A coupling of common–private topological patterns learning approach for cross-subject emotion recognition
Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research has focused on understanding brain spatial topological patterns to investigate dynamic mechanisms of brain functional region connectivities an...
Saved in:
Published in | Biomedical signal processing and control Vol. 105; p. 107550 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2025.107550 |
Cover
Loading…
Abstract | Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research has focused on understanding brain spatial topological patterns to investigate dynamic mechanisms of brain functional region connectivities and reduce individual variability. This paper introduces a novel learning approach, the Coupling of Common–Private Topological Patterns Learning Strategy (CPT-LS), to address inter-subject differences. The strategy involves encoding and decoding common brain spatial topological patterns, referred to as Combinatorial Brain Patterns (CBPs), shared among subjects in the same emotional state, as well as dynamically encoding and decoding private brain topological patterns (PBPs) unique to each subject in different emotional states. The Graph Noise Granularity Adjacency Matrix (GNGAM) is proposed to enhance the robustness of CBP and PBP learning. At the same time, the soft submodality orthogonalization method (SSO) is introduced to extract pattern-specific information and combine common and private representations to minimize inter-individual differences. The proposed method is evaluated using three public datasets, SEED, SEED-IV, and DEAP, demonstrating superior performance compared to existing approaches and offering a promising direction for advancing affective computing research.
•We introduce the CPT-LS to enhance the representation of latent emotional patterns.•We introduce the GNGAM framework to perform adaptive feature-driven updates.•We study the patterns of coupled multi-subject common and private representations. |
---|---|
AbstractList | Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research has focused on understanding brain spatial topological patterns to investigate dynamic mechanisms of brain functional region connectivities and reduce individual variability. This paper introduces a novel learning approach, the Coupling of Common–Private Topological Patterns Learning Strategy (CPT-LS), to address inter-subject differences. The strategy involves encoding and decoding common brain spatial topological patterns, referred to as Combinatorial Brain Patterns (CBPs), shared among subjects in the same emotional state, as well as dynamically encoding and decoding private brain topological patterns (PBPs) unique to each subject in different emotional states. The Graph Noise Granularity Adjacency Matrix (GNGAM) is proposed to enhance the robustness of CBP and PBP learning. At the same time, the soft submodality orthogonalization method (SSO) is introduced to extract pattern-specific information and combine common and private representations to minimize inter-individual differences. The proposed method is evaluated using three public datasets, SEED, SEED-IV, and DEAP, demonstrating superior performance compared to existing approaches and offering a promising direction for advancing affective computing research.
•We introduce the CPT-LS to enhance the representation of latent emotional patterns.•We introduce the GNGAM framework to perform adaptive feature-driven updates.•We study the patterns of coupled multi-subject common and private representations. |
ArticleNumber | 107550 |
Author | Zhang, Haokai Li, Pengrui Xie, Jiaxin Liu, Shihong Wu, Dingming Gao, Dongrui Qin, Yun Chang, Hongli Wang, Manqing |
Author_xml | – sequence: 1 givenname: Haokai surname: Zhang fullname: Zhang, Haokai email: 3220604010@stu.cuit.edu.cn organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China – sequence: 2 givenname: Pengrui orcidid: 0000-0002-1398-207X surname: Li fullname: Li, Pengrui email: 202411140622@std.uestc.edu.cn organization: School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 3 givenname: Hongli surname: Chang fullname: Chang, Hongli email: hlchang@sdfmu.edu.cn organization: Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan.250117. Shandong China, Shandong Province, China – sequence: 4 givenname: Shihong surname: Liu fullname: Liu, Shihong email: 3210604003@stu.cuit.edu.cn organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China – sequence: 5 givenname: Yun surname: Qin fullname: Qin, Yun email: yunqin@uestc.edu.cn organization: School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 6 givenname: Jiaxin surname: Xie fullname: Xie, Jiaxin email: xiejiaxin@uestc.edu.cn organization: School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 7 givenname: Manqing surname: Wang fullname: Wang, Manqing email: wangmanqing@cuit.edu.cn organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China – sequence: 8 givenname: Dongrui surname: Gao fullname: Gao, Dongrui email: gdr1987@cuit.edu.cn organization: School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China – sequence: 9 givenname: Dingming orcidid: 0009-0004-0566-3660 surname: Wu fullname: Wu, Dingming email: dmw@uestc.edu.cn organization: The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, China |
BookMark | eNp9kE1OwzAQhb0oEm3hAqx8gRQ7iZtEYlNV_FSqxAbWlj2xi0NiR7ZbiR134IacBIeyZjVvRvpG770FmllnFUI3lKwooevbbiXDCKuc5CwdKsbIDM1pVa6zmjTlJVqE0BFS1hUt5-h9g8Edx97YA3Y66WFw9vvza_TmJKLC0Y2udwcDosejiFF5G3CvhLcTIcbROwFvWDuPwbsQsnCUnYKI1eCicRZ7Be5gzaSv0IUWfVDXf3OJXh_uX7ZP2f75cbfd7DPIGY1ZqRsBNSkkUEVowSShudS1roVWVcvKtIkSKANgUhZN0RLayEaCWFdU6kQsUX7---vIK81TmkH4D04JnyriHZ8q4lNF_FxRgu7OkErOTkZ5HsAoC6o1KULkrTP_4T9kJHfy |
Cites_doi | 10.1073/pnas.2119599119 10.1109/JSEN.2022.3172133 10.1109/TCYB.2018.2797176 10.1109/TAFFC.2020.3013711 10.1109/TNSRE.2023.3253866 10.1109/MSP.2012.2235192 10.1109/JBHI.2021.3083525 10.1609/aaai.v35i1.16169 10.1109/TAMD.2015.2431497 10.1109/T-AFFC.2011.15 10.1609/aaai.v38i9.28867 10.1016/j.asoc.2022.108740 10.1016/j.neucom.2023.126262 10.1109/TII.2022.3217120 10.1109/JBHI.2022.3212475 10.1109/TAFFC.2020.2994159 10.1609/aaai.v34i03.5656 10.1109/JBHI.2023.3242090 10.1109/TAFFC.2018.2817622 10.1109/TASLP.2023.3245401 10.1109/TETC.2021.3087174 10.1109/TAFFC.2022.3189222 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2025.107550 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2025_107550 S1746809425000618 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c251t-4f9ac803bc1e0135b012bf8f8afe7d5412ba4c15cc5bb393d019b9bca671bf013 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 05:00:46 EDT 2025 Sat May 24 17:06:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph Noise Granularity Adjacency Matrix (GNGAM) Brain spatial topological patterns Soft Submodality Orthogonalization (SSO) Combinatorial brain patterns (CBPs) CPT-LS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-4f9ac803bc1e0135b012bf8f8afe7d5412ba4c15cc5bb393d019b9bca671bf013 |
ORCID | 0000-0002-1398-207X 0009-0004-0566-3660 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2025_107550 elsevier_sciencedirect_doi_10_1016_j_bspc_2025_107550 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for EEG emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708, no. 03. Liu, Guo, Chen, Wu, Zhang (b35) 2023 Zheng, Hu, Zhang, Li, Zheng (b10) 2021 Tang, Chen, Liu, Cai, Li (b14) 2022 Li, Xie, Chai, Wang, Yang (b2) 2022; 122 Li, Zhang, Liu, Lin, Zhang, Tang, Gao (b8) 2023 Li, Zhang, Chen, Yi, Chen (b34) 2022 Zheng, Lu (b28) 2015; 7 Liu, Dai, Zhang, Jin, Cao, Kong (b5) 2023 Wu, Teng, Fan, Pei, Li, Lv (b1) 2023; 31 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b30) 2011; 3 Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (b18) 2020; 13 Li, Chen, Li, Fu, Wu, Ji, Zhou, Niu, Shi, Zheng (b15) 2022 Shuman, Narang, Frossard, Ortega, Vandergheynst (b31) 2013; 30 Zhang, Liu, Zhang, Chen, Qin, Zheng (b32) 2022 Qian, Tan, Jiang, Tian (b4) 2022; 1 Gu, Wang, Xu, Li, Yang, Du (b27) 2022 Song, Zheng, Song, Cui (b23) 2018; 11 Gu, Zhong, Qu, Liu, Chen (b25) 2023 Zheng, Liu, Lu, Lu, Cichocki (b29) 2019; 49 Gao, Li, Wang, Liang, Liu, Zhou, Wang, Zhang (b9) 2023 Li, Li, Zhang, Tiwari (b13) 2021 Shen, Liu, Hu, Zhang, Song (b19) 2022 Huang, Gao, Zhao, Han, Han, Tang, Wang, Li, Tian, Li (b3) 2023; 2 Li, Li, Zhang, Li, Si, Li, Cao, Chen, Chen, Yao (b11) 2023 Song, Zheng, Liu, Zong, Cui, Li (b20) 2021; 10 Peng, Wang, Kong, Nie, Lu, Cichocki (b22) 2022; 13 Zhou, Li, Li, Ji, Shi, Zheng, Zhang, Chen, Cheng (b36) 2023; 544 Candia-Rivera, Catrambone, Thayer, Gentili, Valenza (b40) 2022; 119 Yao, Gu, Wang, Li (b17) 2022; 22 Zhang, Yu, Liu, Zhao, Zhang, Zheng (b24) 2021 L.-M. Zhao, X. Yan, B.-L. Lu, Plug-and-play domain adaptation for cross-subject EEG-based emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 863–870, no. 1. Gao, Wang, Wang, Zhou, Zhang (b41) 2023 Alhuzali, Ananiadou (b6) 2021 Peng, Liu, Kong, Nie, Lu, Cichocki (b33) 2023; 19 Tian, Li, Yang, Hou, Yang, Song, Gao (b26) 2022; 27 Zhong, Wang, Miao (b12) 2020; 13 Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (b37) 2022; 13 D. Gao, H. Zhang, P. Li, T. Tang, S. Liu, Z. Zhou, S. Ying, Y. Zhu, Y. Zhang, A Local-Ascending-Global Learning Strategy for Brain-Computer Interface, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 10039–10047, no. 9. Liu, Wang, Zhao, Li, Hu, Yu, Zhang (b39) 2022; 26 Liu, Sun, Guan, Xia, Li, Unoki, Zhao (b7) 2023; 31 Li, Xie, Wang, Yang (b38) 2023 Gao, Liu, Gao, Li, Zhang, Wang, Shen, Wang, Zhang (b42) 2024 Huang (10.1016/j.bspc.2025.107550_b3) 2023; 2 Zhang (10.1016/j.bspc.2025.107550_b32) 2022 Zhang (10.1016/j.bspc.2025.107550_b24) 2021 Li (10.1016/j.bspc.2025.107550_b13) 2021 Yao (10.1016/j.bspc.2025.107550_b17) 2022; 22 Song (10.1016/j.bspc.2025.107550_b20) 2021; 10 Li (10.1016/j.bspc.2025.107550_b11) 2023 10.1016/j.bspc.2025.107550_b21 10.1016/j.bspc.2025.107550_b43 Peng (10.1016/j.bspc.2025.107550_b22) 2022; 13 Song (10.1016/j.bspc.2025.107550_b23) 2018; 11 10.1016/j.bspc.2025.107550_b16 Zheng (10.1016/j.bspc.2025.107550_b29) 2019; 49 Li (10.1016/j.bspc.2025.107550_b34) 2022 Gao (10.1016/j.bspc.2025.107550_b9) 2023 Gao (10.1016/j.bspc.2025.107550_b41) 2023 Gao (10.1016/j.bspc.2025.107550_b42) 2024 Liu (10.1016/j.bspc.2025.107550_b5) 2023 Koelstra (10.1016/j.bspc.2025.107550_b30) 2011; 3 Shuman (10.1016/j.bspc.2025.107550_b31) 2013; 30 Alhuzali (10.1016/j.bspc.2025.107550_b6) 2021 Zheng (10.1016/j.bspc.2025.107550_b28) 2015; 7 Liu (10.1016/j.bspc.2025.107550_b7) 2023; 31 Liu (10.1016/j.bspc.2025.107550_b35) 2023 Du (10.1016/j.bspc.2025.107550_b37) 2022; 13 Qian (10.1016/j.bspc.2025.107550_b4) 2022; 1 Gu (10.1016/j.bspc.2025.107550_b27) 2022 Li (10.1016/j.bspc.2025.107550_b8) 2023 Tang (10.1016/j.bspc.2025.107550_b14) 2022 Li (10.1016/j.bspc.2025.107550_b2) 2022; 122 Candia-Rivera (10.1016/j.bspc.2025.107550_b40) 2022; 119 Zhou (10.1016/j.bspc.2025.107550_b36) 2023; 544 Wu (10.1016/j.bspc.2025.107550_b1) 2023; 31 Gu (10.1016/j.bspc.2025.107550_b25) 2023 Peng (10.1016/j.bspc.2025.107550_b33) 2023; 19 Shen (10.1016/j.bspc.2025.107550_b19) 2022 Li (10.1016/j.bspc.2025.107550_b15) 2022 Du (10.1016/j.bspc.2025.107550_b18) 2020; 13 Tian (10.1016/j.bspc.2025.107550_b26) 2022; 27 Zhong (10.1016/j.bspc.2025.107550_b12) 2020; 13 Liu (10.1016/j.bspc.2025.107550_b39) 2022; 26 Zheng (10.1016/j.bspc.2025.107550_b10) 2021 Li (10.1016/j.bspc.2025.107550_b38) 2023 |
References_xml | – start-page: 1 year: 2023 end-page: 14 ident: b38 article-title: Brain emotion perception inspired EEG emotion recognition with deep reinforcement learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2023 ident: b8 article-title: An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue publication-title: Appl. Soft Comput. – year: 2021 ident: b6 article-title: Improving textual emotion recognition based on intra-and inter-class variation publication-title: IEEE Trans. Affect. Comput. – volume: 22 start-page: 11954 year: 2022 end-page: 11964 ident: b17 article-title: A feature-fused convolutional neural network for emotion recognition from multichannel EEG signals publication-title: IEEE Sens. J. – start-page: 3642 year: 2021 end-page: 3647 ident: b13 article-title: Emotion recognition from multi-channel EEG data through a dual-pipeline graph attention network publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine – start-page: 1 year: 2022 ident: b34 article-title: Residual GCB-Net: Residual graph convolutional broad network on emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 13 start-page: 1528 year: 2022 end-page: 1540 ident: b37 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. – volume: 27 start-page: 363 year: 2022 end-page: 373 ident: b26 article-title: A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 1 start-page: 38 year: 2022 end-page: 49 ident: b4 article-title: Deep learning with convolutional neural networks for EEG-based music emotion decoding and visualization publication-title: Brain-Appar. Commun.: J. Bacomics – volume: 122 year: 2022 ident: b2 article-title: Spatial-frequency convolutional self-attention network for EEG emotion recognition publication-title: Appl. Soft Comput. – reference: L.-M. Zhao, X. Yan, B.-L. Lu, Plug-and-play domain adaptation for cross-subject EEG-based emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 863–870, no. 1. – year: 2023 ident: b41 article-title: SFT-net: a network for detecting fatigue from EEG signals by combining 4d feature flow and attention mechanism publication-title: IEEE J. Biomed. Health Inf. – volume: 13 start-page: 1528 year: 2020 end-page: 1540 ident: b18 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. – reference: D. Gao, H. Zhang, P. Li, T. Tang, S. Liu, Z. Zhou, S. Ying, Y. Zhu, Y. Zhang, A Local-Ascending-Global Learning Strategy for Brain-Computer Interface, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 10039–10047, no. 9. – volume: 30 start-page: 83 year: 2013 end-page: 98 ident: b31 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: b23 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – year: 2022 ident: b27 article-title: Frame-level teacher-student learning with data privacy for eeg emotion recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2023 ident: b5 article-title: Brain-machine coupled learning method for facial emotion recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 1399 year: 2021 end-page: 1413 ident: b20 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Trans. Emerg. Top. Comput. – year: 2022 ident: b15 article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – year: 2023 ident: b9 article-title: CSF-GTNet: A novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection publication-title: IEEE J. Biomed. Health Inf. – start-page: 1 year: 2022 ident: b32 article-title: EEG-based emotion recognition with emotion localization via hierarchical self-attention publication-title: IEEE Trans. Affect. Comput. – volume: 13 start-page: 1290 year: 2020 end-page: 1301 ident: b12 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 26 start-page: 5321 year: 2022 end-page: 5331 ident: b39 article-title: 3DCANN: A spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 31 start-page: 1063 year: 2023 end-page: 1074 ident: b7 article-title: A discriminative feature representation method based on cascaded attention network with adversarial strategy for speech emotion recognition publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – start-page: 1 year: 2023 end-page: 14 ident: b35 article-title: Fine-grained interpretability for EEG emotion recognition: Concat-aided grad-CAM and systematic brain functional network publication-title: IEEE Trans. Affect. Comput. – year: 2023 ident: b25 article-title: A domain generative graph network for EEG-based emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 544 year: 2023 ident: b36 article-title: Progressive graph convolution network for EEG emotion recognition publication-title: Neurocomputing – volume: 13 start-page: 1941 year: 2022 end-page: 1958 ident: b22 article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. – volume: 2 year: 2023 ident: b3 article-title: A novel brain inception neural network model using EEG graphic structure for emotion recognition publication-title: Brain-Appar. Commun.: J. Bacomics – start-page: 1628 year: 2021 end-page: 1632 ident: b10 article-title: EEG emotion recognition based on hierarchy graph convolution network publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine – year: 2022 ident: b19 article-title: Contrastive learning of subject-invariant eeg representations for cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. – year: 2023 ident: b11 article-title: Effective emotion recognition by learning discriminative graph topologies in EEG brain networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 19 start-page: 8104 year: 2023 end-page: 8115 ident: b33 article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inform. – volume: 119 year: 2022 ident: b40 article-title: Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal publication-title: Proc. Natl. Acad. Sci. – volume: 31 start-page: 1602 year: 2023 end-page: 1613 ident: b1 article-title: An investigation of olfactory-enhanced video on eeg-based emotion recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2024 ident: b42 article-title: A comprehensive adaptive interpretable takagi-sugeuo-kang fuzzy classifier for fatigue driving detection publication-title: IEEE Trans. Fuzzy Syst. – reference: T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for EEG emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708, no. 03. – year: 2021 ident: b24 article-title: SparseDGCNN: Recognizing emotion from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. – year: 2022 ident: b14 article-title: Deep EEG superresolution via correlating brain structural and functional connectivities publication-title: IEEE Trans. Cybern. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b28 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: b30 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. – volume: 49 start-page: 1110 year: 2019 end-page: 1122 ident: b29 article-title: EmotionMeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2025.107550_b34 article-title: Residual GCB-Net: Residual graph convolutional broad network on emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2025.107550_b32 article-title: EEG-based emotion recognition with emotion localization via hierarchical self-attention publication-title: IEEE Trans. Affect. Comput. – volume: 119 issue: 21 year: 2022 ident: 10.1016/j.bspc.2025.107550_b40 article-title: Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2119599119 – year: 2023 ident: 10.1016/j.bspc.2025.107550_b9 article-title: CSF-GTNet: A novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection publication-title: IEEE J. Biomed. Health Inf. – year: 2022 ident: 10.1016/j.bspc.2025.107550_b27 article-title: Frame-level teacher-student learning with data privacy for eeg emotion recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 22 start-page: 11954 issue: 12 year: 2022 ident: 10.1016/j.bspc.2025.107550_b17 article-title: A feature-fused convolutional neural network for emotion recognition from multichannel EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3172133 – year: 2023 ident: 10.1016/j.bspc.2025.107550_b8 article-title: An EEG-based brain cognitive dynamic recognition network for representations of brain fatigue publication-title: Appl. Soft Comput. – year: 2022 ident: 10.1016/j.bspc.2025.107550_b14 article-title: Deep EEG superresolution via correlating brain structural and functional connectivities publication-title: IEEE Trans. Cybern. – volume: 49 start-page: 1110 issue: 3 year: 2019 ident: 10.1016/j.bspc.2025.107550_b29 article-title: EmotionMeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – year: 2023 ident: 10.1016/j.bspc.2025.107550_b41 article-title: SFT-net: a network for detecting fatigue from EEG signals by combining 4d feature flow and attention mechanism publication-title: IEEE J. Biomed. Health Inf. – volume: 13 start-page: 1528 issue: 3 year: 2022 ident: 10.1016/j.bspc.2025.107550_b37 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.3013711 – year: 2022 ident: 10.1016/j.bspc.2025.107550_b15 article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 31 start-page: 1602 year: 2023 ident: 10.1016/j.bspc.2025.107550_b1 article-title: An investigation of olfactory-enhanced video on eeg-based emotion recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3253866 – year: 2024 ident: 10.1016/j.bspc.2025.107550_b42 article-title: A comprehensive adaptive interpretable takagi-sugeuo-kang fuzzy classifier for fatigue driving detection publication-title: IEEE Trans. Fuzzy Syst. – start-page: 1 year: 2023 ident: 10.1016/j.bspc.2025.107550_b38 article-title: Brain emotion perception inspired EEG emotion recognition with deep reinforcement learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2021 ident: 10.1016/j.bspc.2025.107550_b24 article-title: SparseDGCNN: Recognizing emotion from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 10.1016/j.bspc.2025.107550_b31 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 – volume: 26 start-page: 5321 issue: 11 year: 2022 ident: 10.1016/j.bspc.2025.107550_b39 article-title: 3DCANN: A spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2021.3083525 – ident: 10.1016/j.bspc.2025.107550_b16 doi: 10.1609/aaai.v35i1.16169 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.bspc.2025.107550_b28 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.bspc.2025.107550_b30 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: 10.1016/j.bspc.2025.107550_b43 doi: 10.1609/aaai.v38i9.28867 – volume: 2 issue: 1 year: 2023 ident: 10.1016/j.bspc.2025.107550_b3 article-title: A novel brain inception neural network model using EEG graphic structure for emotion recognition publication-title: Brain-Appar. Commun.: J. Bacomics – start-page: 1 year: 2023 ident: 10.1016/j.bspc.2025.107550_b35 article-title: Fine-grained interpretability for EEG emotion recognition: Concat-aided grad-CAM and systematic brain functional network publication-title: IEEE Trans. Affect. Comput. – volume: 122 year: 2022 ident: 10.1016/j.bspc.2025.107550_b2 article-title: Spatial-frequency convolutional self-attention network for EEG emotion recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108740 – volume: 13 start-page: 1528 issue: 3 year: 2020 ident: 10.1016/j.bspc.2025.107550_b18 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.3013711 – volume: 544 year: 2023 ident: 10.1016/j.bspc.2025.107550_b36 article-title: Progressive graph convolution network for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126262 – volume: 19 start-page: 8104 issue: 7 year: 2023 ident: 10.1016/j.bspc.2025.107550_b33 article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3217120 – start-page: 1628 year: 2021 ident: 10.1016/j.bspc.2025.107550_b10 article-title: EEG emotion recognition based on hierarchy graph convolution network – volume: 1 start-page: 38 issue: 1 year: 2022 ident: 10.1016/j.bspc.2025.107550_b4 article-title: Deep learning with convolutional neural networks for EEG-based music emotion decoding and visualization publication-title: Brain-Appar. Commun.: J. Bacomics – year: 2023 ident: 10.1016/j.bspc.2025.107550_b5 article-title: Brain-machine coupled learning method for facial emotion recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 363 issue: 1 year: 2022 ident: 10.1016/j.bspc.2025.107550_b26 article-title: A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3212475 – volume: 13 start-page: 1290 issue: 3 year: 2020 ident: 10.1016/j.bspc.2025.107550_b12 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.2994159 – ident: 10.1016/j.bspc.2025.107550_b21 doi: 10.1609/aaai.v34i03.5656 – year: 2023 ident: 10.1016/j.bspc.2025.107550_b25 article-title: A domain generative graph network for EEG-based emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2023.3242090 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.bspc.2025.107550_b23 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2817622 – volume: 31 start-page: 1063 year: 2023 ident: 10.1016/j.bspc.2025.107550_b7 article-title: A discriminative feature representation method based on cascaded attention network with adversarial strategy for speech emotion recognition publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2023.3245401 – volume: 10 start-page: 1399 issue: 3 year: 2021 ident: 10.1016/j.bspc.2025.107550_b20 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2021.3087174 – year: 2022 ident: 10.1016/j.bspc.2025.107550_b19 article-title: Contrastive learning of subject-invariant eeg representations for cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. – year: 2021 ident: 10.1016/j.bspc.2025.107550_b6 article-title: Improving textual emotion recognition based on intra-and inter-class variation publication-title: IEEE Trans. Affect. Comput. – start-page: 3642 year: 2021 ident: 10.1016/j.bspc.2025.107550_b13 article-title: Emotion recognition from multi-channel EEG data through a dual-pipeline graph attention network – volume: 13 start-page: 1941 issue: 4 year: 2022 ident: 10.1016/j.bspc.2025.107550_b22 article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3189222 – year: 2023 ident: 10.1016/j.bspc.2025.107550_b11 article-title: Effective emotion recognition by learning discriminative graph topologies in EEG brain networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. |
SSID | ssj0048714 |
Score | 2.3954513 |
Snippet | Electroencephalogram (EEG) is a valuable biological signal for emotion recognition due to its high temporal resolution and minimal artifacts. Recent research... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 107550 |
SubjectTerms | Brain spatial topological patterns Combinatorial brain patterns (CBPs) CPT-LS Graph Noise Granularity Adjacency Matrix (GNGAM) Soft Submodality Orthogonalization (SSO) |
Title | A coupling of common–private topological patterns learning approach for cross-subject emotion recognition |
URI | https://dx.doi.org/10.1016/j.bspc.2025.107550 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJLa7m9nHsRRLVexFC70tSZqUKmyXdnsV_4P_0F_iZLNbKogHb0nIQJgMM1_CzDeEXHsGBD6TDZNJlzMe-gmOImAClPYCrQNT8hY8jcLhmD9MYNIg_boWxqZVVr7f-fTSW1crnUqbnXw-7zwjlg5jfJ34UAZiW_DLeWSt_PZ9k-aBeLzk97abmd1dFc64HC-5yi2NoQ-4EIGtvf8tOG0FnMEB2a-QIu25wxyShs6OyN4Wf-AxeetRtVjbmtoZXRgcW6P6-vjMl7ZnmaaF64Bg74HmJZFmtqJVn4gZrenEKeJWWh6IrdbS_stQ7Zr70E160SI7IePB3Ut_yKruCUwhZikYN4lQcTeQytOI80BiKJImNrEwOpoCx5ngygOlQMogCaYI9mQilQgjTxqUOCXNbJHpM0JDlWDcj7kRAeci8GQMRoYg8HU1BV_rFrmp1ZbmjiQjrbPHXlOr5NQqOXVKbhGoNZv-uOoUvfgfcuf_lLsgu3bmcmwvSbNYrvUVIolCtktTaZOd3v3jcPQNsh3LQg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw_cUNQmsbMcq4oqpcuFVuotsl27KkhJ1OXOP_CHfAnjLKhIiAM3x8lI1rM18xzNvAF4sDXjeE3Wlgjb1KKeE-LIZxZnUtmuUq7OdQtGYy-a0ucZm9WgW9XCmLTK0vcXPj331uVMq0SzlS2XrRfk0l6AtxOH5YE42IOGUadidWh0-oNoXDlkpOS5xLf53jIGZe1MkeYl1plRMnQYTvjMlN__Fp92Yk7vGI5Kskg6xXpOoKaSUzjckRA8g7cOkenWlNUuSKpxbM7V5_tHtjJtyxTZFE0QzFaQLNfSTNakbBWxIJWiOEHqSvIFWeutML9miCr6-5DvDKM0OYdp72nSjayygYIlkbZsLKpDLoO2K6StkOoxgdFI6EAHXCt_zig-cSptJiUTwg3dOfI9EQrJPd8WGi0uoJ6kiboE4skQQ39ANXcp5a4tAqaFxzhesObMUaoJjxVscVboZMRVAtlrbECODchxAXITWIVs_GO3Y3Tkf9hd_dPuHvajyWgYD_vjwTUcmDdFyu0N1DerrbpFYrERd-XB-QK0oM3z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coupling+of+common%E2%80%93private+topological+patterns+learning+approach+for+cross-subject+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Haokai&rft.au=Li%2C+Pengrui&rft.au=Chang%2C+Hongli&rft.au=Liu%2C+Shihong&rft.date=2025-07-01&rft.issn=1746-8094&rft.volume=105&rft.spage=107550&rft_id=info:doi/10.1016%2Fj.bspc.2025.107550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2025_107550 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |