A coupling of common–private topological patterns learning approach for cross-subject emotion recognition

Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research has focused on understanding brain spatial topological patterns to investigate dynamic mechanisms of brain functional region connectivities an...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 105; p. 107550
Main Authors Zhang, Haokai, Li, Pengrui, Chang, Hongli, Liu, Shihong, Qin, Yun, Xie, Jiaxin, Wang, Manqing, Gao, Dongrui, Wu, Dingming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2025
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2025.107550

Cover

Loading…
Abstract Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research has focused on understanding brain spatial topological patterns to investigate dynamic mechanisms of brain functional region connectivities and reduce individual variability. This paper introduces a novel learning approach, the Coupling of Common–Private Topological Patterns Learning Strategy (CPT-LS), to address inter-subject differences. The strategy involves encoding and decoding common brain spatial topological patterns, referred to as Combinatorial Brain Patterns (CBPs), shared among subjects in the same emotional state, as well as dynamically encoding and decoding private brain topological patterns (PBPs) unique to each subject in different emotional states. The Graph Noise Granularity Adjacency Matrix (GNGAM) is proposed to enhance the robustness of CBP and PBP learning. At the same time, the soft submodality orthogonalization method (SSO) is introduced to extract pattern-specific information and combine common and private representations to minimize inter-individual differences. The proposed method is evaluated using three public datasets, SEED, SEED-IV, and DEAP, demonstrating superior performance compared to existing approaches and offering a promising direction for advancing affective computing research. •We introduce the CPT-LS to enhance the representation of latent emotional patterns.•We introduce the GNGAM framework to perform adaptive feature-driven updates.•We study the patterns of coupled multi-subject common and private representations.
AbstractList Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research has focused on understanding brain spatial topological patterns to investigate dynamic mechanisms of brain functional region connectivities and reduce individual variability. This paper introduces a novel learning approach, the Coupling of Common–Private Topological Patterns Learning Strategy (CPT-LS), to address inter-subject differences. The strategy involves encoding and decoding common brain spatial topological patterns, referred to as Combinatorial Brain Patterns (CBPs), shared among subjects in the same emotional state, as well as dynamically encoding and decoding private brain topological patterns (PBPs) unique to each subject in different emotional states. The Graph Noise Granularity Adjacency Matrix (GNGAM) is proposed to enhance the robustness of CBP and PBP learning. At the same time, the soft submodality orthogonalization method (SSO) is introduced to extract pattern-specific information and combine common and private representations to minimize inter-individual differences. The proposed method is evaluated using three public datasets, SEED, SEED-IV, and DEAP, demonstrating superior performance compared to existing approaches and offering a promising direction for advancing affective computing research. •We introduce the CPT-LS to enhance the representation of latent emotional patterns.•We introduce the GNGAM framework to perform adaptive feature-driven updates.•We study the patterns of coupled multi-subject common and private representations.
