Multi-level ROS regulation to activate innate and adaptive immune therapies

•VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via cascade reaction, enhancing tumor cell damage.•VGRM activated cGAS/STING pathway, induced ICD, promoted CD8+ T cell infiltration, and reversed...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 515; p. 163429
Main Authors Feng, Ke-Ke, Li, Cheng-Lei, Tu, Yi-Fan, Tian, Shi-Cheng, Xiong, Rui, Sa, Bai-Sheng, Shao, Jing-Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via cascade reaction, enhancing tumor cell damage.•VGRM activated cGAS/STING pathway, induced ICD, promoted CD8+ T cell infiltration, and reversed immunosuppression.•VGRM had excellent NIR-II photothermal performance for photoacoustic imaging and photothermal therapy.•VGRM inhibited tumor growth, recurrence and metastasis via ROS, photothermal, and immune activation. Reprogramming the immunosuppressive tumor microenvironment (TME) to boost CD8+ T cell infiltration is crucial for anti-tumor immunotherapy. In this study, a bionic nanoplatform (VGRM) based on a two-dimensional vanadium carbide (MXene) carrying glucose oxidase (GOx) and CRISPR/Cas9 was constructed, which enabled a cascade reaction that amplified the generation of reactive oxygen species (ROS) while depleting glutathione (GSH) by combining MXenzyme and natural enzymes. The CRISPR/Cas9 system could reduce the expression of MTH1, depress tumor cells’ self-defense against oxidative stress and thus significantly enhance the therapeutic effect of ROS. Additionally, the excellent NIR-II photothermal performance endowed VGRM with photoacoustic imaging (PA) and photothermal therapy (PTT) capabilities. The enhanced oxidative stress and photothermal killing ability could activate the cGAS/STING innate immune pathway, induce immunogenic cell death (ICD), and at the same time reverse the immunosuppressive TME, which promoted CD8+ T cells infiltration, and thereby inhibiting tumor proliferation. Meanwhile, antigen-activated memory T cells (adaptive immunity) could suppress tumor recurrence and metastasis effectively. This study provides a novel strategy for the combined application of MXene and gene editing therapy in modulating the tumor immune microenvironment.
AbstractList •VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via cascade reaction, enhancing tumor cell damage.•VGRM activated cGAS/STING pathway, induced ICD, promoted CD8+ T cell infiltration, and reversed immunosuppression.•VGRM had excellent NIR-II photothermal performance for photoacoustic imaging and photothermal therapy.•VGRM inhibited tumor growth, recurrence and metastasis via ROS, photothermal, and immune activation. Reprogramming the immunosuppressive tumor microenvironment (TME) to boost CD8+ T cell infiltration is crucial for anti-tumor immunotherapy. In this study, a bionic nanoplatform (VGRM) based on a two-dimensional vanadium carbide (MXene) carrying glucose oxidase (GOx) and CRISPR/Cas9 was constructed, which enabled a cascade reaction that amplified the generation of reactive oxygen species (ROS) while depleting glutathione (GSH) by combining MXenzyme and natural enzymes. The CRISPR/Cas9 system could reduce the expression of MTH1, depress tumor cells’ self-defense against oxidative stress and thus significantly enhance the therapeutic effect of ROS. Additionally, the excellent NIR-II photothermal performance endowed VGRM with photoacoustic imaging (PA) and photothermal therapy (PTT) capabilities. The enhanced oxidative stress and photothermal killing ability could activate the cGAS/STING innate immune pathway, induce immunogenic cell death (ICD), and at the same time reverse the immunosuppressive TME, which promoted CD8+ T cells infiltration, and thereby inhibiting tumor proliferation. Meanwhile, antigen-activated memory T cells (adaptive immunity) could suppress tumor recurrence and metastasis effectively. This study provides a novel strategy for the combined application of MXene and gene editing therapy in modulating the tumor immune microenvironment.
ArticleNumber 163429
Author Feng, Ke-Ke
Xiong, Rui
Li, Cheng-Lei
Shao, Jing-Wei
Tian, Shi-Cheng
Tu, Yi-Fan
Sa, Bai-Sheng
Author_xml – sequence: 1
  givenname: Ke-Ke
  surname: Feng
  fullname: Feng, Ke-Ke
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
– sequence: 2
  givenname: Cheng-Lei
  surname: Li
  fullname: Li, Cheng-Lei
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
– sequence: 3
  givenname: Yi-Fan
  surname: Tu
  fullname: Tu, Yi-Fan
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
– sequence: 4
  givenname: Shi-Cheng
  surname: Tian
  fullname: Tian, Shi-Cheng
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
– sequence: 5
  givenname: Rui
  surname: Xiong
  fullname: Xiong, Rui
  organization: Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
– sequence: 6
  givenname: Bai-Sheng
  surname: Sa
  fullname: Sa, Bai-Sheng
  organization: Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
– sequence: 7
  givenname: Jing-Wei
  surname: Shao
  fullname: Shao, Jing-Wei
  email: shaojw12@163.com
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
BookMark eNp9kM1KAzEUhbOoYKs-gLu8wIy5M5mf4EqKf1gpaPfhNnNHM0wzJUkLvr0pde3mHjjwXQ7fgs3c5IixWxA5CKjvhtzQkBeiqHKoS1moGZtD2VZZq2RzyRYhDEKIWoGas7f3wxhtNtKRRv6x_uSevg4jRjs5HieOJtojRuLWuVOg6zh2uE9t6na7gyMev8nj3lK4Zhc9joFu_vKKbZ4eN8uXbLV-fl0-rDJTVBCzUsiikrTFioxK8-oGetkBQK-MQFGaWgrsKR2JjWxJCdVsVQlNVxXQtuUVg_Nb46cQPPV67-0O_Y8GoU8C9KCTAH0SoM8CEnN_ZijtOlryOhhLzlBnPZmou8n-Q_8CFa5muA
Cites_doi 10.3390/cancers9050047
10.1002/adma.202003085
10.1016/j.nantod.2020.100946
10.1002/adma.201305256
10.1002/adma.202104641
10.1002/adma.201808325
10.1038/s41467-023-40345-3
10.1038/s41467-021-22278-x
10.1021/acs.nanolett.6b04339
10.1002/sia.5261
10.1093/annonc/mdw429
10.1002/adma.202208277
10.1002/anie.201210359
10.1016/j.jconrel.2014.06.038
10.1002/anie.202008868
10.1021/acsnano.6b04261
10.1016/j.actbio.2022.09.046
10.1002/adma.202106010
10.1021/jz1011143
10.1007/s00204-024-03696-4
10.1002/adma.202313029
10.1002/adma.202307115
10.1016/j.apsb.2024.04.033
10.1002/smll.202107422
10.1038/s41568-021-00435-0
10.1186/s12951-025-03288-z
10.2174/1871520621666210608095512
10.1007/s12275-024-00159-4
10.1021/jacs.7b07818
10.1038/s41467-022-29082-1
10.1039/C7CS00891K
10.1002/anie.201701181
10.1002/adfm.202406529
10.1038/s41598-020-79724-x
10.3390/ijms25021023
10.1016/j.jiec.2023.03.050
10.1016/j.addr.2021.113891
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2025.163429
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2025_163429
S1385894725042639
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSH
SSJ
SSZ
T5K
~G-
AAYXX
ABXDB
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
ZY4
ID FETCH-LOGICAL-c251t-304254eba5ec9342671f4d111f9c0a03c640afe40a4a748e9097b9317d521883
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Jul 03 08:35:04 EDT 2025
Sat Jun 28 18:15:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Tumor immune microenvironment
Adaptive immunity
CRISPR/Cas9
Theranostics
MXene
cGAS/STING
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-304254eba5ec9342671f4d111f9c0a03c640afe40a4a748e9097b9317d521883
ParticipantIDs crossref_primary_10_1016_j_cej_2025_163429
elsevier_sciencedirect_doi_10_1016_j_cej_2025_163429
PublicationCentury 2000
PublicationDate 2025-07-01
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Song, Tian, Yang, Yu, Lin, Zhang, Fan, Zhang, Niu, Nie, Chen (b0030) 2017; 56
Sahoo, Banik, Borah, Jain (b0055) 2022; 22
Feng, Han, Hu, Chang, Ding, Xiang, Chen, Li (b0080) 2021; 12
Xu, Liu, Wang, Koivisto, Zhou, Shu, Zhang (b0140) 2021; 176
Zhu, Zhang, Jiang, Xu, Yang, Chen, Wang, Xu, Liu (b0015) 2025; 23
Yudovich, Bäckström, Schmiderer, Zemaitis, Subramaniam, Larsson (b0130) 2020; 10
Wang, Tang, Zhao, Huang, Gong, Yang, Li, Wan, Jia, Chen, Zhang (b0125) 2022; 153
Feng, Li, Xiong, Lin, Cui, Tu, Zhang, Sa, Shao (b0070) 2024; 34
Jomova, Alomar, Alwasel, Nepovimova, Kuca, Valko (b0065) 2024; 98
Lin, Gao, Dai, Chen, Shi (b0155) 2017; 139
Wang, Chang, Li, Chen, Hou, Xing, Lin (b0040) 2022; 34
Berglund, Sanjiv, Gad, Kalderen, Koolmeister, Pham, Gokturk, Jafari, Maddalo, Seashore-Ludlow, Chernobrovkin, Manoilov, Pateras, Rasti, Jemth, Almlöf, Loseva, Visnes, Einarsdottir, Gaugaz, Saleh, Platzack, Wallner, Vallin, Henriksson, Wakchaure, Borhade, Herr, Kallberg, Baranczewski, Homan, Wiita, Nagpal, Meijer, Schipper, Rudd, Brautigam, Lindqvist, Filppula, Lee, Artursson, Nilsson, Gorgoulis, Lehtio, Zubarev, Scobie, Helleday (b0120) 2016; 27
Li, Song, Liu, Yang, Li, He, Wang, Yang, Yu, Yin, Wen, He, Wei, Su, Wu, Yao, Gong, Wei (b0115) 2017; 11
Zhao, Zhu, Feng, Liu, Hu, Zhu, Zhao, Ding, Gai, Yang (b0075) 2024; 36
Yameen, Choi, Vilos, Swami, Shi, Farokhzad (b0190) 2014; 190
Wang, Wu, Wang, Gu, Chen, Jana, Feng, Liu, Wang, Xu, Guo, Chen, Zhao (b0095) 2021; 60
Lin, Wang, Gao, Chen, Shi (b0170) 2018; 32
Park, Lee (b0135) 2024; 62
Huang, Qin, Cui, Zhao, Ren, Qu (b0005) 2023; 14
Alvarez, Sevilla (b0035) 2024; 25
Abdelsayed, Moussa, Hassan, Aluri, Collinson, El-Shall (b0180) 2010; 1
Lei, Zhang, Blum, Li, Zhang, Yin, Zhao, Lin, Huang (b0045) 2022; 13
Zhao, Ji, Wang, Kong, Yang, Lu, Geng, Qin, Feng, Cao (b0025) 2024; 500
Stevens, de Luca, Pelendritis, Terenghi, Downes, Schroeder (b0165) 2013; 45
Fu, Qi, Hu, Lin, Huang (b0085) 2019; 31
Wang, Zhong, Liu, Cheng (b0060) 2020; 35
Cheung, Vousden (b0050) 2022; 22
Meng, Zhou, Qian, Liu, Wang, Lin, Shi, Tian, Lu, Chen, Qian, Wang (b0100) 2022; 18
Liu, Wang, Gu, Gong, Cheng, Shi, Feng, Sun, Liu (b0185) 2014; 26
Guo, Tu, Wang, Du, Jiang, Qiu, Wang, Chen, Chen, Ren (b0195) 2024; 36
Zhan, Qiu, Fan, Chen, Guo, Wang, Li, Majoral, Shi (b0010) 2023; 35
Samaranayake, Huynh, Rai (b0110) 2017; 9
Lee, Kim, Yu, Lee, Ko, Lee, Kim (b0020) 2025; 2420870
Fu, Qi, Lin, Huang (b0090) 2018; 47
Zeng, Goldfeld, Xia (b0175) 2013; 52
Pu, Yin, Dong, Xiang, Wu, Zhou, Du, Chen, Xu (b0105) 2021; 33
Lin, Wang, Yu, Chen, Shi (b0160) 2017; 17
Zhang, Lai, Luo, Shao (b0145) 2024; 14
Le, Yang, Song, Feng, Tong, Yin, Zhang, Lin, Wu, Shao (b0150) 2023; 123
Samaranayake (10.1016/j.cej.2025.163429_b0110) 2017; 9
Fu (10.1016/j.cej.2025.163429_b0085) 2019; 31
Feng (10.1016/j.cej.2025.163429_b0080) 2021; 12
Liu (10.1016/j.cej.2025.163429_b0185) 2014; 26
Jomova (10.1016/j.cej.2025.163429_b0065) 2024; 98
Xu (10.1016/j.cej.2025.163429_b0140) 2021; 176
Meng (10.1016/j.cej.2025.163429_b0100) 2022; 18
Guo (10.1016/j.cej.2025.163429_b0195) 2024; 36
Alvarez (10.1016/j.cej.2025.163429_b0035) 2024; 25
Zhou (10.1016/j.cej.2025.163429_b0030) 2017; 56
Li (10.1016/j.cej.2025.163429_b0115) 2017; 11
Yudovich (10.1016/j.cej.2025.163429_b0130) 2020; 10
Fu (10.1016/j.cej.2025.163429_b0090) 2018; 47
Lee (10.1016/j.cej.2025.163429_b0020) 2025; 2420870
Wang (10.1016/j.cej.2025.163429_b0125) 2022; 153
Lin (10.1016/j.cej.2025.163429_b0170) 2018; 32
Lei (10.1016/j.cej.2025.163429_b0045) 2022; 13
Pu (10.1016/j.cej.2025.163429_b0105) 2021; 33
Lin (10.1016/j.cej.2025.163429_b0155) 2017; 139
Huang (10.1016/j.cej.2025.163429_b0005) 2023; 14
Berglund (10.1016/j.cej.2025.163429_b0120) 2016; 27
Stevens (10.1016/j.cej.2025.163429_b0165) 2013; 45
Zhang (10.1016/j.cej.2025.163429_b0145) 2024; 14
Cheung (10.1016/j.cej.2025.163429_b0050) 2022; 22
Feng (10.1016/j.cej.2025.163429_b0070) 2024; 34
Zhu (10.1016/j.cej.2025.163429_b0015) 2025; 23
Zeng (10.1016/j.cej.2025.163429_b0175) 2013; 52
Zhao (10.1016/j.cej.2025.163429_b0025) 2024; 500
Wang (10.1016/j.cej.2025.163429_b0095) 2021; 60
Wang (10.1016/j.cej.2025.163429_b0040) 2022; 34
Le (10.1016/j.cej.2025.163429_b0150) 2023; 123
Sahoo (10.1016/j.cej.2025.163429_b0055) 2022; 22
Lin (10.1016/j.cej.2025.163429_b0160) 2017; 17
Park (10.1016/j.cej.2025.163429_b0135) 2024; 62
Yameen (10.1016/j.cej.2025.163429_b0190) 2014; 190
Zhao (10.1016/j.cej.2025.163429_b0075) 2024; 36
Wang (10.1016/j.cej.2025.163429_b0060) 2020; 35
Abdelsayed (10.1016/j.cej.2025.163429_b0180) 2010; 1
Zhan (10.1016/j.cej.2025.163429_b0010) 2023; 35
References_xml – volume: 35
  year: 2023
  ident: b0010
  article-title: Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells
  publication-title: Adv. Mater.
– volume: 36
  year: 2024
  ident: b0075
  article-title: Architecture of vanadium-based MXene dysregulating tumor redox homeostasis for amplified nanozyme catalytic/photothermal therapy
  publication-title: Adv. Mater.
– volume: 190
  start-page: 485
  year: 2014
  end-page: 499
  ident: b0190
  article-title: Insight into nanoparticle cellular uptake and intracellular targeting
  publication-title: J. Control. Release
– volume: 500
  year: 2024
  ident: b0025
  article-title: MXene-based nanozymes remodel tumor microenvironment for heterojunction-enhanced sonodynamic and chemodynamic therapy to boost robust cancer immunotherapy
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 1023
  year: 2024
  ident: b0035
  article-title: Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies
  publication-title: Int. J. Mol. Sci.
– volume: 18
  year: 2022
  ident: b0100
  article-title: Hollow cuprous oxide@nitrogen-doped carbon nanocapsules for cascade chemodynamic therapy
  publication-title: Small
– volume: 1
  start-page: 2804
  year: 2010
  end-page: 2809
  ident: b0180
  article-title: Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 3205
  year: 2024
  end-page: 3217
  ident: b0145
  article-title: Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/ Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy
  publication-title: Acta Pharm. Sin. B
– volume: 27
  start-page: 2275
  year: 2016
  end-page: 2283
  ident: b0120
  article-title: Validation and development of MTH1 inhibitors for treatment of cancer
  publication-title: Ann. Oncol.
– volume: 153
  start-page: 481
  year: 2022
  end-page: 493
  ident: b0125
  article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy
  publication-title: Acta Biomater.
– volume: 176
  year: 2021
  ident: b0140
  article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment q
  publication-title: Adv. Drug Deliv. Rev.
– volume: 98
  start-page: 1323
  year: 2024
  end-page: 1367
  ident: b0065
  article-title: Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants
  publication-title: Arch. Toxicol.
– volume: 34
  year: 2024
  ident: b0070
  article-title: Multifunctional theranostic 2D vanadium carbidel for enhanced cancer immunotherapy
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 491
  year: 2024
  end-page: 509
  ident: b0135
  article-title: Adenoviral vector system: a comprehensive overview of constructions, therapeutic applications and host responses
  publication-title: J. Microbiol.
– volume: 2420870
  year: 2025
  ident: b0020
  article-title: Electric pulse regulated MXene based nanozymes for integrative bioelectricity immuno-cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2203
  year: 2021
  ident: b0080
  article-title: 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases
  publication-title: Nat. Commun.
– volume: 10
  start-page: 22393
  year: 2020
  ident: b0130
  article-title: Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells
  publication-title: Sci. Rep.
– volume: 123
  start-page: 330
  year: 2023
  end-page: 341
  ident: b0150
  article-title: A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma
  publication-title: J. Ind. Eng. Chem.
– volume: 47
  start-page: 6454
  year: 2018
  end-page: 6472
  ident: b0090
  article-title: Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 3433
  year: 2014
  end-page: 3440
  ident: b0185
  article-title: Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer
  publication-title: Adv. Mater.
– volume: 56
  start-page: 6492
  year: 2017
  end-page: 6496
  ident: b0030
  article-title: Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy
  publication-title: Angew. Chem.-Int. Edit.
– volume: 14
  start-page: 4647
  year: 2023
  ident: b0005
  article-title: A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses
  publication-title: Nat. Commun.
– volume: 36
  year: 2024
  ident: b0195
  article-title: Decomposable Nanoagonists enable NIR-elicited cGAS-STING activation for tandem-amplified photodynamic-metalloimmunotherapy
  publication-title: Adv. Mater.
– volume: 52
  start-page: 4169
  year: 2013
  end-page: 4173
  ident: b0175
  article-title: A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch
  publication-title: Angew. Chem. Int. Edit.
– volume: 139
  start-page: 16235
  year: 2017
  end-page: 16247
  ident: b0155
  article-title: A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 215
  year: 2022
  end-page: 222
  ident: b0055
  article-title: Reactive oxygen species (ROS): key components in cancer therapies
  publication-title: Anti-Cancer Agents Med. Chem.
– volume: 31
  year: 2019
  ident: b0085
  article-title: Glucose oxidase-instructed multimodal synergistic cancer therapy
  publication-title: Adv. Mater.
– volume: 45
  start-page: 1238
  year: 2013
  end-page: 1246
  ident: b0165
  article-title: Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS)
  publication-title: Surf. Interface Anal.
– volume: 32
  year: 2018
  ident: b0170
  article-title: Theranostic 2D tantalum carbide (MXene)
  publication-title: Adv. Mater.
– volume: 22
  start-page: 280
  year: 2022
  end-page: 297
  ident: b0050
  article-title: The role of ROS in tumour development and progression
  publication-title: Nat. Rev. Cancer
– volume: 13
  start-page: 1298
  year: 2022
  ident: b0045
  article-title: In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy
  publication-title: Nat. Commun.
– volume: 60
  start-page: 3001
  year: 2021
  end-page: 3007
  ident: b0095
  article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy
  publication-title: Angew. Chem.-Int. Edit.
– volume: 17
  start-page: 384
  year: 2017
  end-page: 391
  ident: b0160
  article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion
  publication-title: Nano Lett.
– volume: 33
  year: 2021
  ident: b0105
  article-title: Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy
  publication-title: Adv. Mater.
– volume: 9
  start-page: 47
  year: 2017
  ident: b0110
  article-title: MTH1 as a chemotherapeutic target: the elephant in the room
  publication-title: Cancers
– volume: 11
  start-page: 95
  year: 2017
  end-page: 111
  ident: b0115
  article-title: Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice
  publication-title: ACS Nano
– volume: 34
  year: 2022
  ident: b0040
  article-title: Tumor-Microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic /immunotherapy
  publication-title: Adv. Mater.
– volume: 23
  start-page: 203
  year: 2025
  ident: b0015
  article-title: MXene-based nanosheet for enhanced glioma therapy via photonic hyperthermia to boost the abscopal effect of radioimmunotherapy
  publication-title: J. Nanobiotechnol.
– volume: 35
  year: 2020
  ident: b0060
  article-title: Recent progress of chemodynamic therapy-induced combination cancer therapy
  publication-title: Nano Today
– volume: 9
  start-page: 47
  issue: 5
  year: 2017
  ident: 10.1016/j.cej.2025.163429_b0110
  article-title: MTH1 as a chemotherapeutic target: the elephant in the room
  publication-title: Cancers
  doi: 10.3390/cancers9050047
– volume: 32
  issue: 42
  year: 2018
  ident: 10.1016/j.cej.2025.163429_b0170
  article-title: Theranostic 2D tantalum carbide (MXene)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003085
– volume: 35
  year: 2020
  ident: 10.1016/j.cej.2025.163429_b0060
  article-title: Recent progress of chemodynamic therapy-induced combination cancer therapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100946
– volume: 26
  start-page: 3433
  issue: 21
  year: 2014
  ident: 10.1016/j.cej.2025.163429_b0185
  article-title: Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305256
– volume: 33
  issue: 45
  year: 2021
  ident: 10.1016/j.cej.2025.163429_b0105
  article-title: Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104641
– volume: 31
  issue: 21
  year: 2019
  ident: 10.1016/j.cej.2025.163429_b0085
  article-title: Glucose oxidase-instructed multimodal synergistic cancer therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808325
– volume: 14
  start-page: 4647
  issue: 1
  year: 2023
  ident: 10.1016/j.cej.2025.163429_b0005
  article-title: A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40345-3
– volume: 12
  start-page: 2203
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2025.163429_b0080
  article-title: 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22278-x
– volume: 17
  start-page: 384
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2025.163429_b0160
  article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04339
– volume: 45
  start-page: 1238
  issue: 8
  year: 2013
  ident: 10.1016/j.cej.2025.163429_b0165
  article-title: Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS)
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.5261
– volume: 27
  start-page: 2275
  issue: 12
  year: 2016
  ident: 10.1016/j.cej.2025.163429_b0120
  article-title: Validation and development of MTH1 inhibitors for treatment of cancer
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdw429
– volume: 35
  issue: 3
  year: 2023
  ident: 10.1016/j.cej.2025.163429_b0010
  article-title: Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208277
– volume: 52
  start-page: 4169
  issue: 15
  year: 2013
  ident: 10.1016/j.cej.2025.163429_b0175
  article-title: A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201210359
– volume: 190
  start-page: 485
  year: 2014
  ident: 10.1016/j.cej.2025.163429_b0190
  article-title: Insight into nanoparticle cellular uptake and intracellular targeting
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.06.038
– volume: 60
  start-page: 3001
  issue: 6
  year: 2021
  ident: 10.1016/j.cej.2025.163429_b0095
  article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.202008868
– volume: 11
  start-page: 95
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2025.163429_b0115
  article-title: Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04261
– volume: 153
  start-page: 481
  year: 2022
  ident: 10.1016/j.cej.2025.163429_b0125
  article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.09.046
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.cej.2025.163429_b0040
  article-title: Tumor-Microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic /immunotherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106010
– volume: 1
  start-page: 2804
  issue: 19
  year: 2010
  ident: 10.1016/j.cej.2025.163429_b0180
  article-title: Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1011143
– volume: 98
  start-page: 1323
  issue: 5
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0065
  article-title: Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-024-03696-4
– volume: 36
  issue: 21
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0195
  article-title: Decomposable Nanoagonists enable NIR-elicited cGAS-STING activation for tandem-amplified photodynamic-metalloimmunotherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202313029
– volume: 36
  issue: 2
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0075
  article-title: Architecture of vanadium-based MXene dysregulating tumor redox homeostasis for amplified nanozyme catalytic/photothermal therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202307115
– volume: 14
  start-page: 3205
  issue: 7
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0145
  article-title: Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/ Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2024.04.033
– volume: 18
  issue: 15
  year: 2022
  ident: 10.1016/j.cej.2025.163429_b0100
  article-title: Hollow cuprous oxide@nitrogen-doped carbon nanocapsules for cascade chemodynamic therapy
  publication-title: Small
  doi: 10.1002/smll.202107422
– volume: 22
  start-page: 280
  issue: 5
  year: 2022
  ident: 10.1016/j.cej.2025.163429_b0050
  article-title: The role of ROS in tumour development and progression
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00435-0
– volume: 23
  start-page: 203
  issue: 1
  year: 2025
  ident: 10.1016/j.cej.2025.163429_b0015
  article-title: MXene-based nanosheet for enhanced glioma therapy via photonic hyperthermia to boost the abscopal effect of radioimmunotherapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-025-03288-z
– volume: 22
  start-page: 215
  issue: 2
  year: 2022
  ident: 10.1016/j.cej.2025.163429_b0055
  article-title: Reactive oxygen species (ROS): key components in cancer therapies
  publication-title: Anti-Cancer Agents Med. Chem.
  doi: 10.2174/1871520621666210608095512
– volume: 62
  start-page: 491
  issue: 7
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0135
  article-title: Adenoviral vector system: a comprehensive overview of constructions, therapeutic applications and host responses
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-024-00159-4
– volume: 139
  start-page: 16235
  issue: 45
  year: 2017
  ident: 10.1016/j.cej.2025.163429_b0155
  article-title: A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07818
– volume: 13
  start-page: 1298
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2025.163429_b0045
  article-title: In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29082-1
– volume: 47
  start-page: 6454
  issue: 17
  year: 2018
  ident: 10.1016/j.cej.2025.163429_b0090
  article-title: Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00891K
– volume: 2420870
  year: 2025
  ident: 10.1016/j.cej.2025.163429_b0020
  article-title: Electric pulse regulated MXene based nanozymes for integrative bioelectricity immuno-cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 6492
  issue: 23
  year: 2017
  ident: 10.1016/j.cej.2025.163429_b0030
  article-title: Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.201701181
– volume: 34
  issue: 42
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0070
  article-title: Multifunctional theranostic 2D vanadium carbidel for enhanced cancer immunotherapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202406529
– volume: 10
  start-page: 22393
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2025.163429_b0130
  article-title: Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79724-x
– volume: 500
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0025
  article-title: MXene-based nanozymes remodel tumor microenvironment for heterojunction-enhanced sonodynamic and chemodynamic therapy to boost robust cancer immunotherapy
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 1023
  issue: 2
  year: 2024
  ident: 10.1016/j.cej.2025.163429_b0035
  article-title: Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms25021023
– volume: 123
  start-page: 330
  year: 2023
  ident: 10.1016/j.cej.2025.163429_b0150
  article-title: A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2023.03.050
– volume: 176
  year: 2021
  ident: 10.1016/j.cej.2025.163429_b0140
  article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment q
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113891
SSID ssj0006919
Score 2.4674659
Snippet •VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 163429
SubjectTerms Adaptive immunity
cGAS/STING
CRISPR/Cas9
MXene
Theranostics
Tumor immune microenvironment
Title Multi-level ROS regulation to activate innate and adaptive immune therapies
URI https://dx.doi.org/10.1016/j.cej.2025.163429
Volume 515
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4ErplbdI2xzEc0-KEbeJuJU0T6JBujOrRv933-oET9OKloSWB8Et47_ea93sh5Nb3bCjcFIIcoSBASa1wpOW-k_hSCMu0Dj0UCj9N_ckLf1yKZYuMGi0MplXWtr-y6aW1rr_0azT7myzrzwd4piV5gEW4XHC0qGDnAe7y3ud3mocvy8s9sLODvZuTzTLHS5sVhIiu6AEr4SXL_MU37fib8RE5rIkiHVZzOSYtk5-Qg53ygackKtWzzhvm_dDZ85xuq4vlAWparClKFj6AStIsz7FReUpVqjZo4GiGuhBDK_kVRMtnZDG-X4wmTn05gqOBkhQO_oYQ3CRKGC1h8n4wsDwFy2WlZop52udMWQMPrgIeGslkkEhgCyk47DD0zkk7X-fmglChJbMsNCwxIbfgq1zlKV-JFJyXhgCqQ-4aVOJNVQIjbnLDVjFAGCOEcQVhh_AGt_jHOsZgov8edvm_YVdkH9-q9Nlr0i627-YGSEKRdMtd0CV7w4doMsU2mr1GX8JAu1M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw-ehNjY7G6yx1IsqX0ItkJvYbPZhRRJS4n-fmfzkAp68ZJAkoHlS_jmm-w8AO64ZwLWTTDIYRIDlMQwRxjKnZgLxoyrVODZQuHJlIdv9HnBFg3o17UwNq2y4v6S0wu2rq50KjQ76zTtzB7tnpagvm3C1UVHuwMt252KNaHVG47C6Tchc1HM97DPO9ag3tws0ryUXmKU2GUPKExoITR_cU9bLmdwCAeVViS9cjlH0NDZMexvdRA8gVFRQOu829Qf8voyI5tytjyiTfIVsVULn6gmSZpl9iSzhMhEri3HkdSWhmhSVmBhwHwK88HTvB861XwER6EqyR37J4JRHUumlcDFc__R0ATJywjlStdTnLrSaDxQ6dNAC1f4sUDBkKDPDgLvDJrZKtPnQJgSrnED7cY6oAbdVVd6kkuWoP9SGEO14b5GJVqXXTCiOj1sGSGEkYUwKiFsA61xi368yghZ-m-zi_-Z3cJuOJ-Mo_FwOrqEPXunzKa9gma--dDXqBny-Kb6Jr4Aa_O8YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+ROS+regulation+to+activate+innate+and+adaptive+immune+therapies&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Feng%2C+Ke-Ke&rft.au=Li%2C+Cheng-Lei&rft.au=Tu%2C+Yi-Fan&rft.au=Tian%2C+Shi-Cheng&rft.date=2025-07-01&rft.issn=1385-8947&rft.volume=515&rft.spage=163429&rft_id=info:doi/10.1016%2Fj.cej.2025.163429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_163429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon