjW99S4eg_1aNtGcbOsReL2_e7l9nM6fH55ub-ZTRXLcTxnlkumykpIxKqkqNS_I-se8NFLhqs5VLQ2pSYElYYYrVmitMi4pzTNcaHoELjZ3k63PwcRetDYq0zTSGT9EQXFBecZYUSb0bIsOVbIsumBbGVbiN5UEoA2ggo8xmHqHYCTWpsQ6WbFOWWyCT5LzjcT6Tnz4Ibj0rKjaVhAkiECEoKTtdJ3Iyz_Ifw9_AxSnk84 |
CODEN | BMBUCS |
Cites_doi | 10.1016/j.ijbiomac.2024.131179 10.1016/j.lwt.2024.116552 10.1016/j.bioactmat.2024.02.010 10.1039/D2MA00932C 10.1016/j.bcdf.2023.100353 10.1016/j.ijbiomac.2024.132120 10.1016/j.colsurfa.2024.134434 10.1016/j.carbpol.2024.121820 10.1016/j.ijbiomac.2023.124623 10.3390/polym16111513 10.3390/gels9070517 10.1016/j.jmbbm.2020.103885 10.1016/j.eurpolymj.2023.112556 10.1016/j.ijbiomac.2020.11.068 10.1002/app.43260 10.3390/gels10030205 10.1016/j.mtbio.2024.100962 10.1039/D0TB02099K 10.3390/gels10070422 10.1016/j.jddst.2023.104470 10.3390/polym15092203 10.1016/j.foodhyd.2023.108768 10.3390/polym14204377 10.3390/polym14153023 10.1016/j.ijbiomac.2023.128126 10.1016/j.ijbiomac.2024.130190 10.3390/polym12112702 10.1016/j.ijbiomac.2023.125334 10.1016/j.ijbiomac.2023.127726 10.1016/j.matdes.2023.111729 10.3390/polym16131932 10.1016/j.addr.2012.09.009 10.1002/pat.6203 10.1016/j.addr.2012.09.010 10.1016/j.ijbiomac.2024.132767 10.1021/bm501361c 10.3390/biomedicines12071510 10.1007/s42452-020-04096-w 10.1016/j.jbiosc.2024.01.015 10.1016/j.ijbiomac.2021.11.069 10.1016/j.cplett.2022.139401 10.1021/acs.biomac.9b01274 10.3390/molecules28134988 10.1016/j.ijbiomac.2023.129006 10.1016/j.addr.2013.04.002 10.1016/j.colsurfa.2023.132890 10.1016/j.ijbiomac.2024.130258 10.1016/j.ijbiomac.2022.01.142 10.1007/s10924-017-0971-z 10.3390/pharmaceutics15102514 10.1016/j.actbio.2017.07.028 10.1021/acs.langmuir.2c02253 10.3390/nano11071656 10.1039/D2NR04598B 10.1016/j.chemosphere.2003.11.016 10.1016/j.ijbiomac.2024.133251 10.3390/ma16145161 10.3390/polym13040650 10.1016/j.heliyon.2024.e34074 10.1016/j.carbpol.2024.122204 10.1007/s12034-023-02930-6 10.1039/D2TB02775E 10.3390/gels10080527 10.1039/D0RA03733H 10.1016/j.biomaterials.2012.06.005 10.3390/polym16141990 10.1016/j.cis.2023.103000 10.1088/2053-1591/acb98e 10.1016/j.bioadv.2023.213532 10.1016/j.biomaterials.2014.10.051 10.1016/j.mtla.2024.102165 10.1016/j.msec.2018.07.016 10.1021/acsapm.3c03228 10.3390/md22100450 10.1038/s41392-021-00830-x 10.1016/B978-0-323-42865-1.00009-X 10.3390/jfb13030140 10.3390/bios14090415 |
ContentType | Journal Article |
Copyright | 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1748-605X/adb2cd |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-605X |
ExternalDocumentID | 39908671 10_1088_1748_605X_adb2cd bmmadb2cd |
Genre | Journal Article Review |
GroupedDBID | --- 1JI 23N 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RNS RO9 ROL RPA S3P SY9 W28 AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c251t-738a7d9baa773a3c9d862108859eac1bf5cfae2f261a27e8c76ddc48a335416d3 |
IEDL.DBID | IOP |
ISSN | 1748-6041 1748-605X |
IngestDate | Fri Jul 11 10:35:25 EDT 2025 Wed May 07 07:51:16 EDT 2025 Wed Aug 20 07:41:53 EDT 2025 Tue Mar 18 23:18:49 EDT 2025 Tue Mar 18 23:18:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | natural polymer hydrogel biomedical applications mechanical properties |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-738a7d9baa773a3c9d862108859eac1bf5cfae2f261a27e8c76ddc48a335416d3 |
Notes | BMM-106608.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3621-9659 0000-0001-8566-7960 0009-0005-9129-5709 0000-0003-1929-8188 0000-0002-5826-5904 0000-0003-2923-5826 |
PMID | 39908671 |
PQID | 3163847769 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmed_primary_39908671 proquest_miscellaneous_3163847769 iop_journals_10_1088_1748_605X_adb2cd crossref_primary_10_1088_1748_605X_adb2cd |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biomedical materials (Bristol) |
PublicationTitleAbbrev | BMM |
PublicationTitleAlternate | Biomed. Mater |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Mansha (bmmadb2cdbib73) 2024; 10 Zhang (bmmadb2cdbib19) 2022 Gonella (bmmadb2cdbib54) 2024; 10 Cabrera-Munguia (bmmadb2cdbib78) 2023; 46 Majeed (bmmadb2cdbib9) 2024; 330 Zhang (bmmadb2cdbib27) 2024; 22 Zhao (bmmadb2cdbib1) 2023; 15 Sánchez-Cid (bmmadb2cdbib6) 2022; 14 Jabeen (bmmadb2cdbib10) 2024; 35 Azam (bmmadb2cdbib77) 2023; 241 Kumar (bmmadb2cdbib67) 2016; 133 Jing (bmmadb2cdbib47) 2020; 10 Patil (bmmadb2cdbib75) 2018; 26 Christensen (bmmadb2cdbib57) 2019; 21 Gotoh (bmmadb2cdbib14) 2004; 55 Razzaq (bmmadb2cdbib61) 2024; 274 Yang (bmmadb2cdbib36) 2022; 14 Mehrjou (bmmadb2cdbib69) 2024; 263 Wang (bmmadb2cdbib21) 2024; 35 Chen (bmmadb2cdbib31) 2024; 6 Matricardi (bmmadb2cdbib58) 2013; 65 Hennink (bmmadb2cdbib63) 2012; 64 Mori (bmmadb2cdbib23) 2024; 137 Hoffman (bmmadb2cdbib64) 2012; 64 Liu (bmmadb2cdbib65) 2024; 270 McFetridge (bmmadb2cdbib52) 2023; 15 Lee (bmmadb2cdbib17) 2023; 28 Codrea (bmmadb2cdbib66) 2024; 16 Singh (bmmadb2cdbib62) 2023; 29 Singh (bmmadb2cdbib8) 2016 Zhang (bmmadb2cdbib44) 2024; 16 Li (bmmadb2cdbib20) 2024; 259 Enoch (bmmadb2cdbib11) 2024; 697 Sahoo (bmmadb2cdbib13) 2021; 3 Ferjaoui (bmmadb2cdbib16) 2024; 12 Alonso (bmmadb2cdbib42) 2021; 13 Munoz-Pinto (bmmadb2cdbib70) 2015; 40 Suo (bmmadb2cdbib59) 2018; 92 Xiang (bmmadb2cdbib46) 2022; 13 Mohandoss (bmmadb2cdbib12) 2024; 16 Li (bmmadb2cdbib71) 2023; 201 Chen (bmmadb2cdbib22) 2024; 36 Zhang (bmmadb2cdbib26) 2024; 254 Cai (bmmadb2cdbib30) 2024; 266 Xu (bmmadb2cdbib34) 2023; 321 Sharma (bmmadb2cdbib76) 2023; 84 Bashir (bmmadb2cdbib5) 2020; 12 Alhakamy (bmmadb2cdbib72) 2024; 10 Fletes-Vargas (bmmadb2cdbib53) 2023; 15 Kasi (bmmadb2cdbib79) 2023; 243 Bhar (bmmadb2cdbib25) 2022; 203 Park (bmmadb2cdbib24) 2024; 338 Jayawardena (bmmadb2cdbib51) 2023; 4 Lau (bmmadb2cdbib2) 2015; 16 Nguyen (bmmadb2cdbib56) 2012; 33 Cofelice (bmmadb2cdbib41) 2023; 142 Vedadghavami (bmmadb2cdbib3) 2017; 62 Wu (bmmadb2cdbib32) 2024; 25 Zhang (bmmadb2cdbib39) 2023; 16 Waresindo (bmmadb2cdbib35) 2023; 10 Hao (bmmadb2cdbib50) 2023; 227 Zheng (bmmadb2cdbib45) 2021; 9 Enoch (bmmadb2cdbib28) 2024; 682 Herrada-Manchón (bmmadb2cdbib40) 2023; 9 Huerta-López (bmmadb2cdbib18) 2021; 11 Nille (bmmadb2cdbib15) 2024; 257 Kim (bmmadb2cdbib60) 2021; 193 Wang (bmmadb2cdbib68) 2024; 205 Mahamoud (bmmadb2cdbib43) 2024; 10 Singh (bmmadb2cdbib74) 2022; 792 Cao (bmmadb2cdbib4) 2021; 6 Liu (bmmadb2cdbib7) 2024; 14 Liu (bmmadb2cdbib33) 2024; 275 Sarmah (bmmadb2cdbib37) 2023; 11 Foudazi (bmmadb2cdbib48) 2023; 39 Yu (bmmadb2cdbib38) 2021; 167 Della Sala (bmmadb2cdbib55) 2020; 110 Jiang (bmmadb2cdbib29) 2024; 263 Kotlarz (bmmadb2cdbib49) 2023; 153 |
References_xml | – volume: 266 year: 2024 ident: bmmadb2cdbib30 article-title: Multifunctional fish-skin collagen-based hydrogel sealant with dual-dynamic-bond cross-linked for rapid hemostasis and accelerated wound healing publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.131179 – volume: 205 year: 2024 ident: bmmadb2cdbib68 article-title: Role of undenatured type II collagen in novel ternary interpenetrating polymer networks hydrogel based on structural modulation and properties characterization publication-title: LWT doi: 10.1016/j.lwt.2024.116552 – volume: 35 start-page: 330 year: 2024 ident: bmmadb2cdbib21 article-title: Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2024.02.010 – volume: 4 start-page: 669 year: 2023 ident: bmmadb2cdbib51 article-title: Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions publication-title: Mater. Adv. doi: 10.1039/D2MA00932C – volume: 29 year: 2023 ident: bmmadb2cdbib62 article-title: Fabrication of acacia gum grafted copolymeric network hydrogel for biomedical applications publication-title: Bioact. Carbohydrate Dietary Fibre doi: 10.1016/j.bcdf.2023.100353 – volume: 270 year: 2024 ident: bmmadb2cdbib65 article-title: Chitosan-based GOx@ Co-MOF composite hydrogel: a promising strategy for enhanced antibacterial and wound healing effects publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.132120 – volume: 697 year: 2024 ident: bmmadb2cdbib11 article-title: Tuning the rheological properties of chitosan/alginate hydrogels for tissue engineering application publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2024.134434 – volume: 330 year: 2024 ident: bmmadb2cdbib9 article-title: Enhanced dye sequestration with natural polysaccharides-based hydrogels: a review publication-title: Carbohydrate Polym. doi: 10.1016/j.carbpol.2024.121820 – volume: 241 year: 2023 ident: bmmadb2cdbib77 article-title: Synthesis and characterization of natural fibers reinforced alginate hydrogel fibers loaded with diclofenac sodium for wound dressings publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.124623 – volume: 16 start-page: 1513 year: 2024 ident: bmmadb2cdbib12 article-title: Synthesis, characterization, and evaluation of silver nanoparticle-loaded carboxymethyl chitosan with sulfobetaine methacrylate hydrogel nanocomposites for biomedical applications publication-title: Polymers doi: 10.3390/polym16111513 – volume: 9 start-page: 517 year: 2023 ident: bmmadb2cdbib40 article-title: Essential guide to hydrogel rheology in extrusion 3D printing: how to measure it and why it matters? publication-title: Gels doi: 10.3390/gels9070517 – volume: 110 year: 2020 ident: bmmadb2cdbib55 article-title: Mechanical behavior of bioactive poly (ethylene glycol) diacrylate matrices for biomedical application publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.103885 – volume: 201 year: 2023 ident: bmmadb2cdbib71 article-title: Design and properties of alginate/gelatin/cellulose nanocrystals interpenetrating polymer network composite hydrogels based on in situ cross-linking publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2023.112556 – volume: 167 start-page: 1146 year: 2021 ident: bmmadb2cdbib38 article-title: Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.11.068 – volume: 133 year: 2016 ident: bmmadb2cdbib67 article-title: Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.43260 – volume: 10 start-page: 205 year: 2024 ident: bmmadb2cdbib73 article-title: Development of pH-responsive, thermosensitive, antibacterial, and anticancer CS/PVA/graphene blended hydrogels for controlled drug delivery publication-title: Gels doi: 10.3390/gels10030205 – volume: 25 year: 2024 ident: bmmadb2cdbib32 article-title: Injectable silk fibroin peptide nanofiber hydrogel composite scaffolds for cartilage regeneration publication-title: Mater. Today Bio doi: 10.1016/j.mtbio.2024.100962 – volume: 9 start-page: 1238 year: 2021 ident: bmmadb2cdbib45 article-title: Functional silk fibroin hydrogels: preparation, properties and applications publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02099K – volume: 10 start-page: 422 year: 2024 ident: bmmadb2cdbib54 article-title: Fabrication and characterization of porous PEGDA hydrogels for articular cartilage regeneration publication-title: Gels doi: 10.3390/gels10070422 – volume: 84 year: 2023 ident: bmmadb2cdbib76 article-title: Development of almond gum based copolymeric hydrogels for use in effectual colon-drug delivery publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2023.104470 – volume: 15 start-page: 2203 year: 2023 ident: bmmadb2cdbib53 article-title: Porous chitosan hydrogels produced by physical crosslinking: physicochemical, structural, and cytotoxic properties publication-title: Polymers doi: 10.3390/polym15092203 – volume: 142 year: 2023 ident: bmmadb2cdbib41 article-title: Effect of the xanthan gum on the rheological properties of alginate hydrogels publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2023.108768 – volume: 14 start-page: 4377 year: 2022 ident: bmmadb2cdbib36 article-title: Recent advances in smart hydrogels prepared by ionizing radiation technology for biomedical applications publication-title: Polymers doi: 10.3390/polym14204377 – volume: 14 start-page: 3023 year: 2022 ident: bmmadb2cdbib6 article-title: Novel trends in hydrogel development for biomedical applications: a review publication-title: Polymers doi: 10.3390/polym14153023 – volume: 257 year: 2024 ident: bmmadb2cdbib15 article-title: Route-dependent tailoring of carbon dot release in alginate hydrogel beads (HB-Alg@WTR-CDs): a versatile platform for biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.128126 – volume: 263 year: 2024 ident: bmmadb2cdbib29 article-title: Preparation and characterization of photosensitive methacrylate-grafted sodium carboxymethyl cellulose as an injectable material to fabricate hydrogels for biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.130190 – volume: 12 start-page: 2702 year: 2020 ident: bmmadb2cdbib5 article-title: Fundamental concepts of hydrogels: synthesis, properties, and their applications publication-title: Polymers doi: 10.3390/polym12112702 – volume: 243 year: 2023 ident: bmmadb2cdbib79 article-title: Chitosan and cellulose-based composite hydrogels with embedded titanium dioxide nanoparticles as candidates for biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.125334 – volume: 254 year: 2024 ident: bmmadb2cdbib26 article-title: A uniform-unsaturated crosslinking strategy to construct injectable alginate hydrogel publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.127726 – volume: 227 year: 2023 ident: bmmadb2cdbib50 article-title: 3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.111729 – volume: 16 start-page: 1932 year: 2024 ident: bmmadb2cdbib66 article-title: 3D-bioprinted gelatin methacryloyl-strontium-doped hydroxyapatite composite hydrogels scaffolds for bone tissue regeneration publication-title: Polymers doi: 10.3390/polym16131932 – volume: 64 start-page: 223 year: 2012 ident: bmmadb2cdbib63 article-title: Novel crosslinking methods to design hydrogels publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.009 – volume: 35 start-page: e6203 year: 2024 ident: bmmadb2cdbib10 article-title: Polysaccharides based biopolymers for biomedical applications: a review? publication-title: Polym. Adv. Technol. doi: 10.1002/pat.6203 – volume: 64 start-page: 18 year: 2012 ident: bmmadb2cdbib64 article-title: Hydrogels for biomedical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.010 – volume: 274 year: 2024 ident: bmmadb2cdbib61 article-title: Development and characterization of pH-responsive Delonix regia/mucin co-poly (acrylate) hydrogel for controlled drug delivery of metformin HCl publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.132767 – volume: 16 start-page: 28 year: 2015 ident: bmmadb2cdbib2 article-title: Opportunities for multicomponent hybrid hydrogels in biomedical applications publication-title: Biomacromolecules doi: 10.1021/bm501361c – volume: 12 start-page: 1510 year: 2024 ident: bmmadb2cdbib16 article-title: Design of alginate/gelatin hydrogels for biomedical applications: fine-tuning osteogenesis in dental pulp stem cells while preserving other cell behaviors publication-title: Biomedicines doi: 10.3390/biomedicines12071510 – volume: 3 start-page: 30 year: 2021 ident: bmmadb2cdbib13 article-title: Alginate and its application to tissue engineering publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-04096-w – start-page: 91 year: 2022 ident: bmmadb2cdbib19 – volume: 137 start-page: 463 year: 2024 ident: bmmadb2cdbib23 article-title: Interpenetrating gelatin/alginate mixed hydrogel: the simplest method to prepare an autoclavable scaffold publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2024.01.015 – volume: 193 start-page: 1068 year: 2021 ident: bmmadb2cdbib60 article-title: Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly (vinyl alcohol) publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.11.069 – volume: 792 year: 2022 ident: bmmadb2cdbib74 article-title: Development and characterization of Azadirachta indica gum-poly (2-hydroxyethyl methacrylate) crosslinked co-polymeric hydrogels for drug delivery applications publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2022.139401 – volume: 21 start-page: 356 year: 2019 ident: bmmadb2cdbib57 article-title: 3D printed hydrogel multiassay platforms for robust generation of engineered contractile tissues publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01274 – volume: 28 start-page: 4988 year: 2023 ident: bmmadb2cdbib17 article-title: Protein-based hydrogels and their biomedical applications publication-title: Molecules doi: 10.3390/molecules28134988 – volume: 259 year: 2024 ident: bmmadb2cdbib20 article-title: An injectable collagen peptide-based hydrogel with desirable antibacterial, self-healing and wound-healing properties based on multiple-dynamic crosslinking publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.129006 – volume: 65 start-page: 1172 year: 2013 ident: bmmadb2cdbib58 article-title: Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.04.002 – volume: 682 year: 2024 ident: bmmadb2cdbib28 article-title: Tailoring the rheological properties of biosynthesized copper oxide nanoparticles decorated carboxymethyl cellulose hydrogels for biomedical applications publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2023.132890 – volume: 263 year: 2024 ident: bmmadb2cdbib69 article-title: Sodium alginate/polyvinyl alcohol semi-interpenetrating hydrogels reinforced with PEG-grafted-graphene oxide publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.130258 – volume: 203 start-page: 623 year: 2022 ident: bmmadb2cdbib25 article-title: Silk-based phyto-hydrogel formulation expedites key events of wound healing in full-thickness skin defect model publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.01.142 – volume: 26 start-page: 596 year: 2018 ident: bmmadb2cdbib75 article-title: Exploration of the effect of chitosan and crosslinking agent concentration on the properties of dual responsive chitosan-g-poly (N-Isopropylacrylamide) co-polymeric particles publication-title: J. Polym. Environ. doi: 10.1007/s10924-017-0971-z – volume: 15 start-page: 2514 year: 2023 ident: bmmadb2cdbib1 article-title: Natural polymer-based hydrogels: from polymer to biomedical applications publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15102514 – volume: 62 start-page: 42 year: 2017 ident: bmmadb2cdbib3 article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.07.028 – volume: 39 start-page: 2092 year: 2023 ident: bmmadb2cdbib48 article-title: Porous hydrogels: present challenges and future opportunities publication-title: Langmuir doi: 10.1021/acs.langmuir.2c02253 – volume: 11 start-page: 1656 year: 2021 ident: bmmadb2cdbib18 article-title: Protein hydrogels: the Swiss army knife for enhanced mechanical and bioactive properties of biomaterials publication-title: Nanomaterials doi: 10.3390/nano11071656 – volume: 15 start-page: 1431 year: 2023 ident: bmmadb2cdbib52 article-title: A comparison of fixation methods for SEM analysis of self-assembling peptide hydrogel nanoarchitecture publication-title: Nanoscale doi: 10.1039/D2NR04598B – volume: 55 start-page: 135 year: 2004 ident: bmmadb2cdbib14 article-title: Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2003.11.016 – volume: 275 year: 2024 ident: bmmadb2cdbib33 article-title: Silk fibroin biohydrogel composites for loading and ordered release of multiple active ingredients with enhanced bioactivity publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.133251 – volume: 16 start-page: 5161 year: 2023 ident: bmmadb2cdbib39 article-title: Dynamic hydrogels with viscoelasticity and tunable stiffness for the regulation of cell behavior and fate publication-title: Materials doi: 10.3390/ma16145161 – volume: 13 start-page: 650 year: 2021 ident: bmmadb2cdbib42 article-title: Injectable hydrogels: from laboratory to industrialization publication-title: Polymers doi: 10.3390/polym13040650 – volume: 10 year: 2024 ident: bmmadb2cdbib72 article-title: Oral co-polymeric raft-forming nano gels for targeted empagliflozin delivery against stomach cancer (SGC7901) publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e34074 – volume: 338 year: 2024 ident: bmmadb2cdbib24 article-title: Cell-adhesive double network self-healing hydrogel capable of cell and drug encapsulation: new platform to construct biomimetic environment with bottom-up approach publication-title: Carbohydrate Polym. doi: 10.1016/j.carbpol.2024.122204 – volume: 46 start-page: 100 year: 2023 ident: bmmadb2cdbib78 article-title: Enhanced biocompatibility and bactericidal properties of hydrogels based on collagen–polyurethane–aluminium MOFs for biomedical applications publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-023-02930-6 – volume: 11 start-page: 2927 year: 2023 ident: bmmadb2cdbib37 article-title: Swelling induced mechanically tough starch–agar based hydrogel as a control release drug vehicle for wound dressing applications publication-title: J. Mater. Chem. B doi: 10.1039/D2TB02775E – volume: 10 start-page: 527 year: 2024 ident: bmmadb2cdbib43 article-title: Enhancement of mechanical properties of benign polyvinyl alcohol/agar hydrogel by crosslinking tannic acid and applying multiple freeze/thaw cycles publication-title: Gels doi: 10.3390/gels10080527 – volume: 10 start-page: 23592 year: 2020 ident: bmmadb2cdbib47 article-title: Tough, stretchable and compressive alginate-based hydrogels achieved by non-covalent interactions publication-title: RSC Adv. doi: 10.1039/D0RA03733H – volume: 33 start-page: 6682 year: 2012 ident: bmmadb2cdbib56 article-title: Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.005 – volume: 16 start-page: 1990 year: 2024 ident: bmmadb2cdbib44 article-title: Structure, property optimization, and adsorption properties of N,N′-methylenebisacrylamide cross-linked polyacrylic acid hydrogels under different curing conditions publication-title: Polymers doi: 10.3390/polym16141990 – volume: 321 year: 2023 ident: bmmadb2cdbib34 article-title: Biomedical applications of supramolecular hydrogels with enhanced mechanical properties publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2023.103000 – volume: 10 year: 2023 ident: bmmadb2cdbib35 article-title: Freeze–thaw hydrogel fabrication method: basic principles, synthesis parameters, properties, and biomedical applications publication-title: Mater. Res. Express doi: 10.1088/2053-1591/acb98e – volume: 153 year: 2023 ident: bmmadb2cdbib49 article-title: Cell seeding via bioprinted hydrogels supports cell migration into porous apatite-wollastonite bioceramic scaffolds for bone tissue engineering publication-title: Biomater. Adv. doi: 10.1016/j.bioadv.2023.213532 – volume: 40 start-page: 32 year: 2015 ident: bmmadb2cdbib70 article-title: Characterization of sequential collagen-poly (ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.051 – volume: 36 year: 2024 ident: bmmadb2cdbib22 article-title: Cross-linking of mesoporous bioactive glass nanoparticle incorporated gelatin hydrogels by tannic acid with enhanced mechanical performance and stability publication-title: Materialia doi: 10.1016/j.mtla.2024.102165 – volume: 92 start-page: 612 year: 2018 ident: bmmadb2cdbib59 article-title: Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.07.016 – volume: 6 start-page: 7340 year: 2024 ident: bmmadb2cdbib31 article-title: Fabrication of NIR-II-responsive polydextran aldehyde/gelatin/gold nanoparticle-decorated graphene oxide nanocomposite hydrogels for antibacterial applications publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.3c03228 – volume: 22 start-page: 450 year: 2024 ident: bmmadb2cdbib27 article-title: Preparation and properties of crosslinked quaternized chitosan-based hydrogel films ionically bonded with acetylsalicylic acid for biomedical materials publication-title: Mar. Drugs doi: 10.3390/md22100450 – volume: 6 start-page: 426 year: 2021 ident: bmmadb2cdbib4 article-title: Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity publication-title: Signal Transduct. Target Ther. doi: 10.1038/s41392-021-00830-x – start-page: 231 year: 2016 ident: bmmadb2cdbib8 article-title: Natural polymer-based hydrogels as scaffolds for tissue engineering doi: 10.1016/B978-0-323-42865-1.00009-X – volume: 13 start-page: 140 year: 2022 ident: bmmadb2cdbib46 article-title: A porous hydrogel with high mechanical strength and biocompatibility for bone tissue engineering publication-title: J. Funct. Biomater. doi: 10.3390/jfb13030140 – volume: 14 start-page: 415 year: 2024 ident: bmmadb2cdbib7 article-title: Recent advances in natural-polymer-based hydrogels for body movement and biomedical monitoring publication-title: Biosensors doi: 10.3390/bios14090415 |
SSID | ssj0059539 |
Score | 2.402587 |
SecondaryResourceType | review_article |
Snippet | Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22010 |
SubjectTerms | Alginates - chemistry Animals Biocompatible Materials - chemistry biomedical applications Cellulose - chemistry Chitosan - chemistry Drug Delivery Systems Humans hydrogel Hydrogels - chemistry Materials Testing mechanical properties natural polymer Polymers - chemistry Starch - chemistry Stress, Mechanical Tissue Engineering - methods Tissue Scaffolds - chemistry |
Title | A recent study of natural hydrogels: improving mechanical properties for biomedical applications |
URI | https://iopscience.iop.org/article/10.1088/1748-605X/adb2cd https://www.ncbi.nlm.nih.gov/pubmed/39908671 https://www.proquest.com/docview/3163847769 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58XPTg-7G-iKAHD123TdKmehJRVPBxUNiDENM8VGS3y7p70F_vpA9RUREPhUImbTKTZL5kMjMAWy5UOhSKBjGWB4xrHiijbZA63D47zVFn-HPI84v45IadtXl7BPbffWHyXrX0N_G1DBRcsrC6ECd2EUOLAFF4e1eZLNJmFMapiGOfvuD08qpehnnKizRiFTULKxvld1_4pJNG8b8_w81C7RxPw23d4PK2yVNzOMia-vVLLMd_9mgGpio4Sg5K0lkYsd05mPwQpHAe7g4Iroqom0gRipbkjhTRQLHaw4vp5_eoXffIY304QTrWOxN72ZOeP-nv-5CtBLExKV39i5KPdvMFuDk-uj48Caq8DIFGNDQIEipUYtJMqSShiurU4LbId4SnuIyHmePaKRs53JypKLFCJ7ExmuGIoCj72NBFGOvmXbsMxHiroDXUUqoYoy3FdGhcaphIucWnATu1ZGSvDL8hC7O5ENJzTXquyZJrDdhGBstqDj7_Qkc-0WWdjoxaMpLe6Rgr9YxrwGYtf4nTzdtQVNfmw2dJPX5lSRKnDVgqB8Z7wxDrtXy4wJU_NmQVJiKfTbi40bYGY4P-0K4jxBlkG8VQfgPbf_eI |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xkFA5AIUC4dEaCQ49bJJd2_vghoCIQAscQMrNeP1oEUo2Csmh_fWMvbsoIECVelhpJdu79njs-eyxvwHYt6FUYSppEGN6wLjigdTKBJnF5bNVHG2G24f8eRmf3bLzHu9VcU79XZhiWE39TXwtiYJLEVYH4tIWYug0QBTea0mdR0q3htrOwjynMXXk-d2r63oq5hn3ocSqEiys_JRvfeWFXZrFf78POb3p6SzDXV3p8sTJQ3Myzpvq7ys-x_9o1QosVbCUHJXZP8OMGazC4hRZ4RrcHRGcHdFGEU9JSwpLPCsoFvv9R4-KX2hlD8l9vUlB-sZdKnY6QIZux3_kqFsJYmRSXvn3KdP-8y9w2zm9OT4LqvgMgUJUNA4SmspEZ7mUSUIlVZnG5ZFrDM9wOg9zy5WVJrK4SJNRYlKVxForhppBUQdiTddhblAMzCYQ7byDRlNDqWSMtiVTobaZZmnGDT4N-F73jhiWNBzCu8_TVDjJCSc5UUquAQcoZFGNxccP8pEX-fJ-X0RtEQl3-RgLYQc0YK_WAYHDzvlS5MAUk0dBHY5lSRJnDdgoleO5Yoj52o42cOsfK_INFq5POuJH9_JiGz5FLsCwP-S2A3Pj0cTsIuoZ51-9Zj8BjsH87A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+recent+study+of+natural+hydrogels%3A+improving+mechanical+properties+for+biomedical+applications&rft.jtitle=Biomedical+materials+%28Bristol%29&rft.au=Shukla%2C+Atharva&rft.au=Syaifie%2C+Putri+Hawa&rft.au=Rochman%2C+Nurul+Taufiqu&rft.au=Jaya+Syaifullah%2C+Syahnanda&rft.date=2025-03-01&rft.issn=1748-605X&rft.eissn=1748-605X&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1088%2F1748-605X%2Fadb2cd&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-6041&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-6041&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-6041&client=summon |