Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation
•Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain screening.•Adaptation network reduces distribution mismatch in cross-subject predictions.•The method was validated on a clinical dataset of 908 T2D...
Saved in:
Published in | Biomedical signal processing and control Vol. 105; p. 107629 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain screening.•Adaptation network reduces distribution mismatch in cross-subject predictions.•The method was validated on a clinical dataset of 908 T2D and a public dataset.•The method exhibits favorable glucose prediction and long-term transfer capability.
For patients with type 2 diabetes (T2D), accurate prediction of blood glucose variations is essential for maintaining glycemic control, decreasing the occurrence of hypoglycemic and hyperglycemic events, and preventing diabetes complications. However, this is difficult to achieve due to insufficient early glucose data and the complexity of glucose dynamics. Additionally, the high variability among individuals poses challenges for data transfer between patients. In this work, a clustering-based domain adaptation method is proposed for personalized glucose prediction of T2D with insufficient data. Firstly, the multi-level clustering method is used to subtype the heterogeneous group of patients with T2D into multiple homogenous subgroups to deal with the high inter-individual variability. Then, a domain adaptation prediction network is designed to overcome the challenges caused by insufficient historical data of the target patient through cross-patient knowledge transfer and obtain a personalized deep prediction model suitable for the target patient. The effectiveness of the proposed method was evaluated in a clinical dataset containing continuous glucose monitoring (CGM) measurement records from 908 patients with T2D, each with only a small amount of data. The 30-minute prediction horizon achieved an average root mean square error of 14.96 mg/dL, with over 94 % of predictions clinically accurate. In addition, we evaluated the long-term transferability of the proposed method on the publicly available ShanghaiT2DM Dataset and compared it with the state-of-the-art (SOTA) methods. The results demonstrate that the proposed personalized method can achieve accurate glucose prediction for patients with T2D, even with only one day of historical CGM records available. |
---|---|
AbstractList | •Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain screening.•Adaptation network reduces distribution mismatch in cross-subject predictions.•The method was validated on a clinical dataset of 908 T2D and a public dataset.•The method exhibits favorable glucose prediction and long-term transfer capability.
For patients with type 2 diabetes (T2D), accurate prediction of blood glucose variations is essential for maintaining glycemic control, decreasing the occurrence of hypoglycemic and hyperglycemic events, and preventing diabetes complications. However, this is difficult to achieve due to insufficient early glucose data and the complexity of glucose dynamics. Additionally, the high variability among individuals poses challenges for data transfer between patients. In this work, a clustering-based domain adaptation method is proposed for personalized glucose prediction of T2D with insufficient data. Firstly, the multi-level clustering method is used to subtype the heterogeneous group of patients with T2D into multiple homogenous subgroups to deal with the high inter-individual variability. Then, a domain adaptation prediction network is designed to overcome the challenges caused by insufficient historical data of the target patient through cross-patient knowledge transfer and obtain a personalized deep prediction model suitable for the target patient. The effectiveness of the proposed method was evaluated in a clinical dataset containing continuous glucose monitoring (CGM) measurement records from 908 patients with T2D, each with only a small amount of data. The 30-minute prediction horizon achieved an average root mean square error of 14.96 mg/dL, with over 94 % of predictions clinically accurate. In addition, we evaluated the long-term transferability of the proposed method on the publicly available ShanghaiT2DM Dataset and compared it with the state-of-the-art (SOTA) methods. The results demonstrate that the proposed personalized method can achieve accurate glucose prediction for patients with T2D, even with only one day of historical CGM records available. |
ArticleNumber | 107629 |
Author | Zhou, Jian Li, Hongru Yang, Tao Tao, Rui Yu, Xia |
Author_xml | – sequence: 1 givenname: Tao surname: Yang fullname: Yang, Tao email: yangtao22@sjtu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China – sequence: 2 givenname: Xia surname: Yu fullname: Yu, Xia email: yuxia@ise.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China – sequence: 3 givenname: Rui surname: Tao fullname: Tao, Rui email: 2010289@stu.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China – sequence: 4 givenname: Hongru surname: Li fullname: Li, Hongru email: lihongru@ise.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China – sequence: 5 givenname: Jian surname: Zhou fullname: Zhou, Jian email: zhoujian@sjtu.edu.cn organization: Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233 China |
BookMark | eNp9kMtqwzAQRbVIoUnaH-hKP2BXUmTZhm7a0BcEumnWQo9RUHAsI8mF_H1t3HVXcxk4l5mzQas-9IDQAyUlJVQ8nkudBlMywqppUQvWrtCa1lwUDWn5LdqkdCaENzXla3R86UKw-NSNJiTAQwTrTfahxy5EnK8DYIatVxoyJDwm35-w6caUIU6x0CqBxTZclO-xsmrIaobv0I1TXYL7v7lFx7fX7_1Hcfh6_9w_HwrDKpoLwYWjrSMN2TlNrKqEEJryum7YlB3TAIxwSypmdrpmjrWu5Y1wQJVTWtHdFrGl18SQUgQnh-gvKl4lJXKWIc9yliFnGXKRMUFPCwTTZT8eokzGQ2-mzyOYLG3w_-G_ckFtKQ |
Cites_doi | 10.1038/s41591-022-02144-z 10.1109/JBHI.2019.2931842 10.1136/bmjdrc-2018-000527 10.1016/j.asoc.2019.105923 10.1016/j.knosys.2020.106134 10.1007/s11356-020-08087-7 10.1016/j.cmpb.2020.105874 10.1038/nature14539 10.1016/j.compbiomed.2021.104865 10.1109/EMBC.2016.7591358 10.1038/s41591-021-01453-z 10.1016/j.compbiomed.2020.103956 10.1109/IEMBS.2011.6091368 10.2337/diacare.10.5.622 10.1016/j.arcontrol.2024.100937 10.1007/s10489-021-03043-5 10.1016/j.scitotenv.2020.144516 10.3115/v1/D14-1179 10.1016/j.jdiacomp.2018.09.007 10.1016/j.comcom.2020.06.028 10.1016/j.bspc.2022.103748 10.1007/s11517-015-1263-1 10.1007/s00125-016-4022-4 10.1038/s41597-023-01940-7 10.1136/bmjdrc-2020-001506 10.1016/j.inpa.2020.02.002 10.1007/s10489-023-04949-y 10.1016/j.cmpb.2013.09.016 10.1016/j.compbiomed.2022.105388 10.1016/j.asoc.2013.11.006 10.1126/scitranslmed.aaa9364 10.1016/j.bspc.2021.102923 10.1371/journal.pone.0187754 10.1109/EMBC.2014.6944708 10.1056/NEJMoa0802743 10.1016/j.cmpb.2021.106105 10.1016/j.cmpb.2022.106773 10.1016/j.cmpb.2014.12.002 10.1006/jcss.1997.1504 10.1016/j.enconman.2019.112345 10.1007/s10489-022-03416-4 10.1016/S2213-8587(18)30051-2 10.1136/bmjdrc-2020-001869 10.1007/s10489-020-01824-y 10.1016/j.engappai.2019.103255 10.2196/14452 10.2337/db11-0654 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2025.107629 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2025_107629 S1746809425001405 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c251t-646f19f0803fb0da5666b147782a56f2bee204d052c3b72f29f9486fe1afaba13 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Sun Jul 06 05:06:44 EDT 2025 Sat May 24 17:06:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Type 2 diabetes Domain adaptation Glucose prediction Transfer learning Clustering algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-646f19f0803fb0da5666b147782a56f2bee204d052c3b72f29f9486fe1afaba13 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2025_107629 elsevier_sciencedirect_doi_10_1016_j_bspc_2025_107629 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | M.P. Reymann, E. Dorschky, B.H. Groh, C. Martindale, P. Blank, B.M. Eskofier, Blood glucose level prediction based on support vector regression using mobile platforms, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, August 16-20, 2016, IEEE, 2016, pp. 2990-2993. Arthur, Vassilvitskii (b0235) 2007 Li, Liu, Zhu, Herrero, Georgiou (b0180) 2020; 24 Tomczak (b0155) 2017 K. Cho, B.v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder–decoder for statistical machine translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, October 25-29, 2014,, ACL, 2014, pp. 1724-1734. A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, B.K. Sriperumbudur, Optimal kernel choice for large-scale two-sample tests, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. NIPS 2012, Lake Tahoe, Nevada, United States, December 3-6, 2012, MIT Press, 2012. Challu, Olivares, Oreshkin, Ramirez, Canseco, Dubrawski (b0325) 2023 Group (b0025) 2008; 358 Sun, Kosmas (b0330) 2024 R.H. Botwey, E. Daskalaki, P. Diem, S.G. Mougiakakou, Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, August 26-30, 2014, IEEE, 2014, pp. 4843-4846. Li, Wu, Zhu, Jiang, Tan, Guo (b0250) 2021; 8 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0275) 2014; 15 Faruqui, Du, Meka, Alaeddini, Li, Shirinkam, Wang (b0055) 2019; 7 Cobelli, Renard, Kovatchev (b0085) 2011; 60 LeCun, Bengio, Hinton (b0170) 2015; 521 Sakurai, Kawai, Yamazaki, Komatsu (b0010) 2018; 32 Ma, Chen, Wang, Yang, Yan, Jia, Xu (b0115) 2020; 205 Zou, Xiong, Li, Yi, Yu, Wu (b0175) 2020; 27 Olisah, Smith, Smith (b0015) 2022; 220 Clarke, Cox, Gonder-Frederick, Carter, Pohl (b0295) 1987; 10 Rubin-Falcone, Fox, Wiens (b0320) 2020 C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, C. Cobelli, A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011, Boston, MA, USA, August 30-September 3, 2011, IEEE, 2011, pp. 5653-5656. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: Y. Bengio, Y. LeCun (Eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. Chow, Zmora, Ma, Seaquist, Schreiner (b0050) 2018; 6 Anjana, Baskar, Nair, Jebarani, Siddiqui, Pradeepa, Unnikrishnan, Palmer, Pearson, Mohan (b0210) 2020; 8 Thabit, Hovorka (b0090) 2016; 59 Contreras, Oviedo, Vettoretti, Visentin, Vehi (b0135) 2017; 12 Sun, Boukerche, Tao (b0255) 2020; 160 S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 32nd International Conference on Machine Learning, ICML 2015, Lille, France, July 6-11, 2015, JMLR.org, 2015, pp. 448-456. De Bois, El Yacoubi, Ammi (b0200) 2021; 199 Huang, Li, Zhang, Ren (b0245) 2021; 768 J. Jiang, Y. Shu, J. Wang, M. Long, Transferability in Deep Learning: A Survey, arXiv preprint arXiv:2201.05867, (2022). Zhu, Kuang, Piao, Zeng, Li, Georgiou (b0310) 2024 Georga, Protopappas, Polyzos, Fotiadis (b0160) 2015; 53 Hidalgo, Botella, Velasco, Garnica, Cervigón, Martínez, Aramendi, Maqueda, Lanchares (b0005) 2020; 88 D’Antoni, Merone, Piemonte, Iannello, Soda (b0110) 2020; 203 V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, June 21-24, 2010, Omnipress, 2010, pp. 807-814. Cichosz, Kronborg, Jensen, Hejlesen (b0100) 2021; 138 Bock, Francois, Gillet (b0030) 2015; 118 T. Zhu, X. Yao, K. Li, P. Herrero, P. Georgiou, Blood glucose prediction for type 1 diabetes using generative adversarial networks, Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, August 29-30, 2020, CEUR-WS.org, 2020, pp. 90–94. Kovatchev, Patek, Dassau, Doyle, Magni, De Nicolao, Cobelli (b0020) 2009; 3 Hidalgo, Colmenar, Risco-Martin, Cuesta-Infante, Maqueda, Botella, Rubio (b0150) 2014; 20 Ma, Xu, Hong, Shi, Zhu, Wang (b0035) 2023; 53 van den Boorn, Lagerburg, van Steen, Wedzinga, Bosman, van der Voort (b0105) 2021; 206 Jia, Zhou, Bao (b0225) 2019 X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, JMLR.org, 2011, pp. 315-323. Hinshaw, Dalla Man, Nandy, Saad, Bharucha, Levine, Rizza, Basu, Carter, Cobelli, Kudva, Basu (b0125) 2013; 62 Sharma, Nilam (b0065) 2023; 53 Boughton, Tripyla, Hartnell, Daly, Herzig, Wilinska, Czerlau, Fry, Bally, Hovorka (b0080) 2021; 27 Aiello, Lisanti, Magni, Musci, Toffanin (b0095) 2020; 87 Zecchin, Facchinetti, Sparacino, Cobelli (b0145) 2014; 113 Wang, Xu, Chen, Wang (b0045) 2021; 51 Shaik, Cherukuri (b0040) 2022; 52 Koutny, Mayo (b0060) 2022; 145 Mughal, Patanè, Caponetto (b0070) 2024; 57 Ahlqvist, Storm, Käräjämäki, Martinell, Dorkhan, Carlsson, Vikman, Prasad, Aly, Almgren, Wessman, Shaat, Spégel, Mulder, Lindholm, Melander, Hansson, Malmqvist, Lernmark, Lahti, Forsén, Tuomi, Rosengren, Groop (b0205) 2018; 6 Daly, Boughton, Nwokolo, Hartnell, Wilinska, Cezar, Evans, Hovorka (b0075) 2023; 29 Karim, Vassanyi, Kosa (b0130) 2020; 125 B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, arXiv preprint arXiv:1905.10437, (2019). Zhang, Flores, Tran (b0190) 2021; 69 L. Li, W.-Y. Cheng, B.S. Glicksberg, O. Gottesman, R. Tamler, R. Chen, E.P. Bottinger, J.T. Dudley, Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Science Translational Medicine, 7 (2015) 311ra174-311ra174. Tzeng, Hoffman, Zhang, Saenko, Darrell (b0285) abs/1412.3474 (2014). Tao, Yu, Lu, Shen, Lu, Zhu, Bao, Li, Zhou (b0220) 2021; 9 Freund, Schapire (b0305) 1997; 55 Zhao, Zhu, Shen, Lin, Zhang, Liang, Cao, Li, Liu, Rao, Wang (b0290) 2023; 10 Naveena, Bharathi (b0195) 2022; 77 Jia (10.1016/j.bspc.2025.107629_b0225) 2019 Tao (10.1016/j.bspc.2025.107629_b0220) 2021; 9 Faruqui (10.1016/j.bspc.2025.107629_b0055) 2019; 7 Shaik (10.1016/j.bspc.2025.107629_b0040) 2022; 52 Sharma (10.1016/j.bspc.2025.107629_b0065) 2023; 53 Aiello (10.1016/j.bspc.2025.107629_b0095) 2020; 87 Hidalgo (10.1016/j.bspc.2025.107629_b0005) 2020; 88 Rubin-Falcone (10.1016/j.bspc.2025.107629_b0320) 2020 Li (10.1016/j.bspc.2025.107629_b0250) 2021; 8 Ma (10.1016/j.bspc.2025.107629_b0115) 2020; 205 Karim (10.1016/j.bspc.2025.107629_b0130) 2020; 125 10.1016/j.bspc.2025.107629_b0215 van den Boorn (10.1016/j.bspc.2025.107629_b0105) 2021; 206 Huang (10.1016/j.bspc.2025.107629_b0245) 2021; 768 Cichosz (10.1016/j.bspc.2025.107629_b0100) 2021; 138 Mughal (10.1016/j.bspc.2025.107629_b0070) 2024; 57 Georga (10.1016/j.bspc.2025.107629_b0160) 2015; 53 Daly (10.1016/j.bspc.2025.107629_b0075) 2023; 29 De Bois (10.1016/j.bspc.2025.107629_b0200) 2021; 199 Li (10.1016/j.bspc.2025.107629_b0180) 2020; 24 Challu (10.1016/j.bspc.2025.107629_b0325) 2023 10.1016/j.bspc.2025.107629_b0260 Zhang (10.1016/j.bspc.2025.107629_b0190) 2021; 69 10.1016/j.bspc.2025.107629_b0185 Freund (10.1016/j.bspc.2025.107629_b0305) 1997; 55 10.1016/j.bspc.2025.107629_b0140 10.1016/j.bspc.2025.107629_b0300 10.1016/j.bspc.2025.107629_b0265 Hinshaw (10.1016/j.bspc.2025.107629_b0125) 2013; 62 Ahlqvist (10.1016/j.bspc.2025.107629_b0205) 2018; 6 Group (10.1016/j.bspc.2025.107629_b0025) 2008; 358 Naveena (10.1016/j.bspc.2025.107629_b0195) 2022; 77 Zhu (10.1016/j.bspc.2025.107629_b0310) 2024 Contreras (10.1016/j.bspc.2025.107629_b0135) 2017; 12 Bock (10.1016/j.bspc.2025.107629_b0030) 2015; 118 Arthur (10.1016/j.bspc.2025.107629_b0235) 2007 Koutny (10.1016/j.bspc.2025.107629_b0060) 2022; 145 Olisah (10.1016/j.bspc.2025.107629_b0015) 2022; 220 Cobelli (10.1016/j.bspc.2025.107629_b0085) 2011; 60 10.1016/j.bspc.2025.107629_b0270 10.1016/j.bspc.2025.107629_b0230 Zhao (10.1016/j.bspc.2025.107629_b0290) 2023; 10 Boughton (10.1016/j.bspc.2025.107629_b0080) 2021; 27 Zecchin (10.1016/j.bspc.2025.107629_b0145) 2014; 113 Hidalgo (10.1016/j.bspc.2025.107629_b0150) 2014; 20 Clarke (10.1016/j.bspc.2025.107629_b0295) 1987; 10 10.1016/j.bspc.2025.107629_b0315 LeCun (10.1016/j.bspc.2025.107629_b0170) 2015; 521 Thabit (10.1016/j.bspc.2025.107629_b0090) 2016; 59 Ma (10.1016/j.bspc.2025.107629_b0035) 2023; 53 Tzeng (10.1016/j.bspc.2025.107629_b0285) 14123474 Chow (10.1016/j.bspc.2025.107629_b0050) 2018; 6 Anjana (10.1016/j.bspc.2025.107629_b0210) 2020; 8 10.1016/j.bspc.2025.107629_b0280 10.1016/j.bspc.2025.107629_b0165 10.1016/j.bspc.2025.107629_b0120 10.1016/j.bspc.2025.107629_b0240 Kovatchev (10.1016/j.bspc.2025.107629_b0020) 2009; 3 D’Antoni (10.1016/j.bspc.2025.107629_b0110) 2020; 203 Wang (10.1016/j.bspc.2025.107629_b0045) 2021; 51 Sun (10.1016/j.bspc.2025.107629_b0255) 2020; 160 Zou (10.1016/j.bspc.2025.107629_b0175) 2020; 27 Sakurai (10.1016/j.bspc.2025.107629_b0010) 2018; 32 Srivastava (10.1016/j.bspc.2025.107629_b0275) 2014; 15 Sun (10.1016/j.bspc.2025.107629_b0330) 2024 Tomczak (10.1016/j.bspc.2025.107629_b0155) 2017 |
References_xml | – volume: 8 start-page: 185 year: 2021 end-page: 193 ident: b0250 article-title: Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit publication-title: Information Processing in Agriculture – volume: 52 start-page: 15105 year: 2022 end-page: 15121 ident: b0040 article-title: Hinge attention network: A joint model for diabetic retinopathy severity grading publication-title: Appl. Intell. – year: 2019 ident: b0225 article-title: Continuous glucose monitoring – volume: 118 start-page: 107 year: 2015 end-page: 123 ident: b0030 article-title: A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes publication-title: Comput Methods Programs Biomed – volume: 10 start-page: 35 year: 2023 ident: b0290 article-title: Chinese diabetes datasets for data-driven machine learning publication-title: Sci Data – volume: 77 year: 2022 ident: b0195 article-title: A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning publication-title: Biomed. Signal Process. Control – volume: 6 start-page: 361 year: 2018 end-page: 369 ident: b0205 article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables publication-title: Lancet Diabetes Endocrinol. – reference: B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, arXiv preprint arXiv:1905.10437, (2019). – volume: 145 year: 2022 ident: b0060 article-title: Predicting glucose level with an adapted branch predictor publication-title: Comput Biol Med – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 32nd International Conference on Machine Learning, ICML 2015, Lille, France, July 6-11, 2015, JMLR.org, 2015, pp. 448-456. – volume: 206 year: 2021 ident: b0105 article-title: The development of a glucose prediction model in critically ill patients publication-title: Comput Methods Programs Biomed – year: abs/1412.3474 (2014). ident: b0285 article-title: Deep Domain Confusion: Maximizing for Domain Invariance publication-title: CoRR – reference: D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: Y. Bengio, Y. LeCun (Eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. – volume: 59 start-page: 1795 year: 2016 end-page: 1805 ident: b0090 article-title: Coming of age: the artificial pancreas for type 1 diabetes publication-title: Diabetologia – year: 2024 ident: b0330 article-title: Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus publication-title: IEEE J. Biomed. Health Inform. – volume: 3 start-page: 1058 year: 2009 end-page: 1065 ident: b0020 article-title: Control to Range for Diabetes: Functionality and Modular Architecture, Journal of Diabetes publication-title: Sci. Technol. – start-page: 6989 year: 2023 end-page: 6997 ident: b0325 article-title: Nhits: Neural hierarchical interpolation for time series forecasting publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 98 year: 2017 end-page: 108 ident: b0155 article-title: Gaussian process regression with categorical inputs for predicting the blood glucose level publication-title: International Conference on Systems Science, Springer – reference: M.P. Reymann, E. Dorschky, B.H. Groh, C. Martindale, P. Blank, B.M. Eskofier, Blood glucose level prediction based on support vector regression using mobile platforms, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, August 16-20, 2016, IEEE, 2016, pp. 2990-2993. – volume: 768 year: 2021 ident: b0245 article-title: PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition publication-title: Sci. Total Environ. – volume: 160 start-page: 502 year: 2020 end-page: 511 ident: b0255 article-title: SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network publication-title: Comput. Commun. – volume: 7 year: 2019 ident: b0055 article-title: Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial publication-title: JMIR Mhealth Uhealth – reference: R.H. Botwey, E. Daskalaki, P. Diem, S.G. Mougiakakou, Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, August 26-30, 2014, IEEE, 2014, pp. 4843-4846. – volume: 88 year: 2020 ident: b0005 article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging publication-title: Appl. Soft Comput. – volume: 203 year: 2020 ident: b0110 article-title: Auto-regressive time delayed jump neural network for blood glucose levels forecasting publication-title: Knowl.-Based Syst. – volume: 138 year: 2021 ident: b0100 article-title: Penalty weighted glucose prediction models could lead to better clinically usage publication-title: Comput Biol Med – volume: 57 year: 2024 ident: b0070 article-title: A comprehensive review of models and nonlinear control strategies for blood glucose regulation in artificial pancreas publication-title: Annu. Rev. Control. – reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, June 21-24, 2010, Omnipress, 2010, pp. 807-814. – volume: 53 start-page: 27505 year: 2023 end-page: 27518 ident: b0035 article-title: Joint ordinal regression and multiclass classification for diabetic retinopathy grading with transformers and CNNs fusion network publication-title: Appl. Intell. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0275 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 27 start-page: 1471 year: 2021 end-page: 1476 ident: b0080 article-title: Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial publication-title: Nat Med – reference: K. Cho, B.v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder–decoder for statistical machine translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, October 25-29, 2014,, ACL, 2014, pp. 1724-1734. – reference: X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, JMLR.org, 2011, pp. 315-323. – volume: 29 start-page: 203 year: 2023 end-page: 208 ident: b0075 article-title: Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial publication-title: Nat Med – volume: 27 start-page: 16853 year: 2020 end-page: 16864 ident: b0175 article-title: A water quality prediction method based on the multi-time scale bidirectional long short-term memory network publication-title: Environ Sci Pollut Res Int – volume: 53 start-page: 1305 year: 2015 end-page: 1318 ident: b0160 article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models publication-title: Med. Biol. Eng. Compu. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0170 article-title: Deep learning publication-title: Nature – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: b0305 article-title: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting publication-title: J. Comput. Syst. Sci. – volume: 60 start-page: 2672 year: 2011 end-page: 2682 ident: b0085 article-title: Artificial Pancreas: Past, Present, Future publication-title: Diabetes – reference: L. Li, W.-Y. Cheng, B.S. Glicksberg, O. Gottesman, R. Tamler, R. Chen, E.P. Bottinger, J.T. Dudley, Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Science Translational Medicine, 7 (2015) 311ra174-311ra174. – reference: ] C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, C. Cobelli, A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011, Boston, MA, USA, August 30-September 3, 2011, IEEE, 2011, pp. 5653-5656. – reference: A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, B.K. Sriperumbudur, Optimal kernel choice for large-scale two-sample tests, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. NIPS 2012, Lake Tahoe, Nevada, United States, December 3-6, 2012, MIT Press, 2012. – volume: 87 year: 2020 ident: b0095 article-title: Therapy-driven Deep Glucose Forecasting publication-title: Eng. Appl. Artif. Intel. – volume: 62 start-page: 2223 year: 2013 end-page: 2229 ident: b0125 article-title: Diurnal Pattern of Insulin Action in Type 1 Diabetes, Implications for a Closed-Loop publication-title: System – volume: 220 year: 2022 ident: b0015 article-title: Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective publication-title: Comput Methods Programs Biomed – volume: 20 start-page: 40 year: 2014 end-page: 53 ident: b0150 article-title: Modeling glycemia in humans by means of Grammatical Evolution publication-title: Appl. Soft Comput. – volume: 24 start-page: 414 year: 2020 end-page: 423 ident: b0180 article-title: GluNet: A deep learning framework for accurate glucose forecasting publication-title: IEEE J. Biomed. Health Inform. – volume: 10 start-page: 622 year: 1987 end-page: 628 ident: b0295 article-title: Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose publication-title: Diabetes Care – year: 2024 ident: b0310 article-title: Population-specific glucose prediction in diabetes care with transformer-based deep learning on the edge publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 32 start-page: 1118 year: 2018 end-page: 1123 ident: b0010 article-title: Prediction of lowest nocturnal blood glucose level based on self-monitoring of blood glucose in Japanese patients with type 2 diabetes publication-title: J Diabetes Complications – volume: 358 start-page: 2545 year: 2008 end-page: 2559 ident: b0025 article-title: Effects of Intensive Glucose Lowering in Type 2 Diabetes publication-title: New England Journal of Medicine – volume: 12 year: 2017 ident: b0135 article-title: Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models publication-title: PLoS One – volume: 113 start-page: 144 year: 2014 end-page: 152 ident: b0145 article-title: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information publication-title: Comput Methods Programs Biomed – volume: 125 year: 2020 ident: b0130 article-title: After-meal blood glucose level prediction using an absorption model for neural network training publication-title: Comput Biol Med – reference: T. Zhu, X. Yao, K. Li, P. Herrero, P. Georgiou, Blood glucose prediction for type 1 diabetes using generative adversarial networks, Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, August 29-30, 2020, CEUR-WS.org, 2020, pp. 90–94. – reference: J. Jiang, Y. Shu, J. Wang, M. Long, Transferability in Deep Learning: A Survey, arXiv preprint arXiv:2201.05867, (2022). – volume: 51 start-page: 223 year: 2021 end-page: 236 ident: b0045 article-title: Diagnosis of complications of type 2 diabetes based on weighted multi-label small sphere and large margin machine publication-title: Appl. Intell. – volume: 53 start-page: 1945 year: 2023 end-page: 1958 ident: b0065 article-title: Singh, Computer-controlled diabetes disease diagnosis technique based on fuzzy inference structure for insulin-dependent patients publication-title: Appl. Intell. – start-page: 105 year: 2020 end-page: 109 ident: b0320 article-title: Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction publication-title: KDH@ ECAI – volume: 69 year: 2021 ident: b0190 article-title: Deep learning and regression approaches to forecasting blood glucose levels for type 1 diabetes publication-title: Biomed. Signal Process. Control – start-page: 1027 year: 2007 end-page: 1035 ident: b0235 article-title: K-means++ the advantages of careful seeding publication-title: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 8 year: 2020 ident: b0210 article-title: Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study publication-title: BMJ Open Diabetes Res Care – volume: 6 year: 2018 ident: b0050 article-title: Development of a model to predict 5-year risk of severe hypoglycemia in patients with type 2 diabetes publication-title: BMJ Open Diabetes Res Care – volume: 199 year: 2021 ident: b0200 article-title: Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people publication-title: Comput Methods Programs Biomed – volume: 205 year: 2020 ident: b0115 article-title: Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction publication-title: Energ. Conver. Manage. – volume: 9 year: 2021 ident: b0220 article-title: Multilevel clustering approach driven by continuous glucose monitoring data for further classification of type 2 diabetes publication-title: BMJ Open Diabetes Res Care – volume: 29 start-page: 203 year: 2023 ident: 10.1016/j.bspc.2025.107629_b0075 article-title: Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial publication-title: Nat Med doi: 10.1038/s41591-022-02144-z – ident: 10.1016/j.bspc.2025.107629_b0260 – volume: 24 start-page: 414 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0180 article-title: GluNet: A deep learning framework for accurate glucose forecasting publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2931842 – volume: 6 year: 2018 ident: 10.1016/j.bspc.2025.107629_b0050 article-title: Development of a model to predict 5-year risk of severe hypoglycemia in patients with type 2 diabetes publication-title: BMJ Open Diabetes Res Care doi: 10.1136/bmjdrc-2018-000527 – volume: 88 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0005 article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105923 – volume: 203 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0110 article-title: Auto-regressive time delayed jump neural network for blood glucose levels forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106134 – volume: 27 start-page: 16853 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0175 article-title: A water quality prediction method based on the multi-time scale bidirectional long short-term memory network publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-020-08087-7 – ident: 10.1016/j.bspc.2025.107629_b0315 – volume: 199 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0200 article-title: Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105874 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.bspc.2025.107629_b0170 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 138 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0100 article-title: Penalty weighted glucose prediction models could lead to better clinically usage publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104865 – ident: 10.1016/j.bspc.2025.107629_b0165 doi: 10.1109/EMBC.2016.7591358 – ident: 10.1016/j.bspc.2025.107629_b0270 – volume: 27 start-page: 1471 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0080 article-title: Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial publication-title: Nat Med doi: 10.1038/s41591-021-01453-z – volume: 125 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0130 article-title: After-meal blood glucose level prediction using an absorption model for neural network training publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103956 – ident: 10.1016/j.bspc.2025.107629_b0140 doi: 10.1109/IEMBS.2011.6091368 – volume: 10 start-page: 622 year: 1987 ident: 10.1016/j.bspc.2025.107629_b0295 article-title: Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose publication-title: Diabetes Care doi: 10.2337/diacare.10.5.622 – volume: 57 year: 2024 ident: 10.1016/j.bspc.2025.107629_b0070 article-title: A comprehensive review of models and nonlinear control strategies for blood glucose regulation in artificial pancreas publication-title: Annu. Rev. Control. doi: 10.1016/j.arcontrol.2024.100937 – volume: 62 start-page: 2223 year: 2013 ident: 10.1016/j.bspc.2025.107629_b0125 article-title: Diurnal Pattern of Insulin Action in Type 1 Diabetes, Implications for a Closed-Loop publication-title: System – ident: 10.1016/j.bspc.2025.107629_b0265 – volume: 52 start-page: 15105 year: 2022 ident: 10.1016/j.bspc.2025.107629_b0040 article-title: Hinge attention network: A joint model for diabetic retinopathy severity grading publication-title: Appl. Intell. doi: 10.1007/s10489-021-03043-5 – volume: 768 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0245 article-title: PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144516 – start-page: 6989 year: 2023 ident: 10.1016/j.bspc.2025.107629_b0325 article-title: Nhits: Neural hierarchical interpolation for time series forecasting – ident: 10.1016/j.bspc.2025.107629_b0240 doi: 10.3115/v1/D14-1179 – volume: 32 start-page: 1118 year: 2018 ident: 10.1016/j.bspc.2025.107629_b0010 article-title: Prediction of lowest nocturnal blood glucose level based on self-monitoring of blood glucose in Japanese patients with type 2 diabetes publication-title: J Diabetes Complications doi: 10.1016/j.jdiacomp.2018.09.007 – start-page: 98 year: 2017 ident: 10.1016/j.bspc.2025.107629_b0155 article-title: Gaussian process regression with categorical inputs for predicting the blood glucose level publication-title: International Conference on Systems Science, Springer – volume: 160 start-page: 502 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0255 article-title: SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.06.028 – volume: 77 year: 2022 ident: 10.1016/j.bspc.2025.107629_b0195 article-title: A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103748 – volume: 53 start-page: 1305 year: 2015 ident: 10.1016/j.bspc.2025.107629_b0160 article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-015-1263-1 – volume: 59 start-page: 1795 year: 2016 ident: 10.1016/j.bspc.2025.107629_b0090 article-title: Coming of age: the artificial pancreas for type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-016-4022-4 – volume: 10 start-page: 35 year: 2023 ident: 10.1016/j.bspc.2025.107629_b0290 article-title: Chinese diabetes datasets for data-driven machine learning publication-title: Sci Data doi: 10.1038/s41597-023-01940-7 – ident: 10.1016/j.bspc.2025.107629_b0300 – volume: 8 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0210 article-title: Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study publication-title: BMJ Open Diabetes Res Care doi: 10.1136/bmjdrc-2020-001506 – volume: 3 start-page: 1058 year: 2009 ident: 10.1016/j.bspc.2025.107629_b0020 article-title: Control to Range for Diabetes: Functionality and Modular Architecture, Journal of Diabetes publication-title: Sci. Technol. – year: 2024 ident: 10.1016/j.bspc.2025.107629_b0330 article-title: Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus publication-title: IEEE J. Biomed. Health Inform. – start-page: 105 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0320 article-title: Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction publication-title: KDH@ ECAI – volume: 8 start-page: 185 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0250 article-title: Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2020.02.002 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.bspc.2025.107629_b0275 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 53 start-page: 27505 year: 2023 ident: 10.1016/j.bspc.2025.107629_b0035 article-title: Joint ordinal regression and multiclass classification for diabetic retinopathy grading with transformers and CNNs fusion network publication-title: Appl. Intell. doi: 10.1007/s10489-023-04949-y – start-page: 1027 year: 2007 ident: 10.1016/j.bspc.2025.107629_b0235 article-title: K-means++ the advantages of careful seeding – volume: 113 start-page: 144 year: 2014 ident: 10.1016/j.bspc.2025.107629_b0145 article-title: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.09.016 – year: 14123474 ident: 10.1016/j.bspc.2025.107629_b0285 article-title: Deep Domain Confusion: Maximizing for Domain Invariance publication-title: CoRR – volume: 145 year: 2022 ident: 10.1016/j.bspc.2025.107629_b0060 article-title: Predicting glucose level with an adapted branch predictor publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105388 – volume: 20 start-page: 40 year: 2014 ident: 10.1016/j.bspc.2025.107629_b0150 article-title: Modeling glycemia in humans by means of Grammatical Evolution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.11.006 – ident: 10.1016/j.bspc.2025.107629_b0215 doi: 10.1126/scitranslmed.aaa9364 – ident: 10.1016/j.bspc.2025.107629_b0230 – volume: 69 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0190 article-title: Deep learning and regression approaches to forecasting blood glucose levels for type 1 diabetes publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102923 – volume: 12 year: 2017 ident: 10.1016/j.bspc.2025.107629_b0135 article-title: Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models publication-title: PLoS One doi: 10.1371/journal.pone.0187754 – ident: 10.1016/j.bspc.2025.107629_b0120 doi: 10.1109/EMBC.2014.6944708 – volume: 358 start-page: 2545 year: 2008 ident: 10.1016/j.bspc.2025.107629_b0025 article-title: Effects of Intensive Glucose Lowering in Type 2 Diabetes publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa0802743 – year: 2019 ident: 10.1016/j.bspc.2025.107629_b0225 – volume: 206 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0105 article-title: The development of a glucose prediction model in critically ill patients publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106105 – volume: 220 year: 2022 ident: 10.1016/j.bspc.2025.107629_b0015 article-title: Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106773 – volume: 118 start-page: 107 year: 2015 ident: 10.1016/j.bspc.2025.107629_b0030 article-title: A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2014.12.002 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.bspc.2025.107629_b0305 article-title: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – ident: 10.1016/j.bspc.2025.107629_b0280 – volume: 205 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0115 article-title: Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.112345 – ident: 10.1016/j.bspc.2025.107629_b0185 – volume: 53 start-page: 1945 year: 2023 ident: 10.1016/j.bspc.2025.107629_b0065 article-title: Singh, Computer-controlled diabetes disease diagnosis technique based on fuzzy inference structure for insulin-dependent patients publication-title: Appl. Intell. doi: 10.1007/s10489-022-03416-4 – volume: 6 start-page: 361 year: 2018 ident: 10.1016/j.bspc.2025.107629_b0205 article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(18)30051-2 – volume: 9 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0220 article-title: Multilevel clustering approach driven by continuous glucose monitoring data for further classification of type 2 diabetes publication-title: BMJ Open Diabetes Res Care doi: 10.1136/bmjdrc-2020-001869 – volume: 51 start-page: 223 year: 2021 ident: 10.1016/j.bspc.2025.107629_b0045 article-title: Diagnosis of complications of type 2 diabetes based on weighted multi-label small sphere and large margin machine publication-title: Appl. Intell. doi: 10.1007/s10489-020-01824-y – volume: 87 year: 2020 ident: 10.1016/j.bspc.2025.107629_b0095 article-title: Therapy-driven Deep Glucose Forecasting publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2019.103255 – volume: 7 year: 2019 ident: 10.1016/j.bspc.2025.107629_b0055 article-title: Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial publication-title: JMIR Mhealth Uhealth doi: 10.2196/14452 – year: 2024 ident: 10.1016/j.bspc.2025.107629_b0310 article-title: Population-specific glucose prediction in diabetes care with transformer-based deep learning on the edge publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 60 start-page: 2672 year: 2011 ident: 10.1016/j.bspc.2025.107629_b0085 article-title: Artificial Pancreas: Past, Present, Future publication-title: Diabetes doi: 10.2337/db11-0654 |
SSID | ssj0048714 |
Score | 2.3776093 |
Snippet | •Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 107629 |
SubjectTerms | Clustering algorithm Deep learning Domain adaptation Glucose prediction Transfer learning Type 2 diabetes |
Title | Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation |
URI | https://dx.doi.org/10.1016/j.bspc.2025.107629 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDywIdPEj6QZS0VVQHSBSt0i27FREaRRaVe-nXvzQEVCDGyJZUvRiXPvsX3uCSGXUaz7wkaCGSM9k9o5lghlGKQWZQOplS0LhR8n0Xgq72dq1iLDphYGZZV17K9iehmt65ZejWavmM97T8Cloz6sTiCJ4zIBC82ljHGWX39-yzyAj5f-3tiZYe-6cKbSeJmPAm0MuYIGiArJ78lpI-GM9shuzRTpoHqYfdJy-QHZ2fAPPCTTG5Sd01p2Toslnrog0hSoKMXdVcpps7tKUeL-Qu3bGr0R4JJhBstotnjX85zqTBfVsfwRmY5un4djVv8ngVlgJysWyciHiQfuJ7wJMg0MLTKhjCH5w7XnxjkeyCxQ3AoTc88Tn8h-5F2ovTY6FMeknS9yd0JoIK01wqJLnAZqYXWmAmECzU0Gn7bWHXLVAJQWlR1G2ujEXlOEM0U40wrODlENhumPl5pCvP5j3Ok_x52Rbbyr1LTnpL1art0FcIaV6ZaToku2BncP48kXx3fBSg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGYAB8RTl6YENmaaOnTYjVKACbRdaqZtlOzYqgjQq7cq3c28eqEiIgc1ybCk6ie89to-PCbmM2roT2ihkxgjPhHaOxaE0DFKLtIHQ0uYHhQfDqDcWjxM5qZFudRYGZZVl7C9ieh6ty5pmiWYzm06bz8Clow7MTiCJ4zRBrpF1AcMXrzG4_vzWeQAhzw2-sTXD5uXJmULkZT4y9DHkEiogLMS_Z6eVjHO_Q7ZLqkhvirfZJTWX7pGtFQPBfTK-Rd05LXXnNJvjtgtCTYGLUlxepZxWy6sUNe4v1L4t0RwBigxTWEKT2bueplQnOiv25Q_I-P5u1O2x8qIEZoGeLFgkIt-KPZC_0Jsg0UDRItMSbcj-UPbcOMcDkQSS29C0ueexj0Un8q6lvTa6FR6SejpL3RGhgbDWhBZt4jRwC6sTGYQm0NwkMLa1bpCrCiCVFX4YqhKKvSqEUyGcqoCzQWSFofrxVRUE7D_6Hf-z3wXZ6I0GfdV_GD6dkE18UkhrT0l9MV-6MyAQC3Oe_yBfciPC2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+glucose+prediction+for+type+2+diabetes+using+clustering-based+domain+adaptation&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Tao&rft.au=Yu%2C+Xia&rft.au=Tao%2C+Rui&rft.au=Li%2C+Hongru&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=105&rft_id=info:doi/10.1016%2Fj.bspc.2025.107629&rft.externalDocID=S1746809425001405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |