Mechanism of surfactant effect on bacterial adsorption during bioleaching of lepidolite
Direct contact of bacteria with minerals can provide better leaching effect than indirect contact in the process of bioleaching. As a leaching assistant, surfactant can change the surface tension of ore leaching solution, improve the bacterial adsorption capacity and enhance the biological leaching...
Saved in:
Published in | Applied clay science Vol. 264; p. 107646 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct contact of bacteria with minerals can provide better leaching effect than indirect contact in the process of bioleaching. As a leaching assistant, surfactant can change the surface tension of ore leaching solution, improve the bacterial adsorption capacity and enhance the biological leaching effect. Thus, this study investigated the mechanisms by which chemical and biological surfactants influence bacterial metabolism, bacterial adsorption, and leaching in the bioleaching process of lepidolite. With the addition of the biosurfactant rhamnolipid and chemical surfactants sodium dodecyl sulfate and Tween-20, FTIR of leaching residues indicated that non-polar functional groups appeared, and the contact angles decreased from 75.22° to 10.64°, 6.8°, 43.18°. Surfactants reduced the surface tension at the solid-liquid interface through the combined action of their hydrophilic head groups and hydrophobic tail groups, thereby increasing the contact area and adsorption efficiency between bacteria and minerals. Additionally, surfactants weaken the chemical bonds of mineral metals and promote the complexation of -COOH and -OH groups in organic acids with minerals. Surfactants-assisted bacterial attachment altered mineral lattice structure via microenvironment creation and bacterial metabolized organic acids.
[Display omitted]
•Bacterial effective adsorption resulted in the efficient lithium extraction.•Hydrophilic and hydrophobic groups of surfactants mediated bacterial adsorption.•Surfactants weaken chemical bonds of mineral metals.•Biosurfactants showed the advantages of high efficiency and environment friendly. |
---|---|
AbstractList | Direct contact of bacteria with minerals can provide better leaching effect than indirect contact in the process of bioleaching. As a leaching assistant, surfactant can change the surface tension of ore leaching solution, improve the bacterial adsorption capacity and enhance the biological leaching effect. Thus, this study investigated the mechanisms by which chemical and biological surfactants influence bacterial metabolism, bacterial adsorption, and leaching in the bioleaching process of lepidolite. With the addition of the biosurfactant rhamnolipid and chemical surfactants sodium dodecyl sulfate and Tween-20, FTIR of leaching residues indicated that non-polar functional groups appeared, and the contact angles decreased from 75.22° to 10.64°, 6.8°, 43.18°. Surfactants reduced the surface tension at the solid-liquid interface through the combined action of their hydrophilic head groups and hydrophobic tail groups, thereby increasing the contact area and adsorption efficiency between bacteria and minerals. Additionally, surfactants weaken the chemical bonds of mineral metals and promote the complexation of -COOH and -OH groups in organic acids with minerals. Surfactants-assisted bacterial attachment altered mineral lattice structure via microenvironment creation and bacterial metabolized organic acids.
[Display omitted]
•Bacterial effective adsorption resulted in the efficient lithium extraction.•Hydrophilic and hydrophobic groups of surfactants mediated bacterial adsorption.•Surfactants weaken chemical bonds of mineral metals.•Biosurfactants showed the advantages of high efficiency and environment friendly. |
ArticleNumber | 107646 |
Author | Duan, Huaiyu Gu, Wei Wang, Rucheng Lu, Xiancai Zhang, Du Xu, Chao Zhao, Xingqing |
Author_xml | – sequence: 1 givenname: Chao surname: Xu fullname: Xu, Chao organization: School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China – sequence: 2 givenname: Xingqing surname: Zhao fullname: Zhao, Xingqing email: zhaoxq@cczu.edu.cn organization: School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China – sequence: 3 givenname: Huaiyu surname: Duan fullname: Duan, Huaiyu organization: School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China – sequence: 4 givenname: Wei surname: Gu fullname: Gu, Wei organization: School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China – sequence: 5 givenname: Du surname: Zhang fullname: Zhang, Du organization: School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China – sequence: 6 givenname: Rucheng surname: Wang fullname: Wang, Rucheng organization: State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China – sequence: 7 givenname: Xiancai surname: Lu fullname: Lu, Xiancai email: xcljun@nju.edu.cn organization: State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China |
BookMark | eNp9kMtOwzAQRb0oEm3hB1j5B1L8SJxEYoMqHpWK2IBYWo49pq5SO7JTpP49jsKa1Yzu6IxmzgotfPCA0B0lG0qouD9udK8uG0ZYmYNalGKBlnnQFpTT-hqtUjoSQllTtUv09Qb6oLxLJxwsTudolR6VHzFYC3rEweMuJxCd6rEyKcRhdDk05-j8N-5c6EHpw9RnvofBmdC7EW7QlVV9gtu_ukafz08f29di__6y2z7uC80qOhaC1Q0I21DRUW4sE8wCactOCFXSltZMtfmNToM1ZUuUVhWvuGDc8MYKYhhfIzbv1TGkFMHKIbqTihdJiZx0yKOcdMhJh5x1ZOhhhiBf9uMgyqQdeA3Gxfy0NMH9h_8CgvBtqQ |
Cites_doi | 10.1016/j.seppur.2021.119122 10.1016/j.scitotenv.2023.163025 10.1016/j.ijmst.2021.06.002 10.1038/s41598-020-71596-5 10.1021/acs.est.3c09715 10.1016/j.jhazmat.2023.130801 10.1016/j.jclepro.2023.140248 10.1016/j.biortech.2016.08.012 10.1016/j.envpol.2022.120198 10.1016/j.biortech.2023.130193 10.1038/s41467-024-48867-0 10.1016/j.biortech.2011.12.013 10.1016/j.jhazmat.2022.130171 10.1016/j.biortech.2017.05.025 10.1016/j.mineng.2023.108059 10.1007/s10163-017-0680-7 10.1016/j.envpol.2023.121545 10.1016/j.jenvman.2022.115429 10.1016/j.jclepro.2021.127167 10.1016/j.chemosphere.2021.130944 10.1021/acssuschemeng.8b01742 10.1016/j.jece.2022.108911 10.1016/j.biortech.2009.06.086 10.1021/acssuschemeng.0c06573 10.1016/j.jhazmat.2014.11.050 10.1016/j.cej.2020.126989 10.1016/j.seppur.2024.129667 10.1016/S0304-386X(00)00180-8 10.1016/j.jclepro.2019.02.177 10.1016/j.mineng.2017.02.012 10.1016/j.biortech.2018.10.054 10.1016/j.seppur.2015.01.038 10.1016/j.biortech.2020.124056 10.1016/j.biortech.2024.130589 10.1021/es051183y 10.1016/j.cis.2014.08.005 10.1016/j.resconrec.2019.104544 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.clay.2024.107646 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology Visual Arts Environmental Sciences |
ExternalDocumentID | 10_1016_j_clay_2024_107646 S0169131724003946 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLECG BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KCYFY KOM LY3 M24 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SMS SPC SPCBC SSE SSJ SST SSZ T5K WUQ XJT XPP ZMT ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c251t-6278e6f816b13df262fe094b66a419172a9024bcefd490aca5353623d38f60d23 |
IEDL.DBID | .~1 |
ISSN | 0169-1317 |
IngestDate | Tue Jul 01 02:29:25 EDT 2025 Sat Dec 21 15:58:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lepidolite Bioleaching Surface tension Surfactant Bacterial adsorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-6278e6f816b13df262fe094b66a419172a9024bcefd490aca5353623d38f60d23 |
ParticipantIDs | crossref_primary_10_1016_j_clay_2024_107646 elsevier_sciencedirect_doi_10_1016_j_clay_2024_107646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Applied clay science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhuang, Wang, Wang, Dong, Li, Wang, Fan, Wu (bb0200) 2022; 314 Cook, Olivares, Antell, Tsou, Kim, Cuthbertson, Higgins, Sedlak, Alvarez-Cohen (bb0020) 2024; 58 Cai, Wang, Zhang, Zheng (bb0015) 2022; 10 Yuan, Huang, Ruan, Li, Hu, Qiu (bb0160) 2018; 6 Zhao, Zhou, Ding, Wang, Zhang, Wang, Lu (bb0185) 2023; 347 Brown, Jaffé (bb0010) 2006; 40 Parus, Ciesielski, Wozniak-Karczewska, Slachcinski, Owsianiak, Lawniczak, Loibner, Heipieper, Chrzanowski (bb0095) 2023; 443 Zhang, Han, Lai, Wolf, Lei, Yang, Shi (bb0180) 2024; 15 Li, Zhang, Yang, Lin (bb0075) 2021; 416 Jeganroy, Srinivasan, Cao (bb0055) 2021; 9 Naseri, Bahaloo-Horeh, Mousavi (bb0090) 2019; 220 Dong, Zan, Lin (bb0035) 2023; 196 Cui, Zhu, Li, Luo, Wu, Dang (bb0025) 2020; 153 Xin, Jiang, Aslam, Zhang, Liu, Wang, Wang (bb0155) 2012; 106 Ghavidel, Naji Rad, Alikhani, Sharari, Ghanbari (bb0040) 2017; 20 Baez, Sarkar, Pena, Vidal, Espinoza, Fuentes (bb0005) 2023; 327 Li, Zheng, Zhang, Zeng, Wang, Ding, Ding (bb0070) 2016; 220 Li, Fu, Wang, Liu, He, Jiang, Yang, Wang (bb0080) 2023; 880 Huo, Liu, Hong, Bai, Chen, Che, Yang, Tong, Feng (bb0050) 2024; 394 Lan, Sun, Chen, Zhan, Du, Zhang, Ye, Du, Hou (bb0065) 2021; 319 Zhang, Zhang, Yang, Zhong, Zhou, Luo (bb0175) 2021; 31 Sedlakova-Kadukova, Marcincakova, Luptakova, Vojtko, Fujda, Pristas (bb0120) 2020; 10 Reichel, Aubel, Patzig, Janneck, Martin (bb0105) 2017; 106 Wang, Yue, Shao, Li, Shen, Xu, Shi, Liu, Li, Zhang (bb0140) 2024; 399 Zhai, Liu, Song, Mao, Sun (bb0170) 2025; 355 Jiang, Liu, Fu, Zuo, Zhang, Wang, Zhang (bb0060) 2024; 434 Wang, Zhao, Zhou, Zhang, Xu, Duan, Wang, Lu (bb0145) 2024 Huang, Shuai, Wang, Liu, Zhang, Cheng, Hu, Yu, He, Fu (bb0045) 2022; 282 Zheng, Guo, Li, Chen, Wu, Feng, Yin, Ho, Ren, Chang (bb0190) 2017; 244 Silva, Park, Lee, Park, Choi, Kim (bb0130) 2015; 143 Zeng, Li, Sun, Hu, Zhong, He (bb0165) 2021; 306 Wang, Cui, Chu, Tian, Li, Zhang, Xin (bb0135) 2022; 318 McCawley, Maier, Hogan (bb0085) 2023; 447 Pi, Li, Cui, Su, Feng, Ma, Yang (bb0100) 2019; 272 Diao, Taran, Mahler, Nguyen (bb0030) 2014; 212 Zhong, Jiang, Zeng, Liu, Liu, Liu, Yang, Lai, He (bb0195) 2015; 285 Sand, Gehrke, Jozsa, Schippers (bb0115) 2001; 59 Shen, Song, Zeng, Zhang, Teng, Zhou (bb0125) 2021; 405 Xin, Zhang, Zhang, Xia, Wu, Chen, Li (bb0150) 2009; 100 Roy, Cao, Madhavi (bb0110) 2021; 282 Naseri (10.1016/j.clay.2024.107646_bb0090) 2019; 220 Brown (10.1016/j.clay.2024.107646_bb0010) 2006; 40 McCawley (10.1016/j.clay.2024.107646_bb0085) 2023; 447 Zhang (10.1016/j.clay.2024.107646_bb0175) 2021; 31 Wang (10.1016/j.clay.2024.107646_bb0140) 2024; 399 Silva (10.1016/j.clay.2024.107646_bb0130) 2015; 143 Huo (10.1016/j.clay.2024.107646_bb0050) 2024; 394 Zeng (10.1016/j.clay.2024.107646_bb0165) 2021; 306 Zhang (10.1016/j.clay.2024.107646_bb0180) 2024; 15 Cui (10.1016/j.clay.2024.107646_bb0025) 2020; 153 Dong (10.1016/j.clay.2024.107646_bb0035) 2023; 196 Pi (10.1016/j.clay.2024.107646_bb0100) 2019; 272 Reichel (10.1016/j.clay.2024.107646_bb0105) 2017; 106 Sedlakova-Kadukova (10.1016/j.clay.2024.107646_bb0120) 2020; 10 Shen (10.1016/j.clay.2024.107646_bb0125) 2021; 405 Li (10.1016/j.clay.2024.107646_bb0070) 2016; 220 Yuan (10.1016/j.clay.2024.107646_bb0160) 2018; 6 Zhong (10.1016/j.clay.2024.107646_bb0195) 2015; 285 Zhai (10.1016/j.clay.2024.107646_bb0170) 2025; 355 Baez (10.1016/j.clay.2024.107646_bb0005) 2023; 327 Lan (10.1016/j.clay.2024.107646_bb0065) 2021; 319 Roy (10.1016/j.clay.2024.107646_bb0110) 2021; 282 Wang (10.1016/j.clay.2024.107646_bb0145) 2024 Zhao (10.1016/j.clay.2024.107646_bb0185) 2023; 347 Cai (10.1016/j.clay.2024.107646_bb0015) 2022; 10 Li (10.1016/j.clay.2024.107646_bb0080) 2023; 880 Diao (10.1016/j.clay.2024.107646_bb0030) 2014; 212 Zhuang (10.1016/j.clay.2024.107646_bb0200) 2022; 314 Jeganroy (10.1016/j.clay.2024.107646_bb0055) 2021; 9 Wang (10.1016/j.clay.2024.107646_bb0135) 2022; 318 Cook (10.1016/j.clay.2024.107646_bb0020) 2024; 58 Jiang (10.1016/j.clay.2024.107646_bb0060) 2024; 434 Sand (10.1016/j.clay.2024.107646_bb0115) 2001; 59 Ghavidel (10.1016/j.clay.2024.107646_bb0040) 2017; 20 Li (10.1016/j.clay.2024.107646_bb0075) 2021; 416 Zheng (10.1016/j.clay.2024.107646_bb0190) 2017; 244 Parus (10.1016/j.clay.2024.107646_bb0095) 2023; 443 Xin (10.1016/j.clay.2024.107646_bb0155) 2012; 106 Huang (10.1016/j.clay.2024.107646_bb0045) 2022; 282 Xin (10.1016/j.clay.2024.107646_bb0150) 2009; 100 |
References_xml | – volume: 15 start-page: 5066 year: 2024 ident: bb0180 article-title: Direct extraction of lithium from ores by electrochemical leaching publication-title: Nat. Commun. – volume: 9 start-page: 3060 year: 2021 end-page: 3069 ident: bb0055 article-title: Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density publication-title: ACS Sustain. Chem. Eng. – volume: 306 year: 2021 ident: bb0165 article-title: Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg publication-title: J. Clean. Prod. – volume: 58 start-page: 8792 year: 2024 end-page: 8802 ident: bb0020 article-title: Sulfonamide per- and polyfluoroalkyl substances can impact microorganisms used in aromatic hydrocarbon and trichloroethene bioremediation publication-title: Environ. Sci. Technol. – volume: 196 year: 2023 ident: bb0035 article-title: Enhanced bioleaching efficiency of vanadium from stone coal vanadium ore by adding biochar and plasma treatment publication-title: Miner. Eng. – volume: 319 year: 2021 ident: bb0065 article-title: Bio-leaching of manganese from electrolytic manganese slag by publication-title: Bioresour. Technol. – volume: 31 start-page: 995 year: 2021 end-page: 1002 ident: bb0175 article-title: Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant publication-title: Int. J. Min. Sci. Technol. – volume: 10 year: 2022 ident: bb0015 article-title: Improvement on bioleaching interfacial behavior between publication-title: J. Environ. Chem. Eng. – volume: 106 start-page: 147 year: 2012 end-page: 153 ident: bb0155 article-title: Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration publication-title: Bioresour. Technol. – volume: 244 start-page: 1456 year: 2017 end-page: 1464 ident: bb0190 article-title: Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism publication-title: Bioresour. Technol. – volume: 880 year: 2023 ident: bb0080 article-title: Surfactant enhances anaerobic fermentative hydrogen sulfide production: changes in sulfur-containing organics structure and microbial community publication-title: Sci. Total Environ. – volume: 100 start-page: 6163 year: 2009 end-page: 6169 ident: bb0150 article-title: Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria publication-title: Bioresour. Technol. – volume: 405 year: 2021 ident: bb0125 article-title: Surfactant changes lead adsorption behaviors and mechanisms on microplastics publication-title: Chem. Eng. J. – volume: 399 start-page: 130589 year: 2024 ident: bb0140 article-title: Bio-sorption capacity of cadmium and zinc by publication-title: Bioresour. Technol. – volume: 282 year: 2021 ident: bb0110 article-title: A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach publication-title: Chemosphere – volume: 106 start-page: 18 year: 2017 end-page: 21 ident: bb0105 article-title: Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms publication-title: Miner. Eng. – volume: 59 start-page: 159 year: 2001 end-page: 175 ident: bb0115 article-title: (Bio) chemistry of bacterial leaching - direct vs. indirect bioleaching publication-title: Hydrometallurgy – volume: 434 year: 2024 ident: bb0060 article-title: Microwave-enhanced sulfate roasting for lithium extraction from lepidolite: a comprehensive study publication-title: J. Clean. Prod. – volume: 212 start-page: 45 year: 2014 end-page: 63 ident: bb0030 article-title: A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions publication-title: Adv. Colloid Interf. Sci. – volume: 272 start-page: 346 year: 2019 end-page: 350 ident: bb0100 article-title: Biosorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on extracellular polymeric substances extracted from publication-title: Bioresour. Technol. – volume: 6 start-page: 11570 year: 2018 end-page: 11577 ident: bb0160 article-title: Contact behavior between cells and particles in bioleaching of precious metals from waste printed circuit boards publication-title: ACS Sustain. Chem. Eng. – volume: 40 start-page: 195 year: 2006 end-page: 201 ident: bb0010 article-title: Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a publication-title: Environ. Sci. Technol. – volume: 220 start-page: 117 year: 2016 end-page: 123 ident: bb0070 article-title: Hydrophilicity/hydrophobicity of anaerobic granular sludge surface and their causes: an in situ research publication-title: Bioresour. Technol. – year: 2024 ident: bb0145 article-title: Research on the decomposition mechanisms of lithium silicate ores with different crystal structures by autotrophic and heterotrophic bacteria publication-title: Sci. Total Environ. – volume: 10 year: 2020 ident: bb0120 article-title: Comparison of three different bioleaching systems for Li recovery from lepidolite publication-title: Sci. Rep. – volume: 416 year: 2021 ident: bb0075 article-title: Bioleaching of vanadium by publication-title: J. Hazard. Mater. – volume: 153 year: 2020 ident: bb0025 article-title: Rapid and green process for valuable materials recovery from waste liquid crystal displays publication-title: Resour. Conserv. Recycl. – volume: 394 year: 2024 ident: bb0050 article-title: Enhancing column bioleaching of chalcocite by isolated iron metabolism partners publication-title: Bioresour. Technol. – volume: 355 year: 2025 ident: bb0170 article-title: A novel technology for lithium extraction through low-temperature synergistic roasting of α-spodumene with lepidolite publication-title: Sep. Purif. Technol. – volume: 143 start-page: 169 year: 2015 end-page: 176 ident: bb0130 article-title: Influence of bacterial adhesion on copper extraction from printed circuit boards publication-title: Sep. Purif. Technol. – volume: 318 year: 2022 ident: bb0135 article-title: Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNi publication-title: J. Environ. Manag. – volume: 220 start-page: 483 year: 2019 end-page: 492 ident: bb0090 article-title: Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries publication-title: J. Clean. Prod. – volume: 20 start-page: 1179 year: 2017 end-page: 1187 ident: bb0040 article-title: Bioleaching of heavy metals from sewage sludge, direct action of publication-title: J. Mater. Cycles Waste Manag. – volume: 347 year: 2023 ident: bb0185 article-title: Lithium extraction from typical lithium silicate ores by two bacteria with different metabolic characteristics: experiments, mechanism and significance publication-title: J. Hazard. Mater. – volume: 314 year: 2022 ident: bb0200 article-title: Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon publication-title: Environ. Pollut. – volume: 282 year: 2022 ident: bb0045 article-title: Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector publication-title: Sep. Purif. Technol. – volume: 447 year: 2023 ident: bb0085 article-title: Comparison of synthetic rhamnolipids as chemical precipitants for Pb, La, and Mg publication-title: J. Hazard. Mater. – volume: 285 start-page: 383 year: 2015 end-page: 388 ident: bb0195 article-title: Effect of low-concentration rhamnolipid on adsorption of publication-title: J. Hazard. Mater. – volume: 443 year: 2023 ident: bb0095 article-title: Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons - a critical evaluation of the performance of rhamnolipids publication-title: J. Hazard. Mater. – volume: 327 year: 2023 ident: bb0005 article-title: Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils publication-title: Environ. Pollut. – volume: 282 year: 2022 ident: 10.1016/j.clay.2024.107646_bb0045 article-title: Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119122 – volume: 880 year: 2023 ident: 10.1016/j.clay.2024.107646_bb0080 article-title: Surfactant enhances anaerobic fermentative hydrogen sulfide production: changes in sulfur-containing organics structure and microbial community publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.163025 – volume: 31 start-page: 995 issue: 6 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0175 article-title: Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.06.002 – volume: 416 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0075 article-title: Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: performance and mechanisms publication-title: J. Hazard. Mater. – year: 2024 ident: 10.1016/j.clay.2024.107646_bb0145 article-title: Research on the decomposition mechanisms of lithium silicate ores with different crystal structures by autotrophic and heterotrophic bacteria publication-title: Sci. Total Environ. – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.clay.2024.107646_bb0120 article-title: Comparison of three different bioleaching systems for Li recovery from lepidolite publication-title: Sci. Rep. doi: 10.1038/s41598-020-71596-5 – volume: 58 start-page: 8792 issue: 20 year: 2024 ident: 10.1016/j.clay.2024.107646_bb0020 article-title: Sulfonamide per- and polyfluoroalkyl substances can impact microorganisms used in aromatic hydrocarbon and trichloroethene bioremediation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c09715 – volume: 447 year: 2023 ident: 10.1016/j.clay.2024.107646_bb0085 article-title: Comparison of synthetic rhamnolipids as chemical precipitants for Pb, La, and Mg publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.130801 – volume: 434 year: 2024 ident: 10.1016/j.clay.2024.107646_bb0060 article-title: Microwave-enhanced sulfate roasting for lithium extraction from lepidolite: a comprehensive study publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.140248 – volume: 220 start-page: 117 year: 2016 ident: 10.1016/j.clay.2024.107646_bb0070 article-title: Hydrophilicity/hydrophobicity of anaerobic granular sludge surface and their causes: an in situ research publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.012 – volume: 314 year: 2022 ident: 10.1016/j.clay.2024.107646_bb0200 article-title: Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120198 – volume: 394 year: 2024 ident: 10.1016/j.clay.2024.107646_bb0050 article-title: Enhancing column bioleaching of chalcocite by isolated iron metabolism partners Leptospirillum ferriphilum/Acidiphilium sp. coupling with systematically utilizing cellulosic waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2023.130193 – volume: 15 start-page: 5066 issue: 1 year: 2024 ident: 10.1016/j.clay.2024.107646_bb0180 article-title: Direct extraction of lithium from ores by electrochemical leaching publication-title: Nat. Commun. doi: 10.1038/s41467-024-48867-0 – volume: 106 start-page: 147 year: 2012 ident: 10.1016/j.clay.2024.107646_bb0155 article-title: Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.013 – volume: 443 year: 2023 ident: 10.1016/j.clay.2024.107646_bb0095 article-title: Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons - a critical evaluation of the performance of rhamnolipids publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130171 – volume: 244 start-page: 1456 year: 2017 ident: 10.1016/j.clay.2024.107646_bb0190 article-title: Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.025 – volume: 196 year: 2023 ident: 10.1016/j.clay.2024.107646_bb0035 article-title: Enhanced bioleaching efficiency of vanadium from stone coal vanadium ore by adding biochar and plasma treatment publication-title: Miner. Eng. doi: 10.1016/j.mineng.2023.108059 – volume: 20 start-page: 1179 issue: 2 year: 2017 ident: 10.1016/j.clay.2024.107646_bb0040 article-title: Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH? publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-017-0680-7 – volume: 327 year: 2023 ident: 10.1016/j.clay.2024.107646_bb0005 article-title: Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2023.121545 – volume: 318 year: 2022 ident: 10.1016/j.clay.2024.107646_bb0135 article-title: Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNixCoyMn1-x-yO2 at high pulp density publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115429 – volume: 306 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0165 article-title: Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg2+ from aqueous solution using the leaching residues publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127167 – volume: 282 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0110 article-title: A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130944 – volume: 6 start-page: 11570 issue: 9 year: 2018 ident: 10.1016/j.clay.2024.107646_bb0160 article-title: Contact behavior between cells and particles in bioleaching of precious metals from waste printed circuit boards publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01742 – volume: 10 issue: 6 year: 2022 ident: 10.1016/j.clay.2024.107646_bb0015 article-title: Improvement on bioleaching interfacial behavior between Bacillus mucilaginosus and vanadium-bearing shale by surfactant additive publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108911 – volume: 100 start-page: 6163 issue: 24 year: 2009 ident: 10.1016/j.clay.2024.107646_bb0150 article-title: Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.06.086 – volume: 9 start-page: 3060 issue: 8 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0055 article-title: Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c06573 – volume: 285 start-page: 383 year: 2015 ident: 10.1016/j.clay.2024.107646_bb0195 article-title: Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.11.050 – volume: 405 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0125 article-title: Surfactant changes lead adsorption behaviors and mechanisms on microplastics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126989 – volume: 355 year: 2025 ident: 10.1016/j.clay.2024.107646_bb0170 article-title: A novel technology for lithium extraction through low-temperature synergistic roasting of α-spodumene with lepidolite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.129667 – volume: 59 start-page: 159 issue: 2–3 year: 2001 ident: 10.1016/j.clay.2024.107646_bb0115 article-title: (Bio) chemistry of bacterial leaching - direct vs. indirect bioleaching publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00180-8 – volume: 220 start-page: 483 year: 2019 ident: 10.1016/j.clay.2024.107646_bb0090 article-title: Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.177 – volume: 347 year: 2023 ident: 10.1016/j.clay.2024.107646_bb0185 article-title: Lithium extraction from typical lithium silicate ores by two bacteria with different metabolic characteristics: experiments, mechanism and significance publication-title: J. Hazard. Mater. – volume: 106 start-page: 18 year: 2017 ident: 10.1016/j.clay.2024.107646_bb0105 article-title: Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.02.012 – volume: 272 start-page: 346 year: 2019 ident: 10.1016/j.clay.2024.107646_bb0100 article-title: Biosorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on extracellular polymeric substances extracted from Klebsiella sp J1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.054 – volume: 143 start-page: 169 year: 2015 ident: 10.1016/j.clay.2024.107646_bb0130 article-title: Influence of bacterial adhesion on copper extraction from printed circuit boards publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.01.038 – volume: 319 year: 2021 ident: 10.1016/j.clay.2024.107646_bb0065 article-title: Bio-leaching of manganese from electrolytic manganese slag by Microbacterium trichothecenolyticum Y1: mechanism and characteristics of microbial metabolites publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124056 – volume: 399 start-page: 130589 year: 2024 ident: 10.1016/j.clay.2024.107646_bb0140 article-title: Bio-sorption capacity of cadmium and zinc by Pseudomonas monteilii with heavy-metal resistance isolated from the compost of pig manure publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2024.130589 – volume: 40 start-page: 195 issue: 1 year: 2006 ident: 10.1016/j.clay.2024.107646_bb0010 article-title: Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a Sphingomonas sp publication-title: Environ. Sci. Technol. doi: 10.1021/es051183y – volume: 212 start-page: 45 year: 2014 ident: 10.1016/j.clay.2024.107646_bb0030 article-title: A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2014.08.005 – volume: 153 year: 2020 ident: 10.1016/j.clay.2024.107646_bb0025 article-title: Rapid and green process for valuable materials recovery from waste liquid crystal displays publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2019.104544 |
SSID | ssj0012859 |
Score | 2.4434986 |
Snippet | Direct contact of bacteria with minerals can provide better leaching effect than indirect contact in the process of bioleaching. As a leaching assistant,... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 107646 |
SubjectTerms | Bacterial adsorption Bioleaching Lepidolite Surface tension Surfactant |
Title | Mechanism of surfactant effect on bacterial adsorption during bioleaching of lepidolite |
URI | https://dx.doi.org/10.1016/j.clay.2024.107646 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQCAkOCAaI8VIO3FBZm6Rpe5ymwQCNC89blTaJVDS2ad0Ou_DbiZuWh4Q4cI3iqLId21E_fwY4C1UsuIqNF7A89DhnvicTHXqSM43EuJRJ_KM7vBODR37zEr6sQK_phUFYZR37XUyvonW90qm12ZkWReceeUQCm_4QBckSjrTbnEfo5RfvnzCPAAnaHL934uHuunHGYbzykVzaNyLldiESWAT_lpy-JZzLbdiqK0XSdR-zAyt63ILNb_yBLdjvf7Wp2a31PS1bsH5VDexdWoGnoly4Y8pdeB5q7PQtyjcyMaRczLCvweqWOFgHmYxJ5uibrYhU5WRWRRTimhkJMjbV6EuUH-lpoRA_p_fg8bL_0Bt49WgFL7cFzdwTNIq1MHEgsoApQwU12j70MiEkxxccldZMPMu1UTzxZS5DFtpUxxSLjfAVZfuwOp6M9QGQjFJF_TgLIpbzyN5oo3USSGriDIFWeRvOG52mU8egkTbQstcULZCiBVJngTaEjdrTH36Q2hD_h9zhP-WOYIPiRN8Kh30Mq_PZQp_YMmOenVZ-dApr3evbwd0HOJ7RWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIgQMCAqI8vTAhkIb23GTEVWF8igL5bFFTmxLQdBWTTt04bfji1MoEmJgtXxWdOd7WPnuO4DTQIWCq9B4PksDj3PW9GSkA09yppEYlzKJf3R796L7yG9egpcKtOe9MAirLGO_i-lFtC5XGqU2G6Msazwgj4hv0x-iIFnExRIsc-u-OMbg_OML5-EjQ5sj-I483F52zjiQV_omZ_aRSLldaAmsgn_LTgsZ53ITNspSkVy4r9mCih7UYH2BQLAGu53vPjW7tXTUvAYrV8XE3pkVeMryqTsm34bnnsZW3yx_J0ND8ukYGxusconDdZDhgCSOv9mKSJUPx0VIIa6bkSBlUwm_RPk3PcoUAuj0DjxedvrtrlfOVvBSW9FMPEFboRYm9EXiM2WooEbbl14ihOT4hKPS2oknqTaKR02ZyoAFNtcxxUIjmoqyXagOhgO9ByShVNFmmPgtlvKWdWmjdeRLasIEkVZpHc7mOo1HjkIjnmPLXmO0QIwWiJ0F6hDM1R7_uAixjfF_yO3_U-4EVrv93l18d31_ewBrFMf7FqDsQ6hOxlN9ZGuOSXJc3KlPLQHS6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+surfactant+effect+on+bacterial+adsorption+during+bioleaching+of+lepidolite&rft.jtitle=Applied+clay+science&rft.au=Xu%2C+Chao&rft.au=Zhao%2C+Xingqing&rft.au=Duan%2C+Huaiyu&rft.au=Gu%2C+Wei&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0169-1317&rft.volume=264&rft_id=info:doi/10.1016%2Fj.clay.2024.107646&rft.externalDocID=S0169131724003946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1317&client=summon |