A recent study of natural hydrogels: improving mechanical properties for biomedical applications

Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginat...

Full description

Saved in:
Bibliographic Details
Published inBiomedical materials (Bristol) Vol. 20; no. 2; pp. 22010 - 22027
Main Authors Shukla, Atharva, Syaifie, Putri Hawa, Rochman, Nurul Taufiqu, Jaya Syaifullah, Syahnanda, Jauhar, Muhammad Miftah, Mardliyati, Etik
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.
AbstractList Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.
Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.
Author Shukla, Atharva
Syaifie, Putri Hawa
Rochman, Nurul Taufiqu
Jaya Syaifullah, Syahnanda
Mardliyati, Etik
Jauhar, Muhammad Miftah
Author_xml – sequence: 1
  givenname: Atharva
  orcidid: 0009-0005-9129-5709
  surname: Shukla
  fullname: Shukla, Atharva
  organization: ACS (Anglo Chinese School) Jakarta—Cilangkap , Jl. Bantar Jati, Setu, Kec. Cipayung, Kota Jakarta Timur, Daerah Khusus Ibukota, Jakarta 13880, Indonesia
– sequence: 2
  givenname: Putri Hawa
  orcidid: 0000-0001-8566-7960
  surname: Syaifie
  fullname: Syaifie, Putri Hawa
  organization: Nano Center Indonesia Center of Excellence Life Sciences, South Tangerang, Banten 15314, Indonesia
– sequence: 3
  givenname: Nurul Taufiqu
  orcidid: 0000-0003-1929-8188
  surname: Rochman
  fullname: Rochman, Nurul Taufiqu
  organization: Research Center for Advanced Material , National Research and Innovation Agency (BRIN), Puspiptek, South Tangerang, Banten 15314, Indonesia
– sequence: 4
  givenname: Syahnanda
  orcidid: 0000-0003-2923-5826
  surname: Jaya Syaifullah
  fullname: Jaya Syaifullah, Syahnanda
  organization: Center of Excellence Applied Nanotechnology , Nano Center Indonesia Research Institute Puspiptek Street, South Tangerang, Banten 15314, Indonesia
– sequence: 5
  givenname: Muhammad Miftah
  orcidid: 0000-0002-5826-5904
  surname: Jauhar
  fullname: Jauhar, Muhammad Miftah
  organization: Universitas Gadjah Mada Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia
– sequence: 6
  givenname: Etik
  orcidid: 0000-0002-3621-9659
  surname: Mardliyati
  fullname: Mardliyati, Etik
  organization: National Research and Innovation Agency (BRIN) Research Center for Vaccine and Drug, Cibinong 16911, Indonesia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39908671$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1PwzAQxS1UBC2wMyFvMFDqjyR22BDiS6rEAhKbcWynNUrsYCdI_e9xaekE053ufu_07k3AyHlnADjF6AojzmeYZXxaoPxtJnVFlN4D491otOszfAgmMX4glJc5LQ_AIS1LxAuGx-D9BgajjOth7Ae9gr6GTvZDkA1crnTwC9PEa2jbLvgv6xawNWopnVVpn0adCb01EdY-wMr61uifjey6JjW99S4eg_1aNtGcbOsReL2_e7l9nM6fH55ub-ZTRXLcTxnlkumykpIxKqkqNS_I-se8NFLhqs5VLQ2pSYElYYYrVmitMi4pzTNcaHoELjZ3k63PwcRetDYq0zTSGT9EQXFBecZYUSb0bIsOVbIsumBbGVbiN5UEoA2ggo8xmHqHYCTWpsQ6WbFOWWyCT5LzjcT6Tnz4Ibj0rKjaVhAkiECEoKTtdJ3Iyz_Ifw9_AxSnk84
CODEN BMBUCS
Cites_doi 10.1016/j.ijbiomac.2024.131179
10.1016/j.lwt.2024.116552
10.1016/j.bioactmat.2024.02.010
10.1039/D2MA00932C
10.1016/j.bcdf.2023.100353
10.1016/j.ijbiomac.2024.132120
10.1016/j.colsurfa.2024.134434
10.1016/j.carbpol.2024.121820
10.1016/j.ijbiomac.2023.124623
10.3390/polym16111513
10.3390/gels9070517
10.1016/j.jmbbm.2020.103885
10.1016/j.eurpolymj.2023.112556
10.1016/j.ijbiomac.2020.11.068
10.1002/app.43260
10.3390/gels10030205
10.1016/j.mtbio.2024.100962
10.1039/D0TB02099K
10.3390/gels10070422
10.1016/j.jddst.2023.104470
10.3390/polym15092203
10.1016/j.foodhyd.2023.108768
10.3390/polym14204377
10.3390/polym14153023
10.1016/j.ijbiomac.2023.128126
10.1016/j.ijbiomac.2024.130190
10.3390/polym12112702
10.1016/j.ijbiomac.2023.125334
10.1016/j.ijbiomac.2023.127726
10.1016/j.matdes.2023.111729
10.3390/polym16131932
10.1016/j.addr.2012.09.009
10.1002/pat.6203
10.1016/j.addr.2012.09.010
10.1016/j.ijbiomac.2024.132767
10.1021/bm501361c
10.3390/biomedicines12071510
10.1007/s42452-020-04096-w
10.1016/j.jbiosc.2024.01.015
10.1016/j.ijbiomac.2021.11.069
10.1016/j.cplett.2022.139401
10.1021/acs.biomac.9b01274
10.3390/molecules28134988
10.1016/j.ijbiomac.2023.129006
10.1016/j.addr.2013.04.002
10.1016/j.colsurfa.2023.132890
10.1016/j.ijbiomac.2024.130258
10.1016/j.ijbiomac.2022.01.142
10.1007/s10924-017-0971-z
10.3390/pharmaceutics15102514
10.1016/j.actbio.2017.07.028
10.1021/acs.langmuir.2c02253
10.3390/nano11071656
10.1039/D2NR04598B
10.1016/j.chemosphere.2003.11.016
10.1016/j.ijbiomac.2024.133251
10.3390/ma16145161
10.3390/polym13040650
10.1016/j.heliyon.2024.e34074
10.1016/j.carbpol.2024.122204
10.1007/s12034-023-02930-6
10.1039/D2TB02775E
10.3390/gels10080527
10.1039/D0RA03733H
10.1016/j.biomaterials.2012.06.005
10.3390/polym16141990
10.1016/j.cis.2023.103000
10.1088/2053-1591/acb98e
10.1016/j.bioadv.2023.213532
10.1016/j.biomaterials.2014.10.051
10.1016/j.mtla.2024.102165
10.1016/j.msec.2018.07.016
10.1021/acsapm.3c03228
10.3390/md22100450
10.1038/s41392-021-00830-x
10.1016/B978-0-323-42865-1.00009-X
10.3390/jfb13030140
10.3390/bios14090415
ContentType Journal Article
Copyright 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1748-605X/adb2cd
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-605X
ExternalDocumentID 39908671
10_1088_1748_605X_adb2cd
bmmadb2cd
Genre Journal Article
Review
GroupedDBID ---
1JI
23N
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c251t-738a7d9baa773a3c9d862108859eac1bf5cfae2f261a27e8c76ddc48a335416d3
IEDL.DBID IOP
ISSN 1748-6041
1748-605X
IngestDate Fri Jul 11 10:35:25 EDT 2025
Wed May 07 07:51:16 EDT 2025
Wed Aug 20 07:41:53 EDT 2025
Tue Mar 18 23:18:49 EDT 2025
Tue Mar 18 23:18:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords natural polymer
hydrogel
biomedical applications
mechanical properties
Language English
License This article is available under the terms of the IOP-Standard License.
2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-738a7d9baa773a3c9d862108859eac1bf5cfae2f261a27e8c76ddc48a335416d3
Notes BMM-106608.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3621-9659
0000-0001-8566-7960
0009-0005-9129-5709
0000-0003-1929-8188
0000-0002-5826-5904
0000-0003-2923-5826
PMID 39908671
PQID 3163847769
PQPubID 23479
PageCount 18
ParticipantIDs pubmed_primary_39908671
proquest_miscellaneous_3163847769
iop_journals_10_1088_1748_605X_adb2cd
crossref_primary_10_1088_1748_605X_adb2cd
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biomedical materials (Bristol)
PublicationTitleAbbrev BMM
PublicationTitleAlternate Biomed. Mater
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Mansha (bmmadb2cdbib73) 2024; 10
Zhang (bmmadb2cdbib19) 2022
Gonella (bmmadb2cdbib54) 2024; 10
Cabrera-Munguia (bmmadb2cdbib78) 2023; 46
Majeed (bmmadb2cdbib9) 2024; 330
Zhang (bmmadb2cdbib27) 2024; 22
Zhao (bmmadb2cdbib1) 2023; 15
Sánchez-Cid (bmmadb2cdbib6) 2022; 14
Jabeen (bmmadb2cdbib10) 2024; 35
Azam (bmmadb2cdbib77) 2023; 241
Kumar (bmmadb2cdbib67) 2016; 133
Jing (bmmadb2cdbib47) 2020; 10
Patil (bmmadb2cdbib75) 2018; 26
Christensen (bmmadb2cdbib57) 2019; 21
Gotoh (bmmadb2cdbib14) 2004; 55
Razzaq (bmmadb2cdbib61) 2024; 274
Yang (bmmadb2cdbib36) 2022; 14
Mehrjou (bmmadb2cdbib69) 2024; 263
Wang (bmmadb2cdbib21) 2024; 35
Chen (bmmadb2cdbib31) 2024; 6
Matricardi (bmmadb2cdbib58) 2013; 65
Hennink (bmmadb2cdbib63) 2012; 64
Mori (bmmadb2cdbib23) 2024; 137
Hoffman (bmmadb2cdbib64) 2012; 64
Liu (bmmadb2cdbib65) 2024; 270
McFetridge (bmmadb2cdbib52) 2023; 15
Lee (bmmadb2cdbib17) 2023; 28
Codrea (bmmadb2cdbib66) 2024; 16
Singh (bmmadb2cdbib62) 2023; 29
Singh (bmmadb2cdbib8) 2016
Zhang (bmmadb2cdbib44) 2024; 16
Li (bmmadb2cdbib20) 2024; 259
Enoch (bmmadb2cdbib11) 2024; 697
Sahoo (bmmadb2cdbib13) 2021; 3
Ferjaoui (bmmadb2cdbib16) 2024; 12
Alonso (bmmadb2cdbib42) 2021; 13
Munoz-Pinto (bmmadb2cdbib70) 2015; 40
Suo (bmmadb2cdbib59) 2018; 92
Xiang (bmmadb2cdbib46) 2022; 13
Mohandoss (bmmadb2cdbib12) 2024; 16
Li (bmmadb2cdbib71) 2023; 201
Chen (bmmadb2cdbib22) 2024; 36
Zhang (bmmadb2cdbib26) 2024; 254
Cai (bmmadb2cdbib30) 2024; 266
Xu (bmmadb2cdbib34) 2023; 321
Sharma (bmmadb2cdbib76) 2023; 84
Bashir (bmmadb2cdbib5) 2020; 12
Alhakamy (bmmadb2cdbib72) 2024; 10
Fletes-Vargas (bmmadb2cdbib53) 2023; 15
Kasi (bmmadb2cdbib79) 2023; 243
Bhar (bmmadb2cdbib25) 2022; 203
Park (bmmadb2cdbib24) 2024; 338
Jayawardena (bmmadb2cdbib51) 2023; 4
Lau (bmmadb2cdbib2) 2015; 16
Nguyen (bmmadb2cdbib56) 2012; 33
Cofelice (bmmadb2cdbib41) 2023; 142
Vedadghavami (bmmadb2cdbib3) 2017; 62
Wu (bmmadb2cdbib32) 2024; 25
Zhang (bmmadb2cdbib39) 2023; 16
Waresindo (bmmadb2cdbib35) 2023; 10
Hao (bmmadb2cdbib50) 2023; 227
Zheng (bmmadb2cdbib45) 2021; 9
Enoch (bmmadb2cdbib28) 2024; 682
Herrada-Manchón (bmmadb2cdbib40) 2023; 9
Huerta-López (bmmadb2cdbib18) 2021; 11
Nille (bmmadb2cdbib15) 2024; 257
Kim (bmmadb2cdbib60) 2021; 193
Wang (bmmadb2cdbib68) 2024; 205
Mahamoud (bmmadb2cdbib43) 2024; 10
Singh (bmmadb2cdbib74) 2022; 792
Cao (bmmadb2cdbib4) 2021; 6
Liu (bmmadb2cdbib7) 2024; 14
Liu (bmmadb2cdbib33) 2024; 275
Sarmah (bmmadb2cdbib37) 2023; 11
Foudazi (bmmadb2cdbib48) 2023; 39
Yu (bmmadb2cdbib38) 2021; 167
Della Sala (bmmadb2cdbib55) 2020; 110
Jiang (bmmadb2cdbib29) 2024; 263
Kotlarz (bmmadb2cdbib49) 2023; 153
References_xml – volume: 266
  year: 2024
  ident: bmmadb2cdbib30
  article-title: Multifunctional fish-skin collagen-based hydrogel sealant with dual-dynamic-bond cross-linked for rapid hemostasis and accelerated wound healing
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.131179
– volume: 205
  year: 2024
  ident: bmmadb2cdbib68
  article-title: Role of undenatured type II collagen in novel ternary interpenetrating polymer networks hydrogel based on structural modulation and properties characterization
  publication-title: LWT
  doi: 10.1016/j.lwt.2024.116552
– volume: 35
  start-page: 330
  year: 2024
  ident: bmmadb2cdbib21
  article-title: Versatile dopamine-functionalized hyaluronic acid-recombinant human collagen hydrogel promoting diabetic wound healing via inflammation control and vascularization tissue regeneration
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2024.02.010
– volume: 4
  start-page: 669
  year: 2023
  ident: bmmadb2cdbib51
  article-title: Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions
  publication-title: Mater. Adv.
  doi: 10.1039/D2MA00932C
– volume: 29
  year: 2023
  ident: bmmadb2cdbib62
  article-title: Fabrication of acacia gum grafted copolymeric network hydrogel for biomedical applications
  publication-title: Bioact. Carbohydrate Dietary Fibre
  doi: 10.1016/j.bcdf.2023.100353
– volume: 270
  year: 2024
  ident: bmmadb2cdbib65
  article-title: Chitosan-based GOx@ Co-MOF composite hydrogel: a promising strategy for enhanced antibacterial and wound healing effects
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.132120
– volume: 697
  year: 2024
  ident: bmmadb2cdbib11
  article-title: Tuning the rheological properties of chitosan/alginate hydrogels for tissue engineering application
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2024.134434
– volume: 330
  year: 2024
  ident: bmmadb2cdbib9
  article-title: Enhanced dye sequestration with natural polysaccharides-based hydrogels: a review
  publication-title: Carbohydrate Polym.
  doi: 10.1016/j.carbpol.2024.121820
– volume: 241
  year: 2023
  ident: bmmadb2cdbib77
  article-title: Synthesis and characterization of natural fibers reinforced alginate hydrogel fibers loaded with diclofenac sodium for wound dressings
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.124623
– volume: 16
  start-page: 1513
  year: 2024
  ident: bmmadb2cdbib12
  article-title: Synthesis, characterization, and evaluation of silver nanoparticle-loaded carboxymethyl chitosan with sulfobetaine methacrylate hydrogel nanocomposites for biomedical applications
  publication-title: Polymers
  doi: 10.3390/polym16111513
– volume: 9
  start-page: 517
  year: 2023
  ident: bmmadb2cdbib40
  article-title: Essential guide to hydrogel rheology in extrusion 3D printing: how to measure it and why it matters?
  publication-title: Gels
  doi: 10.3390/gels9070517
– volume: 110
  year: 2020
  ident: bmmadb2cdbib55
  article-title: Mechanical behavior of bioactive poly (ethylene glycol) diacrylate matrices for biomedical application
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2020.103885
– volume: 201
  year: 2023
  ident: bmmadb2cdbib71
  article-title: Design and properties of alginate/gelatin/cellulose nanocrystals interpenetrating polymer network composite hydrogels based on in situ cross-linking
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2023.112556
– volume: 167
  start-page: 1146
  year: 2021
  ident: bmmadb2cdbib38
  article-title: Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.11.068
– volume: 133
  year: 2016
  ident: bmmadb2cdbib67
  article-title: Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.43260
– volume: 10
  start-page: 205
  year: 2024
  ident: bmmadb2cdbib73
  article-title: Development of pH-responsive, thermosensitive, antibacterial, and anticancer CS/PVA/graphene blended hydrogels for controlled drug delivery
  publication-title: Gels
  doi: 10.3390/gels10030205
– volume: 25
  year: 2024
  ident: bmmadb2cdbib32
  article-title: Injectable silk fibroin peptide nanofiber hydrogel composite scaffolds for cartilage regeneration
  publication-title: Mater. Today Bio
  doi: 10.1016/j.mtbio.2024.100962
– volume: 9
  start-page: 1238
  year: 2021
  ident: bmmadb2cdbib45
  article-title: Functional silk fibroin hydrogels: preparation, properties and applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02099K
– volume: 10
  start-page: 422
  year: 2024
  ident: bmmadb2cdbib54
  article-title: Fabrication and characterization of porous PEGDA hydrogels for articular cartilage regeneration
  publication-title: Gels
  doi: 10.3390/gels10070422
– volume: 84
  year: 2023
  ident: bmmadb2cdbib76
  article-title: Development of almond gum based copolymeric hydrogels for use in effectual colon-drug delivery
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2023.104470
– volume: 15
  start-page: 2203
  year: 2023
  ident: bmmadb2cdbib53
  article-title: Porous chitosan hydrogels produced by physical crosslinking: physicochemical, structural, and cytotoxic properties
  publication-title: Polymers
  doi: 10.3390/polym15092203
– volume: 142
  year: 2023
  ident: bmmadb2cdbib41
  article-title: Effect of the xanthan gum on the rheological properties of alginate hydrogels
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2023.108768
– volume: 14
  start-page: 4377
  year: 2022
  ident: bmmadb2cdbib36
  article-title: Recent advances in smart hydrogels prepared by ionizing radiation technology for biomedical applications
  publication-title: Polymers
  doi: 10.3390/polym14204377
– volume: 14
  start-page: 3023
  year: 2022
  ident: bmmadb2cdbib6
  article-title: Novel trends in hydrogel development for biomedical applications: a review
  publication-title: Polymers
  doi: 10.3390/polym14153023
– volume: 257
  year: 2024
  ident: bmmadb2cdbib15
  article-title: Route-dependent tailoring of carbon dot release in alginate hydrogel beads (HB-Alg@WTR-CDs): a versatile platform for biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.128126
– volume: 263
  year: 2024
  ident: bmmadb2cdbib29
  article-title: Preparation and characterization of photosensitive methacrylate-grafted sodium carboxymethyl cellulose as an injectable material to fabricate hydrogels for biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.130190
– volume: 12
  start-page: 2702
  year: 2020
  ident: bmmadb2cdbib5
  article-title: Fundamental concepts of hydrogels: synthesis, properties, and their applications
  publication-title: Polymers
  doi: 10.3390/polym12112702
– volume: 243
  year: 2023
  ident: bmmadb2cdbib79
  article-title: Chitosan and cellulose-based composite hydrogels with embedded titanium dioxide nanoparticles as candidates for biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.125334
– volume: 254
  year: 2024
  ident: bmmadb2cdbib26
  article-title: A uniform-unsaturated crosslinking strategy to construct injectable alginate hydrogel
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.127726
– volume: 227
  year: 2023
  ident: bmmadb2cdbib50
  article-title: 3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.111729
– volume: 16
  start-page: 1932
  year: 2024
  ident: bmmadb2cdbib66
  article-title: 3D-bioprinted gelatin methacryloyl-strontium-doped hydroxyapatite composite hydrogels scaffolds for bone tissue regeneration
  publication-title: Polymers
  doi: 10.3390/polym16131932
– volume: 64
  start-page: 223
  year: 2012
  ident: bmmadb2cdbib63
  article-title: Novel crosslinking methods to design hydrogels
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.009
– volume: 35
  start-page: e6203
  year: 2024
  ident: bmmadb2cdbib10
  article-title: Polysaccharides based biopolymers for biomedical applications: a review?
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.6203
– volume: 64
  start-page: 18
  year: 2012
  ident: bmmadb2cdbib64
  article-title: Hydrogels for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.010
– volume: 274
  year: 2024
  ident: bmmadb2cdbib61
  article-title: Development and characterization of pH-responsive Delonix regia/mucin co-poly (acrylate) hydrogel for controlled drug delivery of metformin HCl
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.132767
– volume: 16
  start-page: 28
  year: 2015
  ident: bmmadb2cdbib2
  article-title: Opportunities for multicomponent hybrid hydrogels in biomedical applications
  publication-title: Biomacromolecules
  doi: 10.1021/bm501361c
– volume: 12
  start-page: 1510
  year: 2024
  ident: bmmadb2cdbib16
  article-title: Design of alginate/gelatin hydrogels for biomedical applications: fine-tuning osteogenesis in dental pulp stem cells while preserving other cell behaviors
  publication-title: Biomedicines
  doi: 10.3390/biomedicines12071510
– volume: 3
  start-page: 30
  year: 2021
  ident: bmmadb2cdbib13
  article-title: Alginate and its application to tissue engineering
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-04096-w
– start-page: 91
  year: 2022
  ident: bmmadb2cdbib19
– volume: 137
  start-page: 463
  year: 2024
  ident: bmmadb2cdbib23
  article-title: Interpenetrating gelatin/alginate mixed hydrogel: the simplest method to prepare an autoclavable scaffold
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2024.01.015
– volume: 193
  start-page: 1068
  year: 2021
  ident: bmmadb2cdbib60
  article-title: Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly (vinyl alcohol)
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.11.069
– volume: 792
  year: 2022
  ident: bmmadb2cdbib74
  article-title: Development and characterization of Azadirachta indica gum-poly (2-hydroxyethyl methacrylate) crosslinked co-polymeric hydrogels for drug delivery applications
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2022.139401
– volume: 21
  start-page: 356
  year: 2019
  ident: bmmadb2cdbib57
  article-title: 3D printed hydrogel multiassay platforms for robust generation of engineered contractile tissues
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01274
– volume: 28
  start-page: 4988
  year: 2023
  ident: bmmadb2cdbib17
  article-title: Protein-based hydrogels and their biomedical applications
  publication-title: Molecules
  doi: 10.3390/molecules28134988
– volume: 259
  year: 2024
  ident: bmmadb2cdbib20
  article-title: An injectable collagen peptide-based hydrogel with desirable antibacterial, self-healing and wound-healing properties based on multiple-dynamic crosslinking
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.129006
– volume: 65
  start-page: 1172
  year: 2013
  ident: bmmadb2cdbib58
  article-title: Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.04.002
– volume: 682
  year: 2024
  ident: bmmadb2cdbib28
  article-title: Tailoring the rheological properties of biosynthesized copper oxide nanoparticles decorated carboxymethyl cellulose hydrogels for biomedical applications
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2023.132890
– volume: 263
  year: 2024
  ident: bmmadb2cdbib69
  article-title: Sodium alginate/polyvinyl alcohol semi-interpenetrating hydrogels reinforced with PEG-grafted-graphene oxide
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.130258
– volume: 203
  start-page: 623
  year: 2022
  ident: bmmadb2cdbib25
  article-title: Silk-based phyto-hydrogel formulation expedites key events of wound healing in full-thickness skin defect model
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.01.142
– volume: 26
  start-page: 596
  year: 2018
  ident: bmmadb2cdbib75
  article-title: Exploration of the effect of chitosan and crosslinking agent concentration on the properties of dual responsive chitosan-g-poly (N-Isopropylacrylamide) co-polymeric particles
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-017-0971-z
– volume: 15
  start-page: 2514
  year: 2023
  ident: bmmadb2cdbib1
  article-title: Natural polymer-based hydrogels: from polymer to biomedical applications
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15102514
– volume: 62
  start-page: 42
  year: 2017
  ident: bmmadb2cdbib3
  article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.07.028
– volume: 39
  start-page: 2092
  year: 2023
  ident: bmmadb2cdbib48
  article-title: Porous hydrogels: present challenges and future opportunities
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c02253
– volume: 11
  start-page: 1656
  year: 2021
  ident: bmmadb2cdbib18
  article-title: Protein hydrogels: the Swiss army knife for enhanced mechanical and bioactive properties of biomaterials
  publication-title: Nanomaterials
  doi: 10.3390/nano11071656
– volume: 15
  start-page: 1431
  year: 2023
  ident: bmmadb2cdbib52
  article-title: A comparison of fixation methods for SEM analysis of self-assembling peptide hydrogel nanoarchitecture
  publication-title: Nanoscale
  doi: 10.1039/D2NR04598B
– volume: 55
  start-page: 135
  year: 2004
  ident: bmmadb2cdbib14
  article-title: Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.11.016
– volume: 275
  year: 2024
  ident: bmmadb2cdbib33
  article-title: Silk fibroin biohydrogel composites for loading and ordered release of multiple active ingredients with enhanced bioactivity
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.133251
– volume: 16
  start-page: 5161
  year: 2023
  ident: bmmadb2cdbib39
  article-title: Dynamic hydrogels with viscoelasticity and tunable stiffness for the regulation of cell behavior and fate
  publication-title: Materials
  doi: 10.3390/ma16145161
– volume: 13
  start-page: 650
  year: 2021
  ident: bmmadb2cdbib42
  article-title: Injectable hydrogels: from laboratory to industrialization
  publication-title: Polymers
  doi: 10.3390/polym13040650
– volume: 10
  year: 2024
  ident: bmmadb2cdbib72
  article-title: Oral co-polymeric raft-forming nano gels for targeted empagliflozin delivery against stomach cancer (SGC7901)
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e34074
– volume: 338
  year: 2024
  ident: bmmadb2cdbib24
  article-title: Cell-adhesive double network self-healing hydrogel capable of cell and drug encapsulation: new platform to construct biomimetic environment with bottom-up approach
  publication-title: Carbohydrate Polym.
  doi: 10.1016/j.carbpol.2024.122204
– volume: 46
  start-page: 100
  year: 2023
  ident: bmmadb2cdbib78
  article-title: Enhanced biocompatibility and bactericidal properties of hydrogels based on collagen–polyurethane–aluminium MOFs for biomedical applications
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-023-02930-6
– volume: 11
  start-page: 2927
  year: 2023
  ident: bmmadb2cdbib37
  article-title: Swelling induced mechanically tough starch–agar based hydrogel as a control release drug vehicle for wound dressing applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D2TB02775E
– volume: 10
  start-page: 527
  year: 2024
  ident: bmmadb2cdbib43
  article-title: Enhancement of mechanical properties of benign polyvinyl alcohol/agar hydrogel by crosslinking tannic acid and applying multiple freeze/thaw cycles
  publication-title: Gels
  doi: 10.3390/gels10080527
– volume: 10
  start-page: 23592
  year: 2020
  ident: bmmadb2cdbib47
  article-title: Tough, stretchable and compressive alginate-based hydrogels achieved by non-covalent interactions
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03733H
– volume: 33
  start-page: 6682
  year: 2012
  ident: bmmadb2cdbib56
  article-title: Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.005
– volume: 16
  start-page: 1990
  year: 2024
  ident: bmmadb2cdbib44
  article-title: Structure, property optimization, and adsorption properties of N,N′-methylenebisacrylamide cross-linked polyacrylic acid hydrogels under different curing conditions
  publication-title: Polymers
  doi: 10.3390/polym16141990
– volume: 321
  year: 2023
  ident: bmmadb2cdbib34
  article-title: Biomedical applications of supramolecular hydrogels with enhanced mechanical properties
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2023.103000
– volume: 10
  year: 2023
  ident: bmmadb2cdbib35
  article-title: Freeze–thaw hydrogel fabrication method: basic principles, synthesis parameters, properties, and biomedical applications
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/acb98e
– volume: 153
  year: 2023
  ident: bmmadb2cdbib49
  article-title: Cell seeding via bioprinted hydrogels supports cell migration into porous apatite-wollastonite bioceramic scaffolds for bone tissue engineering
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2023.213532
– volume: 40
  start-page: 32
  year: 2015
  ident: bmmadb2cdbib70
  article-title: Characterization of sequential collagen-poly (ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.051
– volume: 36
  year: 2024
  ident: bmmadb2cdbib22
  article-title: Cross-linking of mesoporous bioactive glass nanoparticle incorporated gelatin hydrogels by tannic acid with enhanced mechanical performance and stability
  publication-title: Materialia
  doi: 10.1016/j.mtla.2024.102165
– volume: 92
  start-page: 612
  year: 2018
  ident: bmmadb2cdbib59
  article-title: Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.07.016
– volume: 6
  start-page: 7340
  year: 2024
  ident: bmmadb2cdbib31
  article-title: Fabrication of NIR-II-responsive polydextran aldehyde/gelatin/gold nanoparticle-decorated graphene oxide nanocomposite hydrogels for antibacterial applications
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.3c03228
– volume: 22
  start-page: 450
  year: 2024
  ident: bmmadb2cdbib27
  article-title: Preparation and properties of crosslinked quaternized chitosan-based hydrogel films ionically bonded with acetylsalicylic acid for biomedical materials
  publication-title: Mar. Drugs
  doi: 10.3390/md22100450
– volume: 6
  start-page: 426
  year: 2021
  ident: bmmadb2cdbib4
  article-title: Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity
  publication-title: Signal Transduct. Target Ther.
  doi: 10.1038/s41392-021-00830-x
– start-page: 231
  year: 2016
  ident: bmmadb2cdbib8
  article-title: Natural polymer-based hydrogels as scaffolds for tissue engineering
  doi: 10.1016/B978-0-323-42865-1.00009-X
– volume: 13
  start-page: 140
  year: 2022
  ident: bmmadb2cdbib46
  article-title: A porous hydrogel with high mechanical strength and biocompatibility for bone tissue engineering
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb13030140
– volume: 14
  start-page: 415
  year: 2024
  ident: bmmadb2cdbib7
  article-title: Recent advances in natural-polymer-based hydrogels for body movement and biomedical monitoring
  publication-title: Biosensors
  doi: 10.3390/bios14090415
SSID ssj0059539
Score 2.402587
SecondaryResourceType review_article
Snippet Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22010
SubjectTerms Alginates - chemistry
Animals
Biocompatible Materials - chemistry
biomedical applications
Cellulose - chemistry
Chitosan - chemistry
Drug Delivery Systems
Humans
hydrogel
Hydrogels - chemistry
Materials Testing
mechanical properties
natural polymer
Polymers - chemistry
Starch - chemistry
Stress, Mechanical
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Title A recent study of natural hydrogels: improving mechanical properties for biomedical applications
URI https://iopscience.iop.org/article/10.1088/1748-605X/adb2cd
https://www.ncbi.nlm.nih.gov/pubmed/39908671
https://www.proquest.com/docview/3163847769
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58XPTg-7G-iKAHD123TdKmehJRVPBxUNiDENM8VGS3y7p70F_vpA9RUREPhUImbTKTZL5kMjMAWy5UOhSKBjGWB4xrHiijbZA63D47zVFn-HPI84v45IadtXl7BPbffWHyXrX0N_G1DBRcsrC6ECd2EUOLAFF4e1eZLNJmFMapiGOfvuD08qpehnnKizRiFTULKxvld1_4pJNG8b8_w81C7RxPw23d4PK2yVNzOMia-vVLLMd_9mgGpio4Sg5K0lkYsd05mPwQpHAe7g4Iroqom0gRipbkjhTRQLHaw4vp5_eoXffIY304QTrWOxN72ZOeP-nv-5CtBLExKV39i5KPdvMFuDk-uj48Caq8DIFGNDQIEipUYtJMqSShiurU4LbId4SnuIyHmePaKRs53JypKLFCJ7ExmuGIoCj72NBFGOvmXbsMxHiroDXUUqoYoy3FdGhcaphIucWnATu1ZGSvDL8hC7O5ENJzTXquyZJrDdhGBstqDj7_Qkc-0WWdjoxaMpLe6Rgr9YxrwGYtf4nTzdtQVNfmw2dJPX5lSRKnDVgqB8Z7wxDrtXy4wJU_NmQVJiKfTbi40bYGY4P-0K4jxBlkG8VQfgPbf_eI
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xkFA5AIUC4dEaCQ49bJJd2_vghoCIQAscQMrNeP1oEUo2Csmh_fWMvbsoIECVelhpJdu79njs-eyxvwHYt6FUYSppEGN6wLjigdTKBJnF5bNVHG2G24f8eRmf3bLzHu9VcU79XZhiWE39TXwtiYJLEVYH4tIWYug0QBTea0mdR0q3htrOwjynMXXk-d2r63oq5hn3ocSqEiys_JRvfeWFXZrFf78POb3p6SzDXV3p8sTJQ3Myzpvq7ys-x_9o1QosVbCUHJXZP8OMGazC4hRZ4RrcHRGcHdFGEU9JSwpLPCsoFvv9R4-KX2hlD8l9vUlB-sZdKnY6QIZux3_kqFsJYmRSXvn3KdP-8y9w2zm9OT4LqvgMgUJUNA4SmspEZ7mUSUIlVZnG5ZFrDM9wOg9zy5WVJrK4SJNRYlKVxForhppBUQdiTddhblAMzCYQ7byDRlNDqWSMtiVTobaZZmnGDT4N-F73jhiWNBzCu8_TVDjJCSc5UUquAQcoZFGNxccP8pEX-fJ-X0RtEQl3-RgLYQc0YK_WAYHDzvlS5MAUk0dBHY5lSRJnDdgoleO5Yoj52o42cOsfK_INFq5POuJH9_JiGz5FLsCwP-S2A3Pj0cTsIuoZ51-9Zj8BjsH87A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+recent+study+of+natural+hydrogels%3A+improving+mechanical+properties+for+biomedical+applications&rft.jtitle=Biomedical+materials+%28Bristol%29&rft.au=Shukla%2C+Atharva&rft.au=Syaifie%2C+Putri+Hawa&rft.au=Rochman%2C+Nurul+Taufiqu&rft.au=Jaya+Syaifullah%2C+Syahnanda&rft.date=2025-03-01&rft.issn=1748-605X&rft.eissn=1748-605X&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1088%2F1748-605X%2Fadb2cd&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-6041&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-6041&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-6041&client=summon