Multi-level ROS regulation to activate innate and adaptive immune therapies
•VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via cascade reaction, enhancing tumor cell damage.•VGRM activated cGAS/STING pathway, induced ICD, promoted CD8+ T cell infiltration, and reversed...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 515; p. 163429 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via cascade reaction, enhancing tumor cell damage.•VGRM activated cGAS/STING pathway, induced ICD, promoted CD8+ T cell infiltration, and reversed immunosuppression.•VGRM had excellent NIR-II photothermal performance for photoacoustic imaging and photothermal therapy.•VGRM inhibited tumor growth, recurrence and metastasis via ROS, photothermal, and immune activation.
Reprogramming the immunosuppressive tumor microenvironment (TME) to boost CD8+ T cell infiltration is crucial for anti-tumor immunotherapy. In this study, a bionic nanoplatform (VGRM) based on a two-dimensional vanadium carbide (MXene) carrying glucose oxidase (GOx) and CRISPR/Cas9 was constructed, which enabled a cascade reaction that amplified the generation of reactive oxygen species (ROS) while depleting glutathione (GSH) by combining MXenzyme and natural enzymes. The CRISPR/Cas9 system could reduce the expression of MTH1, depress tumor cells’ self-defense against oxidative stress and thus significantly enhance the therapeutic effect of ROS. Additionally, the excellent NIR-II photothermal performance endowed VGRM with photoacoustic imaging (PA) and photothermal therapy (PTT) capabilities. The enhanced oxidative stress and photothermal killing ability could activate the cGAS/STING innate immune pathway, induce immunogenic cell death (ICD), and at the same time reverse the immunosuppressive TME, which promoted CD8+ T cells infiltration, and thereby inhibiting tumor proliferation. Meanwhile, antigen-activated memory T cells (adaptive immunity) could suppress tumor recurrence and metastasis effectively. This study provides a novel strategy for the combined application of MXene and gene editing therapy in modulating the tumor immune microenvironment. |
---|---|
AbstractList | •VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via cascade reaction, enhancing tumor cell damage.•VGRM activated cGAS/STING pathway, induced ICD, promoted CD8+ T cell infiltration, and reversed immunosuppression.•VGRM had excellent NIR-II photothermal performance for photoacoustic imaging and photothermal therapy.•VGRM inhibited tumor growth, recurrence and metastasis via ROS, photothermal, and immune activation.
Reprogramming the immunosuppressive tumor microenvironment (TME) to boost CD8+ T cell infiltration is crucial for anti-tumor immunotherapy. In this study, a bionic nanoplatform (VGRM) based on a two-dimensional vanadium carbide (MXene) carrying glucose oxidase (GOx) and CRISPR/Cas9 was constructed, which enabled a cascade reaction that amplified the generation of reactive oxygen species (ROS) while depleting glutathione (GSH) by combining MXenzyme and natural enzymes. The CRISPR/Cas9 system could reduce the expression of MTH1, depress tumor cells’ self-defense against oxidative stress and thus significantly enhance the therapeutic effect of ROS. Additionally, the excellent NIR-II photothermal performance endowed VGRM with photoacoustic imaging (PA) and photothermal therapy (PTT) capabilities. The enhanced oxidative stress and photothermal killing ability could activate the cGAS/STING innate immune pathway, induce immunogenic cell death (ICD), and at the same time reverse the immunosuppressive TME, which promoted CD8+ T cells infiltration, and thereby inhibiting tumor proliferation. Meanwhile, antigen-activated memory T cells (adaptive immunity) could suppress tumor recurrence and metastasis effectively. This study provides a novel strategy for the combined application of MXene and gene editing therapy in modulating the tumor immune microenvironment. |
ArticleNumber | 163429 |
Author | Feng, Ke-Ke Xiong, Rui Li, Cheng-Lei Shao, Jing-Wei Tian, Shi-Cheng Tu, Yi-Fan Sa, Bai-Sheng |
Author_xml | – sequence: 1 givenname: Ke-Ke surname: Feng fullname: Feng, Ke-Ke organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China – sequence: 2 givenname: Cheng-Lei surname: Li fullname: Li, Cheng-Lei organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China – sequence: 3 givenname: Yi-Fan surname: Tu fullname: Tu, Yi-Fan organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China – sequence: 4 givenname: Shi-Cheng surname: Tian fullname: Tian, Shi-Cheng organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China – sequence: 5 givenname: Rui surname: Xiong fullname: Xiong, Rui organization: Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China – sequence: 6 givenname: Bai-Sheng surname: Sa fullname: Sa, Bai-Sheng organization: Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China – sequence: 7 givenname: Jing-Wei surname: Shao fullname: Shao, Jing-Wei email: shaojw12@163.com organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China |
BookMark | eNp9kM1KAzEUhbOoYKs-gLu8wIy5M5mf4EqKf1gpaPfhNnNHM0wzJUkLvr0pde3mHjjwXQ7fgs3c5IixWxA5CKjvhtzQkBeiqHKoS1moGZtD2VZZq2RzyRYhDEKIWoGas7f3wxhtNtKRRv6x_uSevg4jRjs5HieOJtojRuLWuVOg6zh2uE9t6na7gyMev8nj3lK4Zhc9joFu_vKKbZ4eN8uXbLV-fl0-rDJTVBCzUsiikrTFioxK8-oGetkBQK-MQFGaWgrsKR2JjWxJCdVsVQlNVxXQtuUVg_Nb46cQPPV67-0O_Y8GoU8C9KCTAH0SoM8CEnN_ZijtOlryOhhLzlBnPZmou8n-Q_8CFa5muA |
Cites_doi | 10.3390/cancers9050047 10.1002/adma.202003085 10.1016/j.nantod.2020.100946 10.1002/adma.201305256 10.1002/adma.202104641 10.1002/adma.201808325 10.1038/s41467-023-40345-3 10.1038/s41467-021-22278-x 10.1021/acs.nanolett.6b04339 10.1002/sia.5261 10.1093/annonc/mdw429 10.1002/adma.202208277 10.1002/anie.201210359 10.1016/j.jconrel.2014.06.038 10.1002/anie.202008868 10.1021/acsnano.6b04261 10.1016/j.actbio.2022.09.046 10.1002/adma.202106010 10.1021/jz1011143 10.1007/s00204-024-03696-4 10.1002/adma.202313029 10.1002/adma.202307115 10.1016/j.apsb.2024.04.033 10.1002/smll.202107422 10.1038/s41568-021-00435-0 10.1186/s12951-025-03288-z 10.2174/1871520621666210608095512 10.1007/s12275-024-00159-4 10.1021/jacs.7b07818 10.1038/s41467-022-29082-1 10.1039/C7CS00891K 10.1002/anie.201701181 10.1002/adfm.202406529 10.1038/s41598-020-79724-x 10.3390/ijms25021023 10.1016/j.jiec.2023.03.050 10.1016/j.addr.2021.113891 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2025.163429 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2025_163429 S1385894725042639 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSJ SSZ T5K ~G- AAYXX ABXDB AFFNX ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG ZY4 |
ID | FETCH-LOGICAL-c251t-304254eba5ec9342671f4d111f9c0a03c640afe40a4a748e9097b9317d521883 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Jul 03 08:35:04 EDT 2025 Sat Jun 28 18:15:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tumor immune microenvironment Adaptive immunity CRISPR/Cas9 Theranostics MXene cGAS/STING |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-304254eba5ec9342671f4d111f9c0a03c640afe40a4a748e9097b9317d521883 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2025_163429 elsevier_sciencedirect_doi_10_1016_j_cej_2025_163429 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Song, Tian, Yang, Yu, Lin, Zhang, Fan, Zhang, Niu, Nie, Chen (b0030) 2017; 56 Sahoo, Banik, Borah, Jain (b0055) 2022; 22 Feng, Han, Hu, Chang, Ding, Xiang, Chen, Li (b0080) 2021; 12 Xu, Liu, Wang, Koivisto, Zhou, Shu, Zhang (b0140) 2021; 176 Zhu, Zhang, Jiang, Xu, Yang, Chen, Wang, Xu, Liu (b0015) 2025; 23 Yudovich, Bäckström, Schmiderer, Zemaitis, Subramaniam, Larsson (b0130) 2020; 10 Wang, Tang, Zhao, Huang, Gong, Yang, Li, Wan, Jia, Chen, Zhang (b0125) 2022; 153 Feng, Li, Xiong, Lin, Cui, Tu, Zhang, Sa, Shao (b0070) 2024; 34 Jomova, Alomar, Alwasel, Nepovimova, Kuca, Valko (b0065) 2024; 98 Lin, Gao, Dai, Chen, Shi (b0155) 2017; 139 Wang, Chang, Li, Chen, Hou, Xing, Lin (b0040) 2022; 34 Berglund, Sanjiv, Gad, Kalderen, Koolmeister, Pham, Gokturk, Jafari, Maddalo, Seashore-Ludlow, Chernobrovkin, Manoilov, Pateras, Rasti, Jemth, Almlöf, Loseva, Visnes, Einarsdottir, Gaugaz, Saleh, Platzack, Wallner, Vallin, Henriksson, Wakchaure, Borhade, Herr, Kallberg, Baranczewski, Homan, Wiita, Nagpal, Meijer, Schipper, Rudd, Brautigam, Lindqvist, Filppula, Lee, Artursson, Nilsson, Gorgoulis, Lehtio, Zubarev, Scobie, Helleday (b0120) 2016; 27 Li, Song, Liu, Yang, Li, He, Wang, Yang, Yu, Yin, Wen, He, Wei, Su, Wu, Yao, Gong, Wei (b0115) 2017; 11 Zhao, Zhu, Feng, Liu, Hu, Zhu, Zhao, Ding, Gai, Yang (b0075) 2024; 36 Yameen, Choi, Vilos, Swami, Shi, Farokhzad (b0190) 2014; 190 Wang, Wu, Wang, Gu, Chen, Jana, Feng, Liu, Wang, Xu, Guo, Chen, Zhao (b0095) 2021; 60 Lin, Wang, Gao, Chen, Shi (b0170) 2018; 32 Park, Lee (b0135) 2024; 62 Huang, Qin, Cui, Zhao, Ren, Qu (b0005) 2023; 14 Alvarez, Sevilla (b0035) 2024; 25 Abdelsayed, Moussa, Hassan, Aluri, Collinson, El-Shall (b0180) 2010; 1 Lei, Zhang, Blum, Li, Zhang, Yin, Zhao, Lin, Huang (b0045) 2022; 13 Zhao, Ji, Wang, Kong, Yang, Lu, Geng, Qin, Feng, Cao (b0025) 2024; 500 Stevens, de Luca, Pelendritis, Terenghi, Downes, Schroeder (b0165) 2013; 45 Fu, Qi, Hu, Lin, Huang (b0085) 2019; 31 Wang, Zhong, Liu, Cheng (b0060) 2020; 35 Cheung, Vousden (b0050) 2022; 22 Meng, Zhou, Qian, Liu, Wang, Lin, Shi, Tian, Lu, Chen, Qian, Wang (b0100) 2022; 18 Liu, Wang, Gu, Gong, Cheng, Shi, Feng, Sun, Liu (b0185) 2014; 26 Guo, Tu, Wang, Du, Jiang, Qiu, Wang, Chen, Chen, Ren (b0195) 2024; 36 Zhan, Qiu, Fan, Chen, Guo, Wang, Li, Majoral, Shi (b0010) 2023; 35 Samaranayake, Huynh, Rai (b0110) 2017; 9 Lee, Kim, Yu, Lee, Ko, Lee, Kim (b0020) 2025; 2420870 Fu, Qi, Lin, Huang (b0090) 2018; 47 Zeng, Goldfeld, Xia (b0175) 2013; 52 Pu, Yin, Dong, Xiang, Wu, Zhou, Du, Chen, Xu (b0105) 2021; 33 Lin, Wang, Yu, Chen, Shi (b0160) 2017; 17 Zhang, Lai, Luo, Shao (b0145) 2024; 14 Le, Yang, Song, Feng, Tong, Yin, Zhang, Lin, Wu, Shao (b0150) 2023; 123 Samaranayake (10.1016/j.cej.2025.163429_b0110) 2017; 9 Fu (10.1016/j.cej.2025.163429_b0085) 2019; 31 Feng (10.1016/j.cej.2025.163429_b0080) 2021; 12 Liu (10.1016/j.cej.2025.163429_b0185) 2014; 26 Jomova (10.1016/j.cej.2025.163429_b0065) 2024; 98 Xu (10.1016/j.cej.2025.163429_b0140) 2021; 176 Meng (10.1016/j.cej.2025.163429_b0100) 2022; 18 Guo (10.1016/j.cej.2025.163429_b0195) 2024; 36 Alvarez (10.1016/j.cej.2025.163429_b0035) 2024; 25 Zhou (10.1016/j.cej.2025.163429_b0030) 2017; 56 Li (10.1016/j.cej.2025.163429_b0115) 2017; 11 Yudovich (10.1016/j.cej.2025.163429_b0130) 2020; 10 Fu (10.1016/j.cej.2025.163429_b0090) 2018; 47 Lee (10.1016/j.cej.2025.163429_b0020) 2025; 2420870 Wang (10.1016/j.cej.2025.163429_b0125) 2022; 153 Lin (10.1016/j.cej.2025.163429_b0170) 2018; 32 Lei (10.1016/j.cej.2025.163429_b0045) 2022; 13 Pu (10.1016/j.cej.2025.163429_b0105) 2021; 33 Lin (10.1016/j.cej.2025.163429_b0155) 2017; 139 Huang (10.1016/j.cej.2025.163429_b0005) 2023; 14 Berglund (10.1016/j.cej.2025.163429_b0120) 2016; 27 Stevens (10.1016/j.cej.2025.163429_b0165) 2013; 45 Zhang (10.1016/j.cej.2025.163429_b0145) 2024; 14 Cheung (10.1016/j.cej.2025.163429_b0050) 2022; 22 Feng (10.1016/j.cej.2025.163429_b0070) 2024; 34 Zhu (10.1016/j.cej.2025.163429_b0015) 2025; 23 Zeng (10.1016/j.cej.2025.163429_b0175) 2013; 52 Zhao (10.1016/j.cej.2025.163429_b0025) 2024; 500 Wang (10.1016/j.cej.2025.163429_b0095) 2021; 60 Wang (10.1016/j.cej.2025.163429_b0040) 2022; 34 Le (10.1016/j.cej.2025.163429_b0150) 2023; 123 Sahoo (10.1016/j.cej.2025.163429_b0055) 2022; 22 Lin (10.1016/j.cej.2025.163429_b0160) 2017; 17 Park (10.1016/j.cej.2025.163429_b0135) 2024; 62 Yameen (10.1016/j.cej.2025.163429_b0190) 2014; 190 Zhao (10.1016/j.cej.2025.163429_b0075) 2024; 36 Wang (10.1016/j.cej.2025.163429_b0060) 2020; 35 Abdelsayed (10.1016/j.cej.2025.163429_b0180) 2010; 1 Zhan (10.1016/j.cej.2025.163429_b0010) 2023; 35 |
References_xml | – volume: 35 year: 2023 ident: b0010 article-title: Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells publication-title: Adv. Mater. – volume: 36 year: 2024 ident: b0075 article-title: Architecture of vanadium-based MXene dysregulating tumor redox homeostasis for amplified nanozyme catalytic/photothermal therapy publication-title: Adv. Mater. – volume: 190 start-page: 485 year: 2014 end-page: 499 ident: b0190 article-title: Insight into nanoparticle cellular uptake and intracellular targeting publication-title: J. Control. Release – volume: 500 year: 2024 ident: b0025 article-title: MXene-based nanozymes remodel tumor microenvironment for heterojunction-enhanced sonodynamic and chemodynamic therapy to boost robust cancer immunotherapy publication-title: Chem. Eng. J. – volume: 25 start-page: 1023 year: 2024 ident: b0035 article-title: Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies publication-title: Int. J. Mol. Sci. – volume: 18 year: 2022 ident: b0100 article-title: Hollow cuprous oxide@nitrogen-doped carbon nanocapsules for cascade chemodynamic therapy publication-title: Small – volume: 1 start-page: 2804 year: 2010 end-page: 2809 ident: b0180 article-title: Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 3205 year: 2024 end-page: 3217 ident: b0145 article-title: Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/ Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy publication-title: Acta Pharm. Sin. B – volume: 27 start-page: 2275 year: 2016 end-page: 2283 ident: b0120 article-title: Validation and development of MTH1 inhibitors for treatment of cancer publication-title: Ann. Oncol. – volume: 153 start-page: 481 year: 2022 end-page: 493 ident: b0125 article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy publication-title: Acta Biomater. – volume: 176 year: 2021 ident: b0140 article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment q publication-title: Adv. Drug Deliv. Rev. – volume: 98 start-page: 1323 year: 2024 end-page: 1367 ident: b0065 article-title: Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants publication-title: Arch. Toxicol. – volume: 34 year: 2024 ident: b0070 article-title: Multifunctional theranostic 2D vanadium carbidel for enhanced cancer immunotherapy publication-title: Adv. Funct. Mater. – volume: 62 start-page: 491 year: 2024 end-page: 509 ident: b0135 article-title: Adenoviral vector system: a comprehensive overview of constructions, therapeutic applications and host responses publication-title: J. Microbiol. – volume: 2420870 year: 2025 ident: b0020 article-title: Electric pulse regulated MXene based nanozymes for integrative bioelectricity immuno-cancer therapy publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2203 year: 2021 ident: b0080 article-title: 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases publication-title: Nat. Commun. – volume: 10 start-page: 22393 year: 2020 ident: b0130 article-title: Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells publication-title: Sci. Rep. – volume: 123 start-page: 330 year: 2023 end-page: 341 ident: b0150 article-title: A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma publication-title: J. Ind. Eng. Chem. – volume: 47 start-page: 6454 year: 2018 end-page: 6472 ident: b0090 article-title: Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment publication-title: Chem. Soc. Rev. – volume: 26 start-page: 3433 year: 2014 end-page: 3440 ident: b0185 article-title: Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer publication-title: Adv. Mater. – volume: 56 start-page: 6492 year: 2017 end-page: 6496 ident: b0030 article-title: Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy publication-title: Angew. Chem.-Int. Edit. – volume: 14 start-page: 4647 year: 2023 ident: b0005 article-title: A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses publication-title: Nat. Commun. – volume: 36 year: 2024 ident: b0195 article-title: Decomposable Nanoagonists enable NIR-elicited cGAS-STING activation for tandem-amplified photodynamic-metalloimmunotherapy publication-title: Adv. Mater. – volume: 52 start-page: 4169 year: 2013 end-page: 4173 ident: b0175 article-title: A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch publication-title: Angew. Chem. Int. Edit. – volume: 139 start-page: 16235 year: 2017 end-page: 16247 ident: b0155 article-title: A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 215 year: 2022 end-page: 222 ident: b0055 article-title: Reactive oxygen species (ROS): key components in cancer therapies publication-title: Anti-Cancer Agents Med. Chem. – volume: 31 year: 2019 ident: b0085 article-title: Glucose oxidase-instructed multimodal synergistic cancer therapy publication-title: Adv. Mater. – volume: 45 start-page: 1238 year: 2013 end-page: 1246 ident: b0165 article-title: Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS) publication-title: Surf. Interface Anal. – volume: 32 year: 2018 ident: b0170 article-title: Theranostic 2D tantalum carbide (MXene) publication-title: Adv. Mater. – volume: 22 start-page: 280 year: 2022 end-page: 297 ident: b0050 article-title: The role of ROS in tumour development and progression publication-title: Nat. Rev. Cancer – volume: 13 start-page: 1298 year: 2022 ident: b0045 article-title: In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy publication-title: Nat. Commun. – volume: 60 start-page: 3001 year: 2021 end-page: 3007 ident: b0095 article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy publication-title: Angew. Chem.-Int. Edit. – volume: 17 start-page: 384 year: 2017 end-page: 391 ident: b0160 article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion publication-title: Nano Lett. – volume: 33 year: 2021 ident: b0105 article-title: Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy publication-title: Adv. Mater. – volume: 9 start-page: 47 year: 2017 ident: b0110 article-title: MTH1 as a chemotherapeutic target: the elephant in the room publication-title: Cancers – volume: 11 start-page: 95 year: 2017 end-page: 111 ident: b0115 article-title: Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice publication-title: ACS Nano – volume: 34 year: 2022 ident: b0040 article-title: Tumor-Microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic /immunotherapy publication-title: Adv. Mater. – volume: 23 start-page: 203 year: 2025 ident: b0015 article-title: MXene-based nanosheet for enhanced glioma therapy via photonic hyperthermia to boost the abscopal effect of radioimmunotherapy publication-title: J. Nanobiotechnol. – volume: 35 year: 2020 ident: b0060 article-title: Recent progress of chemodynamic therapy-induced combination cancer therapy publication-title: Nano Today – volume: 9 start-page: 47 issue: 5 year: 2017 ident: 10.1016/j.cej.2025.163429_b0110 article-title: MTH1 as a chemotherapeutic target: the elephant in the room publication-title: Cancers doi: 10.3390/cancers9050047 – volume: 32 issue: 42 year: 2018 ident: 10.1016/j.cej.2025.163429_b0170 article-title: Theranostic 2D tantalum carbide (MXene) publication-title: Adv. Mater. doi: 10.1002/adma.202003085 – volume: 35 year: 2020 ident: 10.1016/j.cej.2025.163429_b0060 article-title: Recent progress of chemodynamic therapy-induced combination cancer therapy publication-title: Nano Today doi: 10.1016/j.nantod.2020.100946 – volume: 26 start-page: 3433 issue: 21 year: 2014 ident: 10.1016/j.cej.2025.163429_b0185 article-title: Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer publication-title: Adv. Mater. doi: 10.1002/adma.201305256 – volume: 33 issue: 45 year: 2021 ident: 10.1016/j.cej.2025.163429_b0105 article-title: Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202104641 – volume: 31 issue: 21 year: 2019 ident: 10.1016/j.cej.2025.163429_b0085 article-title: Glucose oxidase-instructed multimodal synergistic cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201808325 – volume: 14 start-page: 4647 issue: 1 year: 2023 ident: 10.1016/j.cej.2025.163429_b0005 article-title: A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses publication-title: Nat. Commun. doi: 10.1038/s41467-023-40345-3 – volume: 12 start-page: 2203 issue: 1 year: 2021 ident: 10.1016/j.cej.2025.163429_b0080 article-title: 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases publication-title: Nat. Commun. doi: 10.1038/s41467-021-22278-x – volume: 17 start-page: 384 issue: 1 year: 2017 ident: 10.1016/j.cej.2025.163429_b0160 article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 45 start-page: 1238 issue: 8 year: 2013 ident: 10.1016/j.cej.2025.163429_b0165 article-title: Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS) publication-title: Surf. Interface Anal. doi: 10.1002/sia.5261 – volume: 27 start-page: 2275 issue: 12 year: 2016 ident: 10.1016/j.cej.2025.163429_b0120 article-title: Validation and development of MTH1 inhibitors for treatment of cancer publication-title: Ann. Oncol. doi: 10.1093/annonc/mdw429 – volume: 35 issue: 3 year: 2023 ident: 10.1016/j.cej.2025.163429_b0010 article-title: Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells publication-title: Adv. Mater. doi: 10.1002/adma.202208277 – volume: 52 start-page: 4169 issue: 15 year: 2013 ident: 10.1016/j.cej.2025.163429_b0175 article-title: A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201210359 – volume: 190 start-page: 485 year: 2014 ident: 10.1016/j.cej.2025.163429_b0190 article-title: Insight into nanoparticle cellular uptake and intracellular targeting publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.06.038 – volume: 60 start-page: 3001 issue: 6 year: 2021 ident: 10.1016/j.cej.2025.163429_b0095 article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.202008868 – volume: 11 start-page: 95 issue: 1 year: 2017 ident: 10.1016/j.cej.2025.163429_b0115 article-title: Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice publication-title: ACS Nano doi: 10.1021/acsnano.6b04261 – volume: 153 start-page: 481 year: 2022 ident: 10.1016/j.cej.2025.163429_b0125 article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.09.046 – volume: 34 issue: 4 year: 2022 ident: 10.1016/j.cej.2025.163429_b0040 article-title: Tumor-Microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic /immunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202106010 – volume: 1 start-page: 2804 issue: 19 year: 2010 ident: 10.1016/j.cej.2025.163429_b0180 article-title: Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1011143 – volume: 98 start-page: 1323 issue: 5 year: 2024 ident: 10.1016/j.cej.2025.163429_b0065 article-title: Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants publication-title: Arch. Toxicol. doi: 10.1007/s00204-024-03696-4 – volume: 36 issue: 21 year: 2024 ident: 10.1016/j.cej.2025.163429_b0195 article-title: Decomposable Nanoagonists enable NIR-elicited cGAS-STING activation for tandem-amplified photodynamic-metalloimmunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202313029 – volume: 36 issue: 2 year: 2024 ident: 10.1016/j.cej.2025.163429_b0075 article-title: Architecture of vanadium-based MXene dysregulating tumor redox homeostasis for amplified nanozyme catalytic/photothermal therapy publication-title: Adv. Mater. doi: 10.1002/adma.202307115 – volume: 14 start-page: 3205 issue: 7 year: 2024 ident: 10.1016/j.cej.2025.163429_b0145 article-title: Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/ Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2024.04.033 – volume: 18 issue: 15 year: 2022 ident: 10.1016/j.cej.2025.163429_b0100 article-title: Hollow cuprous oxide@nitrogen-doped carbon nanocapsules for cascade chemodynamic therapy publication-title: Small doi: 10.1002/smll.202107422 – volume: 22 start-page: 280 issue: 5 year: 2022 ident: 10.1016/j.cej.2025.163429_b0050 article-title: The role of ROS in tumour development and progression publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00435-0 – volume: 23 start-page: 203 issue: 1 year: 2025 ident: 10.1016/j.cej.2025.163429_b0015 article-title: MXene-based nanosheet for enhanced glioma therapy via photonic hyperthermia to boost the abscopal effect of radioimmunotherapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-025-03288-z – volume: 22 start-page: 215 issue: 2 year: 2022 ident: 10.1016/j.cej.2025.163429_b0055 article-title: Reactive oxygen species (ROS): key components in cancer therapies publication-title: Anti-Cancer Agents Med. Chem. doi: 10.2174/1871520621666210608095512 – volume: 62 start-page: 491 issue: 7 year: 2024 ident: 10.1016/j.cej.2025.163429_b0135 article-title: Adenoviral vector system: a comprehensive overview of constructions, therapeutic applications and host responses publication-title: J. Microbiol. doi: 10.1007/s12275-024-00159-4 – volume: 139 start-page: 16235 issue: 45 year: 2017 ident: 10.1016/j.cej.2025.163429_b0155 article-title: A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07818 – volume: 13 start-page: 1298 issue: 1 year: 2022 ident: 10.1016/j.cej.2025.163429_b0045 article-title: In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-022-29082-1 – volume: 47 start-page: 6454 issue: 17 year: 2018 ident: 10.1016/j.cej.2025.163429_b0090 article-title: Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00891K – volume: 2420870 year: 2025 ident: 10.1016/j.cej.2025.163429_b0020 article-title: Electric pulse regulated MXene based nanozymes for integrative bioelectricity immuno-cancer therapy publication-title: Adv. Funct. Mater. – volume: 56 start-page: 6492 issue: 23 year: 2017 ident: 10.1016/j.cej.2025.163429_b0030 article-title: Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.201701181 – volume: 34 issue: 42 year: 2024 ident: 10.1016/j.cej.2025.163429_b0070 article-title: Multifunctional theranostic 2D vanadium carbidel for enhanced cancer immunotherapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202406529 – volume: 10 start-page: 22393 issue: 1 year: 2020 ident: 10.1016/j.cej.2025.163429_b0130 article-title: Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells publication-title: Sci. Rep. doi: 10.1038/s41598-020-79724-x – volume: 500 year: 2024 ident: 10.1016/j.cej.2025.163429_b0025 article-title: MXene-based nanozymes remodel tumor microenvironment for heterojunction-enhanced sonodynamic and chemodynamic therapy to boost robust cancer immunotherapy publication-title: Chem. Eng. J. – volume: 25 start-page: 1023 issue: 2 year: 2024 ident: 10.1016/j.cej.2025.163429_b0035 article-title: Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms25021023 – volume: 123 start-page: 330 year: 2023 ident: 10.1016/j.cej.2025.163429_b0150 article-title: A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2023.03.050 – volume: 176 year: 2021 ident: 10.1016/j.cej.2025.163429_b0140 article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment q publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113891 |
SSID | ssj0006919 |
Score | 2.4674659 |
Snippet | •VGRM integrated GOx and CRISPR/Cas9 on 2D vanadium carbide MXene for enhanced ROS and immune activation.•VGRM amplified ROS production and depleted GSH via... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 163429 |
SubjectTerms | Adaptive immunity cGAS/STING CRISPR/Cas9 MXene Theranostics Tumor immune microenvironment |
Title | Multi-level ROS regulation to activate innate and adaptive immune therapies |
URI | https://dx.doi.org/10.1016/j.cej.2025.163429 |
Volume | 515 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4ErplbdI2xzEc0-KEbeJuJU0T6JBujOrRv933-oET9OKloSWB8Et47_ea93sh5Nb3bCjcFIIcoSBASa1wpOW-k_hSCMu0Dj0UCj9N_ckLf1yKZYuMGi0MplXWtr-y6aW1rr_0azT7myzrzwd4piV5gEW4XHC0qGDnAe7y3ud3mocvy8s9sLODvZuTzTLHS5sVhIiu6AEr4SXL_MU37fib8RE5rIkiHVZzOSYtk5-Qg53ygackKtWzzhvm_dDZ85xuq4vlAWparClKFj6AStIsz7FReUpVqjZo4GiGuhBDK_kVRMtnZDG-X4wmTn05gqOBkhQO_oYQ3CRKGC1h8n4wsDwFy2WlZop52udMWQMPrgIeGslkkEhgCyk47DD0zkk7X-fmglChJbMsNCwxIbfgq1zlKV-JFJyXhgCqQ-4aVOJNVQIjbnLDVjFAGCOEcQVhh_AGt_jHOsZgov8edvm_YVdkH9-q9Nlr0i627-YGSEKRdMtd0CV7w4doMsU2mr1GX8JAu1M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw-ehNjY7G6yx1IsqX0ItkJvYbPZhRRJS4n-fmfzkAp68ZJAkoHlS_jmm-w8AO64ZwLWTTDIYRIDlMQwRxjKnZgLxoyrVODZQuHJlIdv9HnBFg3o17UwNq2y4v6S0wu2rq50KjQ76zTtzB7tnpagvm3C1UVHuwMt252KNaHVG47C6Tchc1HM97DPO9ag3tws0ryUXmKU2GUPKExoITR_cU9bLmdwCAeVViS9cjlH0NDZMexvdRA8gVFRQOu829Qf8voyI5tytjyiTfIVsVULn6gmSZpl9iSzhMhEri3HkdSWhmhSVmBhwHwK88HTvB861XwER6EqyR37J4JRHUumlcDFc__R0ATJywjlStdTnLrSaDxQ6dNAC1f4sUDBkKDPDgLvDJrZKtPnQJgSrnED7cY6oAbdVVd6kkuWoP9SGEO14b5GJVqXXTCiOj1sGSGEkYUwKiFsA61xi368yghZ-m-zi_-Z3cJuOJ-Mo_FwOrqEPXunzKa9gma--dDXqBny-Kb6Jr4Aa_O8YQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+ROS+regulation+to+activate+innate+and+adaptive+immune+therapies&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Feng%2C+Ke-Ke&rft.au=Li%2C+Cheng-Lei&rft.au=Tu%2C+Yi-Fan&rft.au=Tian%2C+Shi-Cheng&rft.date=2025-07-01&rft.issn=1385-8947&rft.volume=515&rft.spage=163429&rft_id=info:doi/10.1016%2Fj.cej.2025.163429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_163429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |