Hydrodynamic investigation of a new type of floating breakwaters integrated with porous baffles
•The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position, installation height and porosities of porous baffles is conducted.•The law and mechanism of the porous baffles versus the wave attenuation and f...
Saved in:
Published in | Applied ocean research Vol. 154; p. 104380 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-1187 |
DOI | 10.1016/j.apor.2024.104380 |
Cover
Loading…
Abstract | •The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position, installation height and porosities of porous baffles is conducted.•The law and mechanism of the porous baffles versus the wave attenuation and floater motion are explored.•The porous baffle can improve the wave energy dissipation and reduce the motion amplitude of the box-type floating breakwater.
Due to their easy installation and low maintenance costs, floating breakwaters have attracted extensive attention from scholars, resulting in a series of new configurations. A novel floating breakwater integrated with porous baffles (PFB) was introduced in this research. Numerical simulations were applied to explore the interactions between the PFB and regular waves, and corresponding experiments were also completed to ensure the accuracy of the numerical results. Then, the impacts of the height, position, and porosity on the hydrodynamic performance of the PFB were analyzed through a series of numerical simulations. A comparison with conventional box-type floating breakwaters was also conducted. The results indicated that the porous baffles effectively improved the wave attenuation phenomenon and reduced the motion amplitude by weakening the wave particle velocity and concentrating the vortices near the porous baffles. Additionally, the performance of the PFB could be further increased by adjusting the baffle porosity and mounting position. The study provides valuable suggestions for the further improvement of floating breakwaters. |
---|---|
AbstractList | •The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position, installation height and porosities of porous baffles is conducted.•The law and mechanism of the porous baffles versus the wave attenuation and floater motion are explored.•The porous baffle can improve the wave energy dissipation and reduce the motion amplitude of the box-type floating breakwater.
Due to their easy installation and low maintenance costs, floating breakwaters have attracted extensive attention from scholars, resulting in a series of new configurations. A novel floating breakwater integrated with porous baffles (PFB) was introduced in this research. Numerical simulations were applied to explore the interactions between the PFB and regular waves, and corresponding experiments were also completed to ensure the accuracy of the numerical results. Then, the impacts of the height, position, and porosity on the hydrodynamic performance of the PFB were analyzed through a series of numerical simulations. A comparison with conventional box-type floating breakwaters was also conducted. The results indicated that the porous baffles effectively improved the wave attenuation phenomenon and reduced the motion amplitude by weakening the wave particle velocity and concentrating the vortices near the porous baffles. Additionally, the performance of the PFB could be further increased by adjusting the baffle porosity and mounting position. The study provides valuable suggestions for the further improvement of floating breakwaters. |
ArticleNumber | 104380 |
Author | Wang, Sen Hu, Kang-Zhuo Xu, Tiao-Jian |
Author_xml | – sequence: 1 givenname: Kang-Zhuo orcidid: 0009-0005-9708-1664 surname: Hu fullname: Hu, Kang-Zhuo – sequence: 2 givenname: Tiao-Jian surname: Xu fullname: Xu, Tiao-Jian email: tjxu@dlut.edu.cn – sequence: 3 givenname: Sen surname: Wang fullname: Wang, Sen |
BookMark | eNp9kM1OAyEQgDnUxLb6Ap54ga0Mu9Bt4sU0_iVNvOiZsDBUars0gG327WVTz57mL9_M5JuRSR96JOQO2AIYyPvdQh9DXHDGm9Jo6pZNyJRBAxVAu7wms5R2jAFvZTsl6nWwMdih1wdvqO9PmLLf6uxDT4OjmvZ4pnk44li5fSiTfku7iPr7rDPGVJiM21hyS88-f9FyO_wk2mnn9phuyJXT-4S3f3FOPp-fPtav1eb95W39uKkMF5ArYXj5lIFhYmWWIBonLTNCNo0xwFdSttzp2jIJHa-FrHUrlrYWgA7qTrZNPSf8stfEkFJEp47RH3QcFDA1alE7NWpRoxZ10VKghwuE5bOTx6iS8dgbtD6iycoG_x_-C2ZlcB0 |
Cites_doi | 10.1016/j.oceaneng.2018.03.083 10.1016/S0029-8018(98)00056-0 10.1016/j.coastaleng.2018.03.002 10.1016/j.oceaneng.2020.107044 10.1515/ijnaoe-2015-0066 10.1016/j.oceaneng.2012.05.008 10.1115/1.4001435 10.1016/j.oceaneng.2022.112819 10.1063/5.0158337 10.1016/j.oceaneng.2008.01.010 10.1016/j.compfluid.2017.02.010 10.1016/j.coastaleng.2013.07.002 10.1016/j.oceaneng.2018.08.030 10.1016/j.apor.2024.103941 10.1016/j.apor.2011.04.001 10.1016/j.oceaneng.2020.107660 10.1016/j.renene.2016.04.057 10.1016/j.apor.2018.11.002 10.1080/00221686.2014.888690 10.1016/j.oceaneng.2024.118442 10.1016/0021-9991(81)90145-5 10.1016/0029-8018(84)90033-7 10.1142/S0578563406001441 10.1016/j.apenergy.2013.01.013 10.1016/j.oceaneng.2018.10.036 10.1080/09377255.2015.1119921 10.1080/1064119X.2019.1580806 10.1016/j.apor.2007.01.002 10.1016/j.oceaneng.2022.112991 10.1017/S0022112083001676 10.1016/j.oceaneng.2022.111923 10.1016/j.oceaneng.2021.109641 10.1016/j.oceaneng.2020.107871 10.1016/j.apor.2023.103497 10.1016/j.apor.2003.12.001 10.1016/j.apor.2010.11.003 10.1007/s00773-018-0554-2 10.1115/1.4043415 10.1016/j.apor.2022.103213 10.1016/j.oceaneng.2019.106577 10.1016/j.coastaleng.2022.104230 10.1016/j.oceaneng.2022.111384 10.1016/j.oceaneng.2016.03.002 10.1016/j.apor.2017.07.011 10.1016/j.oceaneng.2022.111296 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.apor.2024.104380 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
ExternalDocumentID | 10_1016_j_apor_2024_104380 S0141118724005017 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMA HVGLF HZ~ IHE J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~A~ ~G- AAYXX AFXIZ AGRNS BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c251t-5c204301c059c7154f6d0c5644cc1296682fa3d061b23563a857d351ef13b6843 |
IEDL.DBID | .~1 |
ISSN | 0141-1187 |
IngestDate | Thu Jul 24 02:09:09 EDT 2025 Sat Aug 16 17:02:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Floating breakwater Porous baffle Finite volume method (FVM) Hydrodynamic performance |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-5c204301c059c7154f6d0c5644cc1296682fa3d061b23563a857d351ef13b6843 |
ORCID | 0009-0005-9708-1664 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141118724005017 |
ParticipantIDs | crossref_primary_10_1016_j_apor_2024_104380 elsevier_sciencedirect_doi_10_1016_j_apor_2024_104380 |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Applied ocean research |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ji, Chen, Cui, Gaidai, Incecik (bib0025) 2016; 117 Völkner, Brunswig, Rung (bib0045) 2017; 148 He, Huang, Law (bib0017) 2013; 106 Zhao, Bao, Kinoshita, Itakura (bib0054) 2011; 133 Sun, Qu, Kraatz, Deng, Jiang (bib0042) 2020; 213 Molin (bib0032) 2011; 33 Chwang (bib0005) 1983; 132 Vijay, Sahoo (bib0044) 2019; 141 Zhao, Ning, Liang (bib0056) 2019; 171 George, Cho (bib0012) 2020; 214 Adapco (bib0001) 2020 Wang, Xu, Wang, Dong, Hou (bib0048) 2024; 36 Dong, Zheng, Li, Teng, Guan, Lin (bib0009) 2008; 35 Teh, Ismail (bib0043) 2013; 16 Liang, Chen, Liu, Li (bib0028) 2022; 266 Chen, Liu, Meringolo, Hu (bib0002) 2023; 179 Christensen, Bingham, Skou Friis, Larsen, Jensen (bib0004) 2018; 137 Ergun (bib0011) 1952; 48 Dai, Wang, Utsunomiya, Duan (bib0007) 2018; 158 Deng, Wang, Zhao, Huang (bib0008) 2019; 82 Ouyang, Chen, Tsai (bib0034) 2015; 7 He, Li, Pan, Yuan (bib0018) 2023; 133 Wang, Xu, Wang, Dong (bib0049) 2024; 309 Ji, Bian, Huo, Guo, Lian, Yuan (bib0023) 2022; 259 He, Liang, Ren, Li, Shao (bib0019) 2023 Poguluri, George, Kim, Cho (bib0037) 2021; 239 Stiassnie, Drimer (bib0040) 2003; 25 Hirt, Nichols (bib0021) 1981; 39 Li, Lui, Teng (bib0027) 2006; 48 Ji, Deng, Cheng (bib0024) 2019; 24 Menter (bib0031) 1994 He, Han, Han, Xie (bib0020) 2024; 146 Yang, Xie, Gao, Xu, Guo, Ji, Yuan (bib0052) 2018; 167 Williams, Lee, Huang (bib0051) 2000; 27 Peng, Lee, Shin, Mizutani (bib0035) 2013; 82 Zhao, Kinoshita, Bao, Wan, Liang, Huang (bib0055) 2011; 33 Mei (bib0030) 1984; 11 Ning, Zhao, Göteman, Kang (bib0033) 2016; 95 Guo, Zou, He, Mao, Liu (bib0015) 2022 Wang, Xu, Jiang, Wang, Dong, Wang (bib0046) 2022; 256 Wang, Xu, Shen, Wang, Dong, Wang (bib0047) 2023; 35 Chen, Wang, Dong, Zheng (bib0003) 2012; 5 Ren, He, Li, Dong (bib0038) 2017; 67 Gesraha (bib0013) 2006; 28 Cui, Chen, Guo, Deng, Ji, Li (bib0006) 2020; 38 Perić, Abdel-Maksoud (bib0036) 2016; 63 Duan, Liu, Chen, Ma (bib0010) 2020; 200 Singla, Behera, Martha, Sahoo (bib0039) 2019; 193 Li, Zhang, Zhang, Sun, Yang (bib0026) 2022; 124 Liang, Liu, Chen, Li (bib0029) 2022; 254 Wei, Yin (bib0050) 2022; 266 He, Huang, Wing-Keung Law (bib0016) 2012; 51 Huang, He, Zhang (bib0022) 2014; 52 Goda, Suzuki (bib0014) 1976 Ren (10.1016/j.apor.2024.104380_bib0038) 2017; 67 He (10.1016/j.apor.2024.104380_bib0016) 2012; 51 Poguluri (10.1016/j.apor.2024.104380_bib0037) 2021; 239 Stiassnie (10.1016/j.apor.2024.104380_bib0040) 2003; 25 Mei (10.1016/j.apor.2024.104380_bib0030) 1984; 11 Singla (10.1016/j.apor.2024.104380_bib0039) 2019; 193 Wang (10.1016/j.apor.2024.104380_bib0048) 2024; 36 Ji (10.1016/j.apor.2024.104380_bib0024) 2019; 24 Völkner (10.1016/j.apor.2024.104380_bib0045) 2017; 148 Gesraha (10.1016/j.apor.2024.104380_bib0013) 2006; 28 Liang (10.1016/j.apor.2024.104380_bib0029) 2022; 254 Ning (10.1016/j.apor.2024.104380_bib0033) 2016; 95 He (10.1016/j.apor.2024.104380_bib0017) 2013; 106 Christensen (10.1016/j.apor.2024.104380_bib0004) 2018; 137 Yang (10.1016/j.apor.2024.104380_bib0052) 2018; 167 Zhao (10.1016/j.apor.2024.104380_bib0054) 2011; 133 He (10.1016/j.apor.2024.104380_bib0020) 2024; 146 Liang (10.1016/j.apor.2024.104380_bib0028) 2022; 266 He (10.1016/j.apor.2024.104380_bib0018) 2023; 133 Perić (10.1016/j.apor.2024.104380_bib0036) 2016; 63 Peng (10.1016/j.apor.2024.104380_bib0035) 2013; 82 Vijay (10.1016/j.apor.2024.104380_bib0044) 2019; 141 Cui (10.1016/j.apor.2024.104380_bib0006) 2020; 38 Dai (10.1016/j.apor.2024.104380_bib0007) 2018; 158 Ji (10.1016/j.apor.2024.104380_bib0023) 2022; 259 He (10.1016/j.apor.2024.104380_bib0019) 2023 Huang (10.1016/j.apor.2024.104380_bib0022) 2014; 52 Chen (10.1016/j.apor.2024.104380_bib0002) 2023; 179 Goda (10.1016/j.apor.2024.104380_bib0014) 1976 Li (10.1016/j.apor.2024.104380_bib0027) 2006; 48 Menter (10.1016/j.apor.2024.104380_bib0031) 1994 Teh (10.1016/j.apor.2024.104380_bib0043) 2013; 16 Sun (10.1016/j.apor.2024.104380_bib0042) 2020; 213 Wang (10.1016/j.apor.2024.104380_bib0049) 2024; 309 Chen (10.1016/j.apor.2024.104380_bib0003) 2012; 5 Molin (10.1016/j.apor.2024.104380_bib0032) 2011; 33 Wang (10.1016/j.apor.2024.104380_bib0046) 2022; 256 Zhao (10.1016/j.apor.2024.104380_bib0055) 2011; 33 Guo (10.1016/j.apor.2024.104380_bib0015) 2022 Hirt (10.1016/j.apor.2024.104380_bib0021) 1981; 39 Wang (10.1016/j.apor.2024.104380_bib0047) 2023; 35 Wei (10.1016/j.apor.2024.104380_bib0050) 2022; 266 Adapco (10.1016/j.apor.2024.104380_bib0001) 2020 Ouyang (10.1016/j.apor.2024.104380_bib0034) 2015; 7 George (10.1016/j.apor.2024.104380_bib0012) 2020; 214 Williams (10.1016/j.apor.2024.104380_bib0051) 2000; 27 Deng (10.1016/j.apor.2024.104380_bib0008) 2019; 82 Ji (10.1016/j.apor.2024.104380_bib0025) 2016; 117 Zhao (10.1016/j.apor.2024.104380_bib0056) 2019; 171 Duan (10.1016/j.apor.2024.104380_bib0010) 2020; 200 Ergun (10.1016/j.apor.2024.104380_bib0011) 1952; 48 Li (10.1016/j.apor.2024.104380_bib0026) 2022; 124 Chwang (10.1016/j.apor.2024.104380_bib0005) 1983; 132 Dong (10.1016/j.apor.2024.104380_bib0009) 2008; 35 |
References_xml | – volume: 35 start-page: 931 year: 2008 end-page: 938 ident: bib0009 article-title: Experiments on wave transmission coefficients of floating breakwaters publication-title: Ocean Eng. – start-page: 258 year: 2022 ident: bib0015 article-title: Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: an SPH-based preliminary investigation publication-title: Ocean Eng. – start-page: 184 year: 2023 ident: bib0019 article-title: Wave interactions with multi-float structures: SPH model, experimental validation, and parametric study publication-title: Coast. Eng. – volume: 36 year: 2024 ident: bib0048 article-title: An improved macroscopic model for sloshing flow-combined porous structure interaction publication-title: Phys. Fluids – volume: 137 start-page: 43 year: 2018 end-page: 58 ident: bib0004 article-title: An experimental and numerical study of floating breakwaters publication-title: Coast. Eng. – volume: 309 year: 2024 ident: bib0049 article-title: Experimental investigation of damping effect of porous structures on hydrodynamic response of a floating closed aquaculture tank in beam regular waves publication-title: Ocean Eng. – volume: 28 start-page: 327 year: 2006 end-page: 338 ident: bib0013 article-title: Analysis of Π-shaped floating breakwater in oblique waves: I. Impervious rigid wave boards publication-title: Appl. Ocean Res. – volume: 52 start-page: 720 year: 2014 end-page: 727 ident: bib0022 article-title: A floating box-type breakwater with slotted barriers publication-title: J. Hydraulic Res. – volume: 82 start-page: 325 year: 2019 end-page: 336 ident: bib0008 article-title: Hydrodynamic performance of a T-shaped floating breakwater publication-title: Appl. Ocean Res. – volume: 141 year: 2019 ident: bib0044 article-title: Scattering of surface gravity waves by a pair of floating porous boxes publication-title: J. Offshore Mech. Arctic Eng. – volume: 124 year: 2022 ident: bib0026 article-title: Wave-attenuation and hydrodynamic properties of twin pontoon floating breakwater with kelp publication-title: Appl. Ocean Res. – volume: 266 year: 2022 ident: bib0050 article-title: Numerical study into configuration of horizontal flanges on hydrodynamic performance of moored box-type floating breakwater publication-title: Ocean Eng. – volume: 7 start-page: 951 year: 2015 end-page: 963 ident: bib0034 article-title: Investigation on Bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters publication-title: Int. J. Naval Architect. Ocean Eng. – volume: 35 year: 2023 ident: bib0047 article-title: Numerical simulation of the interaction between nonlinear sloshing flow and side-mounted perforated baffle publication-title: Phys. Fluids – volume: 27 start-page: 221 year: 2000 end-page: 240 ident: bib0051 article-title: Floating pontoon breakwaters publication-title: Ocean Eng. – volume: 67 start-page: 277 year: 2017 end-page: 290 ident: bib0038 article-title: Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction publication-title: Appl. Ocean Res. – volume: 171 start-page: 25 year: 2019 end-page: 32 ident: bib0056 article-title: Experimental investigation on hydrodynamic performance of a breakwater-integrated WEC system publication-title: Ocean Eng. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib0021 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 239 year: 2021 ident: bib0037 article-title: Hydrodynamic performance of a submerged horizontal porous wave barrier publication-title: Ocean Eng. – volume: 193 year: 2019 ident: bib0039 article-title: Scattering of obliquely incident water waves by a surface-piercing porous box publication-title: Ocean Eng. – volume: 106 start-page: 222 year: 2013 end-page: 231 ident: bib0017 article-title: An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction publication-title: Appl. Energy – volume: 133 year: 2023 ident: bib0018 article-title: An experimental study of a rectangular floating breakwater with vertical plates as wave-dissipating components publication-title: Appl. Ocean Res. – volume: 148 start-page: 39 year: 2017 end-page: 55 ident: bib0045 article-title: Analysis of non-conservative interpolation techniques in overset grid finite-volume methods publication-title: Comput. Fluids. – volume: 51 start-page: 16 year: 2012 end-page: 27 ident: bib0016 article-title: Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study publication-title: Ocean Eng. – volume: 133 year: 2011 ident: bib0054 article-title: Theoretical and experimental study on a porous cylinder floating in waves publication-title: J. Offshore Mech. Arctic Eng. – volume: 5 start-page: 291 year: 2012 end-page: 303 ident: bib0003 article-title: Time-domain hydrodynamic analysis of pontoon-plate floating breakwater publication-title: Water Sci. Eng. – volume: 48 start-page: 89 year: 1952 end-page: 94 ident: bib0011 article-title: Fluid flow through packed columns publication-title: Chem. Eng. Prog. – volume: 117 start-page: 302 year: 2016 end-page: 310 ident: bib0025 article-title: Experimental study on configuration optimization of floating breakwaters publication-title: Ocean Eng. – volume: 167 start-page: 77 year: 2018 end-page: 94 ident: bib0052 article-title: Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater publication-title: Ocean Eng. – volume: 132 start-page: 395 year: 1983 end-page: 406 ident: bib0005 article-title: A porous-wavemaker theory publication-title: J. Fluid. Mech. – year: 2020 ident: bib0001 article-title: STAR-CCM+ Theory Guide – volume: 24 start-page: 359 year: 2019 end-page: 371 ident: bib0024 article-title: An experimental study of double-row floating breakwaters publication-title: J. Mar. Sci. Technol. – volume: 254 year: 2022 ident: bib0029 article-title: Experimental study on hydrodynamic characteristics of the box-type floating breakwater with different mooring configurations publication-title: Ocean Eng. – volume: 11 start-page: 321 year: 1984 ident: bib0030 article-title: The applied dynamics of ocean surface waves publication-title: Ocean Eng. – volume: 38 start-page: 266 year: 2020 end-page: 276 ident: bib0006 article-title: Experimental study on the hydrodynamic performance of rectangular floating breakwater influenced by reef areas publication-title: Marine Georesourc. Geotechnol. – start-page: 828 year: 1976 end-page: 845 ident: bib0014 article-title: Estimation of incident and reflected waves in random wave experiments publication-title: Coast. Eng. – volume: 63 start-page: 1 year: 2016 end-page: 13 ident: bib0036 article-title: Reliable damping of free-surface waves in numerical simulations publication-title: Ship Technol. Res. – volume: 82 start-page: 76 year: 2013 end-page: 87 ident: bib0035 article-title: Numerical simulation of interactions between water waves and inclined-moored submerged floating breakwaters publication-title: Coast. Eng. – volume: 48 start-page: 309 year: 2006 end-page: 336 ident: bib0027 article-title: Porous effect parameter of thin permeable plates publication-title: Coast. Eng. – volume: 266 year: 2022 ident: bib0028 article-title: Hydrodynamic performance of a new box-type breakwater with superstructure: experimental study and SPH simulation publication-title: Ocean Eng. – volume: 200 year: 2020 ident: bib0010 article-title: Hydrodynamic analysis of floating breakwater with perforated structure based on the Taylor expansion boundary element method publication-title: Ocean Eng. – volume: 16 start-page: 1 year: 2013 end-page: 4 ident: bib0043 article-title: Hydraulic characteristics of a stepped-slope floating breakwater publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 33 start-page: 1 year: 2011 end-page: 11 ident: bib0032 article-title: Hydrodynamic modeling of perforated structures publication-title: Appl. Ocean Res. – start-page: 32 year: 1994 ident: bib0031 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 33 start-page: 169 year: 2011 end-page: 177 ident: bib0055 article-title: Hydrodynamics identities and wave-drift force of a porous body publication-title: Appl. Ocean Res. – volume: 95 start-page: 531 year: 2016 end-page: 541 ident: bib0033 article-title: Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study publication-title: Renew. Energy – volume: 256 year: 2022 ident: bib0046 article-title: Numerical simulation of sloshing flow in a 2D rectangular tank with porous baffles publication-title: Ocean Eng. – volume: 259 year: 2022 ident: bib0023 article-title: Experimental study on hydrodynamic characteristics of a new type floating breakwater with opening pass and wing structure publication-title: Ocean Eng. – volume: 25 start-page: 263 year: 2003 end-page: 268 ident: bib0040 article-title: On a freely floating porous box in shallow water waves publication-title: Appl. Ocean Res. – volume: 213 year: 2020 ident: bib0042 article-title: Numerical investigation on performance of submerged porous breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave publication-title: Ocean Eng. – volume: 158 start-page: 132 year: 2018 end-page: 151 ident: bib0007 article-title: Review of recent research and developments on floating breakwaters publication-title: Ocean Eng. – volume: 146 year: 2024 ident: bib0020 article-title: Diffraction wave on the single-wing floating breakwater publication-title: Appl. Ocean Res. – volume: 179 year: 2023 ident: bib0002 article-title: Study on the hydrodynamics of a twin floating breakwater by using SPH method publication-title: Coast. Eng. – volume: 214 year: 2020 ident: bib0012 article-title: Anti-sloshing effects of a vertical porous baffle in a rolling rectangular tank publication-title: Ocean Eng. – volume: 158 start-page: 132 year: 2018 ident: 10.1016/j.apor.2024.104380_bib0007 article-title: Review of recent research and developments on floating breakwaters publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.083 – volume: 27 start-page: 221 issue: 3 year: 2000 ident: 10.1016/j.apor.2024.104380_bib0051 article-title: Floating pontoon breakwaters publication-title: Ocean Eng. doi: 10.1016/S0029-8018(98)00056-0 – volume: 137 start-page: 43 year: 2018 ident: 10.1016/j.apor.2024.104380_bib0004 article-title: An experimental and numerical study of floating breakwaters publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.03.002 – volume: 200 year: 2020 ident: 10.1016/j.apor.2024.104380_bib0010 article-title: Hydrodynamic analysis of floating breakwater with perforated structure based on the Taylor expansion boundary element method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107044 – volume: 7 start-page: 951 issue: 6 year: 2015 ident: 10.1016/j.apor.2024.104380_bib0034 article-title: Investigation on Bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters publication-title: Int. J. Naval Architect. Ocean Eng. doi: 10.1515/ijnaoe-2015-0066 – volume: 51 start-page: 16 year: 2012 ident: 10.1016/j.apor.2024.104380_bib0016 article-title: Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.05.008 – volume: 133 issue: 1 year: 2011 ident: 10.1016/j.apor.2024.104380_bib0054 article-title: Theoretical and experimental study on a porous cylinder floating in waves publication-title: J. Offshore Mech. Arctic Eng. doi: 10.1115/1.4001435 – volume: 266 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0028 article-title: Hydrodynamic performance of a new box-type breakwater with superstructure: experimental study and SPH simulation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112819 – volume: 35 issue: 8 year: 2023 ident: 10.1016/j.apor.2024.104380_bib0047 article-title: Numerical simulation of the interaction between nonlinear sloshing flow and side-mounted perforated baffle publication-title: Phys. Fluids doi: 10.1063/5.0158337 – volume: 35 start-page: 931 issue: 8 year: 2008 ident: 10.1016/j.apor.2024.104380_bib0009 article-title: Experiments on wave transmission coefficients of floating breakwaters publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2008.01.010 – volume: 5 start-page: 291 issue: 3 year: 2012 ident: 10.1016/j.apor.2024.104380_bib0003 article-title: Time-domain hydrodynamic analysis of pontoon-plate floating breakwater publication-title: Water Sci. Eng. – volume: 148 start-page: 39 year: 2017 ident: 10.1016/j.apor.2024.104380_bib0045 article-title: Analysis of non-conservative interpolation techniques in overset grid finite-volume methods publication-title: Comput. Fluids. doi: 10.1016/j.compfluid.2017.02.010 – volume: 48 start-page: 89 issue: 2 year: 1952 ident: 10.1016/j.apor.2024.104380_bib0011 article-title: Fluid flow through packed columns publication-title: Chem. Eng. Prog. – start-page: 258 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0015 article-title: Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: an SPH-based preliminary investigation publication-title: Ocean Eng. – volume: 82 start-page: 76 year: 2013 ident: 10.1016/j.apor.2024.104380_bib0035 article-title: Numerical simulation of interactions between water waves and inclined-moored submerged floating breakwaters publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.07.002 – start-page: 184 year: 2023 ident: 10.1016/j.apor.2024.104380_bib0019 article-title: Wave interactions with multi-float structures: SPH model, experimental validation, and parametric study publication-title: Coast. Eng. – volume: 167 start-page: 77 year: 2018 ident: 10.1016/j.apor.2024.104380_bib0052 article-title: Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.08.030 – start-page: 32 year: 1994 ident: 10.1016/j.apor.2024.104380_bib0031 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 146 year: 2024 ident: 10.1016/j.apor.2024.104380_bib0020 article-title: Diffraction wave on the single-wing floating breakwater publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2024.103941 – volume: 33 start-page: 169 issue: 3 year: 2011 ident: 10.1016/j.apor.2024.104380_bib0055 article-title: Hydrodynamics identities and wave-drift force of a porous body publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2011.04.001 – volume: 213 year: 2020 ident: 10.1016/j.apor.2024.104380_bib0042 article-title: Numerical investigation on performance of submerged porous breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107660 – volume: 95 start-page: 531 year: 2016 ident: 10.1016/j.apor.2024.104380_bib0033 article-title: Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study publication-title: Renew. Energy doi: 10.1016/j.renene.2016.04.057 – volume: 82 start-page: 325 year: 2019 ident: 10.1016/j.apor.2024.104380_bib0008 article-title: Hydrodynamic performance of a T-shaped floating breakwater publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.11.002 – start-page: 828 year: 1976 ident: 10.1016/j.apor.2024.104380_bib0014 article-title: Estimation of incident and reflected waves in random wave experiments publication-title: Coast. Eng. – volume: 52 start-page: 720 issue: 5 year: 2014 ident: 10.1016/j.apor.2024.104380_bib0022 article-title: A floating box-type breakwater with slotted barriers publication-title: J. Hydraulic Res. doi: 10.1080/00221686.2014.888690 – volume: 309 year: 2024 ident: 10.1016/j.apor.2024.104380_bib0049 article-title: Experimental investigation of damping effect of porous structures on hydrodynamic response of a floating closed aquaculture tank in beam regular waves publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.118442 – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.apor.2024.104380_bib0021 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 11 start-page: 321 issue: 3 year: 1984 ident: 10.1016/j.apor.2024.104380_bib0030 article-title: The applied dynamics of ocean surface waves publication-title: Ocean Eng. doi: 10.1016/0029-8018(84)90033-7 – volume: 48 start-page: 309 year: 2006 ident: 10.1016/j.apor.2024.104380_bib0027 article-title: Porous effect parameter of thin permeable plates publication-title: Coast. Eng. doi: 10.1142/S0578563406001441 – volume: 106 start-page: 222 year: 2013 ident: 10.1016/j.apor.2024.104380_bib0017 article-title: An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.01.013 – volume: 171 start-page: 25 year: 2019 ident: 10.1016/j.apor.2024.104380_bib0056 article-title: Experimental investigation on hydrodynamic performance of a breakwater-integrated WEC system publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.10.036 – volume: 63 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.apor.2024.104380_bib0036 article-title: Reliable damping of free-surface waves in numerical simulations publication-title: Ship Technol. Res. doi: 10.1080/09377255.2015.1119921 – volume: 38 start-page: 266 issue: 3 year: 2020 ident: 10.1016/j.apor.2024.104380_bib0006 article-title: Experimental study on the hydrodynamic performance of rectangular floating breakwater influenced by reef areas publication-title: Marine Georesourc. Geotechnol. doi: 10.1080/1064119X.2019.1580806 – volume: 28 start-page: 327 issue: 5 year: 2006 ident: 10.1016/j.apor.2024.104380_bib0013 article-title: Analysis of Π-shaped floating breakwater in oblique waves: I. Impervious rigid wave boards publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2007.01.002 – volume: 266 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0050 article-title: Numerical study into configuration of horizontal flanges on hydrodynamic performance of moored box-type floating breakwater publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112991 – volume: 132 start-page: 395 issue: Jul year: 1983 ident: 10.1016/j.apor.2024.104380_bib0005 article-title: A porous-wavemaker theory publication-title: J. Fluid. Mech. doi: 10.1017/S0022112083001676 – volume: 36 issue: 8 year: 2024 ident: 10.1016/j.apor.2024.104380_bib0048 article-title: An improved macroscopic model for sloshing flow-combined porous structure interaction publication-title: Phys. Fluids – volume: 259 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0023 article-title: Experimental study on hydrodynamic characteristics of a new type floating breakwater with opening pass and wing structure publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111923 – volume: 239 year: 2021 ident: 10.1016/j.apor.2024.104380_bib0037 article-title: Hydrodynamic performance of a submerged horizontal porous wave barrier publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109641 – volume: 214 year: 2020 ident: 10.1016/j.apor.2024.104380_bib0012 article-title: Anti-sloshing effects of a vertical porous baffle in a rolling rectangular tank publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107871 – volume: 133 year: 2023 ident: 10.1016/j.apor.2024.104380_bib0018 article-title: An experimental study of a rectangular floating breakwater with vertical plates as wave-dissipating components publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2023.103497 – year: 2020 ident: 10.1016/j.apor.2024.104380_bib0001 – volume: 25 start-page: 263 issue: 5 year: 2003 ident: 10.1016/j.apor.2024.104380_bib0040 article-title: On a freely floating porous box in shallow water waves publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2003.12.001 – volume: 33 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.apor.2024.104380_bib0032 article-title: Hydrodynamic modeling of perforated structures publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2010.11.003 – volume: 24 start-page: 359 issue: 2 year: 2019 ident: 10.1016/j.apor.2024.104380_bib0024 article-title: An experimental study of double-row floating breakwaters publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-018-0554-2 – volume: 141 issue: 5 year: 2019 ident: 10.1016/j.apor.2024.104380_bib0044 article-title: Scattering of surface gravity waves by a pair of floating porous boxes publication-title: J. Offshore Mech. Arctic Eng. doi: 10.1115/1.4043415 – volume: 124 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0026 article-title: Wave-attenuation and hydrodynamic properties of twin pontoon floating breakwater with kelp publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2022.103213 – volume: 193 year: 2019 ident: 10.1016/j.apor.2024.104380_bib0039 article-title: Scattering of obliquely incident water waves by a surface-piercing porous box publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106577 – volume: 179 year: 2023 ident: 10.1016/j.apor.2024.104380_bib0002 article-title: Study on the hydrodynamics of a twin floating breakwater by using SPH method publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2022.104230 – volume: 256 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0046 article-title: Numerical simulation of sloshing flow in a 2D rectangular tank with porous baffles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111384 – volume: 117 start-page: 302 year: 2016 ident: 10.1016/j.apor.2024.104380_bib0025 article-title: Experimental study on configuration optimization of floating breakwaters publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.03.002 – volume: 67 start-page: 277 year: 2017 ident: 10.1016/j.apor.2024.104380_bib0038 article-title: Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2017.07.011 – volume: 254 year: 2022 ident: 10.1016/j.apor.2024.104380_bib0029 article-title: Experimental study on hydrodynamic characteristics of the box-type floating breakwater with different mooring configurations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111296 – volume: 16 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.apor.2024.104380_bib0043 article-title: Hydraulic characteristics of a stepped-slope floating breakwater publication-title: IOP Conf. Ser.: Earth Environ. Sci. |
SSID | ssj0012868 |
Score | 2.3955767 |
Snippet | •The hydrodynamic characteristics of a novel floating breakwater integrated with porous baffles are studied.•The parametric study of installation position,... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 104380 |
SubjectTerms | Finite volume method (FVM) Floating breakwater Hydrodynamic performance Porous baffle |
Title | Hydrodynamic investigation of a new type of floating breakwaters integrated with porous baffles |
URI | https://dx.doi.org/10.1016/j.apor.2024.104380 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXlQQnYrzx8jBm8S1TZN2xzEcU3FeHOxWkjSB6WiH2xAv_u2-1x86QTx4bEkgfA3vfUm_7z1CLlMTOCsFZ0pzj4VCO6ZFYBlk-qDn6VjYGN3ID2M5moR3UzFtkEHthUFZZRX7y5heROvqTbdCs7uYzbooS_KxWTaqIAVsLHSwhxHu8uuPL5kHhN_CDoeDGY6ujDOlxksBx4UzYhDir06OpSF_S04bCWe4T_Yqpkj75WIOSMNmLbKzUT-wRXYfjVVZVXT6kCSj9xTiYdljns6-K2jkGc0dVRQoNMU7V3xy81yh5JnCmVi9vCmsskm_ikekFC9oKSw8Xy-pVs7N7fKITIY3T4MRqxooMAO0ZcWEQeer5xvgUCYCsuRk6hkBFMgYyPNSxoFTPIWUrgMuJFexiFIufOt8rmUc8mPSzPLMnhDqx56KneWpH0k0QvekrwRXNlImBexMm1zVyCWLsk5GUgvInhPEOUGckxLnNhE1uMmPr51AIP9j3uk_552R7QD79hZXJ-ekuXpd2wsgEyvdKXZLh2z1b-9H405xJP8EgWLJlw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe_ADRKti_dyDNwlNst1teiyipLbWi0Jvy2azC9WSFNsi_ntnmrQqiAePCRlYXpaZt7MzbwCuUhM6KwX3dMJ9ryUS5yUitB5G-rDjJ5GwEXUjPwxl_Ny6H4lRBW5WvTBUVln6_sKnL711-aZZotmcjsdNKksKaFg2VUEK3FgbUCN1KlGFWrfXj4fry4QwWnbE0fceGZS9M0WZl0aai8fEsEW3nZzUIX-LT99izt0e7JZkkXWL9exDxWZ12P4mIViHnUdjdVbqTh-Aij9SdInFmHk2_hLRyDOWO6YZsmhGaVd6cpNcU9Uzw2Oxfn3XJLTJ1voRKaMcLcOF54sZS7RzEzs7hOe726eb2CtnKHgGmcvcE4aaX_3AII0ybeRLTqa-EciCjMFQL2UUOs1TjOpJyIXkOhLtlIvAuoAnMmrxI6hmeWaPgQWRryNneRq0JfVCd2SgBde2rU2K2JkGXK-QU9NCKkOtasheFOGsCGdV4NwAsQJX_fjhCn35H3Yn_7S7hM346WGgBr1h_xS2Qhrju8yknEF1_raw58gt5slFuXc-AcEGy1M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrodynamic+investigation+of+a+new+type+of+floating+breakwaters+integrated+with+porous+baffles&rft.jtitle=Applied+ocean+research&rft.au=Hu%2C+Kang-Zhuo&rft.au=Xu%2C+Tiao-Jian&rft.au=Wang%2C+Sen&rft.date=2025-01-01&rft.pub=Elsevier+Ltd&rft.issn=0141-1187&rft.volume=154&rft_id=info:doi/10.1016%2Fj.apor.2024.104380&rft.externalDocID=S0141118724005017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon |