Cloudy/clear weather classification using deep learning techniques with cloud images

In recent years, the accessibility of weather forecasts has reached a point that checking it up on a smart device, like a smartphone, only takes a few seconds. Despite easy accessibility, false predictions of weather forecasts are commonly experienced, which this situation has yet to be put right. I...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 102; p. 108271
Main Authors Kalkan, Mürüvvet, Bostancı, Gazi Erkan, Güzel, Mehmet Serdar, Kalkan, Buğrahan, Özsarı, Şifa, Soysal, Ömürhan, Köse, Güven
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the accessibility of weather forecasts has reached a point that checking it up on a smart device, like a smartphone, only takes a few seconds. Despite easy accessibility, false predictions of weather forecasts are commonly experienced, which this situation has yet to be put right. In meteorology institutions where this situation arises from, there is a need for many personnel working both on the fields and in the institution to make weather predictions as accurate as possible. As in all human-based systems, human mistakes constantly occur in weather forecasting systems. If human factor was to be minimized in weather forecasting systems, likewise human fallibility would diminish. The most feasible way to deal with this problem is to take advantage of the deep learning techniques, the pinnacle of modern software technologies, which requires almost no human effort on the domain they work, once developed. The deep learning methods have the capability of classifying big image datasets with image processing. With this feature and using the cloud pictures taken from the ground, they can be classified as clear/cloudy and the weather cloudiness can be determined as a numerical ratio. This study aims to reduce human-induced meteorology errors as much as possible with the application of deep learning techniques. The dataset that was preferred contains cloud pictures taken from the ground which are classified as either clear or cloudy. In order to compare different deep learning architectures and their efficiency on this subject, four particular pretrained models were selected. Among the models based on MobileNet V2, VGG-16, ResNet-152 V2, DenseNet-201: VGG-16 came as the best in terms of accuracy with 91.4%. In the future, it can be foreseen that all weather forecasting systems will prefer making their predictions based on modern artificial technologies like deep learning. •CNN based classification of cloud pictures taken from ground produce finer results.•Transfer learning with freeze out fine-tuning increases quality of outputs.•Among MobileNet V2, VGG-16, ResNet-152 V2, DenseNet-201: VGG-16 came as the best.•Class predictions might indicate the cloudiness percent in the future.
AbstractList In recent years, the accessibility of weather forecasts has reached a point that checking it up on a smart device, like a smartphone, only takes a few seconds. Despite easy accessibility, false predictions of weather forecasts are commonly experienced, which this situation has yet to be put right. In meteorology institutions where this situation arises from, there is a need for many personnel working both on the fields and in the institution to make weather predictions as accurate as possible. As in all human-based systems, human mistakes constantly occur in weather forecasting systems. If human factor was to be minimized in weather forecasting systems, likewise human fallibility would diminish. The most feasible way to deal with this problem is to take advantage of the deep learning techniques, the pinnacle of modern software technologies, which requires almost no human effort on the domain they work, once developed. The deep learning methods have the capability of classifying big image datasets with image processing. With this feature and using the cloud pictures taken from the ground, they can be classified as clear/cloudy and the weather cloudiness can be determined as a numerical ratio. This study aims to reduce human-induced meteorology errors as much as possible with the application of deep learning techniques. The dataset that was preferred contains cloud pictures taken from the ground which are classified as either clear or cloudy. In order to compare different deep learning architectures and their efficiency on this subject, four particular pretrained models were selected. Among the models based on MobileNet V2, VGG-16, ResNet-152 V2, DenseNet-201: VGG-16 came as the best in terms of accuracy with 91.4%. In the future, it can be foreseen that all weather forecasting systems will prefer making their predictions based on modern artificial technologies like deep learning. •CNN based classification of cloud pictures taken from ground produce finer results.•Transfer learning with freeze out fine-tuning increases quality of outputs.•Among MobileNet V2, VGG-16, ResNet-152 V2, DenseNet-201: VGG-16 came as the best.•Class predictions might indicate the cloudiness percent in the future.
ArticleNumber 108271
Author Güzel, Mehmet Serdar
Köse, Güven
Bostancı, Gazi Erkan
Soysal, Ömürhan
Kalkan, Mürüvvet
Kalkan, Buğrahan
Özsarı, Şifa
Author_xml – sequence: 1
  givenname: Mürüvvet
  orcidid: 0000-0001-8056-1905
  surname: Kalkan
  fullname: Kalkan, Mürüvvet
  email: muruvvetates@gmail.com
  organization: Computer Engineering Department, Ankara University, 06830 Ankara, Turkey
– sequence: 2
  givenname: Gazi Erkan
  orcidid: 0000-0001-8547-7569
  surname: Bostancı
  fullname: Bostancı, Gazi Erkan
  organization: Computer Engineering Department, Ankara University, 06830 Ankara, Turkey
– sequence: 3
  givenname: Mehmet Serdar
  surname: Güzel
  fullname: Güzel, Mehmet Serdar
  organization: Computer Engineering Department, Ankara University, 06830 Ankara, Turkey
– sequence: 4
  givenname: Buğrahan
  surname: Kalkan
  fullname: Kalkan, Buğrahan
  organization: Institute of Informatics, Hacettepe University, 06800 Ankara, Turkey
– sequence: 5
  givenname: Şifa
  surname: Özsarı
  fullname: Özsarı, Şifa
  organization: Computer Engineering Department, Ankara University, 06830 Ankara, Turkey
– sequence: 6
  givenname: Ömürhan
  orcidid: 0000-0001-8431-5867
  surname: Soysal
  fullname: Soysal, Ömürhan
  organization: Computer Engineering Department, Ankara University, 06830 Ankara, Turkey
– sequence: 7
  givenname: Güven
  orcidid: 0000-0001-5652-6982
  surname: Köse
  fullname: Köse, Güven
  organization: Computer Engineering Department, Ankara University, 06830 Ankara, Turkey
BookMark eNqNkM1uwjAQhK2KSgXad0gfILB2Yjs5VVXUPwmpF3q2jLMGo5BQ2xTx9k1KD1VPnFaz2vm0MxMyarsWCbmnMKNAxXw7M91ujw0abNczBoz1-4JJekXGtJBlCpLzERkD5DyVJYgbMglhC70WtBiTZdV0h_o0Nw1qnxxRxw36xDQ6BGed0dF1bXIIrl0nNeI-Gc7aQUU0m9Z9HjAkRxc3vaXnJG6n1xhuybXVTcC73zklH89Py-o1Xby_vFWPi9QwTmMqOEhqbSEhy0W20mwFwDiIIi-szGvQK1oyy6Ew1Jg6l5wxiyJjJaOC1lmZTUl55hrfheDRqr3vP_AnRUEN9ait-lOPGupR53p678M_r3HxJ2702jUXEaozAfuIXw69CsZha7B2Hk1UdecuoHwDr4eL4A
CitedBy_id crossref_primary_10_7717_peerj_cs_1779
crossref_primary_10_1007_s11227_025_06941_4
crossref_primary_10_55525_tjst_1317713
crossref_primary_10_1117_1_JRS_16_046515
Cites_doi 10.1029/2018GL077787
10.1109/TPAMI.2017.2773081
10.1109/CVPR.2017.243
10.1109/CVPR.2016.90
10.1098/rsta.2020.0097
10.1038/d41586-020-00924-6
10.1109/ACCESS.2020.2997962
10.1016/0020-0190(72)90045-2
10.1007/BF02712873
10.1186/s40537-021-00444-8
10.1109/MCI.2010.938364
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2022.108271
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2022_108271
S0045790622004980
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c251t-65071ff8703463ba2b002506848f74d0ab192f508c1ccd47522fe63292161d393
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 01:45:55 EDT 2025
Fri Feb 23 02:36:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloudiness
Weather forecast
CNN
Cloudage
Cloud coverage
Meteorology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-65071ff8703463ba2b002506848f74d0ab192f508c1ccd47522fe63292161d393
ORCID 0000-0001-8056-1905
0000-0001-8431-5867
0000-0001-5652-6982
0000-0001-8547-7569
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2022_108271
crossref_citationtrail_10_1016_j_compeleceng_2022_108271
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_108271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
Yilmaz, Guzel, Bostanci, Askerzade (b4) 2020; 8
Li, Hoiem (b9) 2017; 40
Arel, Rose, Karnowski (b3) 2010; 5
Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma (b7) 2021; 8
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 4700–8.
Zhang, Liu, Zhang, Song (b6) 2018; 45
Peng, Wang (b10) 2020
Weyn, Durran, Caruana (b2) 2020; 12
Simonyan, Zisserman (b12) 2014
Chan (b16) 1996; 16
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand (b11) 2017
Krizhevsky, Sutskever, Hinton (b15) 2012; vol. 25
Liu (b18) 2019
Brock, Lim, Ritchie, Weston (b8) 2017
Viglione (b1) 2020; 580
Schultz, Betancourt, Gong, Kleinert, Langguth, Leufen (b5) 2021; 379
Graham (b17) 1972; 1
Schultz (10.1016/j.compeleceng.2022.108271_b5) 2021; 379
Chan (10.1016/j.compeleceng.2022.108271_b16) 1996; 16
Krizhevsky (10.1016/j.compeleceng.2022.108271_b15) 2012; vol. 25
Weyn (10.1016/j.compeleceng.2022.108271_b2) 2020; 12
Yilmaz (10.1016/j.compeleceng.2022.108271_b4) 2020; 8
Alzubaidi (10.1016/j.compeleceng.2022.108271_b7) 2021; 8
Arel (10.1016/j.compeleceng.2022.108271_b3) 2010; 5
Liu (10.1016/j.compeleceng.2022.108271_b18) 2019
Howard (10.1016/j.compeleceng.2022.108271_b11) 2017
Brock (10.1016/j.compeleceng.2022.108271_b8) 2017
Zhang (10.1016/j.compeleceng.2022.108271_b6) 2018; 45
10.1016/j.compeleceng.2022.108271_b14
Viglione (10.1016/j.compeleceng.2022.108271_b1) 2020; 580
10.1016/j.compeleceng.2022.108271_b13
Simonyan (10.1016/j.compeleceng.2022.108271_b12) 2014
Graham (10.1016/j.compeleceng.2022.108271_b17) 1972; 1
Peng (10.1016/j.compeleceng.2022.108271_b10) 2020
Li (10.1016/j.compeleceng.2022.108271_b9) 2017; 40
References_xml – volume: 45
  start-page: 8665
  year: 2018
  end-page: 8672
  ident: b6
  article-title: CloudNet: ground-based cloud classification with deep convolutional neural network
  publication-title: Geophys Res Lett
– volume: 40
  start-page: 2935
  year: 2017
  end-page: 2947
  ident: b9
  article-title: Learning without forgetting
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2017
  ident: b11
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 8
  year: 2021
  ident: b7
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J Big Data
– volume: 16
  start-page: 361
  year: 1996
  end-page: 368
  ident: b16
  article-title: Optimal output-sensitive convex hull algorithms in two and three dimensions
  publication-title: Discrete Comput Geom
– year: 2019
  ident: b18
  article-title: Cirrus cumulus stratus nimbus (CCSN) database
– volume: 8
  start-page: 100631
  year: 2020
  end-page: 100644
  ident: b4
  article-title: A novel action recognition framework based on deep-learning and genetic algorithms
  publication-title: IEEE Access
– volume: 1
  start-page: 132
  year: 1972
  end-page: 133
  ident: b17
  article-title: An efficient algorith for determining the convex hull of a finite planar set
  publication-title: Inform Process Lett
– volume: 12
  year: 2020
  ident: b2
  article-title: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere
  publication-title: J Adv Modelling Earth Syst
– volume: 379
  year: 2021
  ident: b5
  article-title: Can deep learning beat numerical weather prediction?
  publication-title: Phil Trans R Soc A
– year: 2020
  ident: b10
  article-title: How to fine-tune deep neural networks in few-shot learning?
– volume: vol. 25
  year: 2012
  ident: b15
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– reference: Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 4700–8.
– volume: 580
  start-page: 440
  year: 2020
  end-page: 441
  ident: b1
  article-title: How COVID-19 could ruin weather forecasts and climate records
  publication-title: Nature
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
– year: 2014
  ident: b12
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: b3
  article-title: Deep machine learning - a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput Intell Mag
– year: 2017
  ident: b8
  article-title: Freezeout: Accelerate training by progressively freezing layers
– volume: 45
  start-page: 8665
  issue: 16
  year: 2018
  ident: 10.1016/j.compeleceng.2022.108271_b6
  article-title: CloudNet: ground-based cloud classification with deep convolutional neural network
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL077787
– volume: 40
  start-page: 2935
  issue: 12
  year: 2017
  ident: 10.1016/j.compeleceng.2022.108271_b9
  article-title: Learning without forgetting
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2773081
– ident: 10.1016/j.compeleceng.2022.108271_b14
  doi: 10.1109/CVPR.2017.243
– year: 2017
  ident: 10.1016/j.compeleceng.2022.108271_b8
– ident: 10.1016/j.compeleceng.2022.108271_b13
  doi: 10.1109/CVPR.2016.90
– volume: 12
  issue: 9
  year: 2020
  ident: 10.1016/j.compeleceng.2022.108271_b2
  article-title: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere
  publication-title: J Adv Modelling Earth Syst
– volume: 379
  issue: 2194
  year: 2021
  ident: 10.1016/j.compeleceng.2022.108271_b5
  article-title: Can deep learning beat numerical weather prediction?
  publication-title: Phil Trans R Soc A
  doi: 10.1098/rsta.2020.0097
– volume: vol. 25
  year: 2012
  ident: 10.1016/j.compeleceng.2022.108271_b15
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 580
  start-page: 440
  issue: 7804
  year: 2020
  ident: 10.1016/j.compeleceng.2022.108271_b1
  article-title: How COVID-19 could ruin weather forecasts and climate records
  publication-title: Nature
  doi: 10.1038/d41586-020-00924-6
– year: 2019
  ident: 10.1016/j.compeleceng.2022.108271_b18
– volume: 8
  start-page: 100631
  year: 2020
  ident: 10.1016/j.compeleceng.2022.108271_b4
  article-title: A novel action recognition framework based on deep-learning and genetic algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997962
– volume: 1
  start-page: 132
  issue: 4
  year: 1972
  ident: 10.1016/j.compeleceng.2022.108271_b17
  article-title: An efficient algorith for determining the convex hull of a finite planar set
  publication-title: Inform Process Lett
  doi: 10.1016/0020-0190(72)90045-2
– year: 2020
  ident: 10.1016/j.compeleceng.2022.108271_b10
– volume: 16
  start-page: 361
  issue: 4
  year: 1996
  ident: 10.1016/j.compeleceng.2022.108271_b16
  article-title: Optimal output-sensitive convex hull algorithms in two and three dimensions
  publication-title: Discrete Comput Geom
  doi: 10.1007/BF02712873
– year: 2017
  ident: 10.1016/j.compeleceng.2022.108271_b11
– volume: 8
  year: 2021
  ident: 10.1016/j.compeleceng.2022.108271_b7
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10.1016/j.compeleceng.2022.108271_b3
  article-title: Deep machine learning - a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.938364
– year: 2014
  ident: 10.1016/j.compeleceng.2022.108271_b12
SSID ssj0004618
Score 2.3039708
Snippet In recent years, the accessibility of weather forecasts has reached a point that checking it up on a smart device, like a smartphone, only takes a few seconds....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108271
SubjectTerms Cloud coverage
Cloudage
Cloudiness
CNN
Meteorology
Weather forecast
Title Cloudy/clear weather classification using deep learning techniques with cloud images
URI https://dx.doi.org/10.1016/j.compeleceng.2022.108271
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KBdGD-In1o6zgNTbZnWY34KUUS1XsqYXeQnY3Wyo1LbZFvPjb3WmSWkFQ8JjAhDA7mXkT3rwh5DoCSASPlMcdFvUglL4XSeN7yjaZrxXnTOFw8lMv7A7gYdgcVki7nIVBWmWR-_OcvsrWxZ1G4c3GbDzGGV9oCpTZxYOOJPbtAAKj_OYj2JiNDPJsDCjN6Ifb5OqL44W0bVw3k2Yj1yoyhow7JoKfa9RG3ensk70CMNJW_k4HpJJmh2R3Q0bwiPTbk-nSvDc0roCgbzmooxpxMRKBVr6nSHAfUZOmM1psihjRtYDrnOL_WGfinkPHLy7HzI_JoHPXb3e9YluCpx1GWXghIjtr3ffHIeQqYTm-CSVIK8D4iXJgzjo8pgOtDQgHvGwachYxB_oMj_gJqWbTLD0l1NqEyRAUCOu6MzDSJBJMBMpGwhU8ViOy9E-sCylx3GgxiUvO2HO84doYXRvnrq0Rtjad5XoafzG6LQ8h_hYcscv7v5uf_c_8nOzgVU4suyDVxesyvXRIZKHqq1Crk63W_WO39wm16d4a
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB5EoY9D6ZPa5xZ6DcbdTbKBXkRaYn2cFLyFbDYrFhulKqX_vjsmsSkUWug1YUL4djPzbfjmG4B7n_PIY760mOGiFneFbflC2ZbUDrVjyRiV2JzcH7jBiD-PnXEF2kUvDMoq89yf5fRNts6vNHI0G4vpFHt8ueOhzS4utC_Mub2G7lROFWqtTjcYlNojm1lC5ujOaLs7cPcl80LlNk6cSdKJOS1SiqI76jV_LlOl0vN0CAc5ZySt7LWOoJKkx7BfchI8gWF7Nl-rj0aMUyDIe8brSIzUGLVAG_gJatwnRCXJguTDIiZk6-G6JPhL1oSY55Dpq0kzy1MYPT0O24GVD0ywYkNTVpaL5E5r8wky7jIZ0YziuIIL7XFlR9LwOW0oWdyMY2WgolQnLqM-NbxPMZ-dQTWdp8k5EK0jKlwuuafNAY0roSLBlc-l9j1T82gdRIFPGOdu4jjUYhYWsrGXsARtiNCGGbR1oNvQRWap8Zegh2IRwm_7IzSp__fwi_-F38JuMOz3wl5n0L2EPbyT6cyuoLp6WyfXhpis5E2-8T4BWavgyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloudy%2Fclear+weather+classification+using+deep+learning+techniques+with+cloud+images&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Kalkan%2C+M%C3%BCr%C3%BCvvet&rft.au=Bostanc%C4%B1%2C+Gazi+Erkan&rft.au=G%C3%BCzel%2C+Mehmet+Serdar&rft.au=Kalkan%2C+Bu%C4%9Frahan&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=102&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.108271&rft.externalDocID=S0045790622004980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon