Fields of the future: Digital transformation in smart agriculture with large language models and generative AI
•We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large language models related to various computer science fields. A state-of-the-art review, analysis, and comparison of security issues for large lan...
Saved in:
Published in | Computer standards and interfaces Vol. 94; p. 104005 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large language models related to various computer science fields. A state-of-the-art review, analysis, and comparison of security issues for large language models.•Motivated by the progress of large pre-trained language models like ChatGPT, we conducted a preliminary study on agricultural text classification.•The applications of large language models and Generative AI in smart and precision agriculture are discussed. More specifically, the applications are categorized into six domains ranging from smart farming and livestock, smart and precision agriculture, generative adversarial network in agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment.•An analysis of large language models security requirements and challenges, possible solutions, and areas for future research are discussed.
Language models (LLMs) have shown to be very useful in many fields like healthcare and finance, as natural language comprehension and generation have advanced. The capacity of LLM to participate in textual discussion has been the subject of much research, and the findings have proved encouraging across several domains. The inability of conventional image classification networks to comprehend the causes of crop diseases and etiology further impedes precise diagnosis. Agricultural diagnostic models on a grand scale will be based on generative pre-trained transformers (GPT) assisted with agrarian settings. By examining the efficacy of text corpora linked to agriculture for pretraining transformer-based language (TBL) models, this research delves into agricultural natural language processing (ANLP). To make the most of it, we looked at several important aspects, including prompt building, response parsing, and several ChatGPT versions. Despite the proven effectiveness and huge potential, there has been little exploration of LLM and Generative AI to agriculture artificial intelligence (AI). Therefore, this study aims to explore the possibility of LLM and Generative AI in smart agriculture. In particular, we present conceptual tools and technical background to facilitate understanding the problem space and uncover new research directions in this field. The paper presents an overview of the evolution of generative adversarial network (GAN) architectures followed by a first systematic review of various applications in smart agriculture and precision farming systems, involving a diversity of visual recognition tasks for smart farming and livestock, precision agriculture, agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment. We outline the possibilities, difficulties, constraints, and shortcomings. The study lays forth a road map of accessible areas in agriculture where LLM integration is likely to happen shortly. The research suggests exciting directions for further study in this area, which could lead to better agricultural NLP applications. |
---|---|
AbstractList | •We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large language models related to various computer science fields. A state-of-the-art review, analysis, and comparison of security issues for large language models.•Motivated by the progress of large pre-trained language models like ChatGPT, we conducted a preliminary study on agricultural text classification.•The applications of large language models and Generative AI in smart and precision agriculture are discussed. More specifically, the applications are categorized into six domains ranging from smart farming and livestock, smart and precision agriculture, generative adversarial network in agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment.•An analysis of large language models security requirements and challenges, possible solutions, and areas for future research are discussed.
Language models (LLMs) have shown to be very useful in many fields like healthcare and finance, as natural language comprehension and generation have advanced. The capacity of LLM to participate in textual discussion has been the subject of much research, and the findings have proved encouraging across several domains. The inability of conventional image classification networks to comprehend the causes of crop diseases and etiology further impedes precise diagnosis. Agricultural diagnostic models on a grand scale will be based on generative pre-trained transformers (GPT) assisted with agrarian settings. By examining the efficacy of text corpora linked to agriculture for pretraining transformer-based language (TBL) models, this research delves into agricultural natural language processing (ANLP). To make the most of it, we looked at several important aspects, including prompt building, response parsing, and several ChatGPT versions. Despite the proven effectiveness and huge potential, there has been little exploration of LLM and Generative AI to agriculture artificial intelligence (AI). Therefore, this study aims to explore the possibility of LLM and Generative AI in smart agriculture. In particular, we present conceptual tools and technical background to facilitate understanding the problem space and uncover new research directions in this field. The paper presents an overview of the evolution of generative adversarial network (GAN) architectures followed by a first systematic review of various applications in smart agriculture and precision farming systems, involving a diversity of visual recognition tasks for smart farming and livestock, precision agriculture, agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment. We outline the possibilities, difficulties, constraints, and shortcomings. The study lays forth a road map of accessible areas in agriculture where LLM integration is likely to happen shortly. The research suggests exciting directions for further study in this area, which could lead to better agricultural NLP applications. |
ArticleNumber | 104005 |
Author | Mir, Waseem Ahmad Rasool, Tabasum Shaikh, Tawseef Ayoub |
Author_xml | – sequence: 1 givenname: Tawseef Ayoub surname: Shaikh fullname: Shaikh, Tawseef Ayoub email: tawseef.shaikh@nitsri.ac.in organization: Department of Computer Science & Engineering, National Institute of Technology (NIT), Srinagar, Jammu & Kashmir, 190006, India – sequence: 2 givenname: Tabasum surname: Rasool fullname: Rasool, Tabasum organization: NPDF Fellow, Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, India – sequence: 3 givenname: Waseem Ahmad surname: Mir fullname: Mir, Waseem Ahmad organization: Department of Computer Engineering, GH Raisoni College of Engineering and Management, Pune, Maharashtra, 412207, India |
BookMark | eNp9kLtOAzEQRV0EiSTwAXT-gQ1j7xuqKLwiRaKB2vLa442jjRfZ3iD-HkehppmX5o7unAWZudEhIXcMVgxYdX9YqWBXHHiZ-gKgnJE5tByysmjaa7II4QAAvMrrOXEvFgcd6Gho3CM1U5w8PtAn29soBxq9dMGM_iijHR21joaj9JHK3ls1Dedl-m3jng7S95ii6yeZiuOocQhUOk17dOiT_IR0vb0hV0YOAW__8pJ8vjx_bN6y3fvrdrPeZYqXLGYlqzXTPIdClS2vDYdaG4nQpJnKS8N51UAFslNourYrqgKalnemyplKn8l8SdjlrvJjCB6N-PI2Of8RDMQZkjiIBEmcIYkLpKR5vGiSczxZ9CIoi06hth5VFHq0_6h_ASyjdEw |
Cites_doi | 10.1109/TPAMI.2016.2572683 10.1016/j.biosystemseng.2021.01.014 10.1007/s11831-022-09761-4 10.3390/agronomy11081500 10.1109/ACCESS.2022.3142848 10.3390/app9194166 10.1016/j.compag.2019.01.031 10.1016/j.compag.2024.108924 10.30693/SMJ.2019.8.2.46 10.1155/2019/7630926 10.1109/ACCESS.2020.2981496 10.1109/LRA.2020.2966398 10.3389/fpls.2021.773142 10.1109/ACCESS.2018.2886814 10.3390/sym11070939 10.18653/v1/2023.ijcnlp-main.45 10.1007/s11042-022-13943-4 10.1016/j.inffus.2024.102422 10.1038/s41586-023-05881-4 10.14203/jet.v20.29-35 10.5220/0010167902110218 10.1109/ACCESS.2024.3360879 10.1016/j.engappai.2022.105151 10.3390/s21237903 10.1016/j.eswa.2020.114514 10.1177/15501477211007407 10.1109/TASE.2020.3041499 10.1007/s12243-023-00980-9 10.3390/plants10122633 10.1111/jfpe.13620 10.1007/s00607-019-00732-5 10.1007/978-981-16-2709-5_2 10.3390/su132313396 10.1109/ACCESS.2020.2998839 10.3389/frai.2022.830026 10.3390/s20164601 10.1016/j.cosrev.2020.100345 10.13031/trans.12684 10.3390/s20164430 10.1016/j.biosystemseng.2021.05.016 10.3390/rs11232873 10.1016/j.compag.2011.01.002 10.1007/s13042-024-02443-6 10.1016/j.iot.2023.100828 10.1109/ACCESS.2020.3041597 10.1145/3571730 10.1016/j.compag.2023.108412 10.18653/v1/2022.acl-long.229 10.1109/ACCESS.2020.2997001 10.1109/IROS47612.2022.9981417 10.1109/ACCESS.2019.2900327 10.1016/j.cose.2023.103424 10.1016/j.agsy.2017.01.023 10.12791/KSBEC.2024.33.4.352 10.1016/j.biosystemseng.2019.09.005 10.1088/1742-6596/1883/1/012093 10.1371/journal.pone.0251008 10.3390/rs11222671 10.1016/j.compag.2023.108180 10.18653/v1/P19-1472 10.1016/j.techfore.2023.122374 10.3390/ani6020010 10.1007/s12599-023-00834-7 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.csi.2025.104005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_csi_2025_104005 S0920548925000340 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSH SSV SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AAYXX CITATION EFKBS |
ID | FETCH-LOGICAL-c251t-517d1d2304c5927f207dfae08d23c35f2268060abcefb9b4640892bf631c002a3 |
IEDL.DBID | .~1 |
ISSN | 0920-5489 |
IngestDate | Tue Aug 05 12:07:39 EDT 2025 Sat Jun 28 18:17:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Very large pre-trained language model Semantic matching Generative AI ChatGPT Generative pre-trained enerative pre-trained transformer (GPT) Natural language processing Agricultural text classification Language models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-517d1d2304c5927f207dfae08d23c35f2268060abcefb9b4640892bf631c002a3 |
ParticipantIDs | crossref_primary_10_1016_j_csi_2025_104005 elsevier_sciencedirect_doi_10_1016_j_csi_2025_104005 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computer standards and interfaces |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | S. Yoon, Y. Cho, and T.I. Ahn (2024) “Melon fruit detection and quality assessment using generative AI-based image data augmentation”, arXiv:2407.10413v1 [cs.CV], 1–8. Shaikh, Rasool, Lone (bib0008) 2022; 198 Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib0108) 2011; 12 Zhao, Li, Zhang, Zhu, Liu, Lu, Ye (bib0047) 2018; 61 A. Van den Oord, Y., Li, I., Babuschkin, K., Simonyan, O., Vinyals, K., Kavukcuoglu, G., van den Driessche, E., Lockhart, L.C., Cobo, F. Stimberg, N., Casagrande, D., Grewe, S., Noury, S., Dieleman, E., Elsen, N., Kalchbrenner, H., Zen, A., Graves, H., King, T., Walters, D., Belov, and D., Hassabis (2017) “Parallel WaveNet: fast high-fidelity speech synthesis”, arXiv:1711.10433. Zhu, He, Zheng (bib0133) 2020; 175 Zhao, Zhang, Liu, Wang, Zhu, Li, Zhao (bib0049) 2023; 540 Fawakherji, Potena, Pretto, Bloisi, Nardi (bib0080) 2021; 146 D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, (2021) “Measuring coding challenge competence with apps,” https://arxiv.org/abs/2105.09938. Abdullah (bib0001) 2021; 9 Wolfert, Ge, Verdouw, Bogaardt (bib0028) 2017; 153 Zeng, Gao, Wan (bib0061) 2021; 1883 Jiang, Chang, Wang (bib0027) 2021 Zhang, Rao, Man, Jiang, Li (bib0048) 2021; 17 Barth, Hemming, Van, Henten (bib0088) 2020; 173 J. Kierdorf, I., Weber, A., Kicherer, L., Zabawa, L., Drees, L., and R. Roscher, (2022) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325. Hendrycks, Burns, Basart, Zou, Mazeika, Song, Steinhardt (bib0144) 2021 “ Choi, He, Iyyer, Yatskar, Yih, Choi, Liang, Zettlemoyer (bib0146) 2018 Wang, Xiao (bib0141) 2021; 11 Drees, Junker-Frohn, Kierdorf, Roscher (bib0134) 2021; 190 H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs.” arXiv preprint arXiv: 1905.10920. T. Karras, M., Aittala, J., Hellsten, S., Laine, J., Lehtinen, and T., Aila, (2020) “Training generative adversarial networks with limited data,” In Proceedings of 34th Conference on Neural Information Processing Systems vol. 33, pp. 12104–12114. Hongyu, Shitao (bib0106) 2015; 47 Hendrycks, Burns, Kadavath, Arora, Basart, Tang, Song, Steinhardt (bib0155) 2021 Hu, Wu, Zhang, Wan (bib0058) 2019; 163 Nazki, Yoon, Fuentes, Park (bib0068) 2020; 168 Farooq, Sohail, Abid, Rasheed (bib0037) 2022; 10 Zheng, Chen, Xu (bib0109) 2013 O.Trespalacios, Peden, T.C.Hunter, Haghani, Rod, Kelly, Torkamaan, Tariq, Newton, Gallagher, Steinert, Filtness, Reniers (bib0009) 2023; 167 Karras, Laine, Aila (bib0025) 2019 Karras, Aila, Laine, Lehtinen (bib0024) 2018 Cao, Sun, Li, Mo (bib0100) 2022; 14 Arsenovic, Karanovic, Sladojevic, Anderla, Stefanovic (bib0066) 2019; 11 Joshi, Choi, Weld, Zettlemoyer (bib0149) 2017; 1 Ganaie, Hu, Malik, Tanveer, Suganthan (bib0014) 2022; 115 Ledig, Theis, Huszar, Caballero, Cunningham, Acosta, Aitken, Tejani, Wang (bib0023) 2017 Verma, Gupta, Kumar, Gill (bib0039) 2023; 23 Wu, Chen, Meng (bib0057) 2020; 8 Gomaa, El-Latif (bib0059) 2021; 12 Chou, Kuo, Chen, Horng, Pai, Wu, Lin, Hung, Su, Chen, Wang, Chen (bib0137) 2019; 9 Tian, Yang, Wang, Li, Liang (bib0062) 2019 Marino, Beauseroy, Smolarz (bib0140) 2020; 174 Shen, Pang, Weiss, Schuster, Jaitly, Yang, Chen, Zhang, Wang, Skerrv-Ryan, Saurous, Agiomvrgiannakis, Wu (bib0116) 2018 Wolfe, Banaji, Caliskan (bib0172) 2022 M.T. Kuska, M. Wahabzada, and S. Paulus “AI for crop production – Where can large language models (LLMs) provide substantial value”, Comput. Electron. Agric. 221 (108924), 1–4. Liu, Huang, Yu, Wang, Mallya (bib0069) 2021; 109 Qing, Deng, Lan, Li (bib0003) 2023; 213 Ji, Lee, Frieske, Yu, Su, Xu, Ishii, Bang, Madotto, Fung (bib0171) 2023; 55 Fei, Olenskyj, Bailey, Earles (bib0091) 2021 “agriGPT - the AI for agricultural applications,” agriGPT. https://agri gpt.com/[Last accessed Jan. 27, 2024]. V. Zhong, C. Xiong, and R. Socher, “Seq2sql: generating structured queries from natural language using reinforcement learning,” arXiv preprint arXiv:1709.00103, 2017. Douarre, Crispim-Junior, Gelibert, Tougne, Rousseau (bib0053) 2019; 165 A. Birhane, V.U. Prabhu, and E. Kahembwe (2021) “Multimodal datasets: misogyny, pornography, and malignant stereotypes.” arXiv:2110. 01963. Kolhe, Kamal, Saini, Gupta (bib0103) 2011; 76 Chen, Qiu, Zhu, Liu, Huang (bib0110) 2015 R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, (2019) “Hellaswag: can a machine really finish your sentence?” Cao, Jia, Chen, Lin, Yang, Zhang, Liu, Li, Dai (bib0018) 2018; 7 Chen, Duan, Houthooft, J.Schulman, Abbeel (bib0022) 2016 Sani, Etuk, Anda, Adamu (bib0104) 2018; 5 Park, Liu, Wang, Zhu, Y (bib0081) 2019 Mantena, Rajendran, Rambabu, Gangashetty, Yegnanarayana, Prahallad (bib0097) 2011 S.O. Arik, M., Chrzanowski, A., Coates, G., Diamos, A., Gibiansky, Y., Kang, X., Li, J., Miller, A., Ng, J., Raiman, S., Sengupta, and M., Shoeybi, (2017) “Deep voice: real-time neural text-to-speech,” p. arXiv:1702.07825. Abbas, Jain, Gour, Vankudothu (bib0052) 2021; 187 Xu, Yoon, Fuentes, Yang, Park (bib0098) 2022; 12 Olatunji, Redding, Rowe, East (bib0092) 2020; 177 Luo, Yu, Zhang (bib0089) 2020; 20 Jin, Yu, Luo (bib0124) 2021 Li, Ma, Yin (bib0099) 2021; 180 Singh, Devi, Varish (bib0041) 2021 Moor, Banerjee, Abad, Krumholz, Leskovec, Topol, Rajpurkar (bib0034) 2023; 616 Pan, Xia, Wu, Guo, Chen, Tian (bib0077) 2022; 70 Kwiatkowski, Palomaki, Redfield, Collins, Parikh, Alberti, Epstein, Polosukhin, Devlin, Lee, Toutanova, Jones, Kelcey, Chang, Dai, Uszkoreit, Le, Petrov (bib0143) 2019; 7 Saleheen, Islam, Fahad, Belal, Khan (bib0002) 2022 Yuwana, Fauziah, Heryana, Krisnandi, Kusumo, H.F, Pardede (bib0056) 2020; 20 Du, Maimaitiyiming, Nijat, Li, Hamdulla, Wang (bib0105) 2023; 13 Moysiadis, Sarigiannidis, Vitsas, Khelifi (bib0029) 2021; 39 Kayad, Sozzi, Gatto, Marinello, Pirotti (bib0096) 2019; 11 Clark, Lee, Chang, Kwiatkowski, Collins, Toutanova (bib0152) 2019 Khashabi, Chaturvedi, Roth, Upadhyay, Roth (bib0153) 2018 Borji (bib0168) 2022; 215 S. Jiang, R. Angarita, S. Cormier, and F. Rousseaux, (2021) “Fine-tuning BERT-based models for plant health bulletin classification,” arXiv:2102.00838. Kheddar, Hemis, Himeur (bib0120) 2024; 109 Giuffrida, Scharr, Tsaftaris (bib0129) 2017 Rehman, Raghuvanshi, Kumar (bib0119) 2023; 213 Li, Tang (bib0040) 2020; 8 [Last Accessed 10 Feb 2024]. Ahmed, Malick, Akhunzada, Zahid, Sagriand, Gani, A (bib0042) 2021; 13 C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, and K. Zhang, (2023), “A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT”, arXiv:2302.09419. [cs.CL] 19 May 2019. Bird, Barnes, Manso, Ekart, Faria (bib0165) 2022; 293 Thomas, Hare, Coyle (bib0011) 2023; 189 Gzar, Mahmood, Adilee (bib0012) 2022; 104 A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and T. Sutskever, (2019) “Language models are unsupervised multitask learners. OpenAI blog, 14 February. https://openai.com/research/better-languagemodels. [Last Accessed 2 Feb 2024]. Brock, Donahue, Simonyan (bib0026) 2019 Mariani, Machado, Magrelli, Dwivedi (bib0043) 2023; 102623 Shaikh, Mir, Rasool (bib0013) 2022; 29 Bi, Hu (bib0166) 2020; 11 H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs” arXiv preprint arXiv: 1905.10920. Zhu, Park, Isola, Efros (bib0021) 2017 Rather, Ahmad, Shah, Hajam, Amin, Khursheed, Ahmad, Rasool (bib0050) 2024; 22 Bellocchio, Costante, Cascianelli, Fravolini, Valigi (bib0090) 2020; 5 J. Gao, H. Zhao, C. Yu, and R. Xu, (2023) “Exploring the feasibility of ChatGPT for event extraction,” arXiv:2303.03836. Nazki, Lee, Yoon, Park (bib0060) 2019; 8 J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, and Q. Le (2021), “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732, 2021. Shelhamer, Long, Darrell (bib0020) 2016; 39 J. Li, D. Chen, X. Qi, Z. Li, Y. Huang, D. Morris, and X. Tan (2023) Label efficient learning in agriculture A comprehensive review. arXivpreprint arXiv:2305.14691. OpenAI. Introducing chatbot. https://openai.com/blog/chatgpt, 2022. [Last accessed 29 Feb 2024]. Maqsood, Mumtaz, Haq, Shafi, Zaidi, Hafeez (bib0064) 2021; 21 Sap, Rashkin, Chen, Bras, Choi (bib0159) 2019 Afsharpour, Zoughi, Deypir, Zoqi (bib0094) 2023; 1366395 Kumar, Koul, Singh (bib0117) 2022; 82 Zhu, Aoun, Krijn, Vanschoren, Campus (bib0130) 2018 McIntosh, Liu, Susnjak, Alavizadeh, Ng, Nowrozy, Watters (bib0004) 2023; 134 Amraoui, Pu, Koutti, Masmoudi, Oliveira (bib0072) 2024 Gupta, Ding, Guan, Ding (bib0107) 2024; 8 Guo, Zheng, Xu, Ju, Zheng, You, Gu (bib0138) 2021; 44 Xu, Yoon, Fuentes, Yang, Park (bib0070) 2022; 12 Arsenovic, Karanovic, Sladojevic, Anderla, Stefanovic (bib0075) 2019; 11 J. Kierdorf, L., Weber, A., Kicherer, L., Zabawa, L., Drees, and R., Roscher, (2021) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325. Wen, Shi, Zhou, Xue (bib0065) 2020; 20 Adhinata, Wahyono, Sumiharto (bib0087) 2024; 13 Mihaylov, Clark, Khot, Sabharwal (bib0160) 2018 Zhu, He, Zheng (bib0164) 2020; 175 Clark, Cowhey, Etzioni, Khot, Sabharwal, Schoenick, Tafjord (bib0157) 2018 Kaur, Sood, Verma (bib0038) 2020; 102 Måløy, Aamodt, Misimi (bib0046) 2019; 167 M. Mirza, and S. Osindero, (2014), “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784. Espejo-Garcia, Mylonas, Athanasakos, Vali, Fountas (bib0082) 2021; 204 Hu, Wu, Zhang, Wan (bib0051) 2019; 163 Stella, Della Santina, Hughes (bib0102) 2023 L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang (2022c) “Diffusion models: a comprehensive survey of methods and applications,” arXiv preprint arXiv:2209.00796, 2022c. Cobbe, Kosaraju, Bavarian, Chen, Jun, Kaiser, Plappert, Tworek, Hilton, Nakano, Hesse, Schulman (bib0154) 2021 Xiang, Wang (bib0030) 2023; 100259 Bird, Barnes, Manso, Ekart, Faria (bib0139) 2022; 293 Ope Luo (10.1016/j.csi.2025.104005_bib0089) 2020; 20 Xu (10.1016/j.csi.2025.104005_bib0112) 2016; 2 Cap (10.1016/j.csi.2025.104005_bib0079) 2022; 19 Kaur (10.1016/j.csi.2025.104005_bib0038) 2020; 102 Garcia (10.1016/j.csi.2025.104005_bib0085) 2021; 204 Ganaie (10.1016/j.csi.2025.104005_bib0014) 2022; 115 10.1016/j.csi.2025.104005_bib0044 Gzar (10.1016/j.csi.2025.104005_bib0012) 2022; 104 10.1016/j.csi.2025.104005_bib0167 Wu (10.1016/j.csi.2025.104005_bib0057) 2020; 8 10.1016/j.csi.2025.104005_bib0161 Yang (10.1016/j.csi.2025.104005_bib0162) 2018 Måløy (10.1016/j.csi.2025.104005_bib0046) 2019; 167 10.1016/j.csi.2025.104005_bib0163 Hu (10.1016/j.csi.2025.104005_bib0051) 2019; 163 Hendrycks (10.1016/j.csi.2025.104005_bib0144) 2021 Karras (10.1016/j.csi.2025.104005_bib0024) 2018 Xu (10.1016/j.csi.2025.104005_bib0098) 2022; 12 Shaikh (10.1016/j.csi.2025.104005_bib0013) 2022; 29 Li (10.1016/j.csi.2025.104005_bib0040) 2020; 8 Afsharpour (10.1016/j.csi.2025.104005_bib0094) 2023; 1366395 Abdullah (10.1016/j.csi.2025.104005_bib0001) 2021; 9 Mariani (10.1016/j.csi.2025.104005_bib0043) 2023; 102623 Melícias (10.1016/j.csi.2025.104005_bib0005) 2024; 12 David (10.1016/j.csi.2025.104005_bib0071) 2023; 206 Bisk (10.1016/j.csi.2025.104005_bib0158) 2019 Du (10.1016/j.csi.2025.104005_bib0105) 2023; 13 10.1016/j.csi.2025.104005_bib0176 Kayad (10.1016/j.csi.2025.104005_bib0096) 2019; 11 10.1016/j.csi.2025.104005_bib0177 10.1016/j.csi.2025.104005_bib0178 Albahar (10.1016/j.csi.2025.104005_bib0118) 2023; 13 10.1016/j.csi.2025.104005_bib0173 Zhu (10.1016/j.csi.2025.104005_bib0133) 2020; 175 10.1016/j.csi.2025.104005_bib0174 Bellocchio (10.1016/j.csi.2025.104005_bib0090) 2020; 5 10.1016/j.csi.2025.104005_bib0175 Wolfert (10.1016/j.csi.2025.104005_bib0028) 2017; 153 Brown (10.1016/j.csi.2025.104005_bib0035) 2020; 33 Barth (10.1016/j.csi.2025.104005_bib0088) 2020; 173 Fei (10.1016/j.csi.2025.104005_bib0091) 2021 Espejo-Garcia (10.1016/j.csi.2025.104005_bib0082) 2021; 204 Arsenovic (10.1016/j.csi.2025.104005_bib0066) 2019; 11 Nazki (10.1016/j.csi.2025.104005_bib0068) 2020; 168 Amraoui (10.1016/j.csi.2025.104005_bib0072) 2024 Shen (10.1016/j.csi.2025.104005_bib0116) 2018 Liu (10.1016/j.csi.2025.104005_bib0069) 2021; 109 Khashabi (10.1016/j.csi.2025.104005_bib0153) 2018 Hu (10.1016/j.csi.2025.104005_bib0058) 2019; 163 Shete (10.1016/j.csi.2025.104005_bib0135) 2020; 8309605 Xu (10.1016/j.csi.2025.104005_bib0169) 2022; 12 Karras (10.1016/j.csi.2025.104005_bib0025) 2019 Saleheen (10.1016/j.csi.2025.104005_bib0002) 2022 Kwiatkowski (10.1016/j.csi.2025.104005_bib0143) 2019; 7 Sap (10.1016/j.csi.2025.104005_bib0159) 2019 Rajpurkar (10.1016/j.csi.2025.104005_bib0151) 2016 Xu (10.1016/j.csi.2025.104005_bib0070) 2022; 12 Kheddar (10.1016/j.csi.2025.104005_bib0120) 2024; 109 Yunlai (10.1016/j.csi.2025.104005_bib0122) 2022; 34 10.1016/j.csi.2025.104005_bib0145 Olatunji (10.1016/j.csi.2025.104005_bib0092) 2020; 177 Clark (10.1016/j.csi.2025.104005_bib0152) 2019 Zhu (10.1016/j.csi.2025.104005_bib0130) 2018 Zhao (10.1016/j.csi.2025.104005_bib0049) 2023; 540 10.1016/j.csi.2025.104005_bib0147 10.1016/j.csi.2025.104005_bib0148 Liu (10.1016/j.csi.2025.104005_bib0067) 2020; 8 Zhang (10.1016/j.csi.2025.104005_bib0055) 2019; 7 Abbas (10.1016/j.csi.2025.104005_bib0170) 2021; 187 Adhinata (10.1016/j.csi.2025.104005_bib0087) 2024; 13 Park (10.1016/j.csi.2025.104005_bib0081) 2019 Hendrycks (10.1016/j.csi.2025.104005_bib0155) 2021 Cao (10.1016/j.csi.2025.104005_bib0100) 2022; 14 Drees (10.1016/j.csi.2025.104005_bib0134) 2021; 190 Bird (10.1016/j.csi.2025.104005_bib0165) 2022; 293 Kumar (10.1016/j.csi.2025.104005_bib0010) 2022; 3 Singh (10.1016/j.csi.2025.104005_bib0041) 2021 Ledig (10.1016/j.csi.2025.104005_bib0023) 2017 10.1016/j.csi.2025.104005_bib0033 10.1016/j.csi.2025.104005_bib0156 Thomas (10.1016/j.csi.2025.104005_bib0011) 2023; 189 10.1016/j.csi.2025.104005_bib0036 Qing (10.1016/j.csi.2025.104005_bib0003) 2023; 213 10.1016/j.csi.2025.104005_bib0031 10.1016/j.csi.2025.104005_bib0032 Zhu (10.1016/j.csi.2025.104005_bib0021) 2017 Zhang (10.1016/j.csi.2025.104005_bib0128) 2023 Gomaa (10.1016/j.csi.2025.104005_bib0059) 2021; 12 Lai (10.1016/j.csi.2025.104005_bib0150) 2017 Yuwana (10.1016/j.csi.2025.104005_bib0056) 2020; 20 Tian (10.1016/j.csi.2025.104005_bib0062) 2019 Moor (10.1016/j.csi.2025.104005_bib0034) 2023; 616 Douarre (10.1016/j.csi.2025.104005_bib0053) 2019; 165 Maqsood (10.1016/j.csi.2025.104005_bib0064) 2021; 21 Zeng (10.1016/j.csi.2025.104005_bib0061) 2021; 1883 Feuerriegel (10.1016/j.csi.2025.104005_bib0017) 2024; 66 Wen (10.1016/j.csi.2025.104005_bib0065) 2020; 20 Collobert (10.1016/j.csi.2025.104005_bib0108) 2011; 12 Jiang (10.1016/j.csi.2025.104005_bib0027) 2021 Stella (10.1016/j.csi.2025.104005_bib0102) 2023 Zhu (10.1016/j.csi.2025.104005_bib0074) 2018; 18 10.1016/j.csi.2025.104005_bib0083 10.1016/j.csi.2025.104005_bib0121 Khan (10.1016/j.csi.2025.104005_bib0084) 2021; 16 Mantena (10.1016/j.csi.2025.104005_bib0097) 2011 Zhu (10.1016/j.csi.2025.104005_bib0164) 2020; 175 10.1016/j.csi.2025.104005_bib0123 Yao (10.1016/j.csi.2025.104005_bib0111) 2016 Madsen (10.1016/j.csi.2025.104005_bib0132) 2019; 11 Mihaylov (10.1016/j.csi.2025.104005_bib0160) 2018 Farooq (10.1016/j.csi.2025.104005_bib0037) 2022; 10 Clark (10.1016/j.csi.2025.104005_bib0157) 2018 Ahmed (10.1016/j.csi.2025.104005_bib0042) 2021; 13 10.1016/j.csi.2025.104005_bib0125 10.1016/j.csi.2025.104005_bib0126 10.1016/j.csi.2025.104005_bib0127 10.1016/j.csi.2025.104005_bib0007 Brock (10.1016/j.csi.2025.104005_bib0026) 2019 Nazki (10.1016/j.csi.2025.104005_bib0060) 2019; 8 Kolhe (10.1016/j.csi.2025.104005_bib0103) 2011; 76 Xiang (10.1016/j.csi.2025.104005_bib0030) 2023; 100259 Zhao (10.1016/j.csi.2025.104005_bib0047) 2018; 61 10.1016/j.csi.2025.104005_bib0093 Sani (10.1016/j.csi.2025.104005_bib0104) 2018; 5 Arsenovic (10.1016/j.csi.2025.104005_bib0075) 2019; 11 Joshi (10.1016/j.csi.2025.104005_bib0149) 2017; 1 Fawakherji (10.1016/j.csi.2025.104005_bib0080) 2021; 146 Hartley (10.1016/j.csi.2025.104005_bib0136) 2021; 10 Bird (10.1016/j.csi.2025.104005_bib0139) 2022; 293 Shelhamer (10.1016/j.csi.2025.104005_bib0020) 2016; 39 Giuffrida (10.1016/j.csi.2025.104005_bib0129) 2017 Cobbe (10.1016/j.csi.2025.104005_bib0154) 2021 Wang (10.1016/j.csi.2025.104005_bib0141) 2021; 11 10.1016/j.csi.2025.104005_bib0095 10.1016/j.csi.2025.104005_bib0019 Kumar (10.1016/j.csi.2025.104005_bib0117) 2022; 82 Shen (10.1016/j.csi.2025.104005_bib0101) 2022; 1 10.1016/j.csi.2025.104005_bib0015 10.1016/j.csi.2025.104005_bib0016 Giuffrida (10.1016/j.csi.2025.104005_bib0073) 2017 Cao (10.1016/j.csi.2025.104005_bib0018) 2018; 7 Abbas (10.1016/j.csi.2025.104005_bib0052) 2021; 187 Gupta (10.1016/j.csi.2025.104005_bib0107) 2024; 8 Zeng (10.1016/j.csi.2025.104005_bib0054) 2021; 1883 Zheng (10.1016/j.csi.2025.104005_bib0109) 2013 Marino (10.1016/j.csi.2025.104005_bib0140) 2020; 174 Pan (10.1016/j.csi.2025.104005_bib0077) 2022; 70 Yang (10.1016/j.csi.2025.104005_bib0142) 2021; 208 Chen (10.1016/j.csi.2025.104005_bib0110) 2015 Karapantelakis (10.1016/j.csi.2025.104005_bib0006) 2024; 79 Choi (10.1016/j.csi.2025.104005_bib0146) 2018 Li (10.1016/j.csi.2025.104005_bib0099) 2021; 180 Cap (10.1016/j.csi.2025.104005_bib0063) 2020; 19 Madsen (10.1016/j.csi.2025.104005_bib0131) 2019; 187 Bi (10.1016/j.csi.2025.104005_bib0166) 2020; 11 Wolfe (10.1016/j.csi.2025.104005_bib0172) 2022 Jin (10.1016/j.csi.2025.104005_bib0124) 2021 Rather (10.1016/j.csi.2025.104005_bib0050) 2024; 22 Siegford (10.1016/j.csi.2025.104005_bib0045) 2016; 6 Hongyu (10.1016/j.csi.2025.104005_bib0106) 2015; 47 Verma (10.1016/j.csi.2025.104005_bib0039) 2023; 23 Rehman (10.1016/j.csi.2025.104005_bib0119) 2023; 213 Moysiadis (10.1016/j.csi.2025.104005_bib0029) 2021; 39 Güldenring (10.1016/j.csi.2025.104005_bib0078) 2021; 191 McIntosh (10.1016/j.csi.2025.104005_bib0004) 2023; 134 Borji (10.1016/j.csi.2025.104005_bib0168) 2022; 215 Chou (10.1016/j.csi.2025.104005_bib0137) 2019; 9 10.1016/j.csi.2025.104005_bib0113 Guo (10.1016/j.csi.2025.104005_bib0138) 2021; 44 10.1016/j.csi.2025.104005_bib0076 Shaikh (10.1016/j.csi.2025.104005_bib0008) 2022; 198 O.Trespalacios (10.1016/j.csi.2025.104005_bib0009) 2023; 167 Ji (10.1016/j.csi.2025.104005_bib0171) 2023; 55 Haq (10.1016/j.csi.2025.104005_bib0086) 2023; 13 Zhang (10.1016/j.csi.2025.104005_bib0048) 2021; 17 10.1016/j.csi.2025.104005_bib0114 Chen (10.1016/j.csi.2025.104005_bib0022) 2016 10.1016/j.csi.2025.104005_bib0115 |
References_xml | – reference: K. Zhang, K. Lammers, P. Chu, N. Dickinson, Z. Li, and R. Lu (2022a) “Algorithm design and integration for a robotic apple harvesting system. arXiv preprint arXiv:2203.00582. – volume: 11 start-page: 1500 year: 2021 end-page: 1519 ident: bib0141 article-title: Lychee surface defect detection based on deep convolutional neural networks with gan-based data augmentation publication-title: Agronomy – reference: A. Van den Oord, Y., Li, I., Babuschkin, K., Simonyan, O., Vinyals, K., Kavukcuoglu, G., van den Driessche, E., Lockhart, L.C., Cobo, F. Stimberg, N., Casagrande, D., Grewe, S., Noury, S., Dieleman, E., Elsen, N., Kalchbrenner, H., Zen, A., Graves, H., King, T., Walters, D., Belov, and D., Hassabis (2017) “Parallel WaveNet: fast high-fidelity speech synthesis”, arXiv:1711.10433. – volume: 1 start-page: 947 year: 2022 end-page: 961 ident: bib0101 article-title: Parallel instance query network for named entity recognition publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland – start-page: 4681 year: 2017 end-page: 4690 ident: bib0023 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 19 start-page: 1258 year: 2020 end-page: 1267 ident: bib0063 article-title: Leafgan: an effective data augmentation method for practical plant disease diagnosis publication-title: IEEE Trans. Autom. Sci. Eng. Vol. – volume: 5 start-page: 1079 year: 2020 end-page: 1086 ident: bib0090 article-title: Combining domain adaptation and spatial consistency for unseen fruits counting: a quasi- unsupervised approach publication-title: IEEE Rob. Autom. Lett. – volume: 293 start-page: 1 year: 2022 end-page: 11 ident: bib0165 article-title: Fruit quality and defect image classification with conditional GAN data augmentation publication-title: Sci. Hortic. – reference: J. Li, D. Chen, X. Qi, Z. Li, Y. Huang, D. Morris, and X. Tan (2023) Label efficient learning in agriculture A comprehensive review. arXivpreprint arXiv:2305.14691. – volume: 187 start-page: 1 year: 2021 end-page: 21 ident: bib0170 article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images publication-title: Comput. Electron. Agric. – start-page: 1 year: 2023 end-page: 4 ident: bib0102 article-title: How can llms transform the e robotic design process publication-title: Nat. Mach. Intell. – volume: 44 year: 2021 ident: bib0138 article-title: Quality grading of jujubes using composite convolutional neural networks in combination with RGB color space segmentation and deep convolutional generative adversarial networks publication-title: J. Food Process. Eng. – volume: 12 year: 2022 ident: bib0169 article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition publication-title: Front. Plant Sci. – volume: 13 start-page: 13396 year: 2021 end-page: 14009 ident: bib0042 article-title: An approach towards iot-based predictive service for early detection of diseases in poultry chickens publication-title: Sustainability. – reference: S. Jiang, R. Angarita, S. Cormier, and F. Rousseaux, (2021) “Fine-tuning BERT-based models for plant health bulletin classification,” arXiv:2102.00838. – volume: 109 start-page: 839 year: 2021 end-page: 862 ident: bib0069 article-title: Generative adversarial networks for image and video synthesis: algorithms and applications publication-title: Proceedings of IEEE – reference: J. Chen, D. Zhang, A. Zeb, and Y.A. Nanehkaran, ‘‘Identification of rice plant diseases using lightweight attention networks,’’ Exp. Syst. Appl., vol. 169, 114514, pp. 1–21. – reference: S.O. Arik, M., Chrzanowski, A., Coates, G., Diamos, A., Gibiansky, Y., Kang, X., Li, J., Miller, A., Ng, J., Raiman, S., Sengupta, and M., Shoeybi, (2017) “Deep voice: real-time neural text-to-speech,” p. arXiv:1702.07825. – volume: 616 start-page: 259 year: 2023 end-page: 265 ident: bib0034 article-title: Foundation models for generalist medical artificial intelligence publication-title: Nature – volume: 168 start-page: 1 year: 2020 end-page: 28 ident: bib0068 article-title: Unsupervised image translation using adversarial networks for improved plant disease recognition publication-title: Comput. Electron. Agric. – reference: [Last Accessed 25 Feb 2024]. – reference: A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and T. Sutskever, (2019) “Language models are unsupervised multitask learners. OpenAI blog, 14 February. https://openai.com/research/better-languagemodels. [Last Accessed 2 Feb 2024]. – volume: 173 start-page: 1 year: 2020 end-page: 23 ident: bib0088 article-title: Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation publication-title: Comput. Electron. Agric. – volume: 11 start-page: 2873 year: 2019 ident: bib0096 article-title: Monitoring within-field variability of corn yield using sentinel-2 and machine learn ing techniques publication-title: Remote Sens. (Basel) – reference: S. Lin, J. Hilton, and O. Evans, (2021) “Truthfulqa: measuring how models mimic human falsehoods,” arXiv preprint arXiv:2109.07958. – volume: 8 start-page: 46 year: 2019 end-page: 57 ident: bib0060 article-title: Image-to-image translation with GAN for synthetic data augmentation in plant disease datasets publication-title: Korean Instit. Smart Media – volume: 213 start-page: 1 year: 2023 end-page: 22 ident: bib0119 article-title: KisanQRS: a deep learning-based automated query-response system for agricultural decision-making publication-title: Comput. Electron. Agric. – reference: “OpenAI (2023b) How should AI systems behave, and who should decide?” – start-page: 2337 year: 2019 end-page: 2346 ident: bib0081 article-title: Semantic image synthesis with spatially adaptive normalization publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2023 ident: bib0128 article-title: Large-model and generative-intelligence agricultural robot systems publication-title: Proceedings of International Annual Conference on Complex Systems and Intelligent Science October 20∼22, 2023, Shenzhen, China – volume: 12 start-page: 17945 year: 2024 end-page: 17965 ident: bib0005 article-title: GPT and interpolation-based data augmentation for multiclass intrusion detection in IIoT publication-title: IEEe Access. – volume: 14 start-page: 1 year: 2022 end-page: 18 ident: bib0100 article-title: A study of sentiment analysis algorithms for agricultural product reviews based on improved BERT model publication-title: Symmetry. (Basel) – volume: 115 year: 2022 ident: bib0014 article-title: Ensemble deep learning: a review publication-title: Eng. Appl. Artif. Intell. – volume: 6 start-page: 1 year: 2016 end-page: 10 ident: bib0045 article-title: Assessing activity and location of individual laying hens in large groups using modern technology publication-title: Animals – volume: 13 start-page: 1 year: 2023 end-page: 23 ident: bib0086 article-title: Weed detection in wheat crops using image analysis and artificial intelligence (AI) publication-title: Appl. Sci. – volume: 76 start-page: 16 year: 2011 end-page: 27 ident: bib0103 article-title: A web-based intelligent disease- diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops publication-title: Comput. Electron. Agric. – reference: Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, Q.V. Do, Y. Xu, and P. Fung, (2023) “A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity” arXiv:2302.04023. – volume: 8 start-page: 98716 year: 2020 end-page: 98728 ident: bib0057 article-title: Dcgan-based data augmentation for tomato leaf disease identification publication-title: IEEe Access. – reference: M.U. Haque, I. Dharmadasa, Z.T. Sworna, R.N. Rajapakse, and H. Ahmad, (2022) ‘‘I think this is the most disruptive technology’’: exploring sentiments of ChatGPT early adopters using Twitter data”, arXiv:2212.05856. – year: 2018 ident: bib0153 article-title: Looking beyond the surface: a challenge set for reading compre hension over multiple sentences publication-title: Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL) – volume: 11 start-page: 939 year: 2019 ident: bib0066 article-title: Solving current limitations of deep learning-based approaches for plant disease detection publication-title: Symmetry. (Basel) – start-page: 4779 year: 2018 end-page: 4783 ident: bib0116 article-title: Natural TTS synthesis by conditioning wavenet on MEL spectrogram predictions publication-title: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 134 start-page: 1 year: 2023 end-page: 35 ident: bib0004 article-title: Harnessing GPT-4 for generation of cybersecurity GRC policies: a focus on ransomware attack mitigation publication-title: Comput. Secur. – reference: V. Zhong, C. Xiong, and R. Socher, “Seq2sql: generating structured queries from natural language using reinforcement learning,” arXiv preprint arXiv:1709.00103, 2017. – volume: 8 start-page: 62448 year: 2020 end-page: 62457 ident: bib0040 article-title: Dairy goat image generation based on improved-self-attention generative adversarial networks publication-title: IEEe Access. – volume: 13 start-page: 1 year: 2023 end-page: 22 ident: bib0118 article-title: A survey on deep learning and its impact on agriculture: challenges and opportunities publication-title: Agriculture – volume: 10 start-page: 2633 year: 2021 end-page: 2649 ident: bib0136 article-title: Domain adaptation of synthetic images for wheat head detection publication-title: Plants – year: 2018 ident: bib0160 article-title: Can a suit of armor conduct electricity? A new dataset for open book question answering publication-title: CoRR – volume: 21 start-page: 7903 year: 2021 end-page: 7929 ident: bib0064 article-title: Super-resolution generative adversarial network (srgans) for wheat stripe rust classification publication-title: Sensors – reference: C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, and K. Zhang, (2023), “A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT”, arXiv:2302.09419. – volume: 39 year: 2021 ident: bib0029 article-title: Smart farming in Europe publication-title: Comput. Sci. Rev. – year: 2017 ident: bib0073 article-title: ARIGAN: synthetic Arabidopsis plants using generative adversarial network publication-title: Proceedings of IEEE International conference on computer vision workshops (ICCVW) – volume: 70 start-page: 1 year: 2022 end-page: 17 ident: bib0077 article-title: ‘Automatic strawberry leaf scorch severity estimation via faster R-CNN and few-shot learning publication-title: Ecol. Informat. – start-page: 785 year: 2017 end-page: 794 ident: bib0150 article-title: RACE: large-scale ReAding comprehension dataset from examinations publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing – volume: 12 year: 2022 ident: bib0070 article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition publication-title: Front. Plant Sci. – start-page: 1 year: 2019 end-page: 34 ident: bib0026 article-title: Large scale GAN training for high fidelity natural image synthesis publication-title: proceedings of 7th International Conference on Learning Representations (ICLR) – start-page: 1 year: 2024 end-page: 39 ident: bib0072 article-title: A super resolution method based on generative adversarial networks with quantum feature enhancement: application to aerial agricultural images publication-title: Neurocomputing. – volume: 8 start-page: 1 year: 2024 end-page: 66 ident: bib0107 article-title: Generative AI: a systematic review using topic modelling techniques publication-title: Data Inf. Manage – start-page: 647 year: 2013 end-page: 657 ident: bib0109 article-title: Deep learning for Chinese word segmentation and POS tagging publication-title: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics – reference: M. Mirza, and S. Osindero, (2014), “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784. – volume: 540 start-page: 1 year: 2023 end-page: 17 ident: bib0049 article-title: Application of machine learning in intelligent fish aquaculture: a review publication-title: Aquaculture – reference: R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, (2019) “Hellaswag: can a machine really finish your sentence?” – volume: 190 start-page: 1 year: 2021 end-page: 19 ident: bib0134 article-title: Temporal prediction and evaluation of brassica growth in the field using conditional generative adversarial networks publication-title: Comput. Electron. Agric. – volume: 7 start-page: 452 year: 2019 end-page: 466 ident: bib0143 article-title: Natural questions: a benchmark for question answering research publication-title: Trans. Assoc. Comput. Linguist. – start-page: 345 year: 2016 end-page: 353 ident: bib0111 article-title: Bi-directional LSTM recurrent neural network for Chinese word segmentation publication-title: Neural Inf. Process. – volume: 163 start-page: 1 year: 2019 end-page: 41 ident: bib0051 article-title: A low shot learning method for tea leaf's disease identification publication-title: Comput. Electron. Agric. – volume: 175 year: 2020 ident: bib0164 article-title: Data augmentation using improved cdcgan for plant vigor rating publication-title: Comput. Electron. Agric. – year: 2021 ident: bib0155 article-title: Measuring mathematical problem solving with the MATH dataset publication-title: CoRR – volume: 23 start-page: 1 year: 2023 end-page: 17 ident: bib0039 article-title: FCMCPS-COVID: AI propelled fog–cloud inspired scalable medical cyber-physical system, specific to coronavirus disease publication-title: Internet Things – volume: 39 start-page: 640 year: 2016 end-page: 651 ident: bib0020 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEe Trans. Pattern. Anal. Mach. Intell. – volume: 22 start-page: 1 year: 2024 end-page: 12 ident: bib0050 article-title: Exploring opportunities of artificial intelligence in aquaculture to meet increasing food demand publication-title: Food Chem. X. – volume: 163 start-page: 1 year: 2019 end-page: 33 ident: bib0058 article-title: A low shot learning method for tea leaf's disease identification publication-title: Comput. Electron. Agric. – year: 2019 ident: bib0152 article-title: Boolq: exploring the surprising difficulty of natural yes/no questions publication-title: CoRR – volume: 204 start-page: 79 year: 2021 end-page: 89 ident: bib0085 article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification publication-title: Biosyst. Eng. – volume: 9 start-page: 4166 year: 2019 end-page: 4179 ident: bib0137 article-title: Deep-learning based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry publication-title: Appl. Sci. – start-page: 2223 year: 2017 end-page: 2232 ident: bib0021 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – year: 2021 ident: bib0154 article-title: Training verifiers to solve math word problems publication-title: CoRR – volume: 66 start-page: 111 year: 2024 end-page: 126 ident: bib0017 article-title: Generative AI publication-title: Bus. Inf. Syst. Eng. – volume: 204 start-page: 79 year: 2021 end-page: 89 ident: bib0082 article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification publication-title: Biosyst. Eng. – volume: 12 start-page: 514 year: 2021 end-page: 519 ident: bib0059 article-title: Early prediction of plant diseases using CNN and GANs publication-title: Int. J. Adv. Comput. Sci. Appl. vol. – reference: W. Ping, K., Peng, A., Gibiansky, S.O., Arik, A., Kannan, S., Narang, J., Raiman, and J., Miller (2017) “Deep Voice 3: scaling text-to-speech with convolutional sequence learning”, p. arXiv:1710.07654. – year: 2019 ident: bib0158 article-title: PIQA: reasoning about physical commonsense in natural language publication-title: CoRR – volume: 9 start-page: 4097 year: 2021 end-page: 4111 ident: bib0001 article-title: Towards smart agriculture monitoring using fuzzy systems publication-title: IEEe Access. – volume: 191 start-page: 1 year: 2021 end-page: 19 ident: bib0078 article-title: ‘Self-supervised contrastive learning onagricultural images publication-title: Comput. Electron. Agric. – volume: 13 start-page: 1 year: 2023 end-page: 25 ident: bib0105 article-title: Automatic speech recognition for Uyghur, Kazakh, and Kyrgyz: an overview publication-title: Appl. Sci. – volume: 100259 start-page: 1 year: 2023 end-page: 28 ident: bib0030 article-title: A review of three-dimensional vision techniques in food and agriculture applications publication-title: Smart Agric. Technol. – start-page: 2174 year: 2018 end-page: 2184 ident: bib0146 article-title: QuAC: question answering in context publication-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics – volume: 11 start-page: 2671 year: 2019 end-page: 2698 ident: bib0132 article-title: Disentangling information in artificial images of plant seedlings using semi-supervised GAN publication-title: Remote Sens. Vol. – volume: 208 start-page: 176 year: 2021 end-page: 185 ident: bib0142 article-title: Detection and classification of damaged wheat kernels based on progressive neural architecture search publication-title: Biosyst. Eng. – volume: 20 start-page: 29 year: 2020 end-page: 35 ident: bib0056 article-title: Data augmentation using adversarial networks for tea disease detection publication-title: J. Elektronika danTelekomunikasi – reference: J. Kierdorf, I., Weber, A., Kicherer, L., Zabawa, L., Drees, L., and R. Roscher, (2022) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325. – start-page: 2064 year: 2017 end-page: 2071 ident: bib0129 article-title: ARIGAN: synthetic arabidopsis plants using generative adversarial network publication-title: Proceedings of IEEE International Conference on Computer Vision Workshops – volume: 20 start-page: 4601 year: 2020 ident: bib0065 article-title: Crop disease classification on inadequate low- resolution target images publication-title: Sensors – reference: L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang (2022c) “Diffusion models: a comprehensive survey of methods and applications,” arXiv preprint arXiv:2209.00796, 2022c. – reference: J. Kierdorf, L., Weber, A., Kicherer, L., Zabawa, L., Drees, and R., Roscher, (2021) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325. – volume: 167 start-page: 1 year: 2023 end-page: 17 ident: bib0009 article-title: The risks of using ChatGPT to obtain common safety-related information and advice publication-title: Saf. Sci. – year: 2018 ident: bib0130 article-title: Data augmentation using conditional generative adversarial networks for leaf counting in arabidopsis plants publication-title: Proceedings of British Machine Vision Conference, Workshop on Computer Vision Problems in Plant Phenotyping – reference: M.T. Kuska, M. Wahabzada, and S. Paulus “AI for crop production – Where can large language models (LLMs) provide substantial value”, Comput. Electron. Agric. 221 (108924), 1–4. – volume: 11 start-page: 939 year: 2019 ident: bib0075 article-title: Solving current limitations of deep learning-based approaches for plant disease detection publication-title: Symmetry. (Basel) – volume: 215 start-page: 1 year: 2022 end-page: 18 ident: bib0168 article-title: Pros and cons of GAN evaluation measures: new developments publication-title: Comput. Vis. Image Underst. – volume: 104 start-page: 1 year: 2022 end-page: 26 ident: bib0012 article-title: Recent trends of smart agricultural systems based on Internet of Things technology: a survey publication-title: Comput. Electric. Eng. – reference: ”, [Last Accessed 10 Feb 2024]. – volume: 102 start-page: 1463 year: 2020 end-page: 1485 ident: bib0038 article-title: Cloud resource management using 3Vs of internet of big data streams publication-title: Computing – volume: 82 start-page: 15171 year: 2022 end-page: 15197 ident: bib0117 article-title: A deep learning approaches in text-to-speech system: a systematic review and recent research perspective publication-title: Multimed. Tools. Appl. – volume: 167 start-page: 1 year: 2019 end-page: 39 ident: bib0046 article-title: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aqua culture publication-title: Comput. Electron. Agric. – start-page: 1293 year: 2022 end-page: 1304 ident: bib0172 article-title: Evidence for hypodescent in visual semantic AI publication-title: Proceedings of ACM conference on fairness, account ability, and transparency – volume: 177 start-page: 1 year: 2020 end-page: 19 ident: bib0092 article-title: Reconstruction of kiwifruit fruit geometry using a cgan trained on a synthetic dataset publication-title: Comput. Electron. Agric. – volume: 1883 year: 2021 ident: bib0061 article-title: Few-shot grape leaf diseases classification based on generative adversarial network publication-title: J. Phys. Conf. Ser. – volume: 187 start-page: 147 year: 2019 end-page: 159 ident: bib0131 article-title: Generating artificial images of plant seedlings using generative adversarial networks publication-title: Biosyst. Eng. – start-page: 1 year: 2018 end-page: 26 ident: bib0024 article-title: Progressive growing of GANs for improved quality, stability, and variation publication-title: proceedings of International Conference on Learning Representations – reference: S. Yoon, Y. Cho, and T.I. Ahn (2024) “Melon fruit detection and quality assessment using generative AI-based image data augmentation”, arXiv:2407.10413v1 [cs.CV], 1–8. – volume: 20 start-page: 4430 year: 2020 end-page: 4448 ident: bib0089 article-title: Pine cone detection using boundary equilibrium generative adversarial networks and improved yolov3 model publication-title: Sensors – volume: 5 start-page: 29 year: 2018 end-page: 126 ident: bib0104 article-title: Agricultural E-Extension Services: a hybrid of multilingual translation text-to-speech-A framework. I-manager's publication-title: J. Pattern Recogn – volume: 2 start-page: 567 year: 2016 end-page: 572 ident: bib0112 article-title: Dependency-based gated recursive neural network for Chinese word segmentation publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics – start-page: 1 year: 2021 end-page: 27 ident: bib0144 article-title: Measuring massive multitask language understanding publication-title: Proceedings of 9th International Conference on Learning Representations (ICLR), Vienna, Austria – volume: 16 year: 2021 ident: bib0084 article-title: A novel semi- supervised framework for UAV based crop/weed classification publication-title: PLoS. One – volume: 174 start-page: 1 year: 2020 end-page: 21 ident: bib0140 article-title: Unsupervised adversarial deep domain adaptation method for potato defects classification publication-title: Comput. Electron. Agric. – volume: 198 start-page: 1 year: 2022 end-page: 27 ident: bib0008 article-title: Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming publication-title: Comput. Electron. Agric. – volume: 12 start-page: 1 year: 2022 end-page: 26 ident: bib0098 article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition publication-title: Front. Plant Sci. – reference: J. Gao, H. Zhao, C. Yu, and R. Xu, (2023) “Exploring the feasibility of ChatGPT for event extraction,” arXiv:2303.03836. – reference: Y. Zhuang, Y. Yu, K. Wang, H. Sun, and C. Zhang, (2023) “Toolqa: a dataset for llm question answering with external tools,” arXiv preprint arXiv:2306.13304. – volume: 187 start-page: 1 year: 2021 end-page: 23 ident: bib0052 article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images publication-title: Comput. Electron. Agric. – volume: 153 start-page: 69 year: 2017 end-page: 80 ident: bib0028 article-title: Big data in smart farming–a review publication-title: Agric. Syst. – volume: 180 start-page: 1 year: 2021 end-page: 23 ident: bib0099 article-title: Advance research in agricultural text-to-speech: the word segmentation of analytic language and the deep learning-based end-to-end system publication-title: Comput. Electron. Agric. – reference: [cs.CL] 19 May 2019. – volume: 33 start-page: 1877 year: 2020 end-page: 1901 ident: bib0035 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 1883 year: 2021 ident: bib0054 article-title: Few-shot grape leaf diseases classification based on generative adversarial network publication-title: J. Phys. Conf. Ser. – reference: J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, and Q. Le (2021), “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732, 2021. – year: 2019 ident: bib0159 article-title: Socialiqa: commonsense reasoning about social interactions publication-title: CoRR – start-page: 153 year: 2011 end-page: 154 ident: bib0097 article-title: A speech-based conversation system for accessing agriculture commodity prices in indian languages publication-title: Proceedings of Joint Workshop on Hands-free Speech Communication and Microphone Arrays – reference: D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, (2021) “Measuring coding challenge competence with apps,” https://arxiv.org/abs/2105.09938. – volume: 293 start-page: 1 year: 2022 end-page: 11 ident: bib0139 article-title: Fruit quality and defect image classification with conditional GAN data augmentation publication-title: Sci. Hortic. – volume: 213 start-page: 1 year: 2023 end-page: 31 ident: bib0003 article-title: GPT-aided diagnosis on agricultural image based on a new light YOLOPC publication-title: Comput. Electron. Agric. – start-page: 4401 year: 2019 end-page: 4410 ident: bib0025 article-title: A style-based generator architecture for generative adversarial networks publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2018 ident: bib0162 article-title: Hotpotqa: a dataset for diverse, explainable multi-hop question answering publication-title: CoRR – reference: T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A., Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, and D. Amodei, (2020) “Language models are few-shot learners” arXiv. https://doi.org/10.48550/arxiv.2005.14165. – volume: 12 start-page: 2493 year: 2011 end-page: 2537 ident: bib0108 article-title: Natural language processing (Almost) from scratch publication-title: J. Mach. Learn. Res. – volume: 175 start-page: 1 year: 2020 end-page: 19 ident: bib0133 article-title: Data augmentation using improved cdcgan for plant vigor rating publication-title: Comput. Electron. Agric. – start-page: 2383 year: 2016 end-page: 2392 ident: bib0151 article-title: SQuAD: 100,000+ questions for machine comprehension of text publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics – volume: 17 start-page: 2 year: 2021 end-page: 13 ident: bib0048 article-title: Identification of cucumber leaf diseases using deep learning and small sample size for agricultural internet of things publication-title: Int. J. Distrib. Sens. Netw. – volume: 165 start-page: 1 year: 2019 end-page: 26 ident: bib0053 article-title: Novel data augmentation strategies to boost supervised segmentation of plant disease publication-title: Comput. Electron. Agric. – year: 2018 ident: bib0157 article-title: Think you have solved question answering? Try arc, the AI2 reasoning challenge publication-title: CoRR – reference: OpenAI. Introducing chatbot. https://openai.com/blog/chatgpt, 2022. [Last accessed 29 Feb 2024]. – volume: 19 start-page: 1258 year: 2022 end-page: 1267 ident: bib0079 article-title: ‘LeafGAN: an effective data augmentation method for practical plant disease diagnosis publication-title: IEEe Trans. Autom. Sci. Eng. – start-page: 1269 year: 2021 end-page: 1277 ident: bib0091 article-title: Enlisting 3D crop models and GANs for more data efficient and generalizable fruit detection publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2019 ident: bib0062 article-title: Detection of apple lesions in orchards BASED on deep learning methods of cyclegan and yolov3-dense publication-title: J. Sens. – volume: 7 start-page: 14985 year: 2018 end-page: 15006 ident: bib0018 article-title: Recent advances of generative adversarial networks in computer vision publication-title: IEEe Access. – volume: 102623 start-page: 1 year: 2023 end-page: 25 ident: bib0043 article-title: Artificial intelligence in innovation research: a systematic review, conceptual framework, and future research directions publication-title: Technovation – start-page: 1197 year: 2015 end-page: 1206 ident: bib0110 article-title: Long short-term memory neural networks for Chinese word segmentation publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Lisbon, Portugal, – volume: 29 start-page: 4557 year: 2022 end-page: 4597 ident: bib0013 article-title: Machine learning for smart agriculture and precision farming: towards making the fields talk publication-title: Arch. Comput. Methods Eng. – volume: 10 start-page: 9483 year: 2022 end-page: 9505 ident: bib0037 article-title: A survey on the role of iot in agriculture for the implementation of smart livestock environment publication-title: IEEe Access. – volume: 34 start-page: 19 year: 2022 end-page: 33 ident: bib0122 article-title: A classification method of agricultural news text based on BERT and deep active learning publication-title: J. Libr. Inf. Sci. Agric. – volume: 11 start-page: 1 year: 2020 end-page: 18 ident: bib0166 article-title: Improving image-based plant disease classification with generative adversarial network under limited training set publication-title: Front. Plant Sci. – volume: 1 start-page: 1601 year: 2017 end-page: 1611 ident: bib0149 article-title: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension publication-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics – reference: T. Karras, M., Aittala, J., Hellsten, S., Laine, J., Lehtinen, and T., Aila, (2020) “Training generative adversarial networks with limited data,” In Proceedings of 34th Conference on Neural Information Processing Systems vol. 33, pp. 12104–12114. – reference: “ – volume: 3 start-page: 1 year: 2022 end-page: 12 ident: bib0010 article-title: Smart farming using Machine Learning and Deep Learning techniques publication-title: Decis. Anal. J. – volume: 55 start-page: 1 year: 2023 end-page: 38 ident: bib0171 article-title: Survey of hallucination in natural language generation publication-title: ACM. Comput. Surv. – volume: 206 year: 2023 ident: bib0071 article-title: Harnessing artificial Neural Networks and large language models for bioprocess optimization: predicting sugar output from Kraft waste-based lignocellulosic pretreatments publication-title: Indust. Crops Prod. – start-page: 1 year: 2022 end-page: 6 ident: bib0002 article-title: IoT-based smart agriculture monitoring system publication-title: Proceedings of IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 2022 – reference: H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs.” arXiv preprint arXiv: 1905.10920. – year: 2021 ident: bib0027 article-title: TransGAN: two pure transformers can make one strong gan, and that can scale up publication-title: proceedings of 34th Advances in Neural Information Processing Systems. NeurIPS Proceedings – reference: A. Birhane, V.U. Prabhu, and E. Kahembwe (2021) “Multimodal datasets: misogyny, pornography, and malignant stereotypes.” arXiv:2110. 01963. – reference: H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs” arXiv preprint arXiv: 1905.10920. – volume: 1366395 start-page: 1 year: 2023 end-page: 16 ident: bib0094 article-title: Robust deep learning method for fruit decay detection and plant identification: enhancing food security and quality control publication-title: Front. Plant Sci. – volume: 7 start-page: 49680 year: 2019 end-page: 49690 ident: bib0055 article-title: Classification of canker on small datasets using improved deep convolutional generative adversarial networks publication-title: IEEe Access. – reference: R. Durall, A., Chatzimichailidis, P., Labus, and J., Keuper, (2020) “Combating mode collapse in GAN training: an empirical analysis using hessian eigenvalues” arXiv preprint arXiv: 2012.09673. – volume: 189 start-page: 1 year: 2023 end-page: 29 ident: bib0011 article-title: Understanding technology acceptance in smart agriculture: a systematic review of empirical research in crop production publication-title: Technol. Forecast. Soc. Change – start-page: 2180 year: 2016 end-page: 2188 ident: bib0022 article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets publication-title: proceedings of 30th Conference on Neural Information Processing Systems – start-page: 736 year: 2021 end-page: 744 ident: bib0124 article-title: CvT-ASSD: convolutional vision-transformer based atten tive single shot MultiBox detector publication-title: Proceedings of IEEE 33rd International Conference on Tools with Artificial Intelligence, (ICTAI) – volume: 8 start-page: 102188 year: 2020 end-page: 102198 ident: bib0067 article-title: A data augmentation method based on generative adversarial networks for grape leaf disease identification publication-title: IEEe Access. – start-page: 13 year: 2021 end-page: 23 ident: bib0041 article-title: Muzzle pattern-based cattle identification using generative adversarial networks publication-title: Soft Comput. Prob. Solv. – volume: 109 start-page: 1 year: 2024 end-page: 17 ident: bib0120 article-title: Automatic speech recognition using advanced deep learning approaches: a survey publication-title: Inf. Fusion – volume: 18 start-page: 1 year: 2018 end-page: 11 ident: bib0074 article-title: Data augmentation using conditional generative adversarial networks for leaf counting in Arabidopsis plants publication-title: BMVC. – volume: 47 start-page: 1197 year: 2015 end-page: 1203 ident: bib0106 article-title: The research of chinese words segmentation publication-title: J. Theor. Appl. Inf. Technol. – volume: 146 start-page: 1 year: 2021 end-page: 16 ident: bib0080 article-title: Multi-spectral image synthesis for crop/weed segmentation in precision farming publication-title: Rob. Auton. Syst. – volume: 79 start-page: 15 year: 2024 end-page: 33 ident: bib0006 article-title: Generative AI in mobile networks: a survey publication-title: Ann. Telecommun. – reference: “agriGPT - the AI for agricultural applications,” agriGPT. https://agri gpt.com/[Last accessed Jan. 27, 2024]. – volume: 61 start-page: 699 year: 2018 end-page: 710 ident: bib0047 article-title: Semi-supervised learning- based live fish identification in aquaculture using modified deep convolutional generative adversarial networks publication-title: Trans. ASABe – volume: 13 start-page: 45 year: 2024 end-page: 63 ident: bib0087 article-title: A comprehensive survey on weed and crop classification using machine learning and deep learning publication-title: Artif. Intell. Agric. – volume: 8309605 start-page: 1 year: 2020 end-page: 18 ident: bib0135 article-title: Tasselgan: an application of the generative adversarial model for creating field-based maize tassel data publication-title: Plant Phenomics. – volume: 39 start-page: 640 issue: 4 year: 2016 ident: 10.1016/j.csi.2025.104005_bib0020 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEe Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – volume: 204 start-page: 79 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0085 article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.01.014 – volume: 293 start-page: 1 issue: 5 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0139 article-title: Fruit quality and defect image classification with conditional GAN data augmentation publication-title: Sci. Hortic. – ident: 10.1016/j.csi.2025.104005_bib0167 – start-page: 4681 year: 2017 ident: 10.1016/j.csi.2025.104005_bib0023 article-title: Photo-realistic single image super-resolution using a generative adversarial network – volume: 29 start-page: 4557 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0013 article-title: Machine learning for smart agriculture and precision farming: towards making the fields talk publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09761-4 – volume: 13 start-page: 1 issue: 8840 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0086 article-title: Weed detection in wheat crops using image analysis and artificial intelligence (AI) publication-title: Appl. Sci. – volume: 11 start-page: 1500 issue: 8 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0141 article-title: Lychee surface defect detection based on deep convolutional neural networks with gan-based data augmentation publication-title: Agronomy doi: 10.3390/agronomy11081500 – start-page: 2180 year: 2016 ident: 10.1016/j.csi.2025.104005_bib0022 article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets – volume: 1 start-page: 947 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0101 article-title: Parallel instance query network for named entity recognition – volume: 2 start-page: 567 year: 2016 ident: 10.1016/j.csi.2025.104005_bib0112 article-title: Dependency-based gated recursive neural network for Chinese word segmentation – ident: 10.1016/j.csi.2025.104005_bib0115 – start-page: 1 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0144 article-title: Measuring massive multitask language understanding – year: 2021 ident: 10.1016/j.csi.2025.104005_bib0155 article-title: Measuring mathematical problem solving with the MATH dataset publication-title: CoRR – volume: 10 start-page: 9483 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0037 article-title: A survey on the role of iot in agriculture for the implementation of smart livestock environment publication-title: IEEe Access. doi: 10.1109/ACCESS.2022.3142848 – start-page: 1 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0072 article-title: A super resolution method based on generative adversarial networks with quantum feature enhancement: application to aerial agricultural images publication-title: Neurocomputing. – ident: 10.1016/j.csi.2025.104005_bib0173 – volume: 9 start-page: 4166 issue: 19 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0137 article-title: Deep-learning based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry publication-title: Appl. Sci. doi: 10.3390/app9194166 – year: 2018 ident: 10.1016/j.csi.2025.104005_bib0153 article-title: Looking beyond the surface: a challenge set for reading compre hension over multiple sentences – volume: 100259 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0030 article-title: A review of three-dimensional vision techniques in food and agriculture applications publication-title: Smart Agric. Technol. – volume: 11 start-page: 1 issue: 583438 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0166 article-title: Improving image-based plant disease classification with generative adversarial network under limited training set publication-title: Front. Plant Sci. – volume: 163 start-page: 1 issue: 104852 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0058 article-title: A low shot learning method for tea leaf's disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.031 – start-page: 785 year: 2017 ident: 10.1016/j.csi.2025.104005_bib0150 article-title: RACE: large-scale ReAding comprehension dataset from examinations – start-page: 2064 year: 2017 ident: 10.1016/j.csi.2025.104005_bib0129 article-title: ARIGAN: synthetic arabidopsis plants using generative adversarial network – ident: 10.1016/j.csi.2025.104005_bib0044 doi: 10.1016/j.compag.2024.108924 – volume: 175 start-page: 1 issue: 105603 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0133 article-title: Data augmentation using improved cdcgan for plant vigor rating publication-title: Comput. Electron. Agric. – volume: 8 start-page: 46 issue: 2 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0060 article-title: Image-to-image translation with GAN for synthetic data augmentation in plant disease datasets publication-title: Korean Instit. Smart Media doi: 10.30693/SMJ.2019.8.2.46 – year: 2019 ident: 10.1016/j.csi.2025.104005_bib0062 article-title: Detection of apple lesions in orchards BASED on deep learning methods of cyclegan and yolov3-dense publication-title: J. Sens. doi: 10.1155/2019/7630926 – volume: 215 start-page: 1 issue: 103329 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0168 article-title: Pros and cons of GAN evaluation measures: new developments publication-title: Comput. Vis. Image Underst. – start-page: 1197 year: 2015 ident: 10.1016/j.csi.2025.104005_bib0110 article-title: Long short-term memory neural networks for Chinese word segmentation – volume: 173 start-page: 1 issue: 105378 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0088 article-title: Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation publication-title: Comput. Electron. Agric. – ident: 10.1016/j.csi.2025.104005_bib0015 – ident: 10.1016/j.csi.2025.104005_bib0147 – start-page: 1293 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0172 article-title: Evidence for hypodescent in visual semantic AI – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0074 article-title: Data augmentation using conditional generative adversarial networks for leaf counting in Arabidopsis plants publication-title: BMVC. – ident: 10.1016/j.csi.2025.104005_bib0032 – volume: 168 start-page: 1 issue: 105117 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0068 article-title: Unsupervised image translation using adversarial networks for improved plant disease recognition publication-title: Comput. Electron. Agric. – volume: 163 start-page: 1 issue: 104852 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0051 article-title: A low shot learning method for tea leaf's disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.031 – start-page: 345 year: 2016 ident: 10.1016/j.csi.2025.104005_bib0111 article-title: Bi-directional LSTM recurrent neural network for Chinese word segmentation publication-title: Neural Inf. Process. – volume: 8 start-page: 62448 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0040 article-title: Dairy goat image generation based on improved-self-attention generative adversarial networks publication-title: IEEe Access. doi: 10.1109/ACCESS.2020.2981496 – year: 2019 ident: 10.1016/j.csi.2025.104005_bib0158 article-title: PIQA: reasoning about physical commonsense in natural language publication-title: CoRR – volume: 5 start-page: 1079 issue: 2 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0090 article-title: Combining domain adaptation and spatial consistency for unseen fruits counting: a quasi- unsupervised approach publication-title: IEEE Rob. Autom. Lett. doi: 10.1109/LRA.2020.2966398 – volume: 8 start-page: 1 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0107 article-title: Generative AI: a systematic review using topic modelling techniques publication-title: Data Inf. Manage – volume: 180 start-page: 1 issue: 105908 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0099 article-title: Advance research in agricultural text-to-speech: the word segmentation of analytic language and the deep learning-based end-to-end system publication-title: Comput. Electron. Agric. – volume: 12 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0070 article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.773142 – volume: 7 start-page: 14985 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0018 article-title: Recent advances of generative adversarial networks in computer vision publication-title: IEEe Access. doi: 10.1109/ACCESS.2018.2886814 – start-page: 153 year: 2011 ident: 10.1016/j.csi.2025.104005_bib0097 article-title: A speech-based conversation system for accessing agriculture commodity prices in indian languages – volume: 11 start-page: 939 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0075 article-title: Solving current limitations of deep learning-based approaches for plant disease detection publication-title: Symmetry. (Basel) doi: 10.3390/sym11070939 – ident: 10.1016/j.csi.2025.104005_bib0127 doi: 10.18653/v1/2023.ijcnlp-main.45 – year: 2018 ident: 10.1016/j.csi.2025.104005_bib0162 article-title: Hotpotqa: a dataset for diverse, explainable multi-hop question answering publication-title: CoRR – volume: 82 start-page: 15171 issue: 10 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0117 article-title: A deep learning approaches in text-to-speech system: a systematic review and recent research perspective publication-title: Multimed. Tools. Appl. doi: 10.1007/s11042-022-13943-4 – volume: 109 start-page: 1 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0120 article-title: Automatic speech recognition using advanced deep learning approaches: a survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102422 – year: 2021 ident: 10.1016/j.csi.2025.104005_bib0154 article-title: Training verifiers to solve math word problems publication-title: CoRR – year: 2019 ident: 10.1016/j.csi.2025.104005_bib0159 article-title: Socialiqa: commonsense reasoning about social interactions publication-title: CoRR – volume: 616 start-page: 259 issue: 7956 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0034 article-title: Foundation models for generalist medical artificial intelligence publication-title: Nature doi: 10.1038/s41586-023-05881-4 – volume: 206 issue: 117686 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0071 article-title: Harnessing artificial Neural Networks and large language models for bioprocess optimization: predicting sugar output from Kraft waste-based lignocellulosic pretreatments publication-title: Indust. Crops Prod. – volume: 20 start-page: 29 issue: 1 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0056 article-title: Data augmentation using adversarial networks for tea disease detection publication-title: J. Elektronika danTelekomunikasi doi: 10.14203/jet.v20.29-35 – volume: 13 start-page: 1 issue: 326 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0105 article-title: Automatic speech recognition for Uyghur, Kazakh, and Kyrgyz: an overview publication-title: Appl. Sci. – ident: 10.1016/j.csi.2025.104005_bib0178 doi: 10.5220/0010167902110218 – start-page: 1269 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0091 article-title: Enlisting 3D crop models and GANs for more data efficient and generalizable fruit detection – volume: 12 start-page: 17945 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0005 article-title: GPT and interpolation-based data augmentation for multiclass intrusion detection in IIoT publication-title: IEEe Access. doi: 10.1109/ACCESS.2024.3360879 – volume: 115 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0014 article-title: Ensemble deep learning: a review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105151 – volume: 109 start-page: 839 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0069 article-title: Generative adversarial networks for image and video synthesis: algorithms and applications – volume: 21 start-page: 7903 issue: 23 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0064 article-title: Super-resolution generative adversarial network (srgans) for wheat stripe rust classification publication-title: Sensors doi: 10.3390/s21237903 – ident: 10.1016/j.csi.2025.104005_bib0076 doi: 10.1016/j.eswa.2020.114514 – ident: 10.1016/j.csi.2025.104005_bib0175 – ident: 10.1016/j.csi.2025.104005_bib0113 – volume: 17 start-page: 2 issue: 4 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0048 article-title: Identification of cucumber leaf diseases using deep learning and small sample size for agricultural internet of things publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/15501477211007407 – volume: 198 start-page: 1 issue: 107119 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0008 article-title: Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming publication-title: Comput. Electron. Agric. – start-page: 736 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0124 article-title: CvT-ASSD: convolutional vision-transformer based atten tive single shot MultiBox detector – volume: 12 start-page: 1 issue: 3361 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0098 article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition publication-title: Front. Plant Sci. – volume: 14 start-page: 1 issue: 8 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0100 article-title: A study of sentiment analysis algorithms for agricultural product reviews based on improved BERT model publication-title: Symmetry. (Basel) – start-page: 4779 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0116 article-title: Natural TTS synthesis by conditioning wavenet on MEL spectrogram predictions – volume: 1 start-page: 1601 year: 2017 ident: 10.1016/j.csi.2025.104005_bib0149 article-title: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension – volume: 175 issue: 105603 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0164 article-title: Data augmentation using improved cdcgan for plant vigor rating publication-title: Comput. Electron. Agric. – volume: 19 start-page: 1258 issue: 2 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0079 article-title: ‘LeafGAN: an effective data augmentation method for practical plant disease diagnosis publication-title: IEEe Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3041499 – volume: 79 start-page: 15 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0006 article-title: Generative AI in mobile networks: a survey publication-title: Ann. Telecommun. doi: 10.1007/s12243-023-00980-9 – year: 2023 ident: 10.1016/j.csi.2025.104005_bib0128 article-title: Large-model and generative-intelligence agricultural robot systems – volume: 47 start-page: 1197 year: 2015 ident: 10.1016/j.csi.2025.104005_bib0106 article-title: The research of chinese words segmentation publication-title: J. Theor. Appl. Inf. Technol. – volume: 540 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0049 article-title: Application of machine learning in intelligent fish aquaculture: a review publication-title: Aquaculture – volume: 10 start-page: 2633 issue: 12 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0136 article-title: Domain adaptation of synthetic images for wheat head detection publication-title: Plants doi: 10.3390/plants10122633 – volume: 104 start-page: 1 issue: 108453 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0012 article-title: Recent trends of smart agricultural systems based on Internet of Things technology: a survey publication-title: Comput. Electric. Eng. – volume: 12 start-page: 514 issue: 5 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0059 article-title: Early prediction of plant diseases using CNN and GANs publication-title: Int. J. Adv. Comput. Sci. Appl. vol. – volume: 44 issue: 2 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0138 article-title: Quality grading of jujubes using composite convolutional neural networks in combination with RGB color space segmentation and deep convolutional generative adversarial networks publication-title: J. Food Process. Eng. doi: 10.1111/jfpe.13620 – volume: 102 start-page: 1463 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0038 article-title: Cloud resource management using 3Vs of internet of big data streams publication-title: Computing doi: 10.1007/s00607-019-00732-5 – start-page: 13 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0041 article-title: Muzzle pattern-based cattle identification using generative adversarial networks publication-title: Soft Comput. Prob. Solv. doi: 10.1007/978-981-16-2709-5_2 – year: 2017 ident: 10.1016/j.csi.2025.104005_bib0073 article-title: ARIGAN: synthetic Arabidopsis plants using generative adversarial network – volume: 187 start-page: 1 issue: 106279 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0170 article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images publication-title: Comput. Electron. Agric. – volume: 7 start-page: 452 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0143 article-title: Natural questions: a benchmark for question answering research publication-title: Trans. Assoc. Comput. Linguist. – start-page: 2337 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0081 article-title: Semantic image synthesis with spatially adaptive normalization – year: 2018 ident: 10.1016/j.csi.2025.104005_bib0130 article-title: Data augmentation using conditional generative adversarial networks for leaf counting in arabidopsis plants – year: 2019 ident: 10.1016/j.csi.2025.104005_bib0152 article-title: Boolq: exploring the surprising difficulty of natural yes/no questions publication-title: CoRR – volume: 13 start-page: 45 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0087 article-title: A comprehensive survey on weed and crop classification using machine learning and deep learning publication-title: Artif. Intell. Agric. – volume: 293 start-page: 1 issue: 5 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0165 article-title: Fruit quality and defect image classification with conditional GAN data augmentation publication-title: Sci. Hortic. – volume: 167 start-page: 1 issue: 106244 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0009 article-title: The risks of using ChatGPT to obtain common safety-related information and advice publication-title: Saf. Sci. – volume: 70 start-page: 1 issue: 101706 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0077 article-title: ‘Automatic strawberry leaf scorch severity estimation via faster R-CNN and few-shot learning publication-title: Ecol. Informat. – ident: 10.1016/j.csi.2025.104005_bib0083 – volume: 213 start-page: 1 issue: 108168 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0003 article-title: GPT-aided diagnosis on agricultural image based on a new light YOLOPC publication-title: Comput. Electron. Agric. – volume: 13 start-page: 13396 issue: 23 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0042 article-title: An approach towards iot-based predictive service for early detection of diseases in poultry chickens publication-title: Sustainability. doi: 10.3390/su132313396 – volume: 34 start-page: 19 issue: 8 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0122 article-title: A classification method of agricultural news text based on BERT and deep active learning publication-title: J. Libr. Inf. Sci. Agric. – volume: 190 start-page: 1 issue: 106415 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0134 article-title: Temporal prediction and evaluation of brassica growth in the field using conditional generative adversarial networks publication-title: Comput. Electron. Agric. – volume: 187 start-page: 1 issue: 106279 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0052 article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images publication-title: Comput. Electron. Agric. – start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0102 article-title: How can llms transform the e robotic design process publication-title: Nat. Mach. Intell. – start-page: 1 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0024 article-title: Progressive growing of GANs for improved quality, stability, and variation – volume: 3 start-page: 1 issue: 100041 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0010 article-title: Smart farming using Machine Learning and Deep Learning techniques publication-title: Decis. Anal. J. – volume: 8 start-page: 102188 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0067 article-title: A data augmentation method based on generative adversarial networks for grape leaf disease identification publication-title: IEEe Access. doi: 10.1109/ACCESS.2020.2998839 – ident: 10.1016/j.csi.2025.104005_bib0177 doi: 10.3389/frai.2022.830026 – volume: 11 start-page: 939 issue: 7 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0066 article-title: Solving current limitations of deep learning-based approaches for plant disease detection publication-title: Symmetry. (Basel) doi: 10.3390/sym11070939 – volume: 20 start-page: 4601 issue: 16 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0065 article-title: Crop disease classification on inadequate low- resolution target images publication-title: Sensors doi: 10.3390/s20164601 – ident: 10.1016/j.csi.2025.104005_bib0019 – volume: 39 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0029 article-title: Smart farming in Europe publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100345 – volume: 1366395 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0094 article-title: Robust deep learning method for fruit decay detection and plant identification: enhancing food security and quality control publication-title: Front. Plant Sci. – volume: 61 start-page: 699 issue: 2 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0047 article-title: Semi-supervised learning- based live fish identification in aquaculture using modified deep convolutional generative adversarial networks publication-title: Trans. ASABe doi: 10.13031/trans.12684 – volume: 20 start-page: 4430 issue: 16 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0089 article-title: Pine cone detection using boundary equilibrium generative adversarial networks and improved yolov3 model publication-title: Sensors doi: 10.3390/s20164430 – volume: 208 start-page: 176 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0142 article-title: Detection and classification of damaged wheat kernels based on progressive neural architecture search publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.05.016 – volume: 11 start-page: 2873 issue: 23 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0096 article-title: Monitoring within-field variability of corn yield using sentinel-2 and machine learn ing techniques publication-title: Remote Sens. (Basel) doi: 10.3390/rs11232873 – ident: 10.1016/j.csi.2025.104005_bib0036 – volume: 76 start-page: 16 year: 2011 ident: 10.1016/j.csi.2025.104005_bib0103 article-title: A web-based intelligent disease- diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.01.002 – start-page: 2383 year: 2016 ident: 10.1016/j.csi.2025.104005_bib0151 article-title: SQuAD: 100,000+ questions for machine comprehension of text – ident: 10.1016/j.csi.2025.104005_bib0121 doi: 10.1007/s13042-024-02443-6 – year: 2018 ident: 10.1016/j.csi.2025.104005_bib0160 article-title: Can a suit of armor conduct electricity? A new dataset for open book question answering publication-title: CoRR – ident: 10.1016/j.csi.2025.104005_bib0114 – ident: 10.1016/j.csi.2025.104005_bib0174 – volume: 23 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0039 article-title: FCMCPS-COVID: AI propelled fog–cloud inspired scalable medical cyber-physical system, specific to coronavirus disease publication-title: Internet Things doi: 10.1016/j.iot.2023.100828 – volume: 9 start-page: 4097 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0001 article-title: Towards smart agriculture monitoring using fuzzy systems publication-title: IEEe Access. doi: 10.1109/ACCESS.2020.3041597 – volume: 55 start-page: 1 issue: 12 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0171 article-title: Survey of hallucination in natural language generation publication-title: ACM. Comput. Surv. doi: 10.1145/3571730 – start-page: 4401 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0025 article-title: A style-based generator architecture for generative adversarial networks – ident: 10.1016/j.csi.2025.104005_bib0033 doi: 10.1016/j.compag.2023.108412 – start-page: 2223 year: 2017 ident: 10.1016/j.csi.2025.104005_bib0021 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 191 start-page: 1 issue: 106510 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0078 article-title: ‘Self-supervised contrastive learning onagricultural images publication-title: Comput. Electron. Agric. – year: 2018 ident: 10.1016/j.csi.2025.104005_bib0157 article-title: Think you have solved question answering? Try arc, the AI2 reasoning challenge publication-title: CoRR – ident: 10.1016/j.csi.2025.104005_bib0163 – ident: 10.1016/j.csi.2025.104005_bib0125 – volume: 33 start-page: 1877 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0035 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 165 start-page: 1 issue: 104967 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0053 article-title: Novel data augmentation strategies to boost supervised segmentation of plant disease publication-title: Comput. Electron. Agric. – ident: 10.1016/j.csi.2025.104005_bib0161 doi: 10.18653/v1/2022.acl-long.229 – volume: 12 start-page: 2493 year: 2011 ident: 10.1016/j.csi.2025.104005_bib0108 article-title: Natural language processing (Almost) from scratch publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 1 issue: 540 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0118 article-title: A survey on deep learning and its impact on agriculture: challenges and opportunities publication-title: Agriculture – volume: 8 start-page: 98716 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0057 article-title: Dcgan-based data augmentation for tomato leaf disease identification publication-title: IEEe Access. doi: 10.1109/ACCESS.2020.2997001 – ident: 10.1016/j.csi.2025.104005_bib0016 – year: 2021 ident: 10.1016/j.csi.2025.104005_bib0027 article-title: TransGAN: two pure transformers can make one strong gan, and that can scale up – ident: 10.1016/j.csi.2025.104005_bib0031 doi: 10.1109/IROS47612.2022.9981417 – volume: 7 start-page: 49680 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0055 article-title: Classification of canker on small datasets using improved deep convolutional generative adversarial networks publication-title: IEEe Access. doi: 10.1109/ACCESS.2019.2900327 – volume: 134 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0004 article-title: Harnessing GPT-4 for generation of cybersecurity GRC policies: a focus on ransomware attack mitigation publication-title: Comput. Secur. doi: 10.1016/j.cose.2023.103424 – start-page: 2174 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0146 article-title: QuAC: question answering in context – volume: 153 start-page: 69 year: 2017 ident: 10.1016/j.csi.2025.104005_bib0028 article-title: Big data in smart farming–a review publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.01.023 – volume: 102623 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0043 article-title: Artificial intelligence in innovation research: a systematic review, conceptual framework, and future research directions publication-title: Technovation – start-page: 1 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0026 article-title: Large scale GAN training for high fidelity natural image synthesis – ident: 10.1016/j.csi.2025.104005_bib0095 doi: 10.12791/KSBEC.2024.33.4.352 – volume: 187 start-page: 147 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0131 article-title: Generating artificial images of plant seedlings using generative adversarial networks publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.09.005 – volume: 1883 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0061 article-title: Few-shot grape leaf diseases classification based on generative adversarial network publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1883/1/012093 – ident: 10.1016/j.csi.2025.104005_bib0093 doi: 10.3389/frai.2022.830026 – volume: 16 issue: 5 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0084 article-title: A novel semi- supervised framework for UAV based crop/weed classification publication-title: PLoS. One doi: 10.1371/journal.pone.0251008 – volume: 177 start-page: 1 issue: 105699 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0092 article-title: Reconstruction of kiwifruit fruit geometry using a cgan trained on a synthetic dataset publication-title: Comput. Electron. Agric. – volume: 11 start-page: 2671 issue: 22 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0132 article-title: Disentangling information in artificial images of plant seedlings using semi-supervised GAN publication-title: Remote Sens. Vol. doi: 10.3390/rs11222671 – ident: 10.1016/j.csi.2025.104005_bib0126 – volume: 19 start-page: 1258 issue: 2 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0063 article-title: Leafgan: an effective data augmentation method for practical plant disease diagnosis publication-title: IEEE Trans. Autom. Sci. Eng. Vol. doi: 10.1109/TASE.2020.3041499 – ident: 10.1016/j.csi.2025.104005_bib0145 – volume: 1883 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0054 article-title: Few-shot grape leaf diseases classification based on generative adversarial network publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1883/1/012093 – volume: 204 start-page: 79 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0082 article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.01.014 – volume: 146 start-page: 1 issue: 103861 year: 2021 ident: 10.1016/j.csi.2025.104005_bib0080 article-title: Multi-spectral image synthesis for crop/weed segmentation in precision farming publication-title: Rob. Auton. Syst. – volume: 213 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0119 article-title: KisanQRS: a deep learning-based automated query-response system for agricultural decision-making publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108180 – ident: 10.1016/j.csi.2025.104005_bib0156 doi: 10.18653/v1/P19-1472 – volume: 174 start-page: 1 issue: 105501 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0140 article-title: Unsupervised adversarial deep domain adaptation method for potato defects classification publication-title: Comput. Electron. Agric. – volume: 12 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0169 article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.773142 – ident: 10.1016/j.csi.2025.104005_bib0176 – volume: 167 start-page: 1 issue: 105087 year: 2019 ident: 10.1016/j.csi.2025.104005_bib0046 article-title: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aqua culture publication-title: Comput. Electron. Agric. – volume: 189 start-page: 1 year: 2023 ident: 10.1016/j.csi.2025.104005_bib0011 article-title: Understanding technology acceptance in smart agriculture: a systematic review of empirical research in crop production publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2023.122374 – ident: 10.1016/j.csi.2025.104005_bib0007 – volume: 6 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.csi.2025.104005_bib0045 article-title: Assessing activity and location of individual laying hens in large groups using modern technology publication-title: Animals doi: 10.3390/ani6020010 – start-page: 647 year: 2013 ident: 10.1016/j.csi.2025.104005_bib0109 article-title: Deep learning for Chinese word segmentation and POS tagging – volume: 8309605 start-page: 1 year: 2020 ident: 10.1016/j.csi.2025.104005_bib0135 article-title: Tasselgan: an application of the generative adversarial model for creating field-based maize tassel data publication-title: Plant Phenomics. – volume: 5 start-page: 29 year: 2018 ident: 10.1016/j.csi.2025.104005_bib0104 article-title: Agricultural E-Extension Services: a hybrid of multilingual translation text-to-speech-A framework. I-manager's publication-title: J. Pattern Recogn – start-page: 1 year: 2022 ident: 10.1016/j.csi.2025.104005_bib0002 article-title: IoT-based smart agriculture monitoring system – volume: 22 start-page: 1 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0050 article-title: Exploring opportunities of artificial intelligence in aquaculture to meet increasing food demand publication-title: Food Chem. X. – ident: 10.1016/j.csi.2025.104005_bib0123 – ident: 10.1016/j.csi.2025.104005_bib0148 – volume: 66 start-page: 111 issue: 1 year: 2024 ident: 10.1016/j.csi.2025.104005_bib0017 article-title: Generative AI publication-title: Bus. Inf. Syst. Eng. doi: 10.1007/s12599-023-00834-7 |
SSID | ssj0002637 |
Score | 2.412407 |
SecondaryResourceType | review_article |
Snippet | •We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 104005 |
SubjectTerms | Agricultural text classification ChatGPT Generative AI Generative pre-trained enerative pre-trained transformer (GPT) Language models Natural language processing Semantic matching Very large pre-trained language model |
Title | Fields of the future: Digital transformation in smart agriculture with large language models and generative AI |
URI | https://dx.doi.org/10.1016/j.csi.2025.104005 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qjuoEJydROnDhmqwpVC6ILVOoWOY5dBUFaNWHlt2PnIYoEC2MsW0o-X-4-25_vELrSKkp9azlY2NiLmaECS0F8nFLFTCCp9kN3G_lpGo5n7GEezDto2N6FcbLKxvfXPr3y1k1Lv0Gzv8qy_jMRnuUbkfCCKsuKW7czxp2V33x-yzy8sM6baTtj17s92aw0XqrI7BLRC9xJJ3EV7H6LTRvxZrSPdhuiCIP6XQ5QR-eHaK8twgDNP3mE8pHToBWwNGC5HNQ5Qm7hLlu4ciBQbhDTZQ5ZDsW7_T6Qi3WTdUOD24uFNycJh3b7EqoKOQXIPIVFlZnauUUYTI7RbHT_MhzjpogCVpa6lDigPKWp2_pVgfC48QhPjdQksm3KD4ylXxEJiUyUNolIWMiIhTQxoU-VRU_6J2grX-b6FIHmhkrOdURDzUgqE8a0FEx62tEGLrrouoUvXtW5MuJWRPYaW6xjh3VcY91FrAU4_jHhsfXlfw87-9-wc7Tjnmrl3gXaKtcf-tKyiTLpVebSQ9uDyeN4-gWDmskW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeNzAhhTqJ8zBbVahaaLvQSt0ix7GrIEirpqz8ds55iCLBwurYUvLFvvt8_nxHyI2SYeLizLE4-l6LaZtbglPXSmzJtCds5frmNvJo7Pen7GnmzRqkW9-FMbLKyvaXNr2w1lVLu0KzvUzT9gvlDvKNkDtekWUF9-1bDJevKWNw9_mt83D8MnEm9rZM9_posxB5yTzFPaLjmaNOakrY_eacNhxOb5_sVkwROuXLHJCGyg7JXl2FAapFeUSynhGh5bDQgGQOyiQh9_CQzk09EFhvMNNFBmkG-Tt-IIj5qkq7ocAEY-HNaMKhjl9CUSInB5ElMC9SUxu7CJ3BMZn2HifdvlVVUbAkcpe15dlBYicm9is97gTaoUGihaIhtknX08i_QupTEUulYx4zn1HENNa-a0tET7gnpJktMnVKQAXaFkGgQttXjCYiZkwJzoSjDG8IeIvc1vBFyzJZRlSryF4jxDoyWEcl1i3CaoCjH388QmP-97Cz_w27Jtv9yWgYDQfj53OyY56UMr4L0lyvPtQlUot1fFVMnS9SJMqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fields+of+the+future%3A+Digital+transformation+in+smart+agriculture+with+large+language+models+and+generative+AI&rft.jtitle=Computer+standards+and+interfaces&rft.au=Shaikh%2C+Tawseef+Ayoub&rft.au=Rasool%2C+Tabasum&rft.au=Mir%2C+Waseem+Ahmad&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0920-5489&rft.volume=94&rft_id=info:doi/10.1016%2Fj.csi.2025.104005&rft.externalDocID=S0920548925000340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5489&client=summon |