ArticleNumber 107550
Author Zhang, Haokai
Li, Pengrui
Xie, Jiaxin
Liu, Shihong
Wu, Dingming
Gao, Dongrui
Qin, Yun
Chang, Hongli
Wang, Manqing
Author_xml – sequence: 1
  givenname: Haokai
  surname: Zhang
  fullname: Zhang, Haokai
  email: 3220604010@stu.cuit.edu.cn
  organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
– sequence: 2
  givenname: Pengrui
  orcidid: 0000-0002-1398-207X
  surname: Li
  fullname: Li, Pengrui
  email: 202411140622@std.uestc.edu.cn
  organization: School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 3
  givenname: Hongli
  surname: Chang
  fullname: Chang, Hongli
  email: hlchang@sdfmu.edu.cn
  organization: Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan.250117. Shandong China, Shandong Province, China
– sequence: 4
  givenname: Shihong
  surname: Liu
  fullname: Liu, Shihong
  email: 3210604003@stu.cuit.edu.cn
  organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
– sequence: 5
  givenname: Yun
  surname: Qin
  fullname: Qin, Yun
  email: yunqin@uestc.edu.cn
  organization: School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 6
  givenname: Jiaxin
  surname: Xie
  fullname: Xie, Jiaxin
  email: xiejiaxin@uestc.edu.cn
  organization: School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 7
  givenname: Manqing
  surname: Wang
  fullname: Wang, Manqing
  email: wangmanqing@cuit.edu.cn
  organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
– sequence: 8
  givenname: Dongrui
  surname: Gao
  fullname: Gao, Dongrui
  email: gdr1987@cuit.edu.cn
  organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
– sequence: 9
  givenname: Dingming
  orcidid: 0009-0004-0566-3660
  surname: Wu
  fullname: Wu, Dingming
  email: dmw@uestc.edu.cn
  organization: The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, China
BookMark eNp9kE1OwzAQhb0oEm3hAqx8gRQ7iZtEYlNV_FSqxAbWlj2xi0NiR7ZbiR134IacBIeyZjVvRvpG770FmllnFUI3lKwooevbbiXDCKuc5CwdKsbIDM1pVa6zmjTlJVqE0BFS1hUt5-h9g8Edx97YA3Y66WFw9vvza_TmJKLC0Y2udwcDosejiFF5G3CvhLcTIcbROwFvWDuPwbsQsnCUnYKI1eCicRZ7Be5gzaSv0IUWfVDXf3OJXh_uX7ZP2f75cbfd7DPIGY1ZqRsBNSkkUEVowSShudS1roVWVcvKtIkSKANgUhZN0RLayEaCWFdU6kQsUX7---vIK81TmkH4D04JnyriHZ8q4lNF_FxRgu7OkErOTkZ5HsAoC6o1KULkrTP_4T9kJHfy
Cites_doi 10.1073/pnas.2119599119
10.1109/JSEN.2022.3172133
10.1109/TCYB.2018.2797176
10.1109/TAFFC.2020.3013711
10.1109/TNSRE.2023.3253866
10.1109/MSP.2012.2235192
10.1109/JBHI.2021.3083525
10.1609/aaai.v35i1.16169
10.1109/TAMD.2015.2431497
10.1109/T-AFFC.2011.15
10.1609/aaai.v38i9.28867
10.1016/j.asoc.2022.108740
10.1016/j.neucom.2023.126262
10.1109/TII.2022.3217120
10.1109/JBHI.2022.3212475
10.1109/TAFFC.2020.2994159
10.1609/aaai.v34i03.5656
10.1109/JBHI.2023.3242090
10.1109/TAFFC.2018.2817622
10.1109/TASLP.2023.3245401
10.1109/TETC.2021.3087174
10.1109/TAFFC.2022.3189222
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2025.107550
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2025_107550
S1746809425000618
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c251t-4f9ac803bc1e0135b012bf8f8afe7d5412ba4c15cc5bb393d019b9bca671bf013
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 05:00:46 EDT 2025
Sat May 24 17:06:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph Noise Granularity Adjacency Matrix (GNGAM)
Brain spatial topological patterns
Soft Submodality Orthogonalization (SSO)
Combinatorial brain patterns (CBPs)
CPT-LS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-4f9ac803bc1e0135b012bf8f8afe7d5412ba4c15cc5bb393d019b9bca671bf013
ORCID 0000-0002-1398-207X
0009-0004-0566-3660
ParticipantIDs crossref_primary_10_1016_j_bspc_2025_107550
elsevier_sciencedirect_doi_10_1016_j_bspc_2025_107550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for EEG emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708, no. 03.
Liu, Guo, Chen, Wu, Zhang (b35) 2023
Zheng, Hu, Zhang, Li, Zheng (b10) 2021
Tang, Chen, Liu, Cai, Li (b14) 2022
Li, Xie, Chai, Wang, Yang (b2) 2022; 122
Li, Zhang, Liu, Lin, Zhang, Tang, Gao (b8) 2023
Li, Zhang, Chen, Yi, Chen (b34) 2022
Zheng, Lu (b28) 2015; 7
Liu, Dai, Zhang, Jin, Cao, Kong (b5) 2023
Wu, Teng, Fan, Pei, Li, Lv (b1) 2023; 31
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b30) 2011; 3
Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (b18) 2020; 13
Li, Chen, Li, Fu, Wu, Ji, Zhou, Niu, Shi, Zheng (b15) 2022
Shuman, Narang, Frossard, Ortega, Vandergheynst (b31) 2013; 30
Zhang, Liu, Zhang, Chen, Qin, Zheng (b32) 2022
Qian, Tan, Jiang, Tian (b4) 2022; 1
Gu, Wang, Xu, Li, Yang, Du (b27) 2022
Song, Zheng, Song, Cui (b23) 2018; 11
Gu, Zhong, Qu, Liu, Chen (b25) 2023
Zheng, Liu, Lu, Lu, Cichocki (b29) 2019; 49
Gao, Li, Wang, Liang, Liu, Zhou, Wang, Zhang (b9) 2023
Li, Li, Zhang, Tiwari (b13) 2021
Shen, Liu, Hu, Zhang, Song (b19) 2022
Huang, Gao, Zhao, Han, Han, Tang, Wang, Li, Tian, Li (b3) 2023; 2
Li, Li, Zhang, Li, Si, Li, Cao, Chen, Chen, Yao (b11) 2023
Song, Zheng, Liu, Zong, Cui, Li (b20) 2021; 10
Peng, Wang, Kong, Nie, Lu, Cichocki (b22) 2022; 13
Zhou, Li, Li, Ji, Shi, Zheng, Zhang, Chen, Cheng (b36) 2023; 544
Candia-Rivera, Catrambone, Thayer, Gentili, Valenza (b40) 2022; 119
Yao, Gu, Wang, Li (b17) 2022; 22
Zhang, Yu, Liu, Zhao, Zhang, Zheng (b24) 2021
L.-M. Zhao, X. Yan, B.-L. Lu, Plug-and-play domain adaptation for cross-subject EEG-based emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 863–870, no. 1.
Gao, Wang, Wang, Zhou, Zhang (b41) 2023
Alhuzali, Ananiadou (b6) 2021
Peng, Liu, Kong, Nie, Lu, Cichocki (b33) 2023; 19
Tian, Li, Yang, Hou, Yang, Song, Gao (b26) 2022; 27
Zhong, Wang, Miao (b12) 2020; 13
Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (b37) 2022; 13
D. Gao, H. Zhang, P. Li, T. Tang, S. Liu, Z. Zhou, S. Ying, Y. Zhu, Y. Zhang, A Local-Ascending-Global Learning Strategy for Brain-Computer Interface, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 10039–10047, no. 9.
Liu, Wang, Zhao, Li, Hu, Yu, Zhang (b39) 2022; 26
Liu, Sun, Guan, Xia, Li, Unoki, Zhao (b7) 2023; 31
Li, Xie, Wang, Yang (b38) 2023
Gao, Liu, Gao, Li, Zhang, Wang, Shen, Wang, Zhang (b42) 2024
Huang (10.1016/j.bspc.2025.107550_b3) 2023; 2
Zhang (10.1016/j.bspc.2025.107550_b32) 2022
Zhang (10.1016/j.bspc.2025.107550_b24) 2021
Li (10.1016/j.bspc.2025.107550_b13) 2021
Yao (10.1016/j.bspc.2025.107550_b17) 2022; 22
Song (10.1016/j.bspc.2025.107550_b20) 2021; 10
Li (10.1016/j.bspc.2025.107550_b11) 2023
10.1016/j.bspc.2025.107550_b21
10.1016/j.bspc.2025.107550_b43
Peng (10.1016/j.bspc.2025.107550_b22) 2022; 13
Song (10.1016/j.bspc.2025.107550_b23) 2018; 11
10.1016/j.bspc.2025.107550_b16
Zheng (10.1016/j.bspc.2025.107550_b29) 2019; 49
Li (10.1016/j.bspc.2025.107550_b34) 2022
Gao (10.1016/j.bspc.2025.107550_b9) 2023
Gao (10.1016/j.bspc.2025.107550_b41) 2023
Gao (10.1016/j.bspc.2025.107550_b42) 2024
Liu (10.1016/j.bspc.2025.107550_b5) 2023
Koelstra (10.1016/j.bspc.2025.107550_b30) 2011; 3
Shuman (10.1016/j.bspc.2025.107550_b31) 2013; 30
Alhuzali (10.1016/j.bspc.2025.107550_b6) 2021
Zheng (10.1016/j.bspc.2025.107550_b28) 2015; 7
Liu (10.1016/j.bspc.2025.107550_b7) 2023; 31
Liu (10.1016/j.bspc.2025.107550_b35) 2023
Du (10.1016/j.bspc.2025.107550_b37) 2022; 13
Qian (10.1016/j.bspc.2025.107550_b4) 2022; 1
Gu (10.1016/j.bspc.2025.107550_b27) 2022
Li (10.1016/j.bspc.2025.107550_b8) 2023
Tang (10.1016/j.bspc.2025.107550_b14) 2022
Li (10.1016/j.bspc.2025.107550_b2) 2022; 122
Candia-Rivera (10.1016/j.bspc.2025.107550_b40) 2022; 119
Zhou (10.1016/j.bspc.2025.107550_b36) 2023; 544
Wu (10.1016/j.bspc.2025.107550_b1) 2023; 31
Gu (10.1016/j.bspc.2025.107550_b25) 2023
Peng (10.1016/j.bspc.2025.107550_b33) 2023; 19
Shen (10.1016/j.bspc.2025.107550_b19) 2022
Li (10.1016/j.bspc.2025.107550_b15) 2022
Du (10.1016/j.bspc.2025.107550_b18) 2020; 13
Tian (10.1016/j.bspc.2025.107550_b26) 2022; 27
Zhong (10.1016/j.bspc.2025.107550_b12) 2020; 13
Liu (10.1016/j.bspc.2025.107550_b39) 2022; 26
Zheng (10.1016/j.bspc.2025.107550_b10) 2021
Li (10.1016/j.bspc.2025.107550_b38) 2023
References_xml – start-page: 1
  year: 2023
  end-page: 14
  ident: b38
  article-title: Brain emotion perception inspired EEG emotion recognition with deep reinforcement learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2023
  ident: b8
  article-title: An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue
  publication-title: Appl. Soft Comput.
– year: 2021
  ident: b6
  article-title: Improving textual emotion recognition based on intra-and inter-class variation
  publication-title: IEEE Trans. Affect. Comput.
– volume: 22
  start-page: 11954
  year: 2022
  end-page: 11964
  ident: b17
  article-title: A feature-fused convolutional neural network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Sens. J.
– start-page: 3642
  year: 2021
  end-page: 3647
  ident: b13
  article-title: Emotion recognition from multi-channel EEG data through a dual-pipeline graph attention network
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– start-page: 1
  year: 2022
  ident: b34
  article-title: Residual GCB-Net: Residual graph convolutional broad network on emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 13
  start-page: 1528
  year: 2022
  end-page: 1540
  ident: b37
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 27
  start-page: 363
  year: 2022
  end-page: 373
  ident: b26
  article-title: A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 1
  start-page: 38
  year: 2022
  end-page: 49
  ident: b4
  article-title: Deep learning with convolutional neural networks for EEG-based music emotion decoding and visualization
  publication-title: Brain-Appar. Commun.: J. Bacomics
– volume: 122
  year: 2022
  ident: b2
  article-title: Spatial-frequency convolutional self-attention network for EEG emotion recognition
  publication-title: Appl. Soft Comput.
– reference: L.-M. Zhao, X. Yan, B.-L. Lu, Plug-and-play domain adaptation for cross-subject EEG-based emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 863–870, no. 1.
– year: 2023
  ident: b41
  article-title: SFT-net: a network for detecting fatigue from EEG signals by combining 4d feature flow and attention mechanism
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 13
  start-page: 1528
  year: 2020
  end-page: 1540
  ident: b18
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– reference: D. Gao, H. Zhang, P. Li, T. Tang, S. Liu, Z. Zhou, S. Ying, Y. Zhu, Y. Zhang, A Local-Ascending-Global Learning Strategy for Brain-Computer Interface, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 10039–10047, no. 9.
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: b31
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b23
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– year: 2022
  ident: b27
  article-title: Frame-level teacher-student learning with data privacy for eeg emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2023
  ident: b5
  article-title: Brain-machine coupled learning method for facial emotion recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 1399
  year: 2021
  end-page: 1413
  ident: b20
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Trans. Emerg. Top. Comput.
– year: 2022
  ident: b15
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– year: 2023
  ident: b9
  article-title: CSF-GTNet: A novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 1
  year: 2022
  ident: b32
  article-title: EEG-based emotion recognition with emotion localization via hierarchical self-attention
  publication-title: IEEE Trans. Affect. Comput.
– volume: 13
  start-page: 1290
  year: 2020
  end-page: 1301
  ident: b12
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 26
  start-page: 5321
  year: 2022
  end-page: 5331
  ident: b39
  article-title: 3DCANN: A spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 31
  start-page: 1063
  year: 2023
  end-page: 1074
  ident: b7
  article-title: A discriminative feature representation method based on cascaded attention network with adversarial strategy for speech emotion recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– start-page: 1
  year: 2023
  end-page: 14
  ident: b35
  article-title: Fine-grained interpretability for EEG emotion recognition: Concat-aided grad-CAM and systematic brain functional network
  publication-title: IEEE Trans. Affect. Comput.
– year: 2023
  ident: b25
  article-title: A domain generative graph network for EEG-based emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 544
  year: 2023
  ident: b36
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
– volume: 13
  start-page: 1941
  year: 2022
  end-page: 1958
  ident: b22
  article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 2
  year: 2023
  ident: b3
  article-title: A novel brain inception neural network model using EEG graphic structure for emotion recognition
  publication-title: Brain-Appar. Commun.: J. Bacomics
– start-page: 1628
  year: 2021
  end-page: 1632
  ident: b10
  article-title: EEG emotion recognition based on hierarchy graph convolution network
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– year: 2022
  ident: b19
  article-title: Contrastive learning of subject-invariant eeg representations for cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– year: 2023
  ident: b11
  article-title: Effective emotion recognition by learning discriminative graph topologies in EEG brain networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 19
  start-page: 8104
  year: 2023
  end-page: 8115
  ident: b33
  article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inform.
– volume: 119
  year: 2022
  ident: b40
  article-title: Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal
  publication-title: Proc. Natl. Acad. Sci.
– volume: 31
  start-page: 1602
  year: 2023
  end-page: 1613
  ident: b1
  article-title: An investigation of olfactory-enhanced video on eeg-based emotion recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2024
  ident: b42
  article-title: A comprehensive adaptive interpretable takagi-sugeuo-kang fuzzy classifier for fatigue driving detection
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for EEG emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708, no. 03.
– year: 2021
  ident: b24
  article-title: SparseDGCNN: Recognizing emotion from multichannel EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– year: 2022
  ident: b14
  article-title: Deep EEG superresolution via correlating brain structural and functional connectivities
  publication-title: IEEE Trans. Cybern.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b28
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b30
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 49
  start-page: 1110
  year: 2019
  end-page: 1122
  ident: b29
  article-title: EmotionMeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b34
  article-title: Residual GCB-Net: Residual graph convolutional broad network on emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b32
  article-title: EEG-based emotion recognition with emotion localization via hierarchical self-attention
  publication-title: IEEE Trans. Affect. Comput.
– volume: 119
  issue: 21
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b40
  article-title: Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2119599119
– year: 2023
  ident: 10.1016/j.bspc.2025.107550_b9
  article-title: CSF-GTNet: A novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2022
  ident: 10.1016/j.bspc.2025.107550_b27
  article-title: Frame-level teacher-student learning with data privacy for eeg emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 22
  start-page: 11954
  issue: 12
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b17
  article-title: A feature-fused convolutional neural network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3172133
– year: 2023
  ident: 10.1016/j.bspc.2025.107550_b8
  article-title: An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue
  publication-title: Appl. Soft Comput.
– year: 2022
  ident: 10.1016/j.bspc.2025.107550_b14
  article-title: Deep EEG superresolution via correlating brain structural and functional connectivities
  publication-title: IEEE Trans. Cybern.
– volume: 49
  start-page: 1110
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2025.107550_b29
  article-title: EmotionMeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– year: 2023
  ident: 10.1016/j.bspc.2025.107550_b41
  article-title: SFT-net: a network for detecting fatigue from EEG signals by combining 4d feature flow and attention mechanism
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 13
  start-page: 1528
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b37
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.3013711
– year: 2022
  ident: 10.1016/j.bspc.2025.107550_b15
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 31
  start-page: 1602
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b1
  article-title: An investigation of olfactory-enhanced video on eeg-based emotion recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3253866
– year: 2024
  ident: 10.1016/j.bspc.2025.107550_b42
  article-title: A comprehensive adaptive interpretable takagi-sugeuo-kang fuzzy classifier for fatigue driving detection
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b38
  article-title: Brain emotion perception inspired EEG emotion recognition with deep reinforcement learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2021
  ident: 10.1016/j.bspc.2025.107550_b24
  article-title: SparseDGCNN: Recognizing emotion from multichannel EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.bspc.2025.107550_b31
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– volume: 26
  start-page: 5321
  issue: 11
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b39
  article-title: 3DCANN: A spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2021.3083525
– ident: 10.1016/j.bspc.2025.107550_b16
  doi: 10.1609/aaai.v35i1.16169
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2025.107550_b28
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.bspc.2025.107550_b30
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: 10.1016/j.bspc.2025.107550_b43
  doi: 10.1609/aaai.v38i9.28867
– volume: 2
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b3
  article-title: A novel brain inception neural network model using EEG graphic structure for emotion recognition
  publication-title: Brain-Appar. Commun.: J. Bacomics
– start-page: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b35
  article-title: Fine-grained interpretability for EEG emotion recognition: Concat-aided grad-CAM and systematic brain functional network
  publication-title: IEEE Trans. Affect. Comput.
– volume: 122
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b2
  article-title: Spatial-frequency convolutional self-attention network for EEG emotion recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108740
– volume: 13
  start-page: 1528
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2025.107550_b18
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.3013711
– volume: 544
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b36
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126262
– volume: 19
  start-page: 8104
  issue: 7
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b33
  article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3217120
– start-page: 1628
  year: 2021
  ident: 10.1016/j.bspc.2025.107550_b10
  article-title: EEG emotion recognition based on hierarchy graph convolution network
– volume: 1
  start-page: 38
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b4
  article-title: Deep learning with convolutional neural networks for EEG-based music emotion decoding and visualization
  publication-title: Brain-Appar. Commun.: J. Bacomics
– year: 2023
  ident: 10.1016/j.bspc.2025.107550_b5
  article-title: Brain-machine coupled learning method for facial emotion recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 363
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b26
  article-title: A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3212475
– volume: 13
  start-page: 1290
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2025.107550_b12
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.2994159
– ident: 10.1016/j.bspc.2025.107550_b21
  doi: 10.1609/aaai.v34i03.5656
– year: 2023
  ident: 10.1016/j.bspc.2025.107550_b25
  article-title: A domain generative graph network for EEG-based emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2023.3242090
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2025.107550_b23
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 31
  start-page: 1063
  year: 2023
  ident: 10.1016/j.bspc.2025.107550_b7
  article-title: A discriminative feature representation method based on cascaded attention network with adversarial strategy for speech emotion recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2023.3245401
– volume: 10
  start-page: 1399
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2025.107550_b20
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2021.3087174
– year: 2022
  ident: 10.1016/j.bspc.2025.107550_b19
  article-title: Contrastive learning of subject-invariant eeg representations for cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– year: 2021
  ident: 10.1016/j.bspc.2025.107550_b6
  article-title: Improving textual emotion recognition based on intra-and inter-class variation
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 3642
  year: 2021
  ident: 10.1016/j.bspc.2025.107550_b13
  article-title: Emotion recognition from multi-channel EEG data through a dual-pipeline graph attention network
– volume: 13
  start-page: 1941
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2025.107550_b22
  article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3189222
– year: 2023
  ident: 10.1016/j.bspc.2025.107550_b11
  article-title: Effective emotion recognition by learning discriminative graph topologies in EEG brain networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
SSID ssj0048714
Score 2.3954513
Snippet Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107550
SubjectTerms Brain spatial topological patterns
Combinatorial brain patterns (CBPs)
CPT-LS
Graph Noise Granularity Adjacency Matrix (GNGAM)
Soft Submodality Orthogonalization (SSO)
Title A coupling of common–private topological patterns learning approach for cross-subject emotion recognition
URI https://dx.doi.org/10.1016/j.bspc.2025.107550
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJLa7m9nHsRRLVexFC70tSZqUKmyXdnsV_4P_0F_iZLNbKogHb0nIQJgMM1_CzDeEXHsGBD6TDZNJlzMe-gmOImAClPYCrQNT8hY8jcLhmD9MYNIg_boWxqZVVr7f-fTSW1crnUqbnXw-7zwjlg5jfJ34UAZiW_DLeWSt_PZ9k-aBeLzk97abmd1dFc64HC-5yi2NoQ-4EIGtvf8tOG0FnMEB2a-QIu25wxyShs6OyN4Wf-AxeetRtVjbmtoZXRgcW6P6-vjMl7ZnmaaF64Bg74HmJZFmtqJVn4gZrenEKeJWWh6IrdbS_stQ7Zr70E160SI7IePB3Ut_yKruCUwhZikYN4lQcTeQytOI80BiKJImNrEwOpoCx5ngygOlQMogCaYI9mQilQgjTxqUOCXNbJHpM0JDlWDcj7kRAeci8GQMRoYg8HU1BV_rFrmp1ZbmjiQjrbPHXlOr5NQqOXVKbhGoNZv-uOoUvfgfcuf_lLsgu3bmcmwvSbNYrvUVIolCtktTaZOd3v3jcPQNsh3LQg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw_cUNQmsbMcq4oqpcuFVuotsl27KkhJ1OXOP_CHfAnjLKhIiAM3x8lI1rM18xzNvAF4sDXjeE3Wlgjb1KKeE-LIZxZnUtmuUq7OdQtGYy-a0ucZm9WgW9XCmLTK0vcXPj331uVMq0SzlS2XrRfk0l6AtxOH5YE42IOGUadidWh0-oNoXDlkpOS5xLf53jIGZe1MkeYl1plRMnQYTvjMlN__Fp92Yk7vGI5Kskg6xXpOoKaSUzjckRA8g7cOkenWlNUuSKpxbM7V5_tHtjJtyxTZFE0QzFaQLNfSTNakbBWxIJWiOEHqSvIFWeutML9miCr6-5DvDKM0OYdp72nSjayygYIlkbZsLKpDLoO2K6StkOoxgdFI6EAHXCt_zig-cSptJiUTwg3dOfI9EQrJPd8WGi0uoJ6kiboE4skQQ39ANXcp5a4tAqaFxzhesObMUaoJjxVscVboZMRVAtlrbECODchxAXITWIVs_GO3Y3Tkf9hd_dPuHvajyWgYD_vjwTUcmDdFyu0N1DerrbpFYrERd-XB-QK0oM3z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coupling+of+common%E2%80%93private+topological+patterns+learning+approach+for+cross-subject+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Haokai&rft.au=Li%2C+Pengrui&rft.au=Chang%2C+Hongli&rft.au=Liu%2C+Shihong&rft.date=2025-07-01&rft.issn=1746-8094&rft.volume=105&rft.spage=107550&rft_id=info:doi/10.1016%2Fj.bspc.2025.107550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2025_107550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon