Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation

•Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain screening.•Adaptation network reduces distribution mismatch in cross-subject predictions.•The method was validated on a clinical dataset of 908 T2D...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 105; p. 107629
Main Authors Yang, Tao, Yu, Xia, Tao, Rui, Li, Hongru, Zhou, Jian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain screening.•Adaptation network reduces distribution mismatch in cross-subject predictions.•The method was validated on a clinical dataset of 908 T2D and a public dataset.•The method exhibits favorable glucose prediction and long-term transfer capability. For patients with type 2 diabetes (T2D), accurate prediction of blood glucose variations is essential for maintaining glycemic control, decreasing the occurrence of hypoglycemic and hyperglycemic events, and preventing diabetes complications. However, this is difficult to achieve due to insufficient early glucose data and the complexity of glucose dynamics. Additionally, the high variability among individuals poses challenges for data transfer between patients. In this work, a clustering-based domain adaptation method is proposed for personalized glucose prediction of T2D with insufficient data. Firstly, the multi-level clustering method is used to subtype the heterogeneous group of patients with T2D into multiple homogenous subgroups to deal with the high inter-individual variability. Then, a domain adaptation prediction network is designed to overcome the challenges caused by insufficient historical data of the target patient through cross-patient knowledge transfer and obtain a personalized deep prediction model suitable for the target patient. The effectiveness of the proposed method was evaluated in a clinical dataset containing continuous glucose monitoring (CGM) measurement records from 908 patients with T2D, each with only a small amount of data. The 30-minute prediction horizon achieved an average root mean square error of 14.96 mg/dL, with over 94 % of predictions clinically accurate. In addition, we evaluated the long-term transferability of the proposed method on the publicly available ShanghaiT2DM Dataset and compared it with the state-of-the-art (SOTA) methods. The results demonstrate that the proposed personalized method can achieve accurate glucose prediction for patients with T2D, even with only one day of historical CGM records available.
AbstractList •Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain screening.•Adaptation network reduces distribution mismatch in cross-subject predictions.•The method was validated on a clinical dataset of 908 T2D and a public dataset.•The method exhibits favorable glucose prediction and long-term transfer capability. For patients with type 2 diabetes (T2D), accurate prediction of blood glucose variations is essential for maintaining glycemic control, decreasing the occurrence of hypoglycemic and hyperglycemic events, and preventing diabetes complications. However, this is difficult to achieve due to insufficient early glucose data and the complexity of glucose dynamics. Additionally, the high variability among individuals poses challenges for data transfer between patients. In this work, a clustering-based domain adaptation method is proposed for personalized glucose prediction of T2D with insufficient data. Firstly, the multi-level clustering method is used to subtype the heterogeneous group of patients with T2D into multiple homogenous subgroups to deal with the high inter-individual variability. Then, a domain adaptation prediction network is designed to overcome the challenges caused by insufficient historical data of the target patient through cross-patient knowledge transfer and obtain a personalized deep prediction model suitable for the target patient. The effectiveness of the proposed method was evaluated in a clinical dataset containing continuous glucose monitoring (CGM) measurement records from 908 patients with T2D, each with only a small amount of data. The 30-minute prediction horizon achieved an average root mean square error of 14.96 mg/dL, with over 94 % of predictions clinically accurate. In addition, we evaluated the long-term transferability of the proposed method on the publicly available ShanghaiT2DM Dataset and compared it with the state-of-the-art (SOTA) methods. The results demonstrate that the proposed personalized method can achieve accurate glucose prediction for patients with T2D, even with only one day of historical CGM records available.
ArticleNumber 107629
Author Zhou, Jian
Li, Hongru
Yang, Tao
Tao, Rui
Yu, Xia
Author_xml – sequence: 1
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  email: yangtao22@sjtu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China
– sequence: 2
  givenname: Xia
  surname: Yu
  fullname: Yu, Xia
  email: yuxia@ise.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China
– sequence: 3
  givenname: Rui
  surname: Tao
  fullname: Tao, Rui
  email: 2010289@stu.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China
– sequence: 4
  givenname: Hongru
  surname: Li
  fullname: Li, Hongru
  email: lihongru@ise.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819 China
– sequence: 5
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: zhoujian@sjtu.edu.cn
  organization: Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233 China
BookMark eNp9kMtqwzAQRbVIoUnaH-hKP2BXUmTZhm7a0BcEumnWQo9RUHAsI8mF_H1t3HVXcxk4l5mzQas-9IDQAyUlJVQ8nkudBlMywqppUQvWrtCa1lwUDWn5LdqkdCaENzXla3R86UKw-NSNJiTAQwTrTfahxy5EnK8DYIatVxoyJDwm35-w6caUIU6x0CqBxTZclO-xsmrIaobv0I1TXYL7v7lFx7fX7_1Hcfh6_9w_HwrDKpoLwYWjrSMN2TlNrKqEEJryum7YlB3TAIxwSypmdrpmjrWu5Y1wQJVTWtHdFrGl18SQUgQnh-gvKl4lJXKWIc9yliFnGXKRMUFPCwTTZT8eokzGQ2-mzyOYLG3w_-G_ckFtKQ
Cites_doi 10.1038/s41591-022-02144-z
10.1109/JBHI.2019.2931842
10.1136/bmjdrc-2018-000527
10.1016/j.asoc.2019.105923
10.1016/j.knosys.2020.106134
10.1007/s11356-020-08087-7
10.1016/j.cmpb.2020.105874
10.1038/nature14539
10.1016/j.compbiomed.2021.104865
10.1109/EMBC.2016.7591358
10.1038/s41591-021-01453-z
10.1016/j.compbiomed.2020.103956
10.1109/IEMBS.2011.6091368
10.2337/diacare.10.5.622
10.1016/j.arcontrol.2024.100937
10.1007/s10489-021-03043-5
10.1016/j.scitotenv.2020.144516
10.3115/v1/D14-1179
10.1016/j.jdiacomp.2018.09.007
10.1016/j.comcom.2020.06.028
10.1016/j.bspc.2022.103748
10.1007/s11517-015-1263-1
10.1007/s00125-016-4022-4
10.1038/s41597-023-01940-7
10.1136/bmjdrc-2020-001506
10.1016/j.inpa.2020.02.002
10.1007/s10489-023-04949-y
10.1016/j.cmpb.2013.09.016
10.1016/j.compbiomed.2022.105388
10.1016/j.asoc.2013.11.006
10.1126/scitranslmed.aaa9364
10.1016/j.bspc.2021.102923
10.1371/journal.pone.0187754
10.1109/EMBC.2014.6944708
10.1056/NEJMoa0802743
10.1016/j.cmpb.2021.106105
10.1016/j.cmpb.2022.106773
10.1016/j.cmpb.2014.12.002
10.1006/jcss.1997.1504
10.1016/j.enconman.2019.112345
10.1007/s10489-022-03416-4
10.1016/S2213-8587(18)30051-2
10.1136/bmjdrc-2020-001869
10.1007/s10489-020-01824-y
10.1016/j.engappai.2019.103255
10.2196/14452
10.2337/db11-0654
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2025.107629
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2025_107629
S1746809425001405
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c251t-646f19f0803fb0da5666b147782a56f2bee204d052c3b72f29f9486fe1afaba13
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Sun Jul 06 05:06:44 EDT 2025
Sat May 24 17:06:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Type 2 diabetes
Domain adaptation
Glucose prediction
Transfer learning
Clustering algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-646f19f0803fb0da5666b147782a56f2bee204d052c3b72f29f9486fe1afaba13
ParticipantIDs crossref_primary_10_1016_j_bspc_2025_107629
elsevier_sciencedirect_doi_10_1016_j_bspc_2025_107629
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References M.P. Reymann, E. Dorschky, B.H. Groh, C. Martindale, P. Blank, B.M. Eskofier, Blood glucose level prediction based on support vector regression using mobile platforms, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, August 16-20, 2016, IEEE, 2016, pp. 2990-2993.
Arthur, Vassilvitskii (b0235) 2007
Li, Liu, Zhu, Herrero, Georgiou (b0180) 2020; 24
Tomczak (b0155) 2017
K. Cho, B.v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder–decoder for statistical machine translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, October 25-29, 2014,, ACL, 2014, pp. 1724-1734.
A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, B.K. Sriperumbudur, Optimal kernel choice for large-scale two-sample tests, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. NIPS 2012, Lake Tahoe, Nevada, United States, December 3-6, 2012, MIT Press, 2012.
Challu, Olivares, Oreshkin, Ramirez, Canseco, Dubrawski (b0325) 2023
Group (b0025) 2008; 358
Sun, Kosmas (b0330) 2024
R.H. Botwey, E. Daskalaki, P. Diem, S.G. Mougiakakou, Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, August 26-30, 2014, IEEE, 2014, pp. 4843-4846.
Li, Wu, Zhu, Jiang, Tan, Guo (b0250) 2021; 8
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0275) 2014; 15
Faruqui, Du, Meka, Alaeddini, Li, Shirinkam, Wang (b0055) 2019; 7
Cobelli, Renard, Kovatchev (b0085) 2011; 60
LeCun, Bengio, Hinton (b0170) 2015; 521
Sakurai, Kawai, Yamazaki, Komatsu (b0010) 2018; 32
Ma, Chen, Wang, Yang, Yan, Jia, Xu (b0115) 2020; 205
Zou, Xiong, Li, Yi, Yu, Wu (b0175) 2020; 27
Olisah, Smith, Smith (b0015) 2022; 220
Clarke, Cox, Gonder-Frederick, Carter, Pohl (b0295) 1987; 10
Rubin-Falcone, Fox, Wiens (b0320) 2020
C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, C. Cobelli, A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011, Boston, MA, USA, August 30-September 3, 2011, IEEE, 2011, pp. 5653-5656.
D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: Y. Bengio, Y. LeCun (Eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
Chow, Zmora, Ma, Seaquist, Schreiner (b0050) 2018; 6
Anjana, Baskar, Nair, Jebarani, Siddiqui, Pradeepa, Unnikrishnan, Palmer, Pearson, Mohan (b0210) 2020; 8
Thabit, Hovorka (b0090) 2016; 59
Contreras, Oviedo, Vettoretti, Visentin, Vehi (b0135) 2017; 12
Sun, Boukerche, Tao (b0255) 2020; 160
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 32nd International Conference on Machine Learning, ICML 2015, Lille, France, July 6-11, 2015, JMLR.org, 2015, pp. 448-456.
De Bois, El Yacoubi, Ammi (b0200) 2021; 199
Huang, Li, Zhang, Ren (b0245) 2021; 768
J. Jiang, Y. Shu, J. Wang, M. Long, Transferability in Deep Learning: A Survey, arXiv preprint arXiv:2201.05867, (2022).
Zhu, Kuang, Piao, Zeng, Li, Georgiou (b0310) 2024
Georga, Protopappas, Polyzos, Fotiadis (b0160) 2015; 53
Hidalgo, Botella, Velasco, Garnica, Cervigón, Martínez, Aramendi, Maqueda, Lanchares (b0005) 2020; 88
D’Antoni, Merone, Piemonte, Iannello, Soda (b0110) 2020; 203
V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, June 21-24, 2010, Omnipress, 2010, pp. 807-814.
Cichosz, Kronborg, Jensen, Hejlesen (b0100) 2021; 138
Bock, Francois, Gillet (b0030) 2015; 118
T. Zhu, X. Yao, K. Li, P. Herrero, P. Georgiou, Blood glucose prediction for type 1 diabetes using generative adversarial networks, Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, August 29-30, 2020, CEUR-WS.org, 2020, pp. 90–94.
Kovatchev, Patek, Dassau, Doyle, Magni, De Nicolao, Cobelli (b0020) 2009; 3
Hidalgo, Colmenar, Risco-Martin, Cuesta-Infante, Maqueda, Botella, Rubio (b0150) 2014; 20
Ma, Xu, Hong, Shi, Zhu, Wang (b0035) 2023; 53
van den Boorn, Lagerburg, van Steen, Wedzinga, Bosman, van der Voort (b0105) 2021; 206
Jia, Zhou, Bao (b0225) 2019
X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, JMLR.org, 2011, pp. 315-323.
Hinshaw, Dalla Man, Nandy, Saad, Bharucha, Levine, Rizza, Basu, Carter, Cobelli, Kudva, Basu (b0125) 2013; 62
Sharma, Nilam (b0065) 2023; 53
Boughton, Tripyla, Hartnell, Daly, Herzig, Wilinska, Czerlau, Fry, Bally, Hovorka (b0080) 2021; 27
Aiello, Lisanti, Magni, Musci, Toffanin (b0095) 2020; 87
Zecchin, Facchinetti, Sparacino, Cobelli (b0145) 2014; 113
Wang, Xu, Chen, Wang (b0045) 2021; 51
Shaik, Cherukuri (b0040) 2022; 52
Koutny, Mayo (b0060) 2022; 145
Mughal, Patanè, Caponetto (b0070) 2024; 57
Ahlqvist, Storm, Käräjämäki, Martinell, Dorkhan, Carlsson, Vikman, Prasad, Aly, Almgren, Wessman, Shaat, Spégel, Mulder, Lindholm, Melander, Hansson, Malmqvist, Lernmark, Lahti, Forsén, Tuomi, Rosengren, Groop (b0205) 2018; 6
Daly, Boughton, Nwokolo, Hartnell, Wilinska, Cezar, Evans, Hovorka (b0075) 2023; 29
Karim, Vassanyi, Kosa (b0130) 2020; 125
B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, arXiv preprint arXiv:1905.10437, (2019).
Zhang, Flores, Tran (b0190) 2021; 69
L. Li, W.-Y. Cheng, B.S. Glicksberg, O. Gottesman, R. Tamler, R. Chen, E.P. Bottinger, J.T. Dudley, Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Science Translational Medicine, 7 (2015) 311ra174-311ra174.
Tzeng, Hoffman, Zhang, Saenko, Darrell (b0285) abs/1412.3474 (2014).
Tao, Yu, Lu, Shen, Lu, Zhu, Bao, Li, Zhou (b0220) 2021; 9
Freund, Schapire (b0305) 1997; 55
Zhao, Zhu, Shen, Lin, Zhang, Liang, Cao, Li, Liu, Rao, Wang (b0290) 2023; 10
Naveena, Bharathi (b0195) 2022; 77
Jia (10.1016/j.bspc.2025.107629_b0225) 2019
Tao (10.1016/j.bspc.2025.107629_b0220) 2021; 9
Faruqui (10.1016/j.bspc.2025.107629_b0055) 2019; 7
Shaik (10.1016/j.bspc.2025.107629_b0040) 2022; 52
Sharma (10.1016/j.bspc.2025.107629_b0065) 2023; 53
Aiello (10.1016/j.bspc.2025.107629_b0095) 2020; 87
Hidalgo (10.1016/j.bspc.2025.107629_b0005) 2020; 88
Rubin-Falcone (10.1016/j.bspc.2025.107629_b0320) 2020
Li (10.1016/j.bspc.2025.107629_b0250) 2021; 8
Ma (10.1016/j.bspc.2025.107629_b0115) 2020; 205
Karim (10.1016/j.bspc.2025.107629_b0130) 2020; 125
10.1016/j.bspc.2025.107629_b0215
van den Boorn (10.1016/j.bspc.2025.107629_b0105) 2021; 206
Huang (10.1016/j.bspc.2025.107629_b0245) 2021; 768
Cichosz (10.1016/j.bspc.2025.107629_b0100) 2021; 138
Mughal (10.1016/j.bspc.2025.107629_b0070) 2024; 57
Georga (10.1016/j.bspc.2025.107629_b0160) 2015; 53
Daly (10.1016/j.bspc.2025.107629_b0075) 2023; 29
De Bois (10.1016/j.bspc.2025.107629_b0200) 2021; 199
Li (10.1016/j.bspc.2025.107629_b0180) 2020; 24
Challu (10.1016/j.bspc.2025.107629_b0325) 2023
10.1016/j.bspc.2025.107629_b0260
Zhang (10.1016/j.bspc.2025.107629_b0190) 2021; 69
10.1016/j.bspc.2025.107629_b0185
Freund (10.1016/j.bspc.2025.107629_b0305) 1997; 55
10.1016/j.bspc.2025.107629_b0140
10.1016/j.bspc.2025.107629_b0300
10.1016/j.bspc.2025.107629_b0265
Hinshaw (10.1016/j.bspc.2025.107629_b0125) 2013; 62
Ahlqvist (10.1016/j.bspc.2025.107629_b0205) 2018; 6
Group (10.1016/j.bspc.2025.107629_b0025) 2008; 358
Naveena (10.1016/j.bspc.2025.107629_b0195) 2022; 77
Zhu (10.1016/j.bspc.2025.107629_b0310) 2024
Contreras (10.1016/j.bspc.2025.107629_b0135) 2017; 12
Bock (10.1016/j.bspc.2025.107629_b0030) 2015; 118
Arthur (10.1016/j.bspc.2025.107629_b0235) 2007
Koutny (10.1016/j.bspc.2025.107629_b0060) 2022; 145
Olisah (10.1016/j.bspc.2025.107629_b0015) 2022; 220
Cobelli (10.1016/j.bspc.2025.107629_b0085) 2011; 60
10.1016/j.bspc.2025.107629_b0270
10.1016/j.bspc.2025.107629_b0230
Zhao (10.1016/j.bspc.2025.107629_b0290) 2023; 10
Boughton (10.1016/j.bspc.2025.107629_b0080) 2021; 27
Zecchin (10.1016/j.bspc.2025.107629_b0145) 2014; 113
Hidalgo (10.1016/j.bspc.2025.107629_b0150) 2014; 20
Clarke (10.1016/j.bspc.2025.107629_b0295) 1987; 10
10.1016/j.bspc.2025.107629_b0315
LeCun (10.1016/j.bspc.2025.107629_b0170) 2015; 521
Thabit (10.1016/j.bspc.2025.107629_b0090) 2016; 59
Ma (10.1016/j.bspc.2025.107629_b0035) 2023; 53
Tzeng (10.1016/j.bspc.2025.107629_b0285) 14123474
Chow (10.1016/j.bspc.2025.107629_b0050) 2018; 6
Anjana (10.1016/j.bspc.2025.107629_b0210) 2020; 8
10.1016/j.bspc.2025.107629_b0280
10.1016/j.bspc.2025.107629_b0165
10.1016/j.bspc.2025.107629_b0120
10.1016/j.bspc.2025.107629_b0240
Kovatchev (10.1016/j.bspc.2025.107629_b0020) 2009; 3
D’Antoni (10.1016/j.bspc.2025.107629_b0110) 2020; 203
Wang (10.1016/j.bspc.2025.107629_b0045) 2021; 51
Sun (10.1016/j.bspc.2025.107629_b0255) 2020; 160
Zou (10.1016/j.bspc.2025.107629_b0175) 2020; 27
Sakurai (10.1016/j.bspc.2025.107629_b0010) 2018; 32
Srivastava (10.1016/j.bspc.2025.107629_b0275) 2014; 15
Sun (10.1016/j.bspc.2025.107629_b0330) 2024
Tomczak (10.1016/j.bspc.2025.107629_b0155) 2017
References_xml – volume: 8
  start-page: 185
  year: 2021
  end-page: 193
  ident: b0250
  article-title: Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit
  publication-title: Information Processing in Agriculture
– volume: 52
  start-page: 15105
  year: 2022
  end-page: 15121
  ident: b0040
  article-title: Hinge attention network: A joint model for diabetic retinopathy severity grading
  publication-title: Appl. Intell.
– year: 2019
  ident: b0225
  article-title: Continuous glucose monitoring
– volume: 118
  start-page: 107
  year: 2015
  end-page: 123
  ident: b0030
  article-title: A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes
  publication-title: Comput Methods Programs Biomed
– volume: 10
  start-page: 35
  year: 2023
  ident: b0290
  article-title: Chinese diabetes datasets for data-driven machine learning
  publication-title: Sci Data
– volume: 77
  year: 2022
  ident: b0195
  article-title: A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning
  publication-title: Biomed. Signal Process. Control
– volume: 6
  start-page: 361
  year: 2018
  end-page: 369
  ident: b0205
  article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables
  publication-title: Lancet Diabetes Endocrinol.
– reference: B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, arXiv preprint arXiv:1905.10437, (2019).
– volume: 145
  year: 2022
  ident: b0060
  article-title: Predicting glucose level with an adapted branch predictor
  publication-title: Comput Biol Med
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 32nd International Conference on Machine Learning, ICML 2015, Lille, France, July 6-11, 2015, JMLR.org, 2015, pp. 448-456.
– volume: 206
  year: 2021
  ident: b0105
  article-title: The development of a glucose prediction model in critically ill patients
  publication-title: Comput Methods Programs Biomed
– year: abs/1412.3474 (2014).
  ident: b0285
  article-title: Deep Domain Confusion: Maximizing for Domain Invariance
  publication-title: CoRR
– reference: D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: Y. Bengio, Y. LeCun (Eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
– volume: 59
  start-page: 1795
  year: 2016
  end-page: 1805
  ident: b0090
  article-title: Coming of age: the artificial pancreas for type 1 diabetes
  publication-title: Diabetologia
– year: 2024
  ident: b0330
  article-title: Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 3
  start-page: 1058
  year: 2009
  end-page: 1065
  ident: b0020
  article-title: Control to Range for Diabetes: Functionality and Modular Architecture, Journal of Diabetes
  publication-title: Sci. Technol.
– start-page: 6989
  year: 2023
  end-page: 6997
  ident: b0325
  article-title: Nhits: Neural hierarchical interpolation for time series forecasting
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 98
  year: 2017
  end-page: 108
  ident: b0155
  article-title: Gaussian process regression with categorical inputs for predicting the blood glucose level
  publication-title: International Conference on Systems Science, Springer
– reference: M.P. Reymann, E. Dorschky, B.H. Groh, C. Martindale, P. Blank, B.M. Eskofier, Blood glucose level prediction based on support vector regression using mobile platforms, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, August 16-20, 2016, IEEE, 2016, pp. 2990-2993.
– volume: 768
  year: 2021
  ident: b0245
  article-title: PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition
  publication-title: Sci. Total Environ.
– volume: 160
  start-page: 502
  year: 2020
  end-page: 511
  ident: b0255
  article-title: SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network
  publication-title: Comput. Commun.
– volume: 7
  year: 2019
  ident: b0055
  article-title: Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial
  publication-title: JMIR Mhealth Uhealth
– reference: R.H. Botwey, E. Daskalaki, P. Diem, S.G. Mougiakakou, Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, August 26-30, 2014, IEEE, 2014, pp. 4843-4846.
– volume: 88
  year: 2020
  ident: b0005
  article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging
  publication-title: Appl. Soft Comput.
– volume: 203
  year: 2020
  ident: b0110
  article-title: Auto-regressive time delayed jump neural network for blood glucose levels forecasting
  publication-title: Knowl.-Based Syst.
– volume: 138
  year: 2021
  ident: b0100
  article-title: Penalty weighted glucose prediction models could lead to better clinically usage
  publication-title: Comput Biol Med
– volume: 57
  year: 2024
  ident: b0070
  article-title: A comprehensive review of models and nonlinear control strategies for blood glucose regulation in artificial pancreas
  publication-title: Annu. Rev. Control.
– reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, June 21-24, 2010, Omnipress, 2010, pp. 807-814.
– volume: 53
  start-page: 27505
  year: 2023
  end-page: 27518
  ident: b0035
  article-title: Joint ordinal regression and multiclass classification for diabetic retinopathy grading with transformers and CNNs fusion network
  publication-title: Appl. Intell.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0275
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 1471
  year: 2021
  end-page: 1476
  ident: b0080
  article-title: Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial
  publication-title: Nat Med
– reference: K. Cho, B.v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder–decoder for statistical machine translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, October 25-29, 2014,, ACL, 2014, pp. 1724-1734.
– reference: X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, JMLR.org, 2011, pp. 315-323.
– volume: 29
  start-page: 203
  year: 2023
  end-page: 208
  ident: b0075
  article-title: Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial
  publication-title: Nat Med
– volume: 27
  start-page: 16853
  year: 2020
  end-page: 16864
  ident: b0175
  article-title: A water quality prediction method based on the multi-time scale bidirectional long short-term memory network
  publication-title: Environ Sci Pollut Res Int
– volume: 53
  start-page: 1305
  year: 2015
  end-page: 1318
  ident: b0160
  article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models
  publication-title: Med. Biol. Eng. Compu.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0170
  article-title: Deep learning
  publication-title: Nature
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b0305
  article-title: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 60
  start-page: 2672
  year: 2011
  end-page: 2682
  ident: b0085
  article-title: Artificial Pancreas: Past, Present, Future
  publication-title: Diabetes
– reference: L. Li, W.-Y. Cheng, B.S. Glicksberg, O. Gottesman, R. Tamler, R. Chen, E.P. Bottinger, J.T. Dudley, Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Science Translational Medicine, 7 (2015) 311ra174-311ra174.
– reference: ] C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, C. Cobelli, A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011, Boston, MA, USA, August 30-September 3, 2011, IEEE, 2011, pp. 5653-5656.
– reference: A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, B.K. Sriperumbudur, Optimal kernel choice for large-scale two-sample tests, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. NIPS 2012, Lake Tahoe, Nevada, United States, December 3-6, 2012, MIT Press, 2012.
– volume: 87
  year: 2020
  ident: b0095
  article-title: Therapy-driven Deep Glucose Forecasting
  publication-title: Eng. Appl. Artif. Intel.
– volume: 62
  start-page: 2223
  year: 2013
  end-page: 2229
  ident: b0125
  article-title: Diurnal Pattern of Insulin Action in Type 1 Diabetes, Implications for a Closed-Loop
  publication-title: System
– volume: 220
  year: 2022
  ident: b0015
  article-title: Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective
  publication-title: Comput Methods Programs Biomed
– volume: 20
  start-page: 40
  year: 2014
  end-page: 53
  ident: b0150
  article-title: Modeling glycemia in humans by means of Grammatical Evolution
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 414
  year: 2020
  end-page: 423
  ident: b0180
  article-title: GluNet: A deep learning framework for accurate glucose forecasting
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 10
  start-page: 622
  year: 1987
  end-page: 628
  ident: b0295
  article-title: Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose
  publication-title: Diabetes Care
– year: 2024
  ident: b0310
  article-title: Population-specific glucose prediction in diabetes care with transformer-based deep learning on the edge
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 32
  start-page: 1118
  year: 2018
  end-page: 1123
  ident: b0010
  article-title: Prediction of lowest nocturnal blood glucose level based on self-monitoring of blood glucose in Japanese patients with type 2 diabetes
  publication-title: J Diabetes Complications
– volume: 358
  start-page: 2545
  year: 2008
  end-page: 2559
  ident: b0025
  article-title: Effects of Intensive Glucose Lowering in Type 2 Diabetes
  publication-title: New England Journal of Medicine
– volume: 12
  year: 2017
  ident: b0135
  article-title: Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models
  publication-title: PLoS One
– volume: 113
  start-page: 144
  year: 2014
  end-page: 152
  ident: b0145
  article-title: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information
  publication-title: Comput Methods Programs Biomed
– volume: 125
  year: 2020
  ident: b0130
  article-title: After-meal blood glucose level prediction using an absorption model for neural network training
  publication-title: Comput Biol Med
– reference: T. Zhu, X. Yao, K. Li, P. Herrero, P. Georgiou, Blood glucose prediction for type 1 diabetes using generative adversarial networks, Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, August 29-30, 2020, CEUR-WS.org, 2020, pp. 90–94.
– reference: J. Jiang, Y. Shu, J. Wang, M. Long, Transferability in Deep Learning: A Survey, arXiv preprint arXiv:2201.05867, (2022).
– volume: 51
  start-page: 223
  year: 2021
  end-page: 236
  ident: b0045
  article-title: Diagnosis of complications of type 2 diabetes based on weighted multi-label small sphere and large margin machine
  publication-title: Appl. Intell.
– volume: 53
  start-page: 1945
  year: 2023
  end-page: 1958
  ident: b0065
  article-title: Singh, Computer-controlled diabetes disease diagnosis technique based on fuzzy inference structure for insulin-dependent patients
  publication-title: Appl. Intell.
– start-page: 105
  year: 2020
  end-page: 109
  ident: b0320
  article-title: Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction
  publication-title: KDH@ ECAI
– volume: 69
  year: 2021
  ident: b0190
  article-title: Deep learning and regression approaches to forecasting blood glucose levels for type 1 diabetes
  publication-title: Biomed. Signal Process. Control
– start-page: 1027
  year: 2007
  end-page: 1035
  ident: b0235
  article-title: K-means++ the advantages of careful seeding
  publication-title: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 8
  year: 2020
  ident: b0210
  article-title: Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study
  publication-title: BMJ Open Diabetes Res Care
– volume: 6
  year: 2018
  ident: b0050
  article-title: Development of a model to predict 5-year risk of severe hypoglycemia in patients with type 2 diabetes
  publication-title: BMJ Open Diabetes Res Care
– volume: 199
  year: 2021
  ident: b0200
  article-title: Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people
  publication-title: Comput Methods Programs Biomed
– volume: 205
  year: 2020
  ident: b0115
  article-title: Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction
  publication-title: Energ. Conver. Manage.
– volume: 9
  year: 2021
  ident: b0220
  article-title: Multilevel clustering approach driven by continuous glucose monitoring data for further classification of type 2 diabetes
  publication-title: BMJ Open Diabetes Res Care
– volume: 29
  start-page: 203
  year: 2023
  ident: 10.1016/j.bspc.2025.107629_b0075
  article-title: Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial
  publication-title: Nat Med
  doi: 10.1038/s41591-022-02144-z
– ident: 10.1016/j.bspc.2025.107629_b0260
– volume: 24
  start-page: 414
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0180
  article-title: GluNet: A deep learning framework for accurate glucose forecasting
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2931842
– volume: 6
  year: 2018
  ident: 10.1016/j.bspc.2025.107629_b0050
  article-title: Development of a model to predict 5-year risk of severe hypoglycemia in patients with type 2 diabetes
  publication-title: BMJ Open Diabetes Res Care
  doi: 10.1136/bmjdrc-2018-000527
– volume: 88
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0005
  article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105923
– volume: 203
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0110
  article-title: Auto-regressive time delayed jump neural network for blood glucose levels forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106134
– volume: 27
  start-page: 16853
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0175
  article-title: A water quality prediction method based on the multi-time scale bidirectional long short-term memory network
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-020-08087-7
– ident: 10.1016/j.bspc.2025.107629_b0315
– volume: 199
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0200
  article-title: Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105874
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.bspc.2025.107629_b0170
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 138
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0100
  article-title: Penalty weighted glucose prediction models could lead to better clinically usage
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104865
– ident: 10.1016/j.bspc.2025.107629_b0165
  doi: 10.1109/EMBC.2016.7591358
– ident: 10.1016/j.bspc.2025.107629_b0270
– volume: 27
  start-page: 1471
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0080
  article-title: Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01453-z
– volume: 125
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0130
  article-title: After-meal blood glucose level prediction using an absorption model for neural network training
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103956
– ident: 10.1016/j.bspc.2025.107629_b0140
  doi: 10.1109/IEMBS.2011.6091368
– volume: 10
  start-page: 622
  year: 1987
  ident: 10.1016/j.bspc.2025.107629_b0295
  article-title: Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose
  publication-title: Diabetes Care
  doi: 10.2337/diacare.10.5.622
– volume: 57
  year: 2024
  ident: 10.1016/j.bspc.2025.107629_b0070
  article-title: A comprehensive review of models and nonlinear control strategies for blood glucose regulation in artificial pancreas
  publication-title: Annu. Rev. Control.
  doi: 10.1016/j.arcontrol.2024.100937
– volume: 62
  start-page: 2223
  year: 2013
  ident: 10.1016/j.bspc.2025.107629_b0125
  article-title: Diurnal Pattern of Insulin Action in Type 1 Diabetes, Implications for a Closed-Loop
  publication-title: System
– ident: 10.1016/j.bspc.2025.107629_b0265
– volume: 52
  start-page: 15105
  year: 2022
  ident: 10.1016/j.bspc.2025.107629_b0040
  article-title: Hinge attention network: A joint model for diabetic retinopathy severity grading
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03043-5
– volume: 768
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0245
  article-title: PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144516
– start-page: 6989
  year: 2023
  ident: 10.1016/j.bspc.2025.107629_b0325
  article-title: Nhits: Neural hierarchical interpolation for time series forecasting
– ident: 10.1016/j.bspc.2025.107629_b0240
  doi: 10.3115/v1/D14-1179
– volume: 32
  start-page: 1118
  year: 2018
  ident: 10.1016/j.bspc.2025.107629_b0010
  article-title: Prediction of lowest nocturnal blood glucose level based on self-monitoring of blood glucose in Japanese patients with type 2 diabetes
  publication-title: J Diabetes Complications
  doi: 10.1016/j.jdiacomp.2018.09.007
– start-page: 98
  year: 2017
  ident: 10.1016/j.bspc.2025.107629_b0155
  article-title: Gaussian process regression with categorical inputs for predicting the blood glucose level
  publication-title: International Conference on Systems Science, Springer
– volume: 160
  start-page: 502
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0255
  article-title: SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.06.028
– volume: 77
  year: 2022
  ident: 10.1016/j.bspc.2025.107629_b0195
  article-title: A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103748
– volume: 53
  start-page: 1305
  year: 2015
  ident: 10.1016/j.bspc.2025.107629_b0160
  article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-015-1263-1
– volume: 59
  start-page: 1795
  year: 2016
  ident: 10.1016/j.bspc.2025.107629_b0090
  article-title: Coming of age: the artificial pancreas for type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4022-4
– volume: 10
  start-page: 35
  year: 2023
  ident: 10.1016/j.bspc.2025.107629_b0290
  article-title: Chinese diabetes datasets for data-driven machine learning
  publication-title: Sci Data
  doi: 10.1038/s41597-023-01940-7
– ident: 10.1016/j.bspc.2025.107629_b0300
– volume: 8
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0210
  article-title: Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study
  publication-title: BMJ Open Diabetes Res Care
  doi: 10.1136/bmjdrc-2020-001506
– volume: 3
  start-page: 1058
  year: 2009
  ident: 10.1016/j.bspc.2025.107629_b0020
  article-title: Control to Range for Diabetes: Functionality and Modular Architecture, Journal of Diabetes
  publication-title: Sci. Technol.
– year: 2024
  ident: 10.1016/j.bspc.2025.107629_b0330
  article-title: Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 105
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0320
  article-title: Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction
  publication-title: KDH@ ECAI
– volume: 8
  start-page: 185
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0250
  article-title: Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit
  publication-title: Information Processing in Agriculture
  doi: 10.1016/j.inpa.2020.02.002
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.bspc.2025.107629_b0275
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 53
  start-page: 27505
  year: 2023
  ident: 10.1016/j.bspc.2025.107629_b0035
  article-title: Joint ordinal regression and multiclass classification for diabetic retinopathy grading with transformers and CNNs fusion network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04949-y
– start-page: 1027
  year: 2007
  ident: 10.1016/j.bspc.2025.107629_b0235
  article-title: K-means++ the advantages of careful seeding
– volume: 113
  start-page: 144
  year: 2014
  ident: 10.1016/j.bspc.2025.107629_b0145
  article-title: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.09.016
– year: 14123474
  ident: 10.1016/j.bspc.2025.107629_b0285
  article-title: Deep Domain Confusion: Maximizing for Domain Invariance
  publication-title: CoRR
– volume: 145
  year: 2022
  ident: 10.1016/j.bspc.2025.107629_b0060
  article-title: Predicting glucose level with an adapted branch predictor
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105388
– volume: 20
  start-page: 40
  year: 2014
  ident: 10.1016/j.bspc.2025.107629_b0150
  article-title: Modeling glycemia in humans by means of Grammatical Evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.11.006
– ident: 10.1016/j.bspc.2025.107629_b0215
  doi: 10.1126/scitranslmed.aaa9364
– ident: 10.1016/j.bspc.2025.107629_b0230
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0190
  article-title: Deep learning and regression approaches to forecasting blood glucose levels for type 1 diabetes
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102923
– volume: 12
  year: 2017
  ident: 10.1016/j.bspc.2025.107629_b0135
  article-title: Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187754
– ident: 10.1016/j.bspc.2025.107629_b0120
  doi: 10.1109/EMBC.2014.6944708
– volume: 358
  start-page: 2545
  year: 2008
  ident: 10.1016/j.bspc.2025.107629_b0025
  article-title: Effects of Intensive Glucose Lowering in Type 2 Diabetes
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa0802743
– year: 2019
  ident: 10.1016/j.bspc.2025.107629_b0225
– volume: 206
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0105
  article-title: The development of a glucose prediction model in critically ill patients
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106105
– volume: 220
  year: 2022
  ident: 10.1016/j.bspc.2025.107629_b0015
  article-title: Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106773
– volume: 118
  start-page: 107
  year: 2015
  ident: 10.1016/j.bspc.2025.107629_b0030
  article-title: A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.12.002
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.bspc.2025.107629_b0305
  article-title: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– ident: 10.1016/j.bspc.2025.107629_b0280
– volume: 205
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0115
  article-title: Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.112345
– ident: 10.1016/j.bspc.2025.107629_b0185
– volume: 53
  start-page: 1945
  year: 2023
  ident: 10.1016/j.bspc.2025.107629_b0065
  article-title: Singh, Computer-controlled diabetes disease diagnosis technique based on fuzzy inference structure for insulin-dependent patients
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03416-4
– volume: 6
  start-page: 361
  year: 2018
  ident: 10.1016/j.bspc.2025.107629_b0205
  article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(18)30051-2
– volume: 9
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0220
  article-title: Multilevel clustering approach driven by continuous glucose monitoring data for further classification of type 2 diabetes
  publication-title: BMJ Open Diabetes Res Care
  doi: 10.1136/bmjdrc-2020-001869
– volume: 51
  start-page: 223
  year: 2021
  ident: 10.1016/j.bspc.2025.107629_b0045
  article-title: Diagnosis of complications of type 2 diabetes based on weighted multi-label small sphere and large margin machine
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01824-y
– volume: 87
  year: 2020
  ident: 10.1016/j.bspc.2025.107629_b0095
  article-title: Therapy-driven Deep Glucose Forecasting
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2019.103255
– volume: 7
  year: 2019
  ident: 10.1016/j.bspc.2025.107629_b0055
  article-title: Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/14452
– year: 2024
  ident: 10.1016/j.bspc.2025.107629_b0310
  article-title: Population-specific glucose prediction in diabetes care with transformer-based deep learning on the edge
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 60
  start-page: 2672
  year: 2011
  ident: 10.1016/j.bspc.2025.107629_b0085
  article-title: Artificial Pancreas: Past, Present, Future
  publication-title: Diabetes
  doi: 10.2337/db11-0654
SSID ssj0048714
Score 2.3776093
Snippet •Clustering-based domain adaptation for glucose prediction of T2D with limited data.•Subgroup clustering enhances domain adaptability via source domain...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107629
SubjectTerms Clustering algorithm
Deep learning
Domain adaptation
Glucose prediction
Transfer learning
Type 2 diabetes
Title Blood glucose prediction for type 2 diabetes using clustering-based domain adaptation
URI https://dx.doi.org/10.1016/j.bspc.2025.107629
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDywIdPEj6QZS0VVQHSBSt0i27FREaRRaVe-nXvzQEVCDGyJZUvRiXPvsX3uCSGXUaz7wkaCGSM9k9o5lghlGKQWZQOplS0LhR8n0Xgq72dq1iLDphYGZZV17K9iehmt65ZejWavmM97T8Cloz6sTiCJ4zIBC82ljHGWX39-yzyAj5f-3tiZYe-6cKbSeJmPAm0MuYIGiArJ78lpI-GM9shuzRTpoHqYfdJy-QHZ2fAPPCTTG5Sd01p2Toslnrog0hSoKMXdVcpps7tKUeL-Qu3bGr0R4JJhBstotnjX85zqTBfVsfwRmY5un4djVv8ngVlgJysWyciHiQfuJ7wJMg0MLTKhjCH5w7XnxjkeyCxQ3AoTc88Tn8h-5F2ovTY6FMeknS9yd0JoIK01wqJLnAZqYXWmAmECzU0Gn7bWHXLVAJQWlR1G2ujEXlOEM0U40wrODlENhumPl5pCvP5j3Ok_x52Rbbyr1LTnpL1art0FcIaV6ZaToku2BncP48kXx3fBSg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGYAB8RTl6YENmaaOnTYjVKACbRdaqZtlOzYqgjQq7cq3c28eqEiIgc1ybCk6ie89to-PCbmM2roT2ihkxgjPhHaOxaE0DFKLtIHQ0uYHhQfDqDcWjxM5qZFudRYGZZVl7C9ieh6ty5pmiWYzm06bz8Clow7MTiCJ4zRBrpF1AcMXrzG4_vzWeQAhzw2-sTXD5uXJmULkZT4y9DHkEiogLMS_Z6eVjHO_Q7ZLqkhvirfZJTWX7pGtFQPBfTK-Rd05LXXnNJvjtgtCTYGLUlxepZxWy6sUNe4v1L4t0RwBigxTWEKT2bueplQnOiv25Q_I-P5u1O2x8qIEZoGeLFgkIt-KPZC_0Jsg0UDRItMSbcj-UPbcOMcDkQSS29C0ueexj0Un8q6lvTa6FR6SejpL3RGhgbDWhBZt4jRwC6sTGYQm0NwkMLa1bpCrCiCVFX4YqhKKvSqEUyGcqoCzQWSFofrxVRUE7D_6Hf-z3wXZ6I0GfdV_GD6dkE18UkhrT0l9MV-6MyAQC3Oe_yBfciPC2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+glucose+prediction+for+type+2+diabetes+using+clustering-based+domain+adaptation&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Tao&rft.au=Yu%2C+Xia&rft.au=Tao%2C+Rui&rft.au=Li%2C+Hongru&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=105&rft_id=info:doi/10.1016%2Fj.bspc.2025.107629&rft.externalDocID=S1746809425001405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon