Lewis acidic controllable SiO2@TiO2 core-shell for enhanced catalytic oxidation of aromatic sulfides in diesel
Oxidative desulfurization is an important non‑hydrogen desulfurization technology, but traditional TiO2 catalysts are subject to the weak acidity and weak adsorption ability towards alkaline sulfide molecules, limited by the long reaction time for deep desulfurization. Herein, based on the principl...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 520; p. 166139 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxidative desulfurization is an important non‑hydrogen desulfurization technology, but traditional TiO2 catalysts are subject to the weak acidity and weak adsorption ability towards alkaline sulfide molecules, limited by the long reaction time for deep desulfurization. Herein, based on the principle of Lewis acid-base theory, this work reasonably designs the SiO2@TiO2 core-shell catalyst, which combines excellent catalytic oxidative desulfurization activity and product separation performance. SiO2 can regulate the acidity of TiO2 and enhance the enrichment ability of substrate molecules, enhancing the charge transfer process and improving the catalytic performance of TiO2. Through systematic characterization, it is confirmed that the Lewis acidity of the core-shell structure originates from unsaturated Ti sites. And the thickness of the TiO2 shell can be controlled to adjust the surface amounts of acid sites, strengthening the adsorption process of alkaline dibenzothiophenes. The mechanism research reveals the electron transfer between the SiO2 core and the TiO2 shell and the generated unsaturated Ti3+/Ti4+ produce a synergistic effect. The generation rates of hydroxyl radicals(·OH) and alkoxy radicals (·OR) are accelerated while changing the Lewis acidity, efficiently adsorbing and oxidizing DBTs. The work expands the application of easy-separation mild Lewis acidic TiO2 composite materials in the field of catalytic oxidation.
Assembly of SiO2@TiO2 core-shell with controllable Lewis acidity for ODS. [Display omitted]
•Fast oxidation of sulfides was achieved by Lewis acidic SiO2@TiO2 core-shell.•The Lewis acidity of SiO2@TiO2 core-shell was related to the thickness of TiO2.•The synergistic effect was produced by Lewis acid-base and electron transfer.•The alkaline sulfides external diffusion and oxidant activation were enhanced. |
---|---|
AbstractList | Oxidative desulfurization is an important non‑hydrogen desulfurization technology, but traditional TiO2 catalysts are subject to the weak acidity and weak adsorption ability towards alkaline sulfide molecules, limited by the long reaction time for deep desulfurization. Herein, based on the principle of Lewis acid-base theory, this work reasonably designs the SiO2@TiO2 core-shell catalyst, which combines excellent catalytic oxidative desulfurization activity and product separation performance. SiO2 can regulate the acidity of TiO2 and enhance the enrichment ability of substrate molecules, enhancing the charge transfer process and improving the catalytic performance of TiO2. Through systematic characterization, it is confirmed that the Lewis acidity of the core-shell structure originates from unsaturated Ti sites. And the thickness of the TiO2 shell can be controlled to adjust the surface amounts of acid sites, strengthening the adsorption process of alkaline dibenzothiophenes. The mechanism research reveals the electron transfer between the SiO2 core and the TiO2 shell and the generated unsaturated Ti3+/Ti4+ produce a synergistic effect. The generation rates of hydroxyl radicals(·OH) and alkoxy radicals (·OR) are accelerated while changing the Lewis acidity, efficiently adsorbing and oxidizing DBTs. The work expands the application of easy-separation mild Lewis acidic TiO2 composite materials in the field of catalytic oxidation.
Assembly of SiO2@TiO2 core-shell with controllable Lewis acidity for ODS. [Display omitted]
•Fast oxidation of sulfides was achieved by Lewis acidic SiO2@TiO2 core-shell.•The Lewis acidity of SiO2@TiO2 core-shell was related to the thickness of TiO2.•The synergistic effect was produced by Lewis acid-base and electron transfer.•The alkaline sulfides external diffusion and oxidant activation were enhanced. |
ArticleNumber | 166139 |
Author | Yu, Zhendong Wu, Peiwen Xu, Chunming Zhu, Wenshuai Liu, Haiyan Yu, Xiaoxiao Li, Kaikai Tang, Minmeng Liu, Zhichang Wu, Jingyu |
Author_xml | – sequence: 1 givenname: Zhendong surname: Yu fullname: Yu, Zhendong organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 2 givenname: Jingyu surname: Wu fullname: Wu, Jingyu organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 3 givenname: Kaikai surname: Li fullname: Li, Kaikai organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 4 givenname: Peiwen surname: Wu fullname: Wu, Peiwen email: wupeiwen@ujs.edu.cn organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 5 givenname: Xiaoxiao surname: Yu fullname: Yu, Xiaoxiao organization: College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 6 givenname: Minmeng surname: Tang fullname: Tang, Minmeng organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 7 givenname: Haiyan surname: Liu fullname: Liu, Haiyan organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 8 givenname: Zhichang surname: Liu fullname: Liu, Zhichang organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 9 givenname: Wenshuai surname: Zhu fullname: Zhu, Wenshuai email: zhuws@cup.edu.cn organization: College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China – sequence: 10 givenname: Chunming surname: Xu fullname: Xu, Chunming organization: College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China |
BookMark | eNp9kMtuwyAQRVmkUpO0H9AdP2AXMNhG3bSK-pIiZdF0jQiMFSwCFbiP_H1tuetuZkZXOqOZs0KLEAMgdENJSQmtb_vSQF8ywkRJ65pWcoGWtGpF0UreXKJVzj0hpJZULlHYwrfLWBtnncEmhiFF7_XBA35zO3a_H8sYJyjyEbzHXUwYwlEHAxYbPWh_HkYw_jirBxcDjh3WKZ70lOZP3zkLGbuArYMM_gpddNpnuP7ra_T-9LjfvBTb3fPr5mFbGCboUPD2ICw1QI2shegkg6qpGAjeVqwxTS0ZBxiHg2gbMLyRkglCOiMtSM55Va0RnfeaFHNO0KmP5E46nRUlapKkejVKUpMkNUsambuZgfGwLwdJZeNgetQlMIOy0f1D_wKW3HOy |
Cites_doi | 10.1021/acs.energyfuels.7b03072 10.1007/s11356-025-36250-5 10.1016/j.fuel.2021.120471 10.1039/D3NR06194A 10.1038/s41467-024-51549-6 10.1038/s41563-020-0751-3 10.1002/anie.202207600 10.1016/j.inoche.2020.108336 10.1016/j.jcat.2023.05.013 10.1063/1.3646525 10.1016/j.jcat.2023.03.025 10.1016/j.cej.2024.153654 10.1126/science.adn9388 10.3390/molecules29163856 10.1021/acs.energyfuels.4c04244 10.1007/s12633-024-02982-1 10.1039/D2GC01714H 10.1021/acs.energyfuels.1c02831 10.1002/anie.201502939 10.1016/j.cej.2025.160632 10.1016/j.matt.2019.03.003 10.1016/j.gee.2022.08.003 10.1016/j.molcata.2004.05.002 10.1016/j.apcatb.2015.06.011 10.1002/anie.202316949 10.1039/D4TA05474A 10.1016/j.apcatb.2018.09.079 10.1016/j.apcatb.2024.124265 10.1039/D4SC05607H 10.1021/acs.iecr.8b04517 10.1016/j.seppur.2024.128866 10.1016/j.cattod.2024.114954 10.1007/s10562-018-2442-0 10.1038/s41586-024-07322-2 10.1016/j.cej.2023.147776 10.1252/jcej.19we095 10.1021/acsami.3c12421 10.1007/s13738-023-02876-w 10.1002/aic.16930 10.1016/j.ces.2024.121021 10.1021/jacs.8b00909 10.1002/adfm.202304990 10.1016/j.ces.2024.120707 10.1007/s11356-019-07048-z 10.1021/acs.chemrev.4c00710 10.1016/j.jhazmat.2022.129859 10.1016/j.fuel.2023.130604 10.1002/smll.202409400 10.1002/aic.18751 10.1016/j.apcatb.2019.117896 10.1039/C7NJ01234A |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2025.166139 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2025_166139 S1385894725069773 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AAYXX ABXDB AFFNX ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 |
ID | FETCH-LOGICAL-c251t-48b5d1ce1c9655f92e3732e548327c76924ee7c7b587ec47992500fc9de944433 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Wed Aug 27 16:28:13 EDT 2025 Sat Aug 30 17:13:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative desulfurization Controllable Lewis acidity Core-shell structure Titanium dioxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-48b5d1ce1c9655f92e3732e548327c76924ee7c7b587ec47992500fc9de944433 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2025_166139 elsevier_sciencedirect_doi_10_1016_j_cej_2025_166139 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-15 |
PublicationDateYYYYMMDD | 2025-09-15 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Li, Gou (bb0040) 2024; 38 Zhou, Wu, Liu, Wang, Shao, Liu, Cheng, Liu, Li, Zhu (bb0065) 2024; 479 Abdul Jameel, Alquaity, Campuzano, Emwas, Saxena, Sarathy, Roberts (bb0080) 2021; 293 Vogt, Weckhuysen (bb0005) 2024; 629 Al-Sakkaf, Onaizi (bb0020) 2024; 361 Zhu, Zhu, Jiang, Zhang, Shao, Geng, Wang, Zeng, Wu, Zhang, Huang, Feng (bb0105) 2022; 61 Waleska, Hess (bb0145) 2018; 148 Song, Bi, Li, Guo, Xu, He, Zhao, Chen, Ren (bb0260) 2024; 16 Zhong, Shima, Akinaga (bb0210) 2011; 1 Ntais, Dracopoulos, Siokou (bb0200) 2004; 220 Ravi, Sushkevich, van Bokhoven (bb0090) 2020; 19 Wang, Hua, Zhou, Hu, Liu, Cheng, Wu, Wu, Liu, Zhu (bb0060) 2024; 357 Yu, Xun, Jing, Chen, Song, Chao, Rahmani, Ding, Hua, Liu, Zhu (bb0130) 2022; 440 Wang, Sheng, Huang, Azam, Tung, Sun (bb0215) 2023; 424 Zuhra, Lei, Zhao, Zhou, Zhang, Qin (bb0255) 2017; 41 Lewis, Vyver, Román-Leshkov (bb0095) 2015; 54 Lan, Xia, Wang, Zhao, Zhang, Zhang, Elzatahry, Zhao (bb0135) 2019; 1 Wei, Lei, Lyu, Li, Li, Li, Yu (bb0185) 2023; 20 Ruan, Wang, Bing, Fan, Lv, Zhang, Wang, Wang, Cai (bb0190) 2024; 568 Han, Choi, Hong, Wu, Soo, Jung, Qiu, Sun (bb0270) 2019; 257 Shao, Liu, Wang, Jia, Zhou, Huang, Cheng, Liu, Wang, Liu, Zhu (bb0230) 2024; 495 Ho (bb0025) 2020; 66 Aziz, Latif, Hassan, Asif, Wahab, Huang (bb0265) 2025; 354 Ghahramaninezhad, Ahmadpour (bb0165) 2019; 27 Wang, Su, Duan, Fan, Shangguan, Yang (bb0045) 2025; 301 T.N. Shujiro Otsuki, Takashima, Noriko, Qian, Weihua, Ishihara, Atsushi, Imai, Tamotsu, and Kabe, Toshiaki. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel 200014. Nannuzzi, Mino, Bordiga, Pedersen, Houghton, Vennestrøm, Janssens, Berlier (bb0150) 2023; 421 Lan, Liu, Zhang, Liu, Elzatahry, Wang, Xia, Al-Dhayan, Zheng, Zhao (bb0140) 2018; 140 Su, Chen, Xu, Liu, Shen, He (bb0120) 2024; 12 Liu, Deng, Chen, Chao, Wu, Zhu, Xu (bb0030) 2025; 71 Ye, Dimitratos, Rossi, Thonemann, Beale, Wojcieszak (bb0010) 2025; 387 Bazyari, Khodadadi, Haghighat Mamaghani, Beheshtian, Thompson, Mortazavi (bb0100) 2016; 180 Yang, Yang, Zhang, Tang, Yang, Zhou, Li, Xie, Yang, Xu (bb0240) 2021; 35 Liu, Liu, Shan, Huai, Yang, Yan, Zheng, Li (bb0160) 2021; 123 Zhang, Ren, Huang, Li, Hua, Indris, Li (bb0170) 2024; 63 Lu, Sun, Zhang, Zhu, Li, Shan, Shen, Song (bb0195) 2019; 58 Pan, Dong, Wang, Jiang, Zhao, Wang, Song, Zheng, Li (bb0205) 2019; 242 Song, Xu, Li, Meng, Wang, Qiu, Hu, Zhang, Xiang, Xi, Wu, Wang, Lin (bb0155) 2025; 21 Wu, Song, Chen, He, Wu, Tao, He, Deng, Lu, Chao, Hua, Zhu (bb0070) 2024; 9 Ouyang, Gao, Tang, Li, Xu (bb0175) 2025; 16 Chen, Chen, Hao, Wen, Wang, Liu, Gao, Hu, Samak, Yang, Xing (bb0015) 2025; 508 Li, Pan, Shao, Zhang, Wu, He, He, Ge, Zhou, Liu, Zheng, Ye, Liu (bb0115) 2023; 33 Zhang, Xie, Gong, Zhou, Zhang, Ji (bb0075) 2020; 53 Chepkasov, Radina, Kvashnin (bb0110) 2024; 16 Nascimento, Campos Machado, Mello, Segtovich, Zotin, Silva (bb0050) 2025; 443 Li, Su, Chen, Wu, Zhang, Xu, Shi, Zhang (bb0085) 2025 Prabhu, Louwen, Vogt, Groot (bb0035) 2024; 15 Feng, Shi, Hu, Feng, Xiao (bb0180) 2023; 15 Fan, Yang, Zhao, Duan, Xu, Zheng, Wang, Jiang, Liu, Wei (bb0225) 2017; 32 Ahmad, Hanifah, Arsyad, Lesbani (bb0245) 2025; 32 Wang, Zhou, Liu, Yang, Zhang, Shang, Li, Xiao, Zhang, Zhao (bb0220) 2022; 24 Liu, Zhang, Hu, Zhang, Xiang, Cheng, Qin, Li (bb0250) 2024; 29 Wang, Luan, Gong, Hua, Wu, Cheng, Huang, Liu, Liu, Zhu (bb0055) 2025; 304 Zou, Sun, Wang, Ju, Sun, Yue, Deng, Liu, Yang, Wang, Li, Hou, Deng, Ling, Deng (bb0125) 2024; 125 Su (10.1016/j.cej.2025.166139_bb0120) 2024; 12 Zhang (10.1016/j.cej.2025.166139_bb0170) 2024; 63 Feng (10.1016/j.cej.2025.166139_bb0180) 2023; 15 Liu (10.1016/j.cej.2025.166139_bb0040) 2024; 38 Ghahramaninezhad (10.1016/j.cej.2025.166139_bb0165) 2019; 27 Bazyari (10.1016/j.cej.2025.166139_bb0100) 2016; 180 Song (10.1016/j.cej.2025.166139_bb0260) 2024; 16 Li (10.1016/j.cej.2025.166139_bb0085) 2025 Yang (10.1016/j.cej.2025.166139_bb0240) 2021; 35 Wang (10.1016/j.cej.2025.166139_bb0215) 2023; 424 Pan (10.1016/j.cej.2025.166139_bb0205) 2019; 242 Zhou (10.1016/j.cej.2025.166139_bb0065) 2024; 479 Song (10.1016/j.cej.2025.166139_bb0155) 2025; 21 Wei (10.1016/j.cej.2025.166139_bb0185) 2023; 20 Zhang (10.1016/j.cej.2025.166139_bb0075) 2020; 53 Fan (10.1016/j.cej.2025.166139_bb0225) 2017; 32 Wang (10.1016/j.cej.2025.166139_bb0055) 2025; 304 Liu (10.1016/j.cej.2025.166139_bb0250) 2024; 29 Wang (10.1016/j.cej.2025.166139_bb0045) 2025; 301 Waleska (10.1016/j.cej.2025.166139_bb0145) 2018; 148 Ho (10.1016/j.cej.2025.166139_bb0025) 2020; 66 Nannuzzi (10.1016/j.cej.2025.166139_bb0150) 2023; 421 Al-Sakkaf (10.1016/j.cej.2025.166139_bb0020) 2024; 361 Chepkasov (10.1016/j.cej.2025.166139_bb0110) 2024; 16 Yu (10.1016/j.cej.2025.166139_bb0130) 2022; 440 Abdul Jameel (10.1016/j.cej.2025.166139_bb0080) 2021; 293 Vogt (10.1016/j.cej.2025.166139_bb0005) 2024; 629 Nascimento (10.1016/j.cej.2025.166139_bb0050) 2025; 443 Zhong (10.1016/j.cej.2025.166139_bb0210) 2011; 1 Chen (10.1016/j.cej.2025.166139_bb0015) 2025; 508 Liu (10.1016/j.cej.2025.166139_bb0030) 2025; 71 Ravi (10.1016/j.cej.2025.166139_bb0090) 2020; 19 Zou (10.1016/j.cej.2025.166139_bb0125) 2024; 125 Zhu (10.1016/j.cej.2025.166139_bb0105) 2022; 61 Lan (10.1016/j.cej.2025.166139_bb0135) 2019; 1 Wang (10.1016/j.cej.2025.166139_bb0060) 2024; 357 Wu (10.1016/j.cej.2025.166139_bb0070) 2024; 9 Li (10.1016/j.cej.2025.166139_bb0115) 2023; 33 Ruan (10.1016/j.cej.2025.166139_bb0190) 2024; 568 Shao (10.1016/j.cej.2025.166139_bb0230) 2024; 495 Aziz (10.1016/j.cej.2025.166139_bb0265) 2025; 354 Lan (10.1016/j.cej.2025.166139_bb0140) 2018; 140 Lewis (10.1016/j.cej.2025.166139_bb0095) 2015; 54 Ahmad (10.1016/j.cej.2025.166139_bb0245) 2025; 32 Ye (10.1016/j.cej.2025.166139_bb0010) 2025; 387 10.1016/j.cej.2025.166139_bb0235 Prabhu (10.1016/j.cej.2025.166139_bb0035) 2024; 15 Wang (10.1016/j.cej.2025.166139_bb0220) 2022; 24 Zuhra (10.1016/j.cej.2025.166139_bb0255) 2017; 41 Ouyang (10.1016/j.cej.2025.166139_bb0175) 2025; 16 Liu (10.1016/j.cej.2025.166139_bb0160) 2021; 123 Lu (10.1016/j.cej.2025.166139_bb0195) 2019; 58 Han (10.1016/j.cej.2025.166139_bb0270) 2019; 257 Ntais (10.1016/j.cej.2025.166139_bb0200) 2004; 220 |
References_xml | – volume: 357 year: 2024 ident: bb0060 article-title: Regulating the coordination environment of surface alumina on NiMo/Al publication-title: Applied Catalysis B: Environment and Energy – volume: 293 year: 2021 ident: bb0080 article-title: Surrogate formulation and molecular characterization of sulfur species in vacuum residues using APPI and ESI FT-ICR mass spectrometry publication-title: Fuel – volume: 33 year: 2023 ident: bb0115 article-title: Covalent–organic framework (COF)-core–shell composites: classification, synthesis, properties, and applications publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1336 year: 2025 end-page: 1343 ident: bb0175 article-title: CO publication-title: Chem. Sci. – volume: 32 start-page: 8555 year: 2025 end-page: 8563 ident: bb0245 article-title: Heterogeneous catalytic oxidative desulfurization of dibenzothiophene of metal oxide–Mg/Al layered double hydroxide publication-title: Environ. Sci. Pollut. Res. – volume: 19 start-page: 1047 year: 2020 end-page: 1056 ident: bb0090 article-title: Towards a better understanding of Lewis acidic aluminium in zeolites publication-title: Nat. Mater. – volume: 180 start-page: 65 year: 2016 end-page: 77 ident: bb0100 article-title: Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization publication-title: Appl. Catal. B Environ. – volume: 479 year: 2024 ident: bb0065 article-title: Modifying the active phase structure of Ni publication-title: Chem. Eng. J. – volume: 421 start-page: 228 year: 2023 end-page: 239 ident: bb0150 article-title: Optimization of high surface area VO publication-title: J. Catal. – volume: 440 year: 2022 ident: bb0130 article-title: Construction of 3D TiO publication-title: J. Hazard. Mater. – volume: 1 start-page: 527 year: 2019 end-page: 538 ident: bb0135 article-title: Confined interfacial Monomicelle assembly for precisely controlled coating of single-layered Titania Mesopores publication-title: Matter – volume: 1 year: 2011 ident: bb0210 article-title: Mechanism of the performance improvement of TiO publication-title: AIP Adv. – volume: 424 start-page: 189 year: 2023 end-page: 196 ident: bb0215 article-title: A robust Ag/Ti nanocluster as an efficient heterogeneous Lewis acid-base catalyst for C–C bond formation publication-title: J. Catal. – volume: 361 year: 2024 ident: bb0020 article-title: Effects of emulsification factors on the characteristics of crude oil emulsions stabilized by chemical and biosurfactants: a review publication-title: Fuel – volume: 16 start-page: 4159 year: 2024 end-page: 4172 ident: bb0260 article-title: Synthesis of TiO publication-title: Silicon – volume: 41 start-page: 8382 year: 2017 end-page: 8389 ident: bb0255 article-title: Necessity of calcination in the preparation of phosphotungstic acid@TiO publication-title: New J. Chem. – volume: 16 start-page: 5870 year: 2024 end-page: 5892 ident: bb0110 article-title: Structure-driven tuning of catalytic properties of core–shell nanostructures publication-title: Nanoscale – volume: 35 start-page: 20000 year: 2021 end-page: 20015 ident: bb0240 article-title: Constructing dual-function TiO publication-title: Energy Fuel – volume: 71 year: 2025 ident: bb0030 article-title: Type III porous ionic liquids via lipophilicity differences for enhanced oxidation catalysis publication-title: AICHE J. – volume: 140 start-page: 4135 year: 2018 end-page: 4143 ident: bb0140 article-title: Uniform ordered two-dimensional mesoporous TiO publication-title: J. Am. Chem. Soc. – volume: 123 year: 2021 ident: bb0160 article-title: Synthesis of amorphous mesoporous TiO publication-title: Inorg. Chem. Commun. – volume: 27 start-page: 4104 year: 2019 end-page: 4114 ident: bb0165 article-title: A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene publication-title: Environ. Sci. Pollut. Res. – volume: 12 start-page: 29383 year: 2024 end-page: 29401 ident: bb0120 article-title: Recent review on self-supported one-dimensional core/shell nanostructures based on WO publication-title: J Mater Chem A – volume: 58 start-page: 1513 year: 2019 end-page: 1524 ident: bb0195 article-title: Hydrodeoxygenation of Guaiacol catalyzed by high-loading Ni catalysts supported on SiO publication-title: Ind. Eng. Chem. Res. – volume: 443 year: 2025 ident: bb0050 article-title: Enhancing simultaneous hydrodesulfurization and hydrodenitrogenation reactions: kinetic modeling of stacked NiMoP and CoMoP catalysts beds publication-title: Catal. Today – volume: 15 year: 2024 ident: bb0035 article-title: Hydrodesulfurization of methanethiol over co-promoted MoS2 model catalysts publication-title: Nat. Commun. – reference: T.N. Shujiro Otsuki, Takashima, Noriko, Qian, Weihua, Ishihara, Atsushi, Imai, Tamotsu, and Kabe, Toshiaki. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel 200014. – volume: 38 start-page: 21889 year: 2024 end-page: 21912 ident: bb0040 article-title: Advances and outlook on desulfurization and utilization of Tire pyrolysis oil: a review publication-title: Energy Fuel – volume: 568 year: 2024 ident: bb0190 article-title: Investigation of the Ti active site in TS-1 for phenol hydroxylation via seed and dissolution-recrystallization methods publication-title: Mol. Catal. – volume: 387 year: 2025 ident: bb0010 article-title: Hydrogenation of CO publication-title: Science – volume: 32 start-page: 777 year: 2017 end-page: 786 ident: bb0225 article-title: Study on Hydrodesulfurization of L/W coexistence zeolite modified by magnesium for FCC gasoline publication-title: Energy Fuel – volume: 495 year: 2024 ident: bb0230 article-title: Unveiling the structure-performance of MoO publication-title: Chem. Eng. J. – volume: 15 start-page: 54499 year: 2023 end-page: 54509 ident: bb0180 article-title: Regulating the PO publication-title: ACS Appl. Mater. Interfaces – volume: 508 year: 2025 ident: bb0015 article-title: New insights into the role of reaction-diffusion behavior in the bio-desulfurization: relieving thiol-induced inhibition publication-title: Chem. Eng. J. – volume: 61 year: 2022 ident: bb0105 article-title: Modulating Tit publication-title: Angew. Chem. Int. Ed. – volume: 301 year: 2025 ident: bb0045 article-title: Insights into the coupling of H publication-title: Chem. Eng. Sci. – volume: 354 year: 2025 ident: bb0265 article-title: ZnFe publication-title: Sep. Purif. Technol. – volume: 9 start-page: 495 year: 2024 end-page: 506 ident: bb0070 article-title: Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil publication-title: Green Energy & Environment – volume: 29 year: 2024 ident: bb0250 article-title: The utilization of rice husk as both the silicon source and mesoporous template for the green preparation of mesoporous TiO publication-title: Molecules – volume: 54 start-page: 9835 year: 2015 end-page: 9838 ident: bb0095 article-title: Acid–base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 5822 year: 2022 ident: bb0220 article-title: Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti–SiO publication-title: Green Chem. – volume: 63 year: 2024 ident: bb0170 article-title: Negative lattice expansion in an O publication-title: Angew. Chem. Int. Ed. – volume: 257 year: 2019 ident: bb0270 article-title: Activated TiO publication-title: Appl. Catal. B Environ. – volume: 66 year: 2020 ident: bb0025 article-title: Deactivation of hydrodesulfurization catalysts during reactor startup publication-title: AICHE J. – volume: 21 year: 2025 ident: bb0155 article-title: Amorphous/crystalline urchin-like TiO publication-title: Small – volume: 53 start-page: 68 year: 2020 end-page: 72 ident: bb0075 article-title: Non-catalytic oxidative desulfurization of diesel oil using ozone in a biphasic oil/acetonitrile system publication-title: J. Chem. Eng. Jpn – volume: 242 start-page: 92 year: 2019 end-page: 99 ident: bb0205 article-title: The enhancement of photocatalytic hydrogen production via Ti publication-title: Appl. Catal. B Environ. – volume: 629 start-page: 295 year: 2024 end-page: 306 ident: bb0005 article-title: The refinery of the future publication-title: Nature – volume: 20 start-page: 2891 year: 2023 end-page: 2902 ident: bb0185 article-title: Structure characteristics and photocatalytic performance of black TiO publication-title: J. Iran. Chem. Soc. – volume: 304 year: 2025 ident: bb0055 article-title: Mechanochemical driven oxidative desulfurization of high-sulfur petroleum coke over [Bpy]PMoVn coupled with amide-based binary deep eutectic solvents publication-title: Chem. Eng. Sci. – volume: 125 start-page: 972 year: 2024 end-page: 1048 ident: bb0125 article-title: Core–shell magnetic particles: tailored synthesis and applications publication-title: Chem. Rev. – volume: 220 start-page: 199 year: 2004 end-page: 205 ident: bb0200 article-title: TiCl publication-title: J. Mol. Catal. A Chem. – year: 2025 ident: bb0085 article-title: Comprehensive characterization of sulfur compounds in the diesel fraction using methylation/demethylation derived separation and GC publication-title: Anal. Bioanal. Chem. – volume: 148 start-page: 2537 year: 2018 end-page: 2547 ident: bb0145 article-title: Structural dynamics of dispersed Titania during dehydration and oxidative dehydrogenation studied by in situ UV Raman spectroscopy publication-title: Catal. Lett. – volume: 32 start-page: 777 issue: 1 year: 2017 ident: 10.1016/j.cej.2025.166139_bb0225 article-title: Study on Hydrodesulfurization of L/W coexistence zeolite modified by magnesium for FCC gasoline publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b03072 – volume: 32 start-page: 8555 issue: 13 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0245 article-title: Heterogeneous catalytic oxidative desulfurization of dibenzothiophene of metal oxide–Mg/Al layered double hydroxide publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-025-36250-5 – volume: 293 year: 2021 ident: 10.1016/j.cej.2025.166139_bb0080 article-title: Surrogate formulation and molecular characterization of sulfur species in vacuum residues using APPI and ESI FT-ICR mass spectrometry publication-title: Fuel doi: 10.1016/j.fuel.2021.120471 – volume: 16 start-page: 5870 issue: 12 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0110 article-title: Structure-driven tuning of catalytic properties of core–shell nanostructures publication-title: Nanoscale doi: 10.1039/D3NR06194A – volume: 15 issue: 1 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0035 article-title: Hydrodesulfurization of methanethiol over co-promoted MoS2 model catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-024-51549-6 – volume: 19 start-page: 1047 issue: 10 year: 2020 ident: 10.1016/j.cej.2025.166139_bb0090 article-title: Towards a better understanding of Lewis acidic aluminium in zeolites publication-title: Nat. Mater. doi: 10.1038/s41563-020-0751-3 – volume: 568 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0190 article-title: Investigation of the Ti active site in TS-1 for phenol hydroxylation via seed and dissolution-recrystallization methods publication-title: Mol. Catal. – volume: 61 issue: 34 year: 2022 ident: 10.1016/j.cej.2025.166139_bb0105 article-title: Modulating Tit2g orbital occupancy in a cu/TiO−2 composite for selective photocatalytic CO2 reduction to CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207600 – volume: 123 year: 2021 ident: 10.1016/j.cej.2025.166139_bb0160 article-title: Synthesis of amorphous mesoporous TiO2-SiO2 and its excellent catalytic performance in oxidative desulfurization publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2020.108336 – volume: 424 start-page: 189 year: 2023 ident: 10.1016/j.cej.2025.166139_bb0215 article-title: A robust Ag/Ti nanocluster as an efficient heterogeneous Lewis acid-base catalyst for C–C bond formation publication-title: J. Catal. doi: 10.1016/j.jcat.2023.05.013 – ident: 10.1016/j.cej.2025.166139_bb0235 – volume: 1 issue: 3 year: 2011 ident: 10.1016/j.cej.2025.166139_bb0210 article-title: Mechanism of the performance improvement of TiO2-x-based field-effect transistor using SiO2 as gate insulator publication-title: AIP Adv. doi: 10.1063/1.3646525 – volume: 421 start-page: 228 year: 2023 ident: 10.1016/j.cej.2025.166139_bb0150 article-title: Optimization of high surface area VOx/TiO2 catalysts for low-temperature NH3-SCR for NOx abatement publication-title: J. Catal. doi: 10.1016/j.jcat.2023.03.025 – volume: 495 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0230 article-title: Unveiling the structure-performance of MoO3/La2O2CO3 for ultra-deep aerobic oxidative desulfurization of diesel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.153654 – volume: 387 issue: 6737 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0010 article-title: Hydrogenation of CO2 for sustainable fuel and chemical production publication-title: Science doi: 10.1126/science.adn9388 – volume: 29 issue: 16 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0250 article-title: The utilization of rice husk as both the silicon source and mesoporous template for the green preparation of mesoporous TiO2/SiO2 and its excellent catalytic performance in oxidative desulfurization publication-title: Molecules doi: 10.3390/molecules29163856 – volume: 38 start-page: 21889 issue: 22 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0040 article-title: Advances and outlook on desulfurization and utilization of Tire pyrolysis oil: a review publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.4c04244 – volume: 16 start-page: 4159 issue: 10 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0260 article-title: Synthesis of TiO2-modified Y zeolite and its adsorption-catalytic oxidative desulfurization performance publication-title: Silicon doi: 10.1007/s12633-024-02982-1 – volume: 24 start-page: 5822 year: 2022 ident: 10.1016/j.cej.2025.166139_bb0220 article-title: Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti–SiO2-catalysts: the significance of defect-rich TiOx species publication-title: Green Chem. doi: 10.1039/D2GC01714H – volume: 35 start-page: 20000 issue: 24 year: 2021 ident: 10.1016/j.cej.2025.166139_bb0240 article-title: Constructing dual-function TiO2/MWCNTs-NH2-HPW composites as both catalysts and adsorbents for highly efficient oxidative adsorption desulfurization in fuel oil publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.1c02831 – volume: 54 start-page: 9835 issue: 34 year: 2015 ident: 10.1016/j.cej.2025.166139_bb0095 article-title: Acid–base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502939 – volume: 508 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0015 article-title: New insights into the role of reaction-diffusion behavior in the bio-desulfurization: relieving thiol-induced inhibition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.160632 – volume: 1 start-page: 527 issue: 2 year: 2019 ident: 10.1016/j.cej.2025.166139_bb0135 article-title: Confined interfacial Monomicelle assembly for precisely controlled coating of single-layered Titania Mesopores publication-title: Matter doi: 10.1016/j.matt.2019.03.003 – volume: 9 start-page: 495 issue: 3 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0070 article-title: Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil publication-title: Green Energy & Environment doi: 10.1016/j.gee.2022.08.003 – volume: 220 start-page: 199 issue: 2 year: 2004 ident: 10.1016/j.cej.2025.166139_bb0200 article-title: TiCl4(THF)2 impregnation on a flat SiOx/Si(100) and on polycrystalline au foil: determination of surface species using XPS publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2004.05.002 – volume: 180 start-page: 65 year: 2016 ident: 10.1016/j.cej.2025.166139_bb0100 article-title: Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.06.011 – volume: 63 issue: 8 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0170 article-title: Negative lattice expansion in an O3-type transition-metal oxide cathode for highly stable sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202316949 – volume: 12 start-page: 29383 issue: 43 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0120 article-title: Recent review on self-supported one-dimensional core/shell nanostructures based on WO3 for enhanced electrochromism publication-title: J Mater Chem A doi: 10.1039/D4TA05474A – volume: 242 start-page: 92 year: 2019 ident: 10.1016/j.cej.2025.166139_bb0205 article-title: The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.079 – volume: 357 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0060 article-title: Regulating the coordination environment of surface alumina on NiMo/Al2O3 to enhance ultra-deep hydrodesulfurization of diesel publication-title: Applied Catalysis B: Environment and Energy doi: 10.1016/j.apcatb.2024.124265 – volume: 16 start-page: 1336 issue: 3 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0175 article-title: CO2-broken Ti–O bonds in the TiO6 octahedron of CaTiO3 for greatly enhanced room-temperature ferromagnetism publication-title: Chem. Sci. doi: 10.1039/D4SC05607H – volume: 58 start-page: 1513 issue: 4 year: 2019 ident: 10.1016/j.cej.2025.166139_bb0195 article-title: Hydrodeoxygenation of Guaiacol catalyzed by high-loading Ni catalysts supported on SiO2–TiO2 binary oxides publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04517 – volume: 354 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0265 article-title: ZnFe2O4/Cr2O3/MXene nanocomposite photocatalyst stimulates tetracycline antibiotic degradation under visible light irradiation: toxicity evaluation and degradation mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.128866 – volume: 443 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0050 article-title: Enhancing simultaneous hydrodesulfurization and hydrodenitrogenation reactions: kinetic modeling of stacked NiMoP and CoMoP catalysts beds publication-title: Catal. Today doi: 10.1016/j.cattod.2024.114954 – volume: 148 start-page: 2537 issue: 8 year: 2018 ident: 10.1016/j.cej.2025.166139_bb0145 article-title: Structural dynamics of dispersed Titania during dehydration and oxidative dehydrogenation studied by in situ UV Raman spectroscopy publication-title: Catal. Lett. doi: 10.1007/s10562-018-2442-0 – volume: 629 start-page: 295 issue: 8011 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0005 article-title: The refinery of the future publication-title: Nature doi: 10.1038/s41586-024-07322-2 – volume: 479 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0065 article-title: Modifying the active phase structure of Ni2P/Al2O3 by Ga introduction for improved hydrodesulfurization of diesel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147776 – volume: 53 start-page: 68 issue: 2 year: 2020 ident: 10.1016/j.cej.2025.166139_bb0075 article-title: Non-catalytic oxidative desulfurization of diesel oil using ozone in a biphasic oil/acetonitrile system publication-title: J. Chem. Eng. Jpn doi: 10.1252/jcej.19we095 – volume: 15 start-page: 54499 issue: 47 year: 2023 ident: 10.1016/j.cej.2025.166139_bb0180 article-title: Regulating the PO4 and TiO6 polyhedral building blocks in TiP2O7 boosts the potassium ion diffusion kinetics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c12421 – volume: 20 start-page: 2891 issue: 12 year: 2023 ident: 10.1016/j.cej.2025.166139_bb0185 article-title: Structure characteristics and photocatalytic performance of black TiO2/MMT with Ti–O–Si bond publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-023-02876-w – volume: 66 issue: 6 year: 2020 ident: 10.1016/j.cej.2025.166139_bb0025 article-title: Deactivation of hydrodesulfurization catalysts during reactor startup publication-title: AICHE J. doi: 10.1002/aic.16930 – volume: 304 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0055 article-title: Mechanochemical driven oxidative desulfurization of high-sulfur petroleum coke over [Bpy]PMoVn coupled with amide-based binary deep eutectic solvents publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2024.121021 – volume: 140 start-page: 4135 issue: 11 year: 2018 ident: 10.1016/j.cej.2025.166139_bb0140 article-title: Uniform ordered two-dimensional mesoporous TiO2 Nanosheets from hydrothermal-induced solvent-confined Monomicelle assembly publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00909 – volume: 33 issue: 45 year: 2023 ident: 10.1016/j.cej.2025.166139_bb0115 article-title: Covalent–organic framework (COF)-core–shell composites: classification, synthesis, properties, and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304990 – volume: 301 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0045 article-title: Insights into the coupling of H2S adsorption and subsequent C4H4S hydrogenation over Ni–Mo composite adsorbents publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2024.120707 – volume: 27 start-page: 4104 issue: 4 year: 2019 ident: 10.1016/j.cej.2025.166139_bb0165 article-title: A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-07048-z – volume: 125 start-page: 972 issue: 2 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0125 article-title: Core–shell magnetic particles: tailored synthesis and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.4c00710 – volume: 440 year: 2022 ident: 10.1016/j.cej.2025.166139_bb0130 article-title: Construction of 3D TiO2 nanoflower for deep catalytic oxidative desulfurization in diesel: role of oxygen vacancy and Ti3+ publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129859 – volume: 361 year: 2024 ident: 10.1016/j.cej.2025.166139_bb0020 article-title: Effects of emulsification factors on the characteristics of crude oil emulsions stabilized by chemical and biosurfactants: a review publication-title: Fuel doi: 10.1016/j.fuel.2023.130604 – volume: 21 issue: 13 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0155 article-title: Amorphous/crystalline urchin-like TiO2 SERS platform for selective recognition and efficient identification of glutathione publication-title: Small doi: 10.1002/smll.202409400 – volume: 71 issue: 5 year: 2025 ident: 10.1016/j.cej.2025.166139_bb0030 article-title: Type III porous ionic liquids via lipophilicity differences for enhanced oxidation catalysis publication-title: AICHE J. doi: 10.1002/aic.18751 – volume: 257 year: 2019 ident: 10.1016/j.cej.2025.166139_bb0270 article-title: Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117896 – volume: 41 start-page: 8382 issue: 16 year: 2017 ident: 10.1016/j.cej.2025.166139_bb0255 article-title: Necessity of calcination in the preparation of phosphotungstic acid@TiO2 composites. A case study on the facile sol–gel synthesis of nanospheres and their superior performance in catalytic oxi-desulfurization publication-title: New J. Chem. doi: 10.1039/C7NJ01234A – year: 2025 ident: 10.1016/j.cej.2025.166139_bb0085 article-title: Comprehensive characterization of sulfur compounds in the diesel fraction using methylation/demethylation derived separation and GC×GC–MS/FID analysis publication-title: Anal. Bioanal. Chem. |
SSID | ssj0006919 |
Score | 2.4737287 |
Snippet | Oxidative desulfurization is an important non‑hydrogen desulfurization technology, but traditional TiO2 catalysts are subject to the weak acidity and weak... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 166139 |
SubjectTerms | Controllable Lewis acidity Core-shell structure Oxidative desulfurization Titanium dioxide |
Title | Lewis acidic controllable SiO2@TiO2 core-shell for enhanced catalytic oxidation of aromatic sulfides in diesel |
URI | https://dx.doi.org/10.1016/j.cej.2025.166139 |
Volume | 520 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn1gfZQ-ehNgmmc1mb5aiVOsDbEVvIdlMcEtJxbaoF3-7s3lgBb142TzYDeHL7jwy384wdiw8QNdPhRMEoBxIspDWHDUyRFKnmjyKInfnzW3Qe4CrJ_G0xLr1XhhLq6xkfynTC2ld3WlVaLZejGkNXBvTUiBJiQdkxdiMnwDSzvLTz2-aR6CK4h62s2N715HNguOlcUQuoidOXVJTtl74b7ppQd9cbLD1ylDknfJdNtkS5ltsbSF94DbLr_HNTHmsTWo0r0jnY7sXig_MnXc2pIbbNJXO1NI9OdmnHPPnIubPi_82H_RwPnk3ZWElPsl4_Dopkrjy6XycmRSn3OTcMg1xvMMeLs6H3Z5T1U9wNFktMwfCRKSuRlerQIhMeehL30PyUXxPahmQ64VIJ4kIJWqQShGU7UyrFBUA-P4uW84nOe4xHiYpLW6IwU0UxHEcppnXhkzLdkr-Y-Y32EmNXPRSpsmIav7YKCKYIwtzVMLcYFBjG_341hGJ8b-H7f9v2AFbtVeW4-GKQ7Y8e53jERkSs6RZzJQmW-lc9nu39ti_f-x_ASIRx_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmeszz14MsEW2AX2pmlsqrb10DbpjcAyxG0aaEob9eJvd5ZHrIlevGwI7BLywbyYb2cIueYWA9OOuOE4TBgsjD2UORxcD9CcSowo8tqd_YHTHbOnCZ_USLvaC6NplaXuL3R6rq3LM80SzeZcqebQ1DktwVw04g56MfYG2WQovrqNwe3nN8_DEXl3Dz3b0NOr1GZO8pIwxRjR4rcm2indMPw347RmcDp7ZLf0FOl98TD7pAbJAdlZqx94SJIevKmMBlJFStKSdT7Tm6HoUL1YdyMcqK5TaWSa70nRQaWQvOZJf5r_uPnAm9P0XRWdlWga02CR5lVcabaaxSqCjKqEaqohzI7IuPMwaneNsoGCIdFtWRrMC3lkSjClcDiPhQW2a1uAQYptudJ1MPYCwIOQey5I5gqBWLZiKSIQjDHbPib1JE3ghFAvjFC6WcDMULAgCLwotloslm4rwgAythvkpkLOnxd1MvyKQDb1EWZfw-wXMDcIq7D1f7xsH_X438tO_7fsimx1R_2e33scPJ-RbX1FEz5Mfk7qy8UKLtCrWIaX-VfzBatVx98 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lewis+acidic+controllable+SiO2%40TiO2+core-shell+for+enhanced+catalytic+oxidation+of+aromatic+sulfides+in+diesel&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Yu%2C+Zhendong&rft.au=Wu%2C+Jingyu&rft.au=Li%2C+Kaikai&rft.au=Wu%2C+Peiwen&rft.date=2025-09-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=520&rft_id=info:doi/10.1016%2Fj.cej.2025.166139&rft.externalDocID=S1385894725069773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |