Fields of the future: Digital transformation in smart agriculture with large language models and generative AI

•We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large language models related to various computer science fields. A state-of-the-art review, analysis, and comparison of security issues for large lan...

Full description

Saved in:
Bibliographic Details
Published inComputer standards and interfaces Vol. 94; p. 104005
Main Authors Shaikh, Tawseef Ayoub, Rasool, Tabasum, Mir, Waseem Ahmad
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large language models related to various computer science fields. A state-of-the-art review, analysis, and comparison of security issues for large language models.•Motivated by the progress of large pre-trained language models like ChatGPT, we conducted a preliminary study on agricultural text classification.•The applications of large language models and Generative AI in smart and precision agriculture are discussed. More specifically, the applications are categorized into six domains ranging from smart farming and livestock, smart and precision agriculture, generative adversarial network in agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment.•An analysis of large language models security requirements and challenges, possible solutions, and areas for future research are discussed. Language models (LLMs) have shown to be very useful in many fields like healthcare and finance, as natural language comprehension and generation have advanced. The capacity of LLM to participate in textual discussion has been the subject of much research, and the findings have proved encouraging across several domains. The inability of conventional image classification networks to comprehend the causes of crop diseases and etiology further impedes precise diagnosis. Agricultural diagnostic models on a grand scale will be based on generative pre-trained transformers (GPT) assisted with agrarian settings. By examining the efficacy of text corpora linked to agriculture for pretraining transformer-based language (TBL) models, this research delves into agricultural natural language processing (ANLP). To make the most of it, we looked at several important aspects, including prompt building, response parsing, and several ChatGPT versions. Despite the proven effectiveness and huge potential, there has been little exploration of LLM and Generative AI to agriculture artificial intelligence (AI). Therefore, this study aims to explore the possibility of LLM and Generative AI in smart agriculture. In particular, we present conceptual tools and technical background to facilitate understanding the problem space and uncover new research directions in this field. The paper presents an overview of the evolution of generative adversarial network (GAN) architectures followed by a first systematic review of various applications in smart agriculture and precision farming systems, involving a diversity of visual recognition tasks for smart farming and livestock, precision agriculture, agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment. We outline the possibilities, difficulties, constraints, and shortcomings. The study lays forth a road map of accessible areas in agriculture where LLM integration is likely to happen shortly. The research suggests exciting directions for further study in this area, which could lead to better agricultural NLP applications.
AbstractList •We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large language models related to various computer science fields. A state-of-the-art review, analysis, and comparison of security issues for large language models.•Motivated by the progress of large pre-trained language models like ChatGPT, we conducted a preliminary study on agricultural text classification.•The applications of large language models and Generative AI in smart and precision agriculture are discussed. More specifically, the applications are categorized into six domains ranging from smart farming and livestock, smart and precision agriculture, generative adversarial network in agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment.•An analysis of large language models security requirements and challenges, possible solutions, and areas for future research are discussed. Language models (LLMs) have shown to be very useful in many fields like healthcare and finance, as natural language comprehension and generation have advanced. The capacity of LLM to participate in textual discussion has been the subject of much research, and the findings have proved encouraging across several domains. The inability of conventional image classification networks to comprehend the causes of crop diseases and etiology further impedes precise diagnosis. Agricultural diagnostic models on a grand scale will be based on generative pre-trained transformers (GPT) assisted with agrarian settings. By examining the efficacy of text corpora linked to agriculture for pretraining transformer-based language (TBL) models, this research delves into agricultural natural language processing (ANLP). To make the most of it, we looked at several important aspects, including prompt building, response parsing, and several ChatGPT versions. Despite the proven effectiveness and huge potential, there has been little exploration of LLM and Generative AI to agriculture artificial intelligence (AI). Therefore, this study aims to explore the possibility of LLM and Generative AI in smart agriculture. In particular, we present conceptual tools and technical background to facilitate understanding the problem space and uncover new research directions in this field. The paper presents an overview of the evolution of generative adversarial network (GAN) architectures followed by a first systematic review of various applications in smart agriculture and precision farming systems, involving a diversity of visual recognition tasks for smart farming and livestock, precision agriculture, agricultural language processing (ALP), agricultural robots (AR), plant phenotyping (PP), and postharvest quality assessment. We outline the possibilities, difficulties, constraints, and shortcomings. The study lays forth a road map of accessible areas in agriculture where LLM integration is likely to happen shortly. The research suggests exciting directions for further study in this area, which could lead to better agricultural NLP applications.
ArticleNumber 104005
Author Mir, Waseem Ahmad
Rasool, Tabasum
Shaikh, Tawseef Ayoub
Author_xml – sequence: 1
  givenname: Tawseef Ayoub
  surname: Shaikh
  fullname: Shaikh, Tawseef Ayoub
  email: tawseef.shaikh@nitsri.ac.in
  organization: Department of Computer Science & Engineering, National Institute of Technology (NIT), Srinagar, Jammu & Kashmir, 190006, India
– sequence: 2
  givenname: Tabasum
  surname: Rasool
  fullname: Rasool, Tabasum
  organization: NPDF Fellow, Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, India
– sequence: 3
  givenname: Waseem Ahmad
  surname: Mir
  fullname: Mir, Waseem Ahmad
  organization: Department of Computer Engineering, GH Raisoni College of Engineering and Management, Pune, Maharashtra, 412207, India
BookMark eNp9kLtOAzEQRV0EiSTwAXT-gQ1j7xuqKLwiRaKB2vLa442jjRfZ3iD-HkehppmX5o7unAWZudEhIXcMVgxYdX9YqWBXHHiZ-gKgnJE5tByysmjaa7II4QAAvMrrOXEvFgcd6Gho3CM1U5w8PtAn29soBxq9dMGM_iijHR21joaj9JHK3ls1Dedl-m3jng7S95ii6yeZiuOocQhUOk17dOiT_IR0vb0hV0YOAW__8pJ8vjx_bN6y3fvrdrPeZYqXLGYlqzXTPIdClS2vDYdaG4nQpJnKS8N51UAFslNourYrqgKalnemyplKn8l8SdjlrvJjCB6N-PI2Of8RDMQZkjiIBEmcIYkLpKR5vGiSczxZ9CIoi06hth5VFHq0_6h_ASyjdEw
Cites_doi 10.1109/TPAMI.2016.2572683
10.1016/j.biosystemseng.2021.01.014
10.1007/s11831-022-09761-4
10.3390/agronomy11081500
10.1109/ACCESS.2022.3142848
10.3390/app9194166
10.1016/j.compag.2019.01.031
10.1016/j.compag.2024.108924
10.30693/SMJ.2019.8.2.46
10.1155/2019/7630926
10.1109/ACCESS.2020.2981496
10.1109/LRA.2020.2966398
10.3389/fpls.2021.773142
10.1109/ACCESS.2018.2886814
10.3390/sym11070939
10.18653/v1/2023.ijcnlp-main.45
10.1007/s11042-022-13943-4
10.1016/j.inffus.2024.102422
10.1038/s41586-023-05881-4
10.14203/jet.v20.29-35
10.5220/0010167902110218
10.1109/ACCESS.2024.3360879
10.1016/j.engappai.2022.105151
10.3390/s21237903
10.1016/j.eswa.2020.114514
10.1177/15501477211007407
10.1109/TASE.2020.3041499
10.1007/s12243-023-00980-9
10.3390/plants10122633
10.1111/jfpe.13620
10.1007/s00607-019-00732-5
10.1007/978-981-16-2709-5_2
10.3390/su132313396
10.1109/ACCESS.2020.2998839
10.3389/frai.2022.830026
10.3390/s20164601
10.1016/j.cosrev.2020.100345
10.13031/trans.12684
10.3390/s20164430
10.1016/j.biosystemseng.2021.05.016
10.3390/rs11232873
10.1016/j.compag.2011.01.002
10.1007/s13042-024-02443-6
10.1016/j.iot.2023.100828
10.1109/ACCESS.2020.3041597
10.1145/3571730
10.1016/j.compag.2023.108412
10.18653/v1/2022.acl-long.229
10.1109/ACCESS.2020.2997001
10.1109/IROS47612.2022.9981417
10.1109/ACCESS.2019.2900327
10.1016/j.cose.2023.103424
10.1016/j.agsy.2017.01.023
10.12791/KSBEC.2024.33.4.352
10.1016/j.biosystemseng.2019.09.005
10.1088/1742-6596/1883/1/012093
10.1371/journal.pone.0251008
10.3390/rs11222671
10.1016/j.compag.2023.108180
10.18653/v1/P19-1472
10.1016/j.techfore.2023.122374
10.3390/ani6020010
10.1007/s12599-023-00834-7
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.csi.2025.104005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_csi_2025_104005
S0920548925000340
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSV
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AAYXX
CITATION
EFKBS
ID FETCH-LOGICAL-c251t-517d1d2304c5927f207dfae08d23c35f2268060abcefb9b4640892bf631c002a3
IEDL.DBID .~1
ISSN 0920-5489
IngestDate Tue Aug 05 12:07:39 EDT 2025
Sat Jun 28 18:17:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Very large pre-trained language model
Semantic matching
Generative AI
ChatGPT
Generative pre-trained enerative pre-trained transformer (GPT)
Natural language processing
Agricultural text classification
Language models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-517d1d2304c5927f207dfae08d23c35f2268060abcefb9b4640892bf631c002a3
ParticipantIDs crossref_primary_10_1016_j_csi_2025_104005
elsevier_sciencedirect_doi_10_1016_j_csi_2025_104005
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Computer standards and interfaces
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S. Yoon, Y. Cho, and T.I. Ahn (2024) “Melon fruit detection and quality assessment using generative AI-based image data augmentation”, arXiv:2407.10413v1 [cs.CV], 1–8.
Shaikh, Rasool, Lone (bib0008) 2022; 198
Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib0108) 2011; 12
Zhao, Li, Zhang, Zhu, Liu, Lu, Ye (bib0047) 2018; 61
A. Van den Oord, Y., Li, I., Babuschkin, K., Simonyan, O., Vinyals, K., Kavukcuoglu, G., van den Driessche, E., Lockhart, L.C., Cobo, F. Stimberg, N., Casagrande, D., Grewe, S., Noury, S., Dieleman, E., Elsen, N., Kalchbrenner, H., Zen, A., Graves, H., King, T., Walters, D., Belov, and D., Hassabis (2017) “Parallel WaveNet: fast high-fidelity speech synthesis”, arXiv:1711.10433.
Zhu, He, Zheng (bib0133) 2020; 175
Zhao, Zhang, Liu, Wang, Zhu, Li, Zhao (bib0049) 2023; 540
Fawakherji, Potena, Pretto, Bloisi, Nardi (bib0080) 2021; 146
D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, (2021) “Measuring coding challenge competence with apps,” https://arxiv.org/abs/2105.09938.
Abdullah (bib0001) 2021; 9
Wolfert, Ge, Verdouw, Bogaardt (bib0028) 2017; 153
Zeng, Gao, Wan (bib0061) 2021; 1883
Jiang, Chang, Wang (bib0027) 2021
Zhang, Rao, Man, Jiang, Li (bib0048) 2021; 17
Barth, Hemming, Van, Henten (bib0088) 2020; 173
J. Kierdorf, I., Weber, A., Kicherer, L., Zabawa, L., Drees, L., and R. Roscher, (2022) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325.
Hendrycks, Burns, Basart, Zou, Mazeika, Song, Steinhardt (bib0144) 2021

Choi, He, Iyyer, Yatskar, Yih, Choi, Liang, Zettlemoyer (bib0146) 2018
Wang, Xiao (bib0141) 2021; 11
Drees, Junker-Frohn, Kierdorf, Roscher (bib0134) 2021; 190
H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs.” arXiv preprint arXiv: 1905.10920.
T. Karras, M., Aittala, J., Hellsten, S., Laine, J., Lehtinen, and T., Aila, (2020) “Training generative adversarial networks with limited data,” In Proceedings of 34th Conference on Neural Information Processing Systems vol. 33, pp. 12104–12114.
Hongyu, Shitao (bib0106) 2015; 47
Hendrycks, Burns, Kadavath, Arora, Basart, Tang, Song, Steinhardt (bib0155) 2021
Hu, Wu, Zhang, Wan (bib0058) 2019; 163
Nazki, Yoon, Fuentes, Park (bib0068) 2020; 168
Farooq, Sohail, Abid, Rasheed (bib0037) 2022; 10
Zheng, Chen, Xu (bib0109) 2013
O.Trespalacios, Peden, T.C.Hunter, Haghani, Rod, Kelly, Torkamaan, Tariq, Newton, Gallagher, Steinert, Filtness, Reniers (bib0009) 2023; 167
Karras, Laine, Aila (bib0025) 2019
Karras, Aila, Laine, Lehtinen (bib0024) 2018
Cao, Sun, Li, Mo (bib0100) 2022; 14
Arsenovic, Karanovic, Sladojevic, Anderla, Stefanovic (bib0066) 2019; 11
Joshi, Choi, Weld, Zettlemoyer (bib0149) 2017; 1
Ganaie, Hu, Malik, Tanveer, Suganthan (bib0014) 2022; 115
Ledig, Theis, Huszar, Caballero, Cunningham, Acosta, Aitken, Tejani, Wang (bib0023) 2017
Verma, Gupta, Kumar, Gill (bib0039) 2023; 23
Wu, Chen, Meng (bib0057) 2020; 8
Gomaa, El-Latif (bib0059) 2021; 12
Chou, Kuo, Chen, Horng, Pai, Wu, Lin, Hung, Su, Chen, Wang, Chen (bib0137) 2019; 9
Tian, Yang, Wang, Li, Liang (bib0062) 2019
Marino, Beauseroy, Smolarz (bib0140) 2020; 174
Shen, Pang, Weiss, Schuster, Jaitly, Yang, Chen, Zhang, Wang, Skerrv-Ryan, Saurous, Agiomvrgiannakis, Wu (bib0116) 2018
Wolfe, Banaji, Caliskan (bib0172) 2022
M.T. Kuska, M. Wahabzada, and S. Paulus “AI for crop production – Where can large language models (LLMs) provide substantial value”, Comput. Electron. Agric. 221 (108924), 1–4.
Liu, Huang, Yu, Wang, Mallya (bib0069) 2021; 109
Qing, Deng, Lan, Li (bib0003) 2023; 213
Ji, Lee, Frieske, Yu, Su, Xu, Ishii, Bang, Madotto, Fung (bib0171) 2023; 55
Fei, Olenskyj, Bailey, Earles (bib0091) 2021
“agriGPT - the AI for agricultural applications,” agriGPT. https://agri gpt.com/[Last accessed Jan. 27, 2024].
V. Zhong, C. Xiong, and R. Socher, “Seq2sql: generating structured queries from natural language using reinforcement learning,” arXiv preprint arXiv:1709.00103, 2017.
Douarre, Crispim-Junior, Gelibert, Tougne, Rousseau (bib0053) 2019; 165
A. Birhane, V.U. Prabhu, and E. Kahembwe (2021) “Multimodal datasets: misogyny, pornography, and malignant stereotypes.” arXiv:2110. 01963.
Kolhe, Kamal, Saini, Gupta (bib0103) 2011; 76
Chen, Qiu, Zhu, Liu, Huang (bib0110) 2015
R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, (2019) “Hellaswag: can a machine really finish your sentence?”
Cao, Jia, Chen, Lin, Yang, Zhang, Liu, Li, Dai (bib0018) 2018; 7
Chen, Duan, Houthooft, J.Schulman, Abbeel (bib0022) 2016
Sani, Etuk, Anda, Adamu (bib0104) 2018; 5
Park, Liu, Wang, Zhu, Y (bib0081) 2019
Mantena, Rajendran, Rambabu, Gangashetty, Yegnanarayana, Prahallad (bib0097) 2011
S.O. Arik, M., Chrzanowski, A., Coates, G., Diamos, A., Gibiansky, Y., Kang, X., Li, J., Miller, A., Ng, J., Raiman, S., Sengupta, and M., Shoeybi, (2017) “Deep voice: real-time neural text-to-speech,” p. arXiv:1702.07825.
Abbas, Jain, Gour, Vankudothu (bib0052) 2021; 187
Xu, Yoon, Fuentes, Yang, Park (bib0098) 2022; 12
Olatunji, Redding, Rowe, East (bib0092) 2020; 177
Luo, Yu, Zhang (bib0089) 2020; 20
Jin, Yu, Luo (bib0124) 2021
Li, Ma, Yin (bib0099) 2021; 180
Singh, Devi, Varish (bib0041) 2021
Moor, Banerjee, Abad, Krumholz, Leskovec, Topol, Rajpurkar (bib0034) 2023; 616
Pan, Xia, Wu, Guo, Chen, Tian (bib0077) 2022; 70
Kwiatkowski, Palomaki, Redfield, Collins, Parikh, Alberti, Epstein, Polosukhin, Devlin, Lee, Toutanova, Jones, Kelcey, Chang, Dai, Uszkoreit, Le, Petrov (bib0143) 2019; 7
Saleheen, Islam, Fahad, Belal, Khan (bib0002) 2022
Yuwana, Fauziah, Heryana, Krisnandi, Kusumo, H.F, Pardede (bib0056) 2020; 20
Du, Maimaitiyiming, Nijat, Li, Hamdulla, Wang (bib0105) 2023; 13
Moysiadis, Sarigiannidis, Vitsas, Khelifi (bib0029) 2021; 39
Kayad, Sozzi, Gatto, Marinello, Pirotti (bib0096) 2019; 11
Clark, Lee, Chang, Kwiatkowski, Collins, Toutanova (bib0152) 2019
Khashabi, Chaturvedi, Roth, Upadhyay, Roth (bib0153) 2018
Borji (bib0168) 2022; 215
S. Jiang, R. Angarita, S. Cormier, and F. Rousseaux, (2021) “Fine-tuning BERT-based models for plant health bulletin classification,” arXiv:2102.00838.
Kheddar, Hemis, Himeur (bib0120) 2024; 109
Giuffrida, Scharr, Tsaftaris (bib0129) 2017
Rehman, Raghuvanshi, Kumar (bib0119) 2023; 213
Li, Tang (bib0040) 2020; 8
[Last Accessed 10 Feb 2024].
Ahmed, Malick, Akhunzada, Zahid, Sagriand, Gani, A (bib0042) 2021; 13
C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, and K. Zhang, (2023), “A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT”, arXiv:2302.09419.
[cs.CL] 19 May 2019.
Bird, Barnes, Manso, Ekart, Faria (bib0165) 2022; 293
Thomas, Hare, Coyle (bib0011) 2023; 189
Gzar, Mahmood, Adilee (bib0012) 2022; 104
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and T. Sutskever, (2019) “Language models are unsupervised multitask learners. OpenAI blog, 14 February. https://openai.com/research/better-languagemodels. [Last Accessed 2 Feb 2024].
Brock, Donahue, Simonyan (bib0026) 2019
Mariani, Machado, Magrelli, Dwivedi (bib0043) 2023; 102623
Shaikh, Mir, Rasool (bib0013) 2022; 29
Bi, Hu (bib0166) 2020; 11
H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs” arXiv preprint arXiv: 1905.10920.
Zhu, Park, Isola, Efros (bib0021) 2017
Rather, Ahmad, Shah, Hajam, Amin, Khursheed, Ahmad, Rasool (bib0050) 2024; 22
Bellocchio, Costante, Cascianelli, Fravolini, Valigi (bib0090) 2020; 5
J. Gao, H. Zhao, C. Yu, and R. Xu, (2023) “Exploring the feasibility of ChatGPT for event extraction,” arXiv:2303.03836.
Nazki, Lee, Yoon, Park (bib0060) 2019; 8
J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, and Q. Le (2021), “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732, 2021.
Shelhamer, Long, Darrell (bib0020) 2016; 39
J. Li, D. Chen, X. Qi, Z. Li, Y. Huang, D. Morris, and X. Tan (2023) Label efficient learning in agriculture A comprehensive review. arXivpreprint arXiv:2305.14691.
OpenAI. Introducing chatbot. https://openai.com/blog/chatgpt, 2022. [Last accessed 29 Feb 2024].
Maqsood, Mumtaz, Haq, Shafi, Zaidi, Hafeez (bib0064) 2021; 21
Sap, Rashkin, Chen, Bras, Choi (bib0159) 2019
Afsharpour, Zoughi, Deypir, Zoqi (bib0094) 2023; 1366395
Kumar, Koul, Singh (bib0117) 2022; 82
Zhu, Aoun, Krijn, Vanschoren, Campus (bib0130) 2018
McIntosh, Liu, Susnjak, Alavizadeh, Ng, Nowrozy, Watters (bib0004) 2023; 134
Amraoui, Pu, Koutti, Masmoudi, Oliveira (bib0072) 2024
Gupta, Ding, Guan, Ding (bib0107) 2024; 8
Guo, Zheng, Xu, Ju, Zheng, You, Gu (bib0138) 2021; 44
Xu, Yoon, Fuentes, Yang, Park (bib0070) 2022; 12
Arsenovic, Karanovic, Sladojevic, Anderla, Stefanovic (bib0075) 2019; 11
J. Kierdorf, L., Weber, A., Kicherer, L., Zabawa, L., Drees, and R., Roscher, (2021) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325.
Wen, Shi, Zhou, Xue (bib0065) 2020; 20
Adhinata, Wahyono, Sumiharto (bib0087) 2024; 13
Mihaylov, Clark, Khot, Sabharwal (bib0160) 2018
Zhu, He, Zheng (bib0164) 2020; 175
Clark, Cowhey, Etzioni, Khot, Sabharwal, Schoenick, Tafjord (bib0157) 2018
Kaur, Sood, Verma (bib0038) 2020; 102
Måløy, Aamodt, Misimi (bib0046) 2019; 167
M. Mirza, and S. Osindero, (2014), “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784.
Espejo-Garcia, Mylonas, Athanasakos, Vali, Fountas (bib0082) 2021; 204
Hu, Wu, Zhang, Wan (bib0051) 2019; 163
Stella, Della Santina, Hughes (bib0102) 2023
L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang (2022c) “Diffusion models: a comprehensive survey of methods and applications,” arXiv preprint arXiv:2209.00796, 2022c.
Cobbe, Kosaraju, Bavarian, Chen, Jun, Kaiser, Plappert, Tworek, Hilton, Nakano, Hesse, Schulman (bib0154) 2021
Xiang, Wang (bib0030) 2023; 100259
Bird, Barnes, Manso, Ekart, Faria (bib0139) 2022; 293
Ope
Luo (10.1016/j.csi.2025.104005_bib0089) 2020; 20
Xu (10.1016/j.csi.2025.104005_bib0112) 2016; 2
Cap (10.1016/j.csi.2025.104005_bib0079) 2022; 19
Kaur (10.1016/j.csi.2025.104005_bib0038) 2020; 102
Garcia (10.1016/j.csi.2025.104005_bib0085) 2021; 204
Ganaie (10.1016/j.csi.2025.104005_bib0014) 2022; 115
10.1016/j.csi.2025.104005_bib0044
Gzar (10.1016/j.csi.2025.104005_bib0012) 2022; 104
10.1016/j.csi.2025.104005_bib0167
Wu (10.1016/j.csi.2025.104005_bib0057) 2020; 8
10.1016/j.csi.2025.104005_bib0161
Yang (10.1016/j.csi.2025.104005_bib0162) 2018
Måløy (10.1016/j.csi.2025.104005_bib0046) 2019; 167
10.1016/j.csi.2025.104005_bib0163
Hu (10.1016/j.csi.2025.104005_bib0051) 2019; 163
Hendrycks (10.1016/j.csi.2025.104005_bib0144) 2021
Karras (10.1016/j.csi.2025.104005_bib0024) 2018
Xu (10.1016/j.csi.2025.104005_bib0098) 2022; 12
Shaikh (10.1016/j.csi.2025.104005_bib0013) 2022; 29
Li (10.1016/j.csi.2025.104005_bib0040) 2020; 8
Afsharpour (10.1016/j.csi.2025.104005_bib0094) 2023; 1366395
Abdullah (10.1016/j.csi.2025.104005_bib0001) 2021; 9
Mariani (10.1016/j.csi.2025.104005_bib0043) 2023; 102623
Melícias (10.1016/j.csi.2025.104005_bib0005) 2024; 12
David (10.1016/j.csi.2025.104005_bib0071) 2023; 206
Bisk (10.1016/j.csi.2025.104005_bib0158) 2019
Du (10.1016/j.csi.2025.104005_bib0105) 2023; 13
10.1016/j.csi.2025.104005_bib0176
Kayad (10.1016/j.csi.2025.104005_bib0096) 2019; 11
10.1016/j.csi.2025.104005_bib0177
10.1016/j.csi.2025.104005_bib0178
Albahar (10.1016/j.csi.2025.104005_bib0118) 2023; 13
10.1016/j.csi.2025.104005_bib0173
Zhu (10.1016/j.csi.2025.104005_bib0133) 2020; 175
10.1016/j.csi.2025.104005_bib0174
Bellocchio (10.1016/j.csi.2025.104005_bib0090) 2020; 5
10.1016/j.csi.2025.104005_bib0175
Wolfert (10.1016/j.csi.2025.104005_bib0028) 2017; 153
Brown (10.1016/j.csi.2025.104005_bib0035) 2020; 33
Barth (10.1016/j.csi.2025.104005_bib0088) 2020; 173
Fei (10.1016/j.csi.2025.104005_bib0091) 2021
Espejo-Garcia (10.1016/j.csi.2025.104005_bib0082) 2021; 204
Arsenovic (10.1016/j.csi.2025.104005_bib0066) 2019; 11
Nazki (10.1016/j.csi.2025.104005_bib0068) 2020; 168
Amraoui (10.1016/j.csi.2025.104005_bib0072) 2024
Shen (10.1016/j.csi.2025.104005_bib0116) 2018
Liu (10.1016/j.csi.2025.104005_bib0069) 2021; 109
Khashabi (10.1016/j.csi.2025.104005_bib0153) 2018
Hu (10.1016/j.csi.2025.104005_bib0058) 2019; 163
Shete (10.1016/j.csi.2025.104005_bib0135) 2020; 8309605
Xu (10.1016/j.csi.2025.104005_bib0169) 2022; 12
Karras (10.1016/j.csi.2025.104005_bib0025) 2019
Saleheen (10.1016/j.csi.2025.104005_bib0002) 2022
Kwiatkowski (10.1016/j.csi.2025.104005_bib0143) 2019; 7
Sap (10.1016/j.csi.2025.104005_bib0159) 2019
Rajpurkar (10.1016/j.csi.2025.104005_bib0151) 2016
Xu (10.1016/j.csi.2025.104005_bib0070) 2022; 12
Kheddar (10.1016/j.csi.2025.104005_bib0120) 2024; 109
Yunlai (10.1016/j.csi.2025.104005_bib0122) 2022; 34
10.1016/j.csi.2025.104005_bib0145
Olatunji (10.1016/j.csi.2025.104005_bib0092) 2020; 177
Clark (10.1016/j.csi.2025.104005_bib0152) 2019
Zhu (10.1016/j.csi.2025.104005_bib0130) 2018
Zhao (10.1016/j.csi.2025.104005_bib0049) 2023; 540
10.1016/j.csi.2025.104005_bib0147
10.1016/j.csi.2025.104005_bib0148
Liu (10.1016/j.csi.2025.104005_bib0067) 2020; 8
Zhang (10.1016/j.csi.2025.104005_bib0055) 2019; 7
Abbas (10.1016/j.csi.2025.104005_bib0170) 2021; 187
Adhinata (10.1016/j.csi.2025.104005_bib0087) 2024; 13
Park (10.1016/j.csi.2025.104005_bib0081) 2019
Hendrycks (10.1016/j.csi.2025.104005_bib0155) 2021
Cao (10.1016/j.csi.2025.104005_bib0100) 2022; 14
Drees (10.1016/j.csi.2025.104005_bib0134) 2021; 190
Bird (10.1016/j.csi.2025.104005_bib0165) 2022; 293
Kumar (10.1016/j.csi.2025.104005_bib0010) 2022; 3
Singh (10.1016/j.csi.2025.104005_bib0041) 2021
Ledig (10.1016/j.csi.2025.104005_bib0023) 2017
10.1016/j.csi.2025.104005_bib0033
10.1016/j.csi.2025.104005_bib0156
Thomas (10.1016/j.csi.2025.104005_bib0011) 2023; 189
10.1016/j.csi.2025.104005_bib0036
Qing (10.1016/j.csi.2025.104005_bib0003) 2023; 213
10.1016/j.csi.2025.104005_bib0031
10.1016/j.csi.2025.104005_bib0032
Zhu (10.1016/j.csi.2025.104005_bib0021) 2017
Zhang (10.1016/j.csi.2025.104005_bib0128) 2023
Gomaa (10.1016/j.csi.2025.104005_bib0059) 2021; 12
Lai (10.1016/j.csi.2025.104005_bib0150) 2017
Yuwana (10.1016/j.csi.2025.104005_bib0056) 2020; 20
Tian (10.1016/j.csi.2025.104005_bib0062) 2019
Moor (10.1016/j.csi.2025.104005_bib0034) 2023; 616
Douarre (10.1016/j.csi.2025.104005_bib0053) 2019; 165
Maqsood (10.1016/j.csi.2025.104005_bib0064) 2021; 21
Zeng (10.1016/j.csi.2025.104005_bib0061) 2021; 1883
Feuerriegel (10.1016/j.csi.2025.104005_bib0017) 2024; 66
Wen (10.1016/j.csi.2025.104005_bib0065) 2020; 20
Collobert (10.1016/j.csi.2025.104005_bib0108) 2011; 12
Jiang (10.1016/j.csi.2025.104005_bib0027) 2021
Stella (10.1016/j.csi.2025.104005_bib0102) 2023
Zhu (10.1016/j.csi.2025.104005_bib0074) 2018; 18
10.1016/j.csi.2025.104005_bib0083
10.1016/j.csi.2025.104005_bib0121
Khan (10.1016/j.csi.2025.104005_bib0084) 2021; 16
Mantena (10.1016/j.csi.2025.104005_bib0097) 2011
Zhu (10.1016/j.csi.2025.104005_bib0164) 2020; 175
10.1016/j.csi.2025.104005_bib0123
Yao (10.1016/j.csi.2025.104005_bib0111) 2016
Madsen (10.1016/j.csi.2025.104005_bib0132) 2019; 11
Mihaylov (10.1016/j.csi.2025.104005_bib0160) 2018
Farooq (10.1016/j.csi.2025.104005_bib0037) 2022; 10
Clark (10.1016/j.csi.2025.104005_bib0157) 2018
Ahmed (10.1016/j.csi.2025.104005_bib0042) 2021; 13
10.1016/j.csi.2025.104005_bib0125
10.1016/j.csi.2025.104005_bib0126
10.1016/j.csi.2025.104005_bib0127
10.1016/j.csi.2025.104005_bib0007
Brock (10.1016/j.csi.2025.104005_bib0026) 2019
Nazki (10.1016/j.csi.2025.104005_bib0060) 2019; 8
Kolhe (10.1016/j.csi.2025.104005_bib0103) 2011; 76
Xiang (10.1016/j.csi.2025.104005_bib0030) 2023; 100259
Zhao (10.1016/j.csi.2025.104005_bib0047) 2018; 61
10.1016/j.csi.2025.104005_bib0093
Sani (10.1016/j.csi.2025.104005_bib0104) 2018; 5
Arsenovic (10.1016/j.csi.2025.104005_bib0075) 2019; 11
Joshi (10.1016/j.csi.2025.104005_bib0149) 2017; 1
Fawakherji (10.1016/j.csi.2025.104005_bib0080) 2021; 146
Hartley (10.1016/j.csi.2025.104005_bib0136) 2021; 10
Bird (10.1016/j.csi.2025.104005_bib0139) 2022; 293
Shelhamer (10.1016/j.csi.2025.104005_bib0020) 2016; 39
Giuffrida (10.1016/j.csi.2025.104005_bib0129) 2017
Cobbe (10.1016/j.csi.2025.104005_bib0154) 2021
Wang (10.1016/j.csi.2025.104005_bib0141) 2021; 11
10.1016/j.csi.2025.104005_bib0095
10.1016/j.csi.2025.104005_bib0019
Kumar (10.1016/j.csi.2025.104005_bib0117) 2022; 82
Shen (10.1016/j.csi.2025.104005_bib0101) 2022; 1
10.1016/j.csi.2025.104005_bib0015
10.1016/j.csi.2025.104005_bib0016
Giuffrida (10.1016/j.csi.2025.104005_bib0073) 2017
Cao (10.1016/j.csi.2025.104005_bib0018) 2018; 7
Abbas (10.1016/j.csi.2025.104005_bib0052) 2021; 187
Gupta (10.1016/j.csi.2025.104005_bib0107) 2024; 8
Zeng (10.1016/j.csi.2025.104005_bib0054) 2021; 1883
Zheng (10.1016/j.csi.2025.104005_bib0109) 2013
Marino (10.1016/j.csi.2025.104005_bib0140) 2020; 174
Pan (10.1016/j.csi.2025.104005_bib0077) 2022; 70
Yang (10.1016/j.csi.2025.104005_bib0142) 2021; 208
Chen (10.1016/j.csi.2025.104005_bib0110) 2015
Karapantelakis (10.1016/j.csi.2025.104005_bib0006) 2024; 79
Choi (10.1016/j.csi.2025.104005_bib0146) 2018
Li (10.1016/j.csi.2025.104005_bib0099) 2021; 180
Cap (10.1016/j.csi.2025.104005_bib0063) 2020; 19
Madsen (10.1016/j.csi.2025.104005_bib0131) 2019; 187
Bi (10.1016/j.csi.2025.104005_bib0166) 2020; 11
Wolfe (10.1016/j.csi.2025.104005_bib0172) 2022
Jin (10.1016/j.csi.2025.104005_bib0124) 2021
Rather (10.1016/j.csi.2025.104005_bib0050) 2024; 22
Siegford (10.1016/j.csi.2025.104005_bib0045) 2016; 6
Hongyu (10.1016/j.csi.2025.104005_bib0106) 2015; 47
Verma (10.1016/j.csi.2025.104005_bib0039) 2023; 23
Rehman (10.1016/j.csi.2025.104005_bib0119) 2023; 213
Moysiadis (10.1016/j.csi.2025.104005_bib0029) 2021; 39
Güldenring (10.1016/j.csi.2025.104005_bib0078) 2021; 191
McIntosh (10.1016/j.csi.2025.104005_bib0004) 2023; 134
Borji (10.1016/j.csi.2025.104005_bib0168) 2022; 215
Chou (10.1016/j.csi.2025.104005_bib0137) 2019; 9
10.1016/j.csi.2025.104005_bib0113
Guo (10.1016/j.csi.2025.104005_bib0138) 2021; 44
10.1016/j.csi.2025.104005_bib0076
Shaikh (10.1016/j.csi.2025.104005_bib0008) 2022; 198
O.Trespalacios (10.1016/j.csi.2025.104005_bib0009) 2023; 167
Ji (10.1016/j.csi.2025.104005_bib0171) 2023; 55
Haq (10.1016/j.csi.2025.104005_bib0086) 2023; 13
Zhang (10.1016/j.csi.2025.104005_bib0048) 2021; 17
10.1016/j.csi.2025.104005_bib0114
Chen (10.1016/j.csi.2025.104005_bib0022) 2016
10.1016/j.csi.2025.104005_bib0115
References_xml – reference: K. Zhang, K. Lammers, P. Chu, N. Dickinson, Z. Li, and R. Lu (2022a) “Algorithm design and integration for a robotic apple harvesting system. arXiv preprint arXiv:2203.00582.
– volume: 11
  start-page: 1500
  year: 2021
  end-page: 1519
  ident: bib0141
  article-title: Lychee surface defect detection based on deep convolutional neural networks with gan-based data augmentation
  publication-title: Agronomy
– reference: A. Van den Oord, Y., Li, I., Babuschkin, K., Simonyan, O., Vinyals, K., Kavukcuoglu, G., van den Driessche, E., Lockhart, L.C., Cobo, F. Stimberg, N., Casagrande, D., Grewe, S., Noury, S., Dieleman, E., Elsen, N., Kalchbrenner, H., Zen, A., Graves, H., King, T., Walters, D., Belov, and D., Hassabis (2017) “Parallel WaveNet: fast high-fidelity speech synthesis”, arXiv:1711.10433.
– volume: 1
  start-page: 947
  year: 2022
  end-page: 961
  ident: bib0101
  article-title: Parallel instance query network for named entity recognition
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland
– start-page: 4681
  year: 2017
  end-page: 4690
  ident: bib0023
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 19
  start-page: 1258
  year: 2020
  end-page: 1267
  ident: bib0063
  article-title: Leafgan: an effective data augmentation method for practical plant disease diagnosis
  publication-title: IEEE Trans. Autom. Sci. Eng. Vol.
– volume: 5
  start-page: 1079
  year: 2020
  end-page: 1086
  ident: bib0090
  article-title: Combining domain adaptation and spatial consistency for unseen fruits counting: a quasi- unsupervised approach
  publication-title: IEEE Rob. Autom. Lett.
– volume: 293
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0165
  article-title: Fruit quality and defect image classification with conditional GAN data augmentation
  publication-title: Sci. Hortic.
– reference: J. Li, D. Chen, X. Qi, Z. Li, Y. Huang, D. Morris, and X. Tan (2023) Label efficient learning in agriculture A comprehensive review. arXivpreprint arXiv:2305.14691.
– volume: 187
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib0170
  article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2023
  end-page: 4
  ident: bib0102
  article-title: How can llms transform the e robotic design process
  publication-title: Nat. Mach. Intell.
– volume: 44
  year: 2021
  ident: bib0138
  article-title: Quality grading of jujubes using composite convolutional neural networks in combination with RGB color space segmentation and deep convolutional generative adversarial networks
  publication-title: J. Food Process. Eng.
– volume: 12
  year: 2022
  ident: bib0169
  article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition
  publication-title: Front. Plant Sci.
– volume: 13
  start-page: 13396
  year: 2021
  end-page: 14009
  ident: bib0042
  article-title: An approach towards iot-based predictive service for early detection of diseases in poultry chickens
  publication-title: Sustainability.
– reference: S. Jiang, R. Angarita, S. Cormier, and F. Rousseaux, (2021) “Fine-tuning BERT-based models for plant health bulletin classification,” arXiv:2102.00838.
– volume: 109
  start-page: 839
  year: 2021
  end-page: 862
  ident: bib0069
  article-title: Generative adversarial networks for image and video synthesis: algorithms and applications
  publication-title: Proceedings of IEEE
– reference: J. Chen, D. Zhang, A. Zeb, and Y.A. Nanehkaran, ‘‘Identification of rice plant diseases using lightweight attention networks,’’ Exp. Syst. Appl., vol. 169, 114514, pp. 1–21.
– reference: S.O. Arik, M., Chrzanowski, A., Coates, G., Diamos, A., Gibiansky, Y., Kang, X., Li, J., Miller, A., Ng, J., Raiman, S., Sengupta, and M., Shoeybi, (2017) “Deep voice: real-time neural text-to-speech,” p. arXiv:1702.07825.
– volume: 616
  start-page: 259
  year: 2023
  end-page: 265
  ident: bib0034
  article-title: Foundation models for generalist medical artificial intelligence
  publication-title: Nature
– volume: 168
  start-page: 1
  year: 2020
  end-page: 28
  ident: bib0068
  article-title: Unsupervised image translation using adversarial networks for improved plant disease recognition
  publication-title: Comput. Electron. Agric.
– reference: [Last Accessed 25 Feb 2024].
– reference: A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and T. Sutskever, (2019) “Language models are unsupervised multitask learners. OpenAI blog, 14 February. https://openai.com/research/better-languagemodels. [Last Accessed 2 Feb 2024].
– volume: 173
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib0088
  article-title: Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation
  publication-title: Comput. Electron. Agric.
– volume: 11
  start-page: 2873
  year: 2019
  ident: bib0096
  article-title: Monitoring within-field variability of corn yield using sentinel-2 and machine learn ing techniques
  publication-title: Remote Sens. (Basel)
– reference: S. Lin, J. Hilton, and O. Evans, (2021) “Truthfulqa: measuring how models mimic human falsehoods,” arXiv preprint arXiv:2109.07958.
– volume: 8
  start-page: 46
  year: 2019
  end-page: 57
  ident: bib0060
  article-title: Image-to-image translation with GAN for synthetic data augmentation in plant disease datasets
  publication-title: Korean Instit. Smart Media
– volume: 213
  start-page: 1
  year: 2023
  end-page: 22
  ident: bib0119
  article-title: KisanQRS: a deep learning-based automated query-response system for agricultural decision-making
  publication-title: Comput. Electron. Agric.
– reference: “OpenAI (2023b) How should AI systems behave, and who should decide?”
– start-page: 2337
  year: 2019
  end-page: 2346
  ident: bib0081
  article-title: Semantic image synthesis with spatially adaptive normalization
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: bib0128
  article-title: Large-model and generative-intelligence agricultural robot systems
  publication-title: Proceedings of International Annual Conference on Complex Systems and Intelligent Science October 20∼22, 2023, Shenzhen, China
– volume: 12
  start-page: 17945
  year: 2024
  end-page: 17965
  ident: bib0005
  article-title: GPT and interpolation-based data augmentation for multiclass intrusion detection in IIoT
  publication-title: IEEe Access.
– volume: 14
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib0100
  article-title: A study of sentiment analysis algorithms for agricultural product reviews based on improved BERT model
  publication-title: Symmetry. (Basel)
– volume: 115
  year: 2022
  ident: bib0014
  article-title: Ensemble deep learning: a review
  publication-title: Eng. Appl. Artif. Intell.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0045
  article-title: Assessing activity and location of individual laying hens in large groups using modern technology
  publication-title: Animals
– volume: 13
  start-page: 1
  year: 2023
  end-page: 23
  ident: bib0086
  article-title: Weed detection in wheat crops using image analysis and artificial intelligence (AI)
  publication-title: Appl. Sci.
– volume: 76
  start-page: 16
  year: 2011
  end-page: 27
  ident: bib0103
  article-title: A web-based intelligent disease- diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops
  publication-title: Comput. Electron. Agric.
– reference: Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, Q.V. Do, Y. Xu, and P. Fung, (2023) “A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity” arXiv:2302.04023.
– volume: 8
  start-page: 98716
  year: 2020
  end-page: 98728
  ident: bib0057
  article-title: Dcgan-based data augmentation for tomato leaf disease identification
  publication-title: IEEe Access.
– reference: M.U. Haque, I. Dharmadasa, Z.T. Sworna, R.N. Rajapakse, and H. Ahmad, (2022) ‘‘I think this is the most disruptive technology’’: exploring sentiments of ChatGPT early adopters using Twitter data”, arXiv:2212.05856.
– year: 2018
  ident: bib0153
  article-title: Looking beyond the surface: a challenge set for reading compre hension over multiple sentences
  publication-title: Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL)
– volume: 11
  start-page: 939
  year: 2019
  ident: bib0066
  article-title: Solving current limitations of deep learning-based approaches for plant disease detection
  publication-title: Symmetry. (Basel)
– start-page: 4779
  year: 2018
  end-page: 4783
  ident: bib0116
  article-title: Natural TTS synthesis by conditioning wavenet on MEL spectrogram predictions
  publication-title: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 134
  start-page: 1
  year: 2023
  end-page: 35
  ident: bib0004
  article-title: Harnessing GPT-4 for generation of cybersecurity GRC policies: a focus on ransomware attack mitigation
  publication-title: Comput. Secur.
– reference: V. Zhong, C. Xiong, and R. Socher, “Seq2sql: generating structured queries from natural language using reinforcement learning,” arXiv preprint arXiv:1709.00103, 2017.
– volume: 8
  start-page: 62448
  year: 2020
  end-page: 62457
  ident: bib0040
  article-title: Dairy goat image generation based on improved-self-attention generative adversarial networks
  publication-title: IEEe Access.
– volume: 13
  start-page: 1
  year: 2023
  end-page: 22
  ident: bib0118
  article-title: A survey on deep learning and its impact on agriculture: challenges and opportunities
  publication-title: Agriculture
– volume: 10
  start-page: 2633
  year: 2021
  end-page: 2649
  ident: bib0136
  article-title: Domain adaptation of synthetic images for wheat head detection
  publication-title: Plants
– year: 2018
  ident: bib0160
  article-title: Can a suit of armor conduct electricity? A new dataset for open book question answering
  publication-title: CoRR
– volume: 21
  start-page: 7903
  year: 2021
  end-page: 7929
  ident: bib0064
  article-title: Super-resolution generative adversarial network (srgans) for wheat stripe rust classification
  publication-title: Sensors
– reference: C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, and K. Zhang, (2023), “A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT”, arXiv:2302.09419.
– volume: 39
  year: 2021
  ident: bib0029
  article-title: Smart farming in Europe
  publication-title: Comput. Sci. Rev.
– year: 2017
  ident: bib0073
  article-title: ARIGAN: synthetic Arabidopsis plants using generative adversarial network
  publication-title: Proceedings of IEEE International conference on computer vision workshops (ICCVW)
– volume: 70
  start-page: 1
  year: 2022
  end-page: 17
  ident: bib0077
  article-title: ‘Automatic strawberry leaf scorch severity estimation via faster R-CNN and few-shot learning
  publication-title: Ecol. Informat.
– start-page: 785
  year: 2017
  end-page: 794
  ident: bib0150
  article-title: RACE: large-scale ReAding comprehension dataset from examinations
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing
– volume: 12
  year: 2022
  ident: bib0070
  article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition
  publication-title: Front. Plant Sci.
– start-page: 1
  year: 2019
  end-page: 34
  ident: bib0026
  article-title: Large scale GAN training for high fidelity natural image synthesis
  publication-title: proceedings of 7th International Conference on Learning Representations (ICLR)
– start-page: 1
  year: 2024
  end-page: 39
  ident: bib0072
  article-title: A super resolution method based on generative adversarial networks with quantum feature enhancement: application to aerial agricultural images
  publication-title: Neurocomputing.
– volume: 8
  start-page: 1
  year: 2024
  end-page: 66
  ident: bib0107
  article-title: Generative AI: a systematic review using topic modelling techniques
  publication-title: Data Inf. Manage
– start-page: 647
  year: 2013
  end-page: 657
  ident: bib0109
  article-title: Deep learning for Chinese word segmentation and POS tagging
  publication-title: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics
– reference: M. Mirza, and S. Osindero, (2014), “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784.
– volume: 540
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib0049
  article-title: Application of machine learning in intelligent fish aquaculture: a review
  publication-title: Aquaculture
– reference: R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, (2019) “Hellaswag: can a machine really finish your sentence?”
– volume: 190
  start-page: 1
  year: 2021
  end-page: 19
  ident: bib0134
  article-title: Temporal prediction and evaluation of brassica growth in the field using conditional generative adversarial networks
  publication-title: Comput. Electron. Agric.
– volume: 7
  start-page: 452
  year: 2019
  end-page: 466
  ident: bib0143
  article-title: Natural questions: a benchmark for question answering research
  publication-title: Trans. Assoc. Comput. Linguist.
– start-page: 345
  year: 2016
  end-page: 353
  ident: bib0111
  article-title: Bi-directional LSTM recurrent neural network for Chinese word segmentation
  publication-title: Neural Inf. Process.
– volume: 163
  start-page: 1
  year: 2019
  end-page: 41
  ident: bib0051
  article-title: A low shot learning method for tea leaf's disease identification
  publication-title: Comput. Electron. Agric.
– volume: 175
  year: 2020
  ident: bib0164
  article-title: Data augmentation using improved cdcgan for plant vigor rating
  publication-title: Comput. Electron. Agric.
– year: 2021
  ident: bib0155
  article-title: Measuring mathematical problem solving with the MATH dataset
  publication-title: CoRR
– volume: 23
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib0039
  article-title: FCMCPS-COVID: AI propelled fog–cloud inspired scalable medical cyber-physical system, specific to coronavirus disease
  publication-title: Internet Things
– volume: 39
  start-page: 640
  year: 2016
  end-page: 651
  ident: bib0020
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEe Trans. Pattern. Anal. Mach. Intell.
– volume: 22
  start-page: 1
  year: 2024
  end-page: 12
  ident: bib0050
  article-title: Exploring opportunities of artificial intelligence in aquaculture to meet increasing food demand
  publication-title: Food Chem. X.
– volume: 163
  start-page: 1
  year: 2019
  end-page: 33
  ident: bib0058
  article-title: A low shot learning method for tea leaf's disease identification
  publication-title: Comput. Electron. Agric.
– year: 2019
  ident: bib0152
  article-title: Boolq: exploring the surprising difficulty of natural yes/no questions
  publication-title: CoRR
– volume: 204
  start-page: 79
  year: 2021
  end-page: 89
  ident: bib0085
  article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification
  publication-title: Biosyst. Eng.
– volume: 9
  start-page: 4166
  year: 2019
  end-page: 4179
  ident: bib0137
  article-title: Deep-learning based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry
  publication-title: Appl. Sci.
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: bib0021
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– year: 2021
  ident: bib0154
  article-title: Training verifiers to solve math word problems
  publication-title: CoRR
– volume: 66
  start-page: 111
  year: 2024
  end-page: 126
  ident: bib0017
  article-title: Generative AI
  publication-title: Bus. Inf. Syst. Eng.
– volume: 204
  start-page: 79
  year: 2021
  end-page: 89
  ident: bib0082
  article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification
  publication-title: Biosyst. Eng.
– volume: 12
  start-page: 514
  year: 2021
  end-page: 519
  ident: bib0059
  article-title: Early prediction of plant diseases using CNN and GANs
  publication-title: Int. J. Adv. Comput. Sci. Appl. vol.
– reference: W. Ping, K., Peng, A., Gibiansky, S.O., Arik, A., Kannan, S., Narang, J., Raiman, and J., Miller (2017) “Deep Voice 3: scaling text-to-speech with convolutional sequence learning”, p. arXiv:1710.07654.
– year: 2019
  ident: bib0158
  article-title: PIQA: reasoning about physical commonsense in natural language
  publication-title: CoRR
– volume: 9
  start-page: 4097
  year: 2021
  end-page: 4111
  ident: bib0001
  article-title: Towards smart agriculture monitoring using fuzzy systems
  publication-title: IEEe Access.
– volume: 191
  start-page: 1
  year: 2021
  end-page: 19
  ident: bib0078
  article-title: ‘Self-supervised contrastive learning onagricultural images
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 1
  year: 2023
  end-page: 25
  ident: bib0105
  article-title: Automatic speech recognition for Uyghur, Kazakh, and Kyrgyz: an overview
  publication-title: Appl. Sci.
– volume: 100259
  start-page: 1
  year: 2023
  end-page: 28
  ident: bib0030
  article-title: A review of three-dimensional vision techniques in food and agriculture applications
  publication-title: Smart Agric. Technol.
– start-page: 2174
  year: 2018
  end-page: 2184
  ident: bib0146
  article-title: QuAC: question answering in context
  publication-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics
– volume: 11
  start-page: 2671
  year: 2019
  end-page: 2698
  ident: bib0132
  article-title: Disentangling information in artificial images of plant seedlings using semi-supervised GAN
  publication-title: Remote Sens. Vol.
– volume: 208
  start-page: 176
  year: 2021
  end-page: 185
  ident: bib0142
  article-title: Detection and classification of damaged wheat kernels based on progressive neural architecture search
  publication-title: Biosyst. Eng.
– volume: 20
  start-page: 29
  year: 2020
  end-page: 35
  ident: bib0056
  article-title: Data augmentation using adversarial networks for tea disease detection
  publication-title: J. Elektronika danTelekomunikasi
– reference: J. Kierdorf, I., Weber, A., Kicherer, L., Zabawa, L., Drees, L., and R. Roscher, (2022) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325.
– start-page: 2064
  year: 2017
  end-page: 2071
  ident: bib0129
  article-title: ARIGAN: synthetic arabidopsis plants using generative adversarial network
  publication-title: Proceedings of IEEE International Conference on Computer Vision Workshops
– volume: 20
  start-page: 4601
  year: 2020
  ident: bib0065
  article-title: Crop disease classification on inadequate low- resolution target images
  publication-title: Sensors
– reference: L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang (2022c) “Diffusion models: a comprehensive survey of methods and applications,” arXiv preprint arXiv:2209.00796, 2022c.
– reference: J. Kierdorf, L., Weber, A., Kicherer, L., Zabawa, L., Drees, and R., Roscher, (2021) “Behind the leaves – Estimation of occluded grapevine berries with conditional generative adversarial networks” arXiv preprint arXiv:2105.10325.
– volume: 167
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib0009
  article-title: The risks of using ChatGPT to obtain common safety-related information and advice
  publication-title: Saf. Sci.
– year: 2018
  ident: bib0130
  article-title: Data augmentation using conditional generative adversarial networks for leaf counting in arabidopsis plants
  publication-title: Proceedings of British Machine Vision Conference, Workshop on Computer Vision Problems in Plant Phenotyping
– reference: M.T. Kuska, M. Wahabzada, and S. Paulus “AI for crop production – Where can large language models (LLMs) provide substantial value”, Comput. Electron. Agric. 221 (108924), 1–4.
– volume: 11
  start-page: 939
  year: 2019
  ident: bib0075
  article-title: Solving current limitations of deep learning-based approaches for plant disease detection
  publication-title: Symmetry. (Basel)
– volume: 215
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib0168
  article-title: Pros and cons of GAN evaluation measures: new developments
  publication-title: Comput. Vis. Image Underst.
– volume: 104
  start-page: 1
  year: 2022
  end-page: 26
  ident: bib0012
  article-title: Recent trends of smart agricultural systems based on Internet of Things technology: a survey
  publication-title: Comput. Electric. Eng.
– reference: ”, [Last Accessed 10 Feb 2024].
– volume: 102
  start-page: 1463
  year: 2020
  end-page: 1485
  ident: bib0038
  article-title: Cloud resource management using 3Vs of internet of big data streams
  publication-title: Computing
– volume: 82
  start-page: 15171
  year: 2022
  end-page: 15197
  ident: bib0117
  article-title: A deep learning approaches in text-to-speech system: a systematic review and recent research perspective
  publication-title: Multimed. Tools. Appl.
– volume: 167
  start-page: 1
  year: 2019
  end-page: 39
  ident: bib0046
  article-title: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aqua culture
  publication-title: Comput. Electron. Agric.
– start-page: 1293
  year: 2022
  end-page: 1304
  ident: bib0172
  article-title: Evidence for hypodescent in visual semantic AI
  publication-title: Proceedings of ACM conference on fairness, account ability, and transparency
– volume: 177
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib0092
  article-title: Reconstruction of kiwifruit fruit geometry using a cgan trained on a synthetic dataset
  publication-title: Comput. Electron. Agric.
– volume: 1883
  year: 2021
  ident: bib0061
  article-title: Few-shot grape leaf diseases classification based on generative adversarial network
  publication-title: J. Phys. Conf. Ser.
– volume: 187
  start-page: 147
  year: 2019
  end-page: 159
  ident: bib0131
  article-title: Generating artificial images of plant seedlings using generative adversarial networks
  publication-title: Biosyst. Eng.
– start-page: 1
  year: 2018
  end-page: 26
  ident: bib0024
  article-title: Progressive growing of GANs for improved quality, stability, and variation
  publication-title: proceedings of International Conference on Learning Representations
– reference: S. Yoon, Y. Cho, and T.I. Ahn (2024) “Melon fruit detection and quality assessment using generative AI-based image data augmentation”, arXiv:2407.10413v1 [cs.CV], 1–8.
– volume: 20
  start-page: 4430
  year: 2020
  end-page: 4448
  ident: bib0089
  article-title: Pine cone detection using boundary equilibrium generative adversarial networks and improved yolov3 model
  publication-title: Sensors
– volume: 5
  start-page: 29
  year: 2018
  end-page: 126
  ident: bib0104
  article-title: Agricultural E-Extension Services: a hybrid of multilingual translation text-to-speech-A framework. I-manager's
  publication-title: J. Pattern Recogn
– volume: 2
  start-page: 567
  year: 2016
  end-page: 572
  ident: bib0112
  article-title: Dependency-based gated recursive neural network for Chinese word segmentation
  publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
– start-page: 1
  year: 2021
  end-page: 27
  ident: bib0144
  article-title: Measuring massive multitask language understanding
  publication-title: Proceedings of 9th International Conference on Learning Representations (ICLR), Vienna, Austria
– volume: 16
  year: 2021
  ident: bib0084
  article-title: A novel semi- supervised framework for UAV based crop/weed classification
  publication-title: PLoS. One
– volume: 174
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib0140
  article-title: Unsupervised adversarial deep domain adaptation method for potato defects classification
  publication-title: Comput. Electron. Agric.
– volume: 198
  start-page: 1
  year: 2022
  end-page: 27
  ident: bib0008
  article-title: Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming
  publication-title: Comput. Electron. Agric.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 26
  ident: bib0098
  article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition
  publication-title: Front. Plant Sci.
– reference: J. Gao, H. Zhao, C. Yu, and R. Xu, (2023) “Exploring the feasibility of ChatGPT for event extraction,” arXiv:2303.03836.
– reference: Y. Zhuang, Y. Yu, K. Wang, H. Sun, and C. Zhang, (2023) “Toolqa: a dataset for llm question answering with external tools,” arXiv preprint arXiv:2306.13304.
– volume: 187
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0052
  article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images
  publication-title: Comput. Electron. Agric.
– volume: 153
  start-page: 69
  year: 2017
  end-page: 80
  ident: bib0028
  article-title: Big data in smart farming–a review
  publication-title: Agric. Syst.
– volume: 180
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0099
  article-title: Advance research in agricultural text-to-speech: the word segmentation of analytic language and the deep learning-based end-to-end system
  publication-title: Comput. Electron. Agric.
– reference: [cs.CL] 19 May 2019.
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: bib0035
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1883
  year: 2021
  ident: bib0054
  article-title: Few-shot grape leaf diseases classification based on generative adversarial network
  publication-title: J. Phys. Conf. Ser.
– reference: J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, and Q. Le (2021), “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732, 2021.
– year: 2019
  ident: bib0159
  article-title: Socialiqa: commonsense reasoning about social interactions
  publication-title: CoRR
– start-page: 153
  year: 2011
  end-page: 154
  ident: bib0097
  article-title: A speech-based conversation system for accessing agriculture commodity prices in indian languages
  publication-title: Proceedings of Joint Workshop on Hands-free Speech Communication and Microphone Arrays
– reference: D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, (2021) “Measuring coding challenge competence with apps,” https://arxiv.org/abs/2105.09938.
– volume: 293
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0139
  article-title: Fruit quality and defect image classification with conditional GAN data augmentation
  publication-title: Sci. Hortic.
– volume: 213
  start-page: 1
  year: 2023
  end-page: 31
  ident: bib0003
  article-title: GPT-aided diagnosis on agricultural image based on a new light YOLOPC
  publication-title: Comput. Electron. Agric.
– start-page: 4401
  year: 2019
  end-page: 4410
  ident: bib0025
  article-title: A style-based generator architecture for generative adversarial networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bib0162
  article-title: Hotpotqa: a dataset for diverse, explainable multi-hop question answering
  publication-title: CoRR
– reference: T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A., Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, and D. Amodei, (2020) “Language models are few-shot learners” arXiv. https://doi.org/10.48550/arxiv.2005.14165.
– volume: 12
  start-page: 2493
  year: 2011
  end-page: 2537
  ident: bib0108
  article-title: Natural language processing (Almost) from scratch
  publication-title: J. Mach. Learn. Res.
– volume: 175
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib0133
  article-title: Data augmentation using improved cdcgan for plant vigor rating
  publication-title: Comput. Electron. Agric.
– start-page: 2383
  year: 2016
  end-page: 2392
  ident: bib0151
  article-title: SQuAD: 100,000+ questions for machine comprehension of text
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics
– volume: 17
  start-page: 2
  year: 2021
  end-page: 13
  ident: bib0048
  article-title: Identification of cucumber leaf diseases using deep learning and small sample size for agricultural internet of things
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 165
  start-page: 1
  year: 2019
  end-page: 26
  ident: bib0053
  article-title: Novel data augmentation strategies to boost supervised segmentation of plant disease
  publication-title: Comput. Electron. Agric.
– year: 2018
  ident: bib0157
  article-title: Think you have solved question answering? Try arc, the AI2 reasoning challenge
  publication-title: CoRR
– reference: OpenAI. Introducing chatbot. https://openai.com/blog/chatgpt, 2022. [Last accessed 29 Feb 2024].
– volume: 19
  start-page: 1258
  year: 2022
  end-page: 1267
  ident: bib0079
  article-title: ‘LeafGAN: an effective data augmentation method for practical plant disease diagnosis
  publication-title: IEEe Trans. Autom. Sci. Eng.
– start-page: 1269
  year: 2021
  end-page: 1277
  ident: bib0091
  article-title: Enlisting 3D crop models and GANs for more data efficient and generalizable fruit detection
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2019
  ident: bib0062
  article-title: Detection of apple lesions in orchards BASED on deep learning methods of cyclegan and yolov3-dense
  publication-title: J. Sens.
– volume: 7
  start-page: 14985
  year: 2018
  end-page: 15006
  ident: bib0018
  article-title: Recent advances of generative adversarial networks in computer vision
  publication-title: IEEe Access.
– volume: 102623
  start-page: 1
  year: 2023
  end-page: 25
  ident: bib0043
  article-title: Artificial intelligence in innovation research: a systematic review, conceptual framework, and future research directions
  publication-title: Technovation
– start-page: 1197
  year: 2015
  end-page: 1206
  ident: bib0110
  article-title: Long short-term memory neural networks for Chinese word segmentation
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Lisbon, Portugal,
– volume: 29
  start-page: 4557
  year: 2022
  end-page: 4597
  ident: bib0013
  article-title: Machine learning for smart agriculture and precision farming: towards making the fields talk
  publication-title: Arch. Comput. Methods Eng.
– volume: 10
  start-page: 9483
  year: 2022
  end-page: 9505
  ident: bib0037
  article-title: A survey on the role of iot in agriculture for the implementation of smart livestock environment
  publication-title: IEEe Access.
– volume: 34
  start-page: 19
  year: 2022
  end-page: 33
  ident: bib0122
  article-title: A classification method of agricultural news text based on BERT and deep active learning
  publication-title: J. Libr. Inf. Sci. Agric.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0166
  article-title: Improving image-based plant disease classification with generative adversarial network under limited training set
  publication-title: Front. Plant Sci.
– volume: 1
  start-page: 1601
  year: 2017
  end-page: 1611
  ident: bib0149
  article-title: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension
  publication-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
– reference: T. Karras, M., Aittala, J., Hellsten, S., Laine, J., Lehtinen, and T., Aila, (2020) “Training generative adversarial networks with limited data,” In Proceedings of 34th Conference on Neural Information Processing Systems vol. 33, pp. 12104–12114.
– reference:
– volume: 3
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib0010
  article-title: Smart farming using Machine Learning and Deep Learning techniques
  publication-title: Decis. Anal. J.
– volume: 55
  start-page: 1
  year: 2023
  end-page: 38
  ident: bib0171
  article-title: Survey of hallucination in natural language generation
  publication-title: ACM. Comput. Surv.
– volume: 206
  year: 2023
  ident: bib0071
  article-title: Harnessing artificial Neural Networks and large language models for bioprocess optimization: predicting sugar output from Kraft waste-based lignocellulosic pretreatments
  publication-title: Indust. Crops Prod.
– start-page: 1
  year: 2022
  end-page: 6
  ident: bib0002
  article-title: IoT-based smart agriculture monitoring system
  publication-title: Proceedings of IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 2022
– reference: H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs.” arXiv preprint arXiv: 1905.10920.
– year: 2021
  ident: bib0027
  article-title: TransGAN: two pure transformers can make one strong gan, and that can scale up
  publication-title: proceedings of 34th Advances in Neural Information Processing Systems. NeurIPS Proceedings
– reference: A. Birhane, V.U. Prabhu, and E. Kahembwe (2021) “Multimodal datasets: misogyny, pornography, and malignant stereotypes.” arXiv:2110. 01963.
– reference: H. Kerdegari, M. Razaak, V. Argyriou, and P., Remagnino, (2019) “Semi-supervised GAN for classification of multispectral imagery acquired by UAVs” arXiv preprint arXiv: 1905.10920.
– volume: 1366395
  start-page: 1
  year: 2023
  end-page: 16
  ident: bib0094
  article-title: Robust deep learning method for fruit decay detection and plant identification: enhancing food security and quality control
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 49680
  year: 2019
  end-page: 49690
  ident: bib0055
  article-title: Classification of canker on small datasets using improved deep convolutional generative adversarial networks
  publication-title: IEEe Access.
– reference: R. Durall, A., Chatzimichailidis, P., Labus, and J., Keuper, (2020) “Combating mode collapse in GAN training: an empirical analysis using hessian eigenvalues” arXiv preprint arXiv: 2012.09673.
– volume: 189
  start-page: 1
  year: 2023
  end-page: 29
  ident: bib0011
  article-title: Understanding technology acceptance in smart agriculture: a systematic review of empirical research in crop production
  publication-title: Technol. Forecast. Soc. Change
– start-page: 2180
  year: 2016
  end-page: 2188
  ident: bib0022
  article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets
  publication-title: proceedings of 30th Conference on Neural Information Processing Systems
– start-page: 736
  year: 2021
  end-page: 744
  ident: bib0124
  article-title: CvT-ASSD: convolutional vision-transformer based atten tive single shot MultiBox detector
  publication-title: Proceedings of IEEE 33rd International Conference on Tools with Artificial Intelligence, (ICTAI)
– volume: 8
  start-page: 102188
  year: 2020
  end-page: 102198
  ident: bib0067
  article-title: A data augmentation method based on generative adversarial networks for grape leaf disease identification
  publication-title: IEEe Access.
– start-page: 13
  year: 2021
  end-page: 23
  ident: bib0041
  article-title: Muzzle pattern-based cattle identification using generative adversarial networks
  publication-title: Soft Comput. Prob. Solv.
– volume: 109
  start-page: 1
  year: 2024
  end-page: 17
  ident: bib0120
  article-title: Automatic speech recognition using advanced deep learning approaches: a survey
  publication-title: Inf. Fusion
– volume: 18
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0074
  article-title: Data augmentation using conditional generative adversarial networks for leaf counting in Arabidopsis plants
  publication-title: BMVC.
– volume: 47
  start-page: 1197
  year: 2015
  end-page: 1203
  ident: bib0106
  article-title: The research of chinese words segmentation
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 146
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib0080
  article-title: Multi-spectral image synthesis for crop/weed segmentation in precision farming
  publication-title: Rob. Auton. Syst.
– volume: 79
  start-page: 15
  year: 2024
  end-page: 33
  ident: bib0006
  article-title: Generative AI in mobile networks: a survey
  publication-title: Ann. Telecommun.
– reference: “agriGPT - the AI for agricultural applications,” agriGPT. https://agri gpt.com/[Last accessed Jan. 27, 2024].
– volume: 61
  start-page: 699
  year: 2018
  end-page: 710
  ident: bib0047
  article-title: Semi-supervised learning- based live fish identification in aquaculture using modified deep convolutional generative adversarial networks
  publication-title: Trans. ASABe
– volume: 13
  start-page: 45
  year: 2024
  end-page: 63
  ident: bib0087
  article-title: A comprehensive survey on weed and crop classification using machine learning and deep learning
  publication-title: Artif. Intell. Agric.
– volume: 8309605
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0135
  article-title: Tasselgan: an application of the generative adversarial model for creating field-based maize tassel data
  publication-title: Plant Phenomics.
– volume: 39
  start-page: 640
  issue: 4
  year: 2016
  ident: 10.1016/j.csi.2025.104005_bib0020
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEe Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 204
  start-page: 79
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0085
  article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.01.014
– volume: 293
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0139
  article-title: Fruit quality and defect image classification with conditional GAN data augmentation
  publication-title: Sci. Hortic.
– ident: 10.1016/j.csi.2025.104005_bib0167
– start-page: 4681
  year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0023
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– volume: 29
  start-page: 4557
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0013
  article-title: Machine learning for smart agriculture and precision farming: towards making the fields talk
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09761-4
– volume: 13
  start-page: 1
  issue: 8840
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0086
  article-title: Weed detection in wheat crops using image analysis and artificial intelligence (AI)
  publication-title: Appl. Sci.
– volume: 11
  start-page: 1500
  issue: 8
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0141
  article-title: Lychee surface defect detection based on deep convolutional neural networks with gan-based data augmentation
  publication-title: Agronomy
  doi: 10.3390/agronomy11081500
– start-page: 2180
  year: 2016
  ident: 10.1016/j.csi.2025.104005_bib0022
  article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets
– volume: 1
  start-page: 947
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0101
  article-title: Parallel instance query network for named entity recognition
– volume: 2
  start-page: 567
  year: 2016
  ident: 10.1016/j.csi.2025.104005_bib0112
  article-title: Dependency-based gated recursive neural network for Chinese word segmentation
– ident: 10.1016/j.csi.2025.104005_bib0115
– start-page: 1
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0144
  article-title: Measuring massive multitask language understanding
– year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0155
  article-title: Measuring mathematical problem solving with the MATH dataset
  publication-title: CoRR
– volume: 10
  start-page: 9483
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0037
  article-title: A survey on the role of iot in agriculture for the implementation of smart livestock environment
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2022.3142848
– start-page: 1
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0072
  article-title: A super resolution method based on generative adversarial networks with quantum feature enhancement: application to aerial agricultural images
  publication-title: Neurocomputing.
– ident: 10.1016/j.csi.2025.104005_bib0173
– volume: 9
  start-page: 4166
  issue: 19
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0137
  article-title: Deep-learning based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry
  publication-title: Appl. Sci.
  doi: 10.3390/app9194166
– year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0153
  article-title: Looking beyond the surface: a challenge set for reading compre hension over multiple sentences
– volume: 100259
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0030
  article-title: A review of three-dimensional vision techniques in food and agriculture applications
  publication-title: Smart Agric. Technol.
– volume: 11
  start-page: 1
  issue: 583438
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0166
  article-title: Improving image-based plant disease classification with generative adversarial network under limited training set
  publication-title: Front. Plant Sci.
– volume: 163
  start-page: 1
  issue: 104852
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0058
  article-title: A low shot learning method for tea leaf's disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.031
– start-page: 785
  year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0150
  article-title: RACE: large-scale ReAding comprehension dataset from examinations
– start-page: 2064
  year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0129
  article-title: ARIGAN: synthetic arabidopsis plants using generative adversarial network
– ident: 10.1016/j.csi.2025.104005_bib0044
  doi: 10.1016/j.compag.2024.108924
– volume: 175
  start-page: 1
  issue: 105603
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0133
  article-title: Data augmentation using improved cdcgan for plant vigor rating
  publication-title: Comput. Electron. Agric.
– volume: 8
  start-page: 46
  issue: 2
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0060
  article-title: Image-to-image translation with GAN for synthetic data augmentation in plant disease datasets
  publication-title: Korean Instit. Smart Media
  doi: 10.30693/SMJ.2019.8.2.46
– year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0062
  article-title: Detection of apple lesions in orchards BASED on deep learning methods of cyclegan and yolov3-dense
  publication-title: J. Sens.
  doi: 10.1155/2019/7630926
– volume: 215
  start-page: 1
  issue: 103329
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0168
  article-title: Pros and cons of GAN evaluation measures: new developments
  publication-title: Comput. Vis. Image Underst.
– start-page: 1197
  year: 2015
  ident: 10.1016/j.csi.2025.104005_bib0110
  article-title: Long short-term memory neural networks for Chinese word segmentation
– volume: 173
  start-page: 1
  issue: 105378
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0088
  article-title: Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation
  publication-title: Comput. Electron. Agric.
– ident: 10.1016/j.csi.2025.104005_bib0015
– ident: 10.1016/j.csi.2025.104005_bib0147
– start-page: 1293
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0172
  article-title: Evidence for hypodescent in visual semantic AI
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0074
  article-title: Data augmentation using conditional generative adversarial networks for leaf counting in Arabidopsis plants
  publication-title: BMVC.
– ident: 10.1016/j.csi.2025.104005_bib0032
– volume: 168
  start-page: 1
  issue: 105117
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0068
  article-title: Unsupervised image translation using adversarial networks for improved plant disease recognition
  publication-title: Comput. Electron. Agric.
– volume: 163
  start-page: 1
  issue: 104852
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0051
  article-title: A low shot learning method for tea leaf's disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.031
– start-page: 345
  year: 2016
  ident: 10.1016/j.csi.2025.104005_bib0111
  article-title: Bi-directional LSTM recurrent neural network for Chinese word segmentation
  publication-title: Neural Inf. Process.
– volume: 8
  start-page: 62448
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0040
  article-title: Dairy goat image generation based on improved-self-attention generative adversarial networks
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2020.2981496
– year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0158
  article-title: PIQA: reasoning about physical commonsense in natural language
  publication-title: CoRR
– volume: 5
  start-page: 1079
  issue: 2
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0090
  article-title: Combining domain adaptation and spatial consistency for unseen fruits counting: a quasi- unsupervised approach
  publication-title: IEEE Rob. Autom. Lett.
  doi: 10.1109/LRA.2020.2966398
– volume: 8
  start-page: 1
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0107
  article-title: Generative AI: a systematic review using topic modelling techniques
  publication-title: Data Inf. Manage
– volume: 180
  start-page: 1
  issue: 105908
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0099
  article-title: Advance research in agricultural text-to-speech: the word segmentation of analytic language and the deep learning-based end-to-end system
  publication-title: Comput. Electron. Agric.
– volume: 12
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0070
  article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.773142
– volume: 7
  start-page: 14985
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0018
  article-title: Recent advances of generative adversarial networks in computer vision
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2018.2886814
– start-page: 153
  year: 2011
  ident: 10.1016/j.csi.2025.104005_bib0097
  article-title: A speech-based conversation system for accessing agriculture commodity prices in indian languages
– volume: 11
  start-page: 939
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0075
  article-title: Solving current limitations of deep learning-based approaches for plant disease detection
  publication-title: Symmetry. (Basel)
  doi: 10.3390/sym11070939
– ident: 10.1016/j.csi.2025.104005_bib0127
  doi: 10.18653/v1/2023.ijcnlp-main.45
– year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0162
  article-title: Hotpotqa: a dataset for diverse, explainable multi-hop question answering
  publication-title: CoRR
– volume: 82
  start-page: 15171
  issue: 10
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0117
  article-title: A deep learning approaches in text-to-speech system: a systematic review and recent research perspective
  publication-title: Multimed. Tools. Appl.
  doi: 10.1007/s11042-022-13943-4
– volume: 109
  start-page: 1
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0120
  article-title: Automatic speech recognition using advanced deep learning approaches: a survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102422
– year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0154
  article-title: Training verifiers to solve math word problems
  publication-title: CoRR
– year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0159
  article-title: Socialiqa: commonsense reasoning about social interactions
  publication-title: CoRR
– volume: 616
  start-page: 259
  issue: 7956
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0034
  article-title: Foundation models for generalist medical artificial intelligence
  publication-title: Nature
  doi: 10.1038/s41586-023-05881-4
– volume: 206
  issue: 117686
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0071
  article-title: Harnessing artificial Neural Networks and large language models for bioprocess optimization: predicting sugar output from Kraft waste-based lignocellulosic pretreatments
  publication-title: Indust. Crops Prod.
– volume: 20
  start-page: 29
  issue: 1
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0056
  article-title: Data augmentation using adversarial networks for tea disease detection
  publication-title: J. Elektronika danTelekomunikasi
  doi: 10.14203/jet.v20.29-35
– volume: 13
  start-page: 1
  issue: 326
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0105
  article-title: Automatic speech recognition for Uyghur, Kazakh, and Kyrgyz: an overview
  publication-title: Appl. Sci.
– ident: 10.1016/j.csi.2025.104005_bib0178
  doi: 10.5220/0010167902110218
– start-page: 1269
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0091
  article-title: Enlisting 3D crop models and GANs for more data efficient and generalizable fruit detection
– volume: 12
  start-page: 17945
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0005
  article-title: GPT and interpolation-based data augmentation for multiclass intrusion detection in IIoT
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2024.3360879
– volume: 115
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0014
  article-title: Ensemble deep learning: a review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105151
– volume: 109
  start-page: 839
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0069
  article-title: Generative adversarial networks for image and video synthesis: algorithms and applications
– volume: 21
  start-page: 7903
  issue: 23
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0064
  article-title: Super-resolution generative adversarial network (srgans) for wheat stripe rust classification
  publication-title: Sensors
  doi: 10.3390/s21237903
– ident: 10.1016/j.csi.2025.104005_bib0076
  doi: 10.1016/j.eswa.2020.114514
– ident: 10.1016/j.csi.2025.104005_bib0175
– ident: 10.1016/j.csi.2025.104005_bib0113
– volume: 17
  start-page: 2
  issue: 4
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0048
  article-title: Identification of cucumber leaf diseases using deep learning and small sample size for agricultural internet of things
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/15501477211007407
– volume: 198
  start-page: 1
  issue: 107119
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0008
  article-title: Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming
  publication-title: Comput. Electron. Agric.
– start-page: 736
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0124
  article-title: CvT-ASSD: convolutional vision-transformer based atten tive single shot MultiBox detector
– volume: 12
  start-page: 1
  issue: 3361
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0098
  article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0100
  article-title: A study of sentiment analysis algorithms for agricultural product reviews based on improved BERT model
  publication-title: Symmetry. (Basel)
– start-page: 4779
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0116
  article-title: Natural TTS synthesis by conditioning wavenet on MEL spectrogram predictions
– volume: 1
  start-page: 1601
  year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0149
  article-title: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension
– volume: 175
  issue: 105603
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0164
  article-title: Data augmentation using improved cdcgan for plant vigor rating
  publication-title: Comput. Electron. Agric.
– volume: 19
  start-page: 1258
  issue: 2
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0079
  article-title: ‘LeafGAN: an effective data augmentation method for practical plant disease diagnosis
  publication-title: IEEe Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3041499
– volume: 79
  start-page: 15
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0006
  article-title: Generative AI in mobile networks: a survey
  publication-title: Ann. Telecommun.
  doi: 10.1007/s12243-023-00980-9
– year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0128
  article-title: Large-model and generative-intelligence agricultural robot systems
– volume: 47
  start-page: 1197
  year: 2015
  ident: 10.1016/j.csi.2025.104005_bib0106
  article-title: The research of chinese words segmentation
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 540
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0049
  article-title: Application of machine learning in intelligent fish aquaculture: a review
  publication-title: Aquaculture
– volume: 10
  start-page: 2633
  issue: 12
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0136
  article-title: Domain adaptation of synthetic images for wheat head detection
  publication-title: Plants
  doi: 10.3390/plants10122633
– volume: 104
  start-page: 1
  issue: 108453
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0012
  article-title: Recent trends of smart agricultural systems based on Internet of Things technology: a survey
  publication-title: Comput. Electric. Eng.
– volume: 12
  start-page: 514
  issue: 5
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0059
  article-title: Early prediction of plant diseases using CNN and GANs
  publication-title: Int. J. Adv. Comput. Sci. Appl. vol.
– volume: 44
  issue: 2
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0138
  article-title: Quality grading of jujubes using composite convolutional neural networks in combination with RGB color space segmentation and deep convolutional generative adversarial networks
  publication-title: J. Food Process. Eng.
  doi: 10.1111/jfpe.13620
– volume: 102
  start-page: 1463
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0038
  article-title: Cloud resource management using 3Vs of internet of big data streams
  publication-title: Computing
  doi: 10.1007/s00607-019-00732-5
– start-page: 13
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0041
  article-title: Muzzle pattern-based cattle identification using generative adversarial networks
  publication-title: Soft Comput. Prob. Solv.
  doi: 10.1007/978-981-16-2709-5_2
– year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0073
  article-title: ARIGAN: synthetic Arabidopsis plants using generative adversarial network
– volume: 187
  start-page: 1
  issue: 106279
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0170
  article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images
  publication-title: Comput. Electron. Agric.
– volume: 7
  start-page: 452
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0143
  article-title: Natural questions: a benchmark for question answering research
  publication-title: Trans. Assoc. Comput. Linguist.
– start-page: 2337
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0081
  article-title: Semantic image synthesis with spatially adaptive normalization
– year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0130
  article-title: Data augmentation using conditional generative adversarial networks for leaf counting in arabidopsis plants
– year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0152
  article-title: Boolq: exploring the surprising difficulty of natural yes/no questions
  publication-title: CoRR
– volume: 13
  start-page: 45
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0087
  article-title: A comprehensive survey on weed and crop classification using machine learning and deep learning
  publication-title: Artif. Intell. Agric.
– volume: 293
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0165
  article-title: Fruit quality and defect image classification with conditional GAN data augmentation
  publication-title: Sci. Hortic.
– volume: 167
  start-page: 1
  issue: 106244
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0009
  article-title: The risks of using ChatGPT to obtain common safety-related information and advice
  publication-title: Saf. Sci.
– volume: 70
  start-page: 1
  issue: 101706
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0077
  article-title: ‘Automatic strawberry leaf scorch severity estimation via faster R-CNN and few-shot learning
  publication-title: Ecol. Informat.
– ident: 10.1016/j.csi.2025.104005_bib0083
– volume: 213
  start-page: 1
  issue: 108168
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0003
  article-title: GPT-aided diagnosis on agricultural image based on a new light YOLOPC
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 13396
  issue: 23
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0042
  article-title: An approach towards iot-based predictive service for early detection of diseases in poultry chickens
  publication-title: Sustainability.
  doi: 10.3390/su132313396
– volume: 34
  start-page: 19
  issue: 8
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0122
  article-title: A classification method of agricultural news text based on BERT and deep active learning
  publication-title: J. Libr. Inf. Sci. Agric.
– volume: 190
  start-page: 1
  issue: 106415
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0134
  article-title: Temporal prediction and evaluation of brassica growth in the field using conditional generative adversarial networks
  publication-title: Comput. Electron. Agric.
– volume: 187
  start-page: 1
  issue: 106279
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0052
  article-title: Tomato plant disease detection using transfer learning with CGAN synthetic images
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0102
  article-title: How can llms transform the e robotic design process
  publication-title: Nat. Mach. Intell.
– start-page: 1
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0024
  article-title: Progressive growing of GANs for improved quality, stability, and variation
– volume: 3
  start-page: 1
  issue: 100041
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0010
  article-title: Smart farming using Machine Learning and Deep Learning techniques
  publication-title: Decis. Anal. J.
– volume: 8
  start-page: 102188
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0067
  article-title: A data augmentation method based on generative adversarial networks for grape leaf disease identification
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2020.2998839
– ident: 10.1016/j.csi.2025.104005_bib0177
  doi: 10.3389/frai.2022.830026
– volume: 11
  start-page: 939
  issue: 7
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0066
  article-title: Solving current limitations of deep learning-based approaches for plant disease detection
  publication-title: Symmetry. (Basel)
  doi: 10.3390/sym11070939
– volume: 20
  start-page: 4601
  issue: 16
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0065
  article-title: Crop disease classification on inadequate low- resolution target images
  publication-title: Sensors
  doi: 10.3390/s20164601
– ident: 10.1016/j.csi.2025.104005_bib0019
– volume: 39
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0029
  article-title: Smart farming in Europe
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100345
– volume: 1366395
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0094
  article-title: Robust deep learning method for fruit decay detection and plant identification: enhancing food security and quality control
  publication-title: Front. Plant Sci.
– volume: 61
  start-page: 699
  issue: 2
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0047
  article-title: Semi-supervised learning- based live fish identification in aquaculture using modified deep convolutional generative adversarial networks
  publication-title: Trans. ASABe
  doi: 10.13031/trans.12684
– volume: 20
  start-page: 4430
  issue: 16
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0089
  article-title: Pine cone detection using boundary equilibrium generative adversarial networks and improved yolov3 model
  publication-title: Sensors
  doi: 10.3390/s20164430
– volume: 208
  start-page: 176
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0142
  article-title: Detection and classification of damaged wheat kernels based on progressive neural architecture search
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.05.016
– volume: 11
  start-page: 2873
  issue: 23
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0096
  article-title: Monitoring within-field variability of corn yield using sentinel-2 and machine learn ing techniques
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11232873
– ident: 10.1016/j.csi.2025.104005_bib0036
– volume: 76
  start-page: 16
  year: 2011
  ident: 10.1016/j.csi.2025.104005_bib0103
  article-title: A web-based intelligent disease- diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.01.002
– start-page: 2383
  year: 2016
  ident: 10.1016/j.csi.2025.104005_bib0151
  article-title: SQuAD: 100,000+ questions for machine comprehension of text
– ident: 10.1016/j.csi.2025.104005_bib0121
  doi: 10.1007/s13042-024-02443-6
– year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0160
  article-title: Can a suit of armor conduct electricity? A new dataset for open book question answering
  publication-title: CoRR
– ident: 10.1016/j.csi.2025.104005_bib0114
– ident: 10.1016/j.csi.2025.104005_bib0174
– volume: 23
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0039
  article-title: FCMCPS-COVID: AI propelled fog–cloud inspired scalable medical cyber-physical system, specific to coronavirus disease
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100828
– volume: 9
  start-page: 4097
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0001
  article-title: Towards smart agriculture monitoring using fuzzy systems
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2020.3041597
– volume: 55
  start-page: 1
  issue: 12
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0171
  article-title: Survey of hallucination in natural language generation
  publication-title: ACM. Comput. Surv.
  doi: 10.1145/3571730
– start-page: 4401
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0025
  article-title: A style-based generator architecture for generative adversarial networks
– ident: 10.1016/j.csi.2025.104005_bib0033
  doi: 10.1016/j.compag.2023.108412
– start-page: 2223
  year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0021
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 191
  start-page: 1
  issue: 106510
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0078
  article-title: ‘Self-supervised contrastive learning onagricultural images
  publication-title: Comput. Electron. Agric.
– year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0157
  article-title: Think you have solved question answering? Try arc, the AI2 reasoning challenge
  publication-title: CoRR
– ident: 10.1016/j.csi.2025.104005_bib0163
– ident: 10.1016/j.csi.2025.104005_bib0125
– volume: 33
  start-page: 1877
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0035
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 165
  start-page: 1
  issue: 104967
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0053
  article-title: Novel data augmentation strategies to boost supervised segmentation of plant disease
  publication-title: Comput. Electron. Agric.
– ident: 10.1016/j.csi.2025.104005_bib0161
  doi: 10.18653/v1/2022.acl-long.229
– volume: 12
  start-page: 2493
  year: 2011
  ident: 10.1016/j.csi.2025.104005_bib0108
  article-title: Natural language processing (Almost) from scratch
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 1
  issue: 540
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0118
  article-title: A survey on deep learning and its impact on agriculture: challenges and opportunities
  publication-title: Agriculture
– volume: 8
  start-page: 98716
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0057
  article-title: Dcgan-based data augmentation for tomato leaf disease identification
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2020.2997001
– ident: 10.1016/j.csi.2025.104005_bib0016
– year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0027
  article-title: TransGAN: two pure transformers can make one strong gan, and that can scale up
– ident: 10.1016/j.csi.2025.104005_bib0031
  doi: 10.1109/IROS47612.2022.9981417
– volume: 7
  start-page: 49680
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0055
  article-title: Classification of canker on small datasets using improved deep convolutional generative adversarial networks
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2019.2900327
– volume: 134
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0004
  article-title: Harnessing GPT-4 for generation of cybersecurity GRC policies: a focus on ransomware attack mitigation
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103424
– start-page: 2174
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0146
  article-title: QuAC: question answering in context
– volume: 153
  start-page: 69
  year: 2017
  ident: 10.1016/j.csi.2025.104005_bib0028
  article-title: Big data in smart farming–a review
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.01.023
– volume: 102623
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0043
  article-title: Artificial intelligence in innovation research: a systematic review, conceptual framework, and future research directions
  publication-title: Technovation
– start-page: 1
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0026
  article-title: Large scale GAN training for high fidelity natural image synthesis
– ident: 10.1016/j.csi.2025.104005_bib0095
  doi: 10.12791/KSBEC.2024.33.4.352
– volume: 187
  start-page: 147
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0131
  article-title: Generating artificial images of plant seedlings using generative adversarial networks
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.09.005
– volume: 1883
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0061
  article-title: Few-shot grape leaf diseases classification based on generative adversarial network
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1883/1/012093
– ident: 10.1016/j.csi.2025.104005_bib0093
  doi: 10.3389/frai.2022.830026
– volume: 16
  issue: 5
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0084
  article-title: A novel semi- supervised framework for UAV based crop/weed classification
  publication-title: PLoS. One
  doi: 10.1371/journal.pone.0251008
– volume: 177
  start-page: 1
  issue: 105699
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0092
  article-title: Reconstruction of kiwifruit fruit geometry using a cgan trained on a synthetic dataset
  publication-title: Comput. Electron. Agric.
– volume: 11
  start-page: 2671
  issue: 22
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0132
  article-title: Disentangling information in artificial images of plant seedlings using semi-supervised GAN
  publication-title: Remote Sens. Vol.
  doi: 10.3390/rs11222671
– ident: 10.1016/j.csi.2025.104005_bib0126
– volume: 19
  start-page: 1258
  issue: 2
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0063
  article-title: Leafgan: an effective data augmentation method for practical plant disease diagnosis
  publication-title: IEEE Trans. Autom. Sci. Eng. Vol.
  doi: 10.1109/TASE.2020.3041499
– ident: 10.1016/j.csi.2025.104005_bib0145
– volume: 1883
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0054
  article-title: Few-shot grape leaf diseases classification based on generative adversarial network
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1883/1/012093
– volume: 204
  start-page: 79
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0082
  article-title: Combining generative adversarial networks and agricultural transfer learning for weeds identification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.01.014
– volume: 146
  start-page: 1
  issue: 103861
  year: 2021
  ident: 10.1016/j.csi.2025.104005_bib0080
  article-title: Multi-spectral image synthesis for crop/weed segmentation in precision farming
  publication-title: Rob. Auton. Syst.
– volume: 213
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0119
  article-title: KisanQRS: a deep learning-based automated query-response system for agricultural decision-making
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108180
– ident: 10.1016/j.csi.2025.104005_bib0156
  doi: 10.18653/v1/P19-1472
– volume: 174
  start-page: 1
  issue: 105501
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0140
  article-title: Unsupervised adversarial deep domain adaptation method for potato defects classification
  publication-title: Comput. Electron. Agric.
– volume: 12
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0169
  article-title: Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.773142
– ident: 10.1016/j.csi.2025.104005_bib0176
– volume: 167
  start-page: 1
  issue: 105087
  year: 2019
  ident: 10.1016/j.csi.2025.104005_bib0046
  article-title: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aqua culture
  publication-title: Comput. Electron. Agric.
– volume: 189
  start-page: 1
  year: 2023
  ident: 10.1016/j.csi.2025.104005_bib0011
  article-title: Understanding technology acceptance in smart agriculture: a systematic review of empirical research in crop production
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2023.122374
– ident: 10.1016/j.csi.2025.104005_bib0007
– volume: 6
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.csi.2025.104005_bib0045
  article-title: Assessing activity and location of individual laying hens in large groups using modern technology
  publication-title: Animals
  doi: 10.3390/ani6020010
– start-page: 647
  year: 2013
  ident: 10.1016/j.csi.2025.104005_bib0109
  article-title: Deep learning for Chinese word segmentation and POS tagging
– volume: 8309605
  start-page: 1
  year: 2020
  ident: 10.1016/j.csi.2025.104005_bib0135
  article-title: Tasselgan: an application of the generative adversarial model for creating field-based maize tassel data
  publication-title: Plant Phenomics.
– volume: 5
  start-page: 29
  year: 2018
  ident: 10.1016/j.csi.2025.104005_bib0104
  article-title: Agricultural E-Extension Services: a hybrid of multilingual translation text-to-speech-A framework. I-manager's
  publication-title: J. Pattern Recogn
– start-page: 1
  year: 2022
  ident: 10.1016/j.csi.2025.104005_bib0002
  article-title: IoT-based smart agriculture monitoring system
– volume: 22
  start-page: 1
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0050
  article-title: Exploring opportunities of artificial intelligence in aquaculture to meet increasing food demand
  publication-title: Food Chem. X.
– ident: 10.1016/j.csi.2025.104005_bib0123
– ident: 10.1016/j.csi.2025.104005_bib0148
– volume: 66
  start-page: 111
  issue: 1
  year: 2024
  ident: 10.1016/j.csi.2025.104005_bib0017
  article-title: Generative AI
  publication-title: Bus. Inf. Syst. Eng.
  doi: 10.1007/s12599-023-00834-7
SSID ssj0002637
Score 2.412407
SecondaryResourceType review_article
Snippet •We provide a detailed background of different types of large language models and their general architecture.•A comprehensive literature survey about large...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104005
SubjectTerms Agricultural text classification
ChatGPT
Generative AI
Generative pre-trained enerative pre-trained transformer (GPT)
Language models
Natural language processing
Semantic matching
Very large pre-trained language model
Title Fields of the future: Digital transformation in smart agriculture with large language models and generative AI
URI https://dx.doi.org/10.1016/j.csi.2025.104005
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qjuoEJydROnDhmqwpVC6ILVOoWOY5dBUFaNWHlt2PnIYoEC2MsW0o-X-4-25_vELrSKkp9azlY2NiLmaECS0F8nFLFTCCp9kN3G_lpGo5n7GEezDto2N6FcbLKxvfXPr3y1k1Lv0Gzv8qy_jMRnuUbkfCCKsuKW7czxp2V33x-yzy8sM6baTtj17s92aw0XqrI7BLRC9xJJ3EV7H6LTRvxZrSPdhuiCIP6XQ5QR-eHaK8twgDNP3mE8pHToBWwNGC5HNQ5Qm7hLlu4ciBQbhDTZQ5ZDsW7_T6Qi3WTdUOD24uFNycJh3b7EqoKOQXIPIVFlZnauUUYTI7RbHT_MhzjpogCVpa6lDigPKWp2_pVgfC48QhPjdQksm3KD4ylXxEJiUyUNolIWMiIhTQxoU-VRU_6J2grX-b6FIHmhkrOdURDzUgqE8a0FEx62tEGLrrouoUvXtW5MuJWRPYaW6xjh3VcY91FrAU4_jHhsfXlfw87-9-wc7Tjnmrl3gXaKtcf-tKyiTLpVebSQ9uDyeN4-gWDmskW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeNzAhhTqJ8zBbVahaaLvQSt0ix7GrIEirpqz8ds55iCLBwurYUvLFvvt8_nxHyI2SYeLizLE4-l6LaZtbglPXSmzJtCds5frmNvJo7Pen7GnmzRqkW9-FMbLKyvaXNr2w1lVLu0KzvUzT9gvlDvKNkDtekWUF9-1bDJevKWNw9_mt83D8MnEm9rZM9_posxB5yTzFPaLjmaNOakrY_eacNhxOb5_sVkwROuXLHJCGyg7JXl2FAapFeUSynhGh5bDQgGQOyiQh9_CQzk09EFhvMNNFBmkG-Tt-IIj5qkq7ocAEY-HNaMKhjl9CUSInB5ElMC9SUxu7CJ3BMZn2HifdvlVVUbAkcpe15dlBYicm9is97gTaoUGihaIhtknX08i_QupTEUulYx4zn1HENNa-a0tET7gnpJktMnVKQAXaFkGgQttXjCYiZkwJzoSjDG8IeIvc1vBFyzJZRlSryF4jxDoyWEcl1i3CaoCjH388QmP-97Cz_w27Jtv9yWgYDQfj53OyY56UMr4L0lyvPtQlUot1fFVMnS9SJMqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fields+of+the+future%3A+Digital+transformation+in+smart+agriculture+with+large+language+models+and+generative+AI&rft.jtitle=Computer+standards+and+interfaces&rft.au=Shaikh%2C+Tawseef+Ayoub&rft.au=Rasool%2C+Tabasum&rft.au=Mir%2C+Waseem+Ahmad&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0920-5489&rft.volume=94&rft_id=info:doi/10.1016%2Fj.csi.2025.104005&rft.externalDocID=S0920548925000340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5489&client=summon