Hydrodynamic investigation of a new type of floating breakwaters integrated with porous baffles

•The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position, installation height and porosities of porous baffles is conducted.•The law and mechanism of the porous baffles versus the wave attenuation and f...

Full description

Saved in:
Bibliographic Details
Published inApplied ocean research Vol. 154; p. 104380
Main Authors Hu, Kang-Zhuo, Xu, Tiao-Jian, Wang, Sen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN0141-1187
DOI10.1016/j.apor.2024.104380

Cover

Loading…
Abstract •The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position, installation height and porosities of porous baffles is conducted.•The law and mechanism of the porous baffles versus the wave attenuation and floater motion are explored.•The porous baffle can improve the wave energy dissipation and reduce the motion amplitude of the box-type floating breakwater. Due to their easy installation and low maintenance costs, floating breakwaters have attracted extensive attention from scholars, resulting in a series of new configurations. A novel floating breakwater integrated with porous baffles (PFB) was introduced in this research. Numerical simulations were applied to explore the interactions between the PFB and regular waves, and corresponding experiments were also completed to ensure the accuracy of the numerical results. Then, the impacts of the height, position, and porosity on the hydrodynamic performance of the PFB were analyzed through a series of numerical simulations. A comparison with conventional box-type floating breakwaters was also conducted. The results indicated that the porous baffles effectively improved the wave attenuation phenomenon and reduced the motion amplitude by weakening the wave particle velocity and concentrating the vortices near the porous baffles. Additionally, the performance of the PFB could be further increased by adjusting the baffle porosity and mounting position. The study provides valuable suggestions for the further improvement of floating breakwaters.
AbstractList •The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position, installation height and porosities of porous baffles is conducted.•The law and mechanism of the porous baffles versus the wave attenuation and floater motion are explored.•The porous baffle can improve the wave energy dissipation and reduce the motion amplitude of the box-type floating breakwater. Due to their easy installation and low maintenance costs, floating breakwaters have attracted extensive attention from scholars, resulting in a series of new configurations. A novel floating breakwater integrated with porous baffles (PFB) was introduced in this research. Numerical simulations were applied to explore the interactions between the PFB and regular waves, and corresponding experiments were also completed to ensure the accuracy of the numerical results. Then, the impacts of the height, position, and porosity on the hydrodynamic performance of the PFB were analyzed through a series of numerical simulations. A comparison with conventional box-type floating breakwaters was also conducted. The results indicated that the porous baffles effectively improved the wave attenuation phenomenon and reduced the motion amplitude by weakening the wave particle velocity and concentrating the vortices near the porous baffles. Additionally, the performance of the PFB could be further increased by adjusting the baffle porosity and mounting position. The study provides valuable suggestions for the further improvement of floating breakwaters.
ArticleNumber 104380
Author Wang, Sen
Hu, Kang-Zhuo
Xu, Tiao-Jian
Author_xml – sequence: 1
  givenname: Kang-Zhuo
  orcidid: 0009-0005-9708-1664
  surname: Hu
  fullname: Hu, Kang-Zhuo
– sequence: 2
  givenname: Tiao-Jian
  surname: Xu
  fullname: Xu, Tiao-Jian
  email: tjxu@dlut.edu.cn
– sequence: 3
  givenname: Sen
  surname: Wang
  fullname: Wang, Sen
BookMark eNp9kM1OAyEQgDnUxLb6Ap54ga0Mu9Bt4sU0_iVNvOiZsDBUars0gG327WVTz57mL9_M5JuRSR96JOQO2AIYyPvdQh9DXHDGm9Jo6pZNyJRBAxVAu7wms5R2jAFvZTsl6nWwMdih1wdvqO9PmLLf6uxDT4OjmvZ4pnk44li5fSiTfku7iPr7rDPGVJiM21hyS88-f9FyO_wk2mnn9phuyJXT-4S3f3FOPp-fPtav1eb95W39uKkMF5ArYXj5lIFhYmWWIBonLTNCNo0xwFdSttzp2jIJHa-FrHUrlrYWgA7qTrZNPSf8stfEkFJEp47RH3QcFDA1alE7NWpRoxZ10VKghwuE5bOTx6iS8dgbtD6iycoG_x_-C2ZlcB0
Cites_doi 10.1016/j.oceaneng.2018.03.083
10.1016/S0029-8018(98)00056-0
10.1016/j.coastaleng.2018.03.002
10.1016/j.oceaneng.2020.107044
10.1515/ijnaoe-2015-0066
10.1016/j.oceaneng.2012.05.008
10.1115/1.4001435
10.1016/j.oceaneng.2022.112819
10.1063/5.0158337
10.1016/j.oceaneng.2008.01.010
10.1016/j.compfluid.2017.02.010
10.1016/j.coastaleng.2013.07.002
10.1016/j.oceaneng.2018.08.030
10.1016/j.apor.2024.103941
10.1016/j.apor.2011.04.001
10.1016/j.oceaneng.2020.107660
10.1016/j.renene.2016.04.057
10.1016/j.apor.2018.11.002
10.1080/00221686.2014.888690
10.1016/j.oceaneng.2024.118442
10.1016/0021-9991(81)90145-5
10.1016/0029-8018(84)90033-7
10.1142/S0578563406001441
10.1016/j.apenergy.2013.01.013
10.1016/j.oceaneng.2018.10.036
10.1080/09377255.2015.1119921
10.1080/1064119X.2019.1580806
10.1016/j.apor.2007.01.002
10.1016/j.oceaneng.2022.112991
10.1017/S0022112083001676
10.1016/j.oceaneng.2022.111923
10.1016/j.oceaneng.2021.109641
10.1016/j.oceaneng.2020.107871
10.1016/j.apor.2023.103497
10.1016/j.apor.2003.12.001
10.1016/j.apor.2010.11.003
10.1007/s00773-018-0554-2
10.1115/1.4043415
10.1016/j.apor.2022.103213
10.1016/j.oceaneng.2019.106577
10.1016/j.coastaleng.2022.104230
10.1016/j.oceaneng.2022.111384
10.1016/j.oceaneng.2016.03.002
10.1016/j.apor.2017.07.011
10.1016/j.oceaneng.2022.111296
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.apor.2024.104380
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_apor_2024_104380
S0141118724005017
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~A~
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c251t-5c204301c059c7154f6d0c5644cc1296682fa3d061b23563a857d351ef13b6843
IEDL.DBID .~1
ISSN 0141-1187
IngestDate Thu Jul 24 02:09:09 EDT 2025
Sat Aug 16 17:02:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Floating breakwater
Porous baffle
Finite volume method (FVM)
Hydrodynamic performance
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-5c204301c059c7154f6d0c5644cc1296682fa3d061b23563a857d351ef13b6843
ORCID 0009-0005-9708-1664
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141118724005017
ParticipantIDs crossref_primary_10_1016_j_apor_2024_104380
elsevier_sciencedirect_doi_10_1016_j_apor_2024_104380
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Applied ocean research
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ji, Chen, Cui, Gaidai, Incecik (bib0025) 2016; 117
Völkner, Brunswig, Rung (bib0045) 2017; 148
He, Huang, Law (bib0017) 2013; 106
Zhao, Bao, Kinoshita, Itakura (bib0054) 2011; 133
Sun, Qu, Kraatz, Deng, Jiang (bib0042) 2020; 213
Molin (bib0032) 2011; 33
Chwang (bib0005) 1983; 132
Vijay, Sahoo (bib0044) 2019; 141
Zhao, Ning, Liang (bib0056) 2019; 171
George, Cho (bib0012) 2020; 214
Adapco (bib0001) 2020
Wang, Xu, Wang, Dong, Hou (bib0048) 2024; 36
Dong, Zheng, Li, Teng, Guan, Lin (bib0009) 2008; 35
Teh, Ismail (bib0043) 2013; 16
Liang, Chen, Liu, Li (bib0028) 2022; 266
Chen, Liu, Meringolo, Hu (bib0002) 2023; 179
Christensen, Bingham, Skou Friis, Larsen, Jensen (bib0004) 2018; 137
Ergun (bib0011) 1952; 48
Dai, Wang, Utsunomiya, Duan (bib0007) 2018; 158
Deng, Wang, Zhao, Huang (bib0008) 2019; 82
Ouyang, Chen, Tsai (bib0034) 2015; 7
He, Li, Pan, Yuan (bib0018) 2023; 133
Wang, Xu, Wang, Dong (bib0049) 2024; 309
Ji, Bian, Huo, Guo, Lian, Yuan (bib0023) 2022; 259
He, Liang, Ren, Li, Shao (bib0019) 2023
Poguluri, George, Kim, Cho (bib0037) 2021; 239
Stiassnie, Drimer (bib0040) 2003; 25
Hirt, Nichols (bib0021) 1981; 39
Li, Lui, Teng (bib0027) 2006; 48
Ji, Deng, Cheng (bib0024) 2019; 24
Menter (bib0031) 1994
He, Han, Han, Xie (bib0020) 2024; 146
Yang, Xie, Gao, Xu, Guo, Ji, Yuan (bib0052) 2018; 167
Williams, Lee, Huang (bib0051) 2000; 27
Peng, Lee, Shin, Mizutani (bib0035) 2013; 82
Zhao, Kinoshita, Bao, Wan, Liang, Huang (bib0055) 2011; 33
Mei (bib0030) 1984; 11
Ning, Zhao, Göteman, Kang (bib0033) 2016; 95
Guo, Zou, He, Mao, Liu (bib0015) 2022
Wang, Xu, Jiang, Wang, Dong, Wang (bib0046) 2022; 256
Wang, Xu, Shen, Wang, Dong, Wang (bib0047) 2023; 35
Chen, Wang, Dong, Zheng (bib0003) 2012; 5
Ren, He, Li, Dong (bib0038) 2017; 67
Gesraha (bib0013) 2006; 28
Cui, Chen, Guo, Deng, Ji, Li (bib0006) 2020; 38
Perić, Abdel-Maksoud (bib0036) 2016; 63
Duan, Liu, Chen, Ma (bib0010) 2020; 200
Singla, Behera, Martha, Sahoo (bib0039) 2019; 193
Li, Zhang, Zhang, Sun, Yang (bib0026) 2022; 124
Liang, Liu, Chen, Li (bib0029) 2022; 254
Wei, Yin (bib0050) 2022; 266
He, Huang, Wing-Keung Law (bib0016) 2012; 51
Huang, He, Zhang (bib0022) 2014; 52
Goda, Suzuki (bib0014) 1976
Ren (10.1016/j.apor.2024.104380_bib0038) 2017; 67
He (10.1016/j.apor.2024.104380_bib0016) 2012; 51
Poguluri (10.1016/j.apor.2024.104380_bib0037) 2021; 239
Stiassnie (10.1016/j.apor.2024.104380_bib0040) 2003; 25
Mei (10.1016/j.apor.2024.104380_bib0030) 1984; 11
Singla (10.1016/j.apor.2024.104380_bib0039) 2019; 193
Wang (10.1016/j.apor.2024.104380_bib0048) 2024; 36
Ji (10.1016/j.apor.2024.104380_bib0024) 2019; 24
Völkner (10.1016/j.apor.2024.104380_bib0045) 2017; 148
Gesraha (10.1016/j.apor.2024.104380_bib0013) 2006; 28
Liang (10.1016/j.apor.2024.104380_bib0029) 2022; 254
Ning (10.1016/j.apor.2024.104380_bib0033) 2016; 95
He (10.1016/j.apor.2024.104380_bib0017) 2013; 106
Christensen (10.1016/j.apor.2024.104380_bib0004) 2018; 137
Yang (10.1016/j.apor.2024.104380_bib0052) 2018; 167
Zhao (10.1016/j.apor.2024.104380_bib0054) 2011; 133
He (10.1016/j.apor.2024.104380_bib0020) 2024; 146
Liang (10.1016/j.apor.2024.104380_bib0028) 2022; 266
He (10.1016/j.apor.2024.104380_bib0018) 2023; 133
Perić (10.1016/j.apor.2024.104380_bib0036) 2016; 63
Peng (10.1016/j.apor.2024.104380_bib0035) 2013; 82
Vijay (10.1016/j.apor.2024.104380_bib0044) 2019; 141
Cui (10.1016/j.apor.2024.104380_bib0006) 2020; 38
Dai (10.1016/j.apor.2024.104380_bib0007) 2018; 158
Ji (10.1016/j.apor.2024.104380_bib0023) 2022; 259
He (10.1016/j.apor.2024.104380_bib0019) 2023
Huang (10.1016/j.apor.2024.104380_bib0022) 2014; 52
Chen (10.1016/j.apor.2024.104380_bib0002) 2023; 179
Goda (10.1016/j.apor.2024.104380_bib0014) 1976
Li (10.1016/j.apor.2024.104380_bib0027) 2006; 48
Menter (10.1016/j.apor.2024.104380_bib0031) 1994
Teh (10.1016/j.apor.2024.104380_bib0043) 2013; 16
Sun (10.1016/j.apor.2024.104380_bib0042) 2020; 213
Wang (10.1016/j.apor.2024.104380_bib0049) 2024; 309
Chen (10.1016/j.apor.2024.104380_bib0003) 2012; 5
Molin (10.1016/j.apor.2024.104380_bib0032) 2011; 33
Wang (10.1016/j.apor.2024.104380_bib0046) 2022; 256
Zhao (10.1016/j.apor.2024.104380_bib0055) 2011; 33
Guo (10.1016/j.apor.2024.104380_bib0015) 2022
Hirt (10.1016/j.apor.2024.104380_bib0021) 1981; 39
Wang (10.1016/j.apor.2024.104380_bib0047) 2023; 35
Wei (10.1016/j.apor.2024.104380_bib0050) 2022; 266
Adapco (10.1016/j.apor.2024.104380_bib0001) 2020
Ouyang (10.1016/j.apor.2024.104380_bib0034) 2015; 7
George (10.1016/j.apor.2024.104380_bib0012) 2020; 214
Williams (10.1016/j.apor.2024.104380_bib0051) 2000; 27
Deng (10.1016/j.apor.2024.104380_bib0008) 2019; 82
Ji (10.1016/j.apor.2024.104380_bib0025) 2016; 117
Zhao (10.1016/j.apor.2024.104380_bib0056) 2019; 171
Duan (10.1016/j.apor.2024.104380_bib0010) 2020; 200
Ergun (10.1016/j.apor.2024.104380_bib0011) 1952; 48
Li (10.1016/j.apor.2024.104380_bib0026) 2022; 124
Chwang (10.1016/j.apor.2024.104380_bib0005) 1983; 132
Dong (10.1016/j.apor.2024.104380_bib0009) 2008; 35
References_xml – volume: 35
  start-page: 931
  year: 2008
  end-page: 938
  ident: bib0009
  article-title: Experiments on wave transmission coefficients of floating breakwaters
  publication-title: Ocean Eng.
– start-page: 258
  year: 2022
  ident: bib0015
  article-title: Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: an SPH-based preliminary investigation
  publication-title: Ocean Eng.
– start-page: 184
  year: 2023
  ident: bib0019
  article-title: Wave interactions with multi-float structures: SPH model, experimental validation, and parametric study
  publication-title: Coast. Eng.
– volume: 36
  year: 2024
  ident: bib0048
  article-title: An improved macroscopic model for sloshing flow-combined porous structure interaction
  publication-title: Phys. Fluids
– volume: 137
  start-page: 43
  year: 2018
  end-page: 58
  ident: bib0004
  article-title: An experimental and numerical study of floating breakwaters
  publication-title: Coast. Eng.
– volume: 309
  year: 2024
  ident: bib0049
  article-title: Experimental investigation of damping effect of porous structures on hydrodynamic response of a floating closed aquaculture tank in beam regular waves
  publication-title: Ocean Eng.
– volume: 28
  start-page: 327
  year: 2006
  end-page: 338
  ident: bib0013
  article-title: Analysis of Π-shaped floating breakwater in oblique waves: I. Impervious rigid wave boards
  publication-title: Appl. Ocean Res.
– volume: 52
  start-page: 720
  year: 2014
  end-page: 727
  ident: bib0022
  article-title: A floating box-type breakwater with slotted barriers
  publication-title: J. Hydraulic Res.
– volume: 82
  start-page: 325
  year: 2019
  end-page: 336
  ident: bib0008
  article-title: Hydrodynamic performance of a T-shaped floating breakwater
  publication-title: Appl. Ocean Res.
– volume: 141
  year: 2019
  ident: bib0044
  article-title: Scattering of surface gravity waves by a pair of floating porous boxes
  publication-title: J. Offshore Mech. Arctic Eng.
– volume: 124
  year: 2022
  ident: bib0026
  article-title: Wave-attenuation and hydrodynamic properties of twin pontoon floating breakwater with kelp
  publication-title: Appl. Ocean Res.
– volume: 266
  year: 2022
  ident: bib0050
  article-title: Numerical study into configuration of horizontal flanges on hydrodynamic performance of moored box-type floating breakwater
  publication-title: Ocean Eng.
– volume: 7
  start-page: 951
  year: 2015
  end-page: 963
  ident: bib0034
  article-title: Investigation on Bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters
  publication-title: Int. J. Naval Architect. Ocean Eng.
– volume: 35
  year: 2023
  ident: bib0047
  article-title: Numerical simulation of the interaction between nonlinear sloshing flow and side-mounted perforated baffle
  publication-title: Phys. Fluids
– volume: 27
  start-page: 221
  year: 2000
  end-page: 240
  ident: bib0051
  article-title: Floating pontoon breakwaters
  publication-title: Ocean Eng.
– volume: 67
  start-page: 277
  year: 2017
  end-page: 290
  ident: bib0038
  article-title: Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction
  publication-title: Appl. Ocean Res.
– volume: 171
  start-page: 25
  year: 2019
  end-page: 32
  ident: bib0056
  article-title: Experimental investigation on hydrodynamic performance of a breakwater-integrated WEC system
  publication-title: Ocean Eng.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0021
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 239
  year: 2021
  ident: bib0037
  article-title: Hydrodynamic performance of a submerged horizontal porous wave barrier
  publication-title: Ocean Eng.
– volume: 193
  year: 2019
  ident: bib0039
  article-title: Scattering of obliquely incident water waves by a surface-piercing porous box
  publication-title: Ocean Eng.
– volume: 106
  start-page: 222
  year: 2013
  end-page: 231
  ident: bib0017
  article-title: An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction
  publication-title: Appl. Energy
– volume: 133
  year: 2023
  ident: bib0018
  article-title: An experimental study of a rectangular floating breakwater with vertical plates as wave-dissipating components
  publication-title: Appl. Ocean Res.
– volume: 148
  start-page: 39
  year: 2017
  end-page: 55
  ident: bib0045
  article-title: Analysis of non-conservative interpolation techniques in overset grid finite-volume methods
  publication-title: Comput. Fluids.
– volume: 51
  start-page: 16
  year: 2012
  end-page: 27
  ident: bib0016
  article-title: Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study
  publication-title: Ocean Eng.
– volume: 133
  year: 2011
  ident: bib0054
  article-title: Theoretical and experimental study on a porous cylinder floating in waves
  publication-title: J. Offshore Mech. Arctic Eng.
– volume: 5
  start-page: 291
  year: 2012
  end-page: 303
  ident: bib0003
  article-title: Time-domain hydrodynamic analysis of pontoon-plate floating breakwater
  publication-title: Water Sci. Eng.
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  ident: bib0011
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– volume: 117
  start-page: 302
  year: 2016
  end-page: 310
  ident: bib0025
  article-title: Experimental study on configuration optimization of floating breakwaters
  publication-title: Ocean Eng.
– volume: 167
  start-page: 77
  year: 2018
  end-page: 94
  ident: bib0052
  article-title: Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater
  publication-title: Ocean Eng.
– volume: 132
  start-page: 395
  year: 1983
  end-page: 406
  ident: bib0005
  article-title: A porous-wavemaker theory
  publication-title: J. Fluid. Mech.
– year: 2020
  ident: bib0001
  article-title: STAR-CCM+ Theory Guide
– volume: 24
  start-page: 359
  year: 2019
  end-page: 371
  ident: bib0024
  article-title: An experimental study of double-row floating breakwaters
  publication-title: J. Mar. Sci. Technol.
– volume: 254
  year: 2022
  ident: bib0029
  article-title: Experimental study on hydrodynamic characteristics of the box-type floating breakwater with different mooring configurations
  publication-title: Ocean Eng.
– volume: 11
  start-page: 321
  year: 1984
  ident: bib0030
  article-title: The applied dynamics of ocean surface waves
  publication-title: Ocean Eng.
– volume: 38
  start-page: 266
  year: 2020
  end-page: 276
  ident: bib0006
  article-title: Experimental study on the hydrodynamic performance of rectangular floating breakwater influenced by reef areas
  publication-title: Marine Georesourc. Geotechnol.
– start-page: 828
  year: 1976
  end-page: 845
  ident: bib0014
  article-title: Estimation of incident and reflected waves in random wave experiments
  publication-title: Coast. Eng.
– volume: 63
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0036
  article-title: Reliable damping of free-surface waves in numerical simulations
  publication-title: Ship Technol. Res.
– volume: 82
  start-page: 76
  year: 2013
  end-page: 87
  ident: bib0035
  article-title: Numerical simulation of interactions between water waves and inclined-moored submerged floating breakwaters
  publication-title: Coast. Eng.
– volume: 48
  start-page: 309
  year: 2006
  end-page: 336
  ident: bib0027
  article-title: Porous effect parameter of thin permeable plates
  publication-title: Coast. Eng.
– volume: 266
  year: 2022
  ident: bib0028
  article-title: Hydrodynamic performance of a new box-type breakwater with superstructure: experimental study and SPH simulation
  publication-title: Ocean Eng.
– volume: 200
  year: 2020
  ident: bib0010
  article-title: Hydrodynamic analysis of floating breakwater with perforated structure based on the Taylor expansion boundary element method
  publication-title: Ocean Eng.
– volume: 16
  start-page: 1
  year: 2013
  end-page: 4
  ident: bib0043
  article-title: Hydraulic characteristics of a stepped-slope floating breakwater
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 33
  start-page: 1
  year: 2011
  end-page: 11
  ident: bib0032
  article-title: Hydrodynamic modeling of perforated structures
  publication-title: Appl. Ocean Res.
– start-page: 32
  year: 1994
  ident: bib0031
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 33
  start-page: 169
  year: 2011
  end-page: 177
  ident: bib0055
  article-title: Hydrodynamics identities and wave-drift force of a porous body
  publication-title: Appl. Ocean Res.
– volume: 95
  start-page: 531
  year: 2016
  end-page: 541
  ident: bib0033
  article-title: Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study
  publication-title: Renew. Energy
– volume: 256
  year: 2022
  ident: bib0046
  article-title: Numerical simulation of sloshing flow in a 2D rectangular tank with porous baffles
  publication-title: Ocean Eng.
– volume: 259
  year: 2022
  ident: bib0023
  article-title: Experimental study on hydrodynamic characteristics of a new type floating breakwater with opening pass and wing structure
  publication-title: Ocean Eng.
– volume: 25
  start-page: 263
  year: 2003
  end-page: 268
  ident: bib0040
  article-title: On a freely floating porous box in shallow water waves
  publication-title: Appl. Ocean Res.
– volume: 213
  year: 2020
  ident: bib0042
  article-title: Numerical investigation on performance of submerged porous breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave
  publication-title: Ocean Eng.
– volume: 158
  start-page: 132
  year: 2018
  end-page: 151
  ident: bib0007
  article-title: Review of recent research and developments on floating breakwaters
  publication-title: Ocean Eng.
– volume: 146
  year: 2024
  ident: bib0020
  article-title: Diffraction wave on the single-wing floating breakwater
  publication-title: Appl. Ocean Res.
– volume: 179
  year: 2023
  ident: bib0002
  article-title: Study on the hydrodynamics of a twin floating breakwater by using SPH method
  publication-title: Coast. Eng.
– volume: 214
  year: 2020
  ident: bib0012
  article-title: Anti-sloshing effects of a vertical porous baffle in a rolling rectangular tank
  publication-title: Ocean Eng.
– volume: 158
  start-page: 132
  year: 2018
  ident: 10.1016/j.apor.2024.104380_bib0007
  article-title: Review of recent research and developments on floating breakwaters
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.03.083
– volume: 27
  start-page: 221
  issue: 3
  year: 2000
  ident: 10.1016/j.apor.2024.104380_bib0051
  article-title: Floating pontoon breakwaters
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(98)00056-0
– volume: 137
  start-page: 43
  year: 2018
  ident: 10.1016/j.apor.2024.104380_bib0004
  article-title: An experimental and numerical study of floating breakwaters
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.03.002
– volume: 200
  year: 2020
  ident: 10.1016/j.apor.2024.104380_bib0010
  article-title: Hydrodynamic analysis of floating breakwater with perforated structure based on the Taylor expansion boundary element method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107044
– volume: 7
  start-page: 951
  issue: 6
  year: 2015
  ident: 10.1016/j.apor.2024.104380_bib0034
  article-title: Investigation on Bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters
  publication-title: Int. J. Naval Architect. Ocean Eng.
  doi: 10.1515/ijnaoe-2015-0066
– volume: 51
  start-page: 16
  year: 2012
  ident: 10.1016/j.apor.2024.104380_bib0016
  article-title: Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.05.008
– volume: 133
  issue: 1
  year: 2011
  ident: 10.1016/j.apor.2024.104380_bib0054
  article-title: Theoretical and experimental study on a porous cylinder floating in waves
  publication-title: J. Offshore Mech. Arctic Eng.
  doi: 10.1115/1.4001435
– volume: 266
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0028
  article-title: Hydrodynamic performance of a new box-type breakwater with superstructure: experimental study and SPH simulation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112819
– volume: 35
  issue: 8
  year: 2023
  ident: 10.1016/j.apor.2024.104380_bib0047
  article-title: Numerical simulation of the interaction between nonlinear sloshing flow and side-mounted perforated baffle
  publication-title: Phys. Fluids
  doi: 10.1063/5.0158337
– volume: 35
  start-page: 931
  issue: 8
  year: 2008
  ident: 10.1016/j.apor.2024.104380_bib0009
  article-title: Experiments on wave transmission coefficients of floating breakwaters
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2008.01.010
– volume: 5
  start-page: 291
  issue: 3
  year: 2012
  ident: 10.1016/j.apor.2024.104380_bib0003
  article-title: Time-domain hydrodynamic analysis of pontoon-plate floating breakwater
  publication-title: Water Sci. Eng.
– volume: 148
  start-page: 39
  year: 2017
  ident: 10.1016/j.apor.2024.104380_bib0045
  article-title: Analysis of non-conservative interpolation techniques in overset grid finite-volume methods
  publication-title: Comput. Fluids.
  doi: 10.1016/j.compfluid.2017.02.010
– volume: 48
  start-page: 89
  issue: 2
  year: 1952
  ident: 10.1016/j.apor.2024.104380_bib0011
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– start-page: 258
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0015
  article-title: Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: an SPH-based preliminary investigation
  publication-title: Ocean Eng.
– volume: 82
  start-page: 76
  year: 2013
  ident: 10.1016/j.apor.2024.104380_bib0035
  article-title: Numerical simulation of interactions between water waves and inclined-moored submerged floating breakwaters
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.07.002
– start-page: 184
  year: 2023
  ident: 10.1016/j.apor.2024.104380_bib0019
  article-title: Wave interactions with multi-float structures: SPH model, experimental validation, and parametric study
  publication-title: Coast. Eng.
– volume: 167
  start-page: 77
  year: 2018
  ident: 10.1016/j.apor.2024.104380_bib0052
  article-title: Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.08.030
– start-page: 32
  year: 1994
  ident: 10.1016/j.apor.2024.104380_bib0031
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 146
  year: 2024
  ident: 10.1016/j.apor.2024.104380_bib0020
  article-title: Diffraction wave on the single-wing floating breakwater
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2024.103941
– volume: 33
  start-page: 169
  issue: 3
  year: 2011
  ident: 10.1016/j.apor.2024.104380_bib0055
  article-title: Hydrodynamics identities and wave-drift force of a porous body
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2011.04.001
– volume: 213
  year: 2020
  ident: 10.1016/j.apor.2024.104380_bib0042
  article-title: Numerical investigation on performance of submerged porous breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107660
– volume: 95
  start-page: 531
  year: 2016
  ident: 10.1016/j.apor.2024.104380_bib0033
  article-title: Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.04.057
– volume: 82
  start-page: 325
  year: 2019
  ident: 10.1016/j.apor.2024.104380_bib0008
  article-title: Hydrodynamic performance of a T-shaped floating breakwater
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.11.002
– start-page: 828
  year: 1976
  ident: 10.1016/j.apor.2024.104380_bib0014
  article-title: Estimation of incident and reflected waves in random wave experiments
  publication-title: Coast. Eng.
– volume: 52
  start-page: 720
  issue: 5
  year: 2014
  ident: 10.1016/j.apor.2024.104380_bib0022
  article-title: A floating box-type breakwater with slotted barriers
  publication-title: J. Hydraulic Res.
  doi: 10.1080/00221686.2014.888690
– volume: 309
  year: 2024
  ident: 10.1016/j.apor.2024.104380_bib0049
  article-title: Experimental investigation of damping effect of porous structures on hydrodynamic response of a floating closed aquaculture tank in beam regular waves
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118442
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.apor.2024.104380_bib0021
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 11
  start-page: 321
  issue: 3
  year: 1984
  ident: 10.1016/j.apor.2024.104380_bib0030
  article-title: The applied dynamics of ocean surface waves
  publication-title: Ocean Eng.
  doi: 10.1016/0029-8018(84)90033-7
– volume: 48
  start-page: 309
  year: 2006
  ident: 10.1016/j.apor.2024.104380_bib0027
  article-title: Porous effect parameter of thin permeable plates
  publication-title: Coast. Eng.
  doi: 10.1142/S0578563406001441
– volume: 106
  start-page: 222
  year: 2013
  ident: 10.1016/j.apor.2024.104380_bib0017
  article-title: An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.01.013
– volume: 171
  start-page: 25
  year: 2019
  ident: 10.1016/j.apor.2024.104380_bib0056
  article-title: Experimental investigation on hydrodynamic performance of a breakwater-integrated WEC system
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.10.036
– volume: 63
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.apor.2024.104380_bib0036
  article-title: Reliable damping of free-surface waves in numerical simulations
  publication-title: Ship Technol. Res.
  doi: 10.1080/09377255.2015.1119921
– volume: 38
  start-page: 266
  issue: 3
  year: 2020
  ident: 10.1016/j.apor.2024.104380_bib0006
  article-title: Experimental study on the hydrodynamic performance of rectangular floating breakwater influenced by reef areas
  publication-title: Marine Georesourc. Geotechnol.
  doi: 10.1080/1064119X.2019.1580806
– volume: 28
  start-page: 327
  issue: 5
  year: 2006
  ident: 10.1016/j.apor.2024.104380_bib0013
  article-title: Analysis of Π-shaped floating breakwater in oblique waves: I. Impervious rigid wave boards
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2007.01.002
– volume: 266
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0050
  article-title: Numerical study into configuration of horizontal flanges on hydrodynamic performance of moored box-type floating breakwater
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112991
– volume: 132
  start-page: 395
  issue: Jul
  year: 1983
  ident: 10.1016/j.apor.2024.104380_bib0005
  article-title: A porous-wavemaker theory
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112083001676
– volume: 36
  issue: 8
  year: 2024
  ident: 10.1016/j.apor.2024.104380_bib0048
  article-title: An improved macroscopic model for sloshing flow-combined porous structure interaction
  publication-title: Phys. Fluids
– volume: 259
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0023
  article-title: Experimental study on hydrodynamic characteristics of a new type floating breakwater with opening pass and wing structure
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111923
– volume: 239
  year: 2021
  ident: 10.1016/j.apor.2024.104380_bib0037
  article-title: Hydrodynamic performance of a submerged horizontal porous wave barrier
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109641
– volume: 214
  year: 2020
  ident: 10.1016/j.apor.2024.104380_bib0012
  article-title: Anti-sloshing effects of a vertical porous baffle in a rolling rectangular tank
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107871
– volume: 133
  year: 2023
  ident: 10.1016/j.apor.2024.104380_bib0018
  article-title: An experimental study of a rectangular floating breakwater with vertical plates as wave-dissipating components
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2023.103497
– year: 2020
  ident: 10.1016/j.apor.2024.104380_bib0001
– volume: 25
  start-page: 263
  issue: 5
  year: 2003
  ident: 10.1016/j.apor.2024.104380_bib0040
  article-title: On a freely floating porous box in shallow water waves
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2003.12.001
– volume: 33
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.apor.2024.104380_bib0032
  article-title: Hydrodynamic modeling of perforated structures
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2010.11.003
– volume: 24
  start-page: 359
  issue: 2
  year: 2019
  ident: 10.1016/j.apor.2024.104380_bib0024
  article-title: An experimental study of double-row floating breakwaters
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-018-0554-2
– volume: 141
  issue: 5
  year: 2019
  ident: 10.1016/j.apor.2024.104380_bib0044
  article-title: Scattering of surface gravity waves by a pair of floating porous boxes
  publication-title: J. Offshore Mech. Arctic Eng.
  doi: 10.1115/1.4043415
– volume: 124
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0026
  article-title: Wave-attenuation and hydrodynamic properties of twin pontoon floating breakwater with kelp
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2022.103213
– volume: 193
  year: 2019
  ident: 10.1016/j.apor.2024.104380_bib0039
  article-title: Scattering of obliquely incident water waves by a surface-piercing porous box
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106577
– volume: 179
  year: 2023
  ident: 10.1016/j.apor.2024.104380_bib0002
  article-title: Study on the hydrodynamics of a twin floating breakwater by using SPH method
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2022.104230
– volume: 256
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0046
  article-title: Numerical simulation of sloshing flow in a 2D rectangular tank with porous baffles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111384
– volume: 117
  start-page: 302
  year: 2016
  ident: 10.1016/j.apor.2024.104380_bib0025
  article-title: Experimental study on configuration optimization of floating breakwaters
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.03.002
– volume: 67
  start-page: 277
  year: 2017
  ident: 10.1016/j.apor.2024.104380_bib0038
  article-title: Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2017.07.011
– volume: 254
  year: 2022
  ident: 10.1016/j.apor.2024.104380_bib0029
  article-title: Experimental study on hydrodynamic characteristics of the box-type floating breakwater with different mooring configurations
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111296
– volume: 16
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.apor.2024.104380_bib0043
  article-title: Hydraulic characteristics of a stepped-slope floating breakwater
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
SSID ssj0012868
Score 2.3955767
Snippet •The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104380
SubjectTerms Finite volume method (FVM)
Floating breakwater
Hydrodynamic performance
Porous baffle
Title Hydrodynamic investigation of a new type of floating breakwaters integrated with porous baffles
URI https://dx.doi.org/10.1016/j.apor.2024.104380
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXlQQnYrzx8jBm8S1TZN2xzEcU3FeHOxWkjSB6WiH2xAv_u2-1x86QTx4bEkgfA3vfUm_7z1CLlMTOCsFZ0pzj4VCO6ZFYBlk-qDn6VjYGN3ID2M5moR3UzFtkEHthUFZZRX7y5heROvqTbdCs7uYzbooS_KxWTaqIAVsLHSwhxHu8uuPL5kHhN_CDoeDGY6ujDOlxksBx4UzYhDir06OpSF_S04bCWe4T_Yqpkj75WIOSMNmLbKzUT-wRXYfjVVZVXT6kCSj9xTiYdljns6-K2jkGc0dVRQoNMU7V3xy81yh5JnCmVi9vCmsskm_ikekFC9oKSw8Xy-pVs7N7fKITIY3T4MRqxooMAO0ZcWEQeer5xvgUCYCsuRk6hkBFMgYyPNSxoFTPIWUrgMuJFexiFIufOt8rmUc8mPSzPLMnhDqx56KneWpH0k0QvekrwRXNlImBexMm1zVyCWLsk5GUgvInhPEOUGckxLnNhE1uMmPr51AIP9j3uk_552R7QD79hZXJ-ekuXpd2wsgEyvdKXZLh2z1b-9H405xJP8EgWLJlw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe_ADRKti_dyDNwlNst1teiyipLbWi0Jvy2azC9WSFNsi_ntnmrQqiAePCRlYXpaZt7MzbwCuUhM6KwX3dMJ9ryUS5yUitB5G-rDjJ5GwEXUjPwxl_Ny6H4lRBW5WvTBUVln6_sKnL711-aZZotmcjsdNKksKaFg2VUEK3FgbUCN1KlGFWrfXj4fry4QwWnbE0fceGZS9M0WZl0aai8fEsEW3nZzUIX-LT99izt0e7JZkkXWL9exDxWZ12P4mIViHnUdjdVbqTh-Aij9SdInFmHk2_hLRyDOWO6YZsmhGaVd6cpNcU9Uzw2Oxfn3XJLTJ1voRKaMcLcOF54sZS7RzEzs7hOe726eb2CtnKHgGmcvcE4aaX_3AII0ybeRLTqa-EciCjMFQL2UUOs1TjOpJyIXkOhLtlIvAuoAnMmrxI6hmeWaPgQWRryNneRq0JfVCd2SgBde2rU2K2JkGXK-QU9NCKkOtasheFOGsCGdV4NwAsQJX_fjhCn35H3Yn_7S7hM346WGgBr1h_xS2Qhrju8yknEF1_raw58gt5slFuXc-AcEGy1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrodynamic+investigation+of+a+new+type+of+floating+breakwaters+integrated+with+porous+baffles&rft.jtitle=Applied+ocean+research&rft.au=Hu%2C+Kang-Zhuo&rft.au=Xu%2C+Tiao-Jian&rft.au=Wang%2C+Sen&rft.date=2025-01-01&rft.pub=Elsevier+Ltd&rft.issn=0141-1187&rft.volume=154&rft_id=info:doi/10.1016%2Fj.apor.2024.104380&rft.externalDocID=S0141118724005017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon