Experimental response of HPFL-BSP strengthened RC sub-assemblages subject to corner column removal
Few existing buildings have been constructed in accordance with progressive collapse codes, resulting in poor progressive collapse behavior. Previous studies indicated that reinforced concrete (RC) structures with one lost corner column are more susceptible to progressive collapse than structures th...
Saved in:
Published in | Journal of Building Engineering Vol. 82; p. 108278 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Few existing buildings have been constructed in accordance with progressive collapse codes, resulting in poor progressive collapse behavior. Previous studies indicated that reinforced concrete (RC) structures with one lost corner column are more susceptible to progressive collapse than structures that lose a middle or edge column. To mitigate the likelihood of progressive collapse of RC structures subjected to corner column loss, we adopted a novel strengthening scheme (high-performance ferrocement laminate and bonded steel plates) to improve the progressive collapse behavior. Three one-third-scale RC sub-assemblages were constructed and tested to investigate the effectiveness of this strengthening method: control sub-assemblage, beam-strengthened sub-assemblage, and slab-strengthened sub-assemblage. The results demonstrate that beam and slab strengthening schemes can improve the static load-carrying capacity, dynamic resistance, energy dissipation, and ductility of the sub-assemblage. Moreover, the slab-strengthening scheme altered the failure modes of the beams and slabs, significantly increasing the ductility of the sub-assemblage. Consequently, the slab-strengthening scheme exhibited superior performance to the beam-strengthening scheme. Based on the energy conservation theory, the ultimate point of the sub-assemblages with a lost corner column was redefined. Furthermore, theoretical models were proposed and validated to predict the yield, peak, and ultimate loads.
•A novel strengthening scheme is used to mitigate progressive collapse.•The slab strengthening scheme modifies the failure modes of beams and slabs.•The ultimate point of the sub-assemblage under loss of a corner column is redefined.•Analytical models are proposed to predict the yield, peak, and ultimate loads. |
---|---|
AbstractList | Few existing buildings have been constructed in accordance with progressive collapse codes, resulting in poor progressive collapse behavior. Previous studies indicated that reinforced concrete (RC) structures with one lost corner column are more susceptible to progressive collapse than structures that lose a middle or edge column. To mitigate the likelihood of progressive collapse of RC structures subjected to corner column loss, we adopted a novel strengthening scheme (high-performance ferrocement laminate and bonded steel plates) to improve the progressive collapse behavior. Three one-third-scale RC sub-assemblages were constructed and tested to investigate the effectiveness of this strengthening method: control sub-assemblage, beam-strengthened sub-assemblage, and slab-strengthened sub-assemblage. The results demonstrate that beam and slab strengthening schemes can improve the static load-carrying capacity, dynamic resistance, energy dissipation, and ductility of the sub-assemblage. Moreover, the slab-strengthening scheme altered the failure modes of the beams and slabs, significantly increasing the ductility of the sub-assemblage. Consequently, the slab-strengthening scheme exhibited superior performance to the beam-strengthening scheme. Based on the energy conservation theory, the ultimate point of the sub-assemblages with a lost corner column was redefined. Furthermore, theoretical models were proposed and validated to predict the yield, peak, and ultimate loads.
•A novel strengthening scheme is used to mitigate progressive collapse.•The slab strengthening scheme modifies the failure modes of beams and slabs.•The ultimate point of the sub-assemblage under loss of a corner column is redefined.•Analytical models are proposed to predict the yield, peak, and ultimate loads. |
ArticleNumber | 108278 |
Author | Guo, Mengxue Li, Jinru Qian, Kai Huang, Min Huang, Hua |
Author_xml | – sequence: 1 givenname: Min surname: Huang fullname: Huang, Min email: huangmin@xatu.edu.cn organization: School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, 710061, China – sequence: 2 givenname: Hua orcidid: 0000-0001-9791-3591 surname: Huang fullname: Huang, Hua email: huanghua23247@163.com organization: School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, 710061, China – sequence: 3 givenname: Kai surname: Qian fullname: Qian, Kai organization: Guangxi Key Lab New Energy & Bldg Energy Saving, Guilin University of Technology, Guilin, 541004, China – sequence: 4 givenname: Jinru surname: Li fullname: Li, Jinru organization: School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, 710061, China – sequence: 5 givenname: Mengxue surname: Guo fullname: Guo, Mengxue organization: School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, 710061, China |
BookMark | eNp9kM1OwzAQhC1UJErpC3DyC6R4N3GaSFygailSJSp-zpbjbEqi1K7stIK3J1E5cOI0uyvNaOe7ZiPrLDF2C2IGAtK7Zta4gmYoMO4PGc6zCzbGWGI0B4GjP_MVm4bQCCEwl3GWJmNWLL8O5Os92U633FM4OBuIu4qvt6tN9Pi25aHzZHfdJ1kq-euCh2MR6RBoX7R6R2HYGzId7xw3zlvyvbTHve3T9u6k2xt2Wek20PRXJ-xjtXxfrKPNy9Pz4mETGZTQRUCmIKQMhESZxBlQhShlDKR1khDmuqKsAAMEeWnmaYkJCErTIqcEMi3jCcNzrvEuBE-VOvTFtP9WINQASjVqAKUGUOoMqjfdn03Uf3aqyatgarKGytr3pVTp6v_sPzgbc7s |
Cites_doi | 10.1061/(ASCE)CC.1943-5614.0000943 10.1061/(ASCE)ST.1943-541X.0001860 10.1002/tal.1693 10.1016/j.jcsr.2023.107953 10.1016/j.istruc.2023.01.121 10.1016/j.engstruct.2019.110061 10.1016/j.jcsr.2021.107121 10.1061/(ASCE)CF.1943-5509.0001360 10.1061/(ASCE)CC.1943-5614.0000917 10.1016/j.engstruct.2022.114592 10.1080/15732479.2020.1801768 10.1061/(ASCE)0887-3828(2006)20:4(384) 10.1016/j.engstruct.2019.109871 10.1061/(ASCE)ST.1943-541X.0002263 10.1016/j.engstruct.2022.115154 10.1016/j.engstruct.2022.114476 10.3390/ma14237157 10.1016/j.engstruct.2017.07.041 10.1016/j.soildyn.2023.107902 10.1680/jmacr.15.00108 10.1016/j.tws.2022.110219 10.1016/j.engstruct.2022.114274 10.1007/s40069-015-0119-2 10.1016/j.engstruct.2018.02.009 10.1080/15732479.2020.1841245 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jobe.2023.108278 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-7102 |
ExternalDocumentID | 10_1016_j_jobe_2023_108278 S2352710223024610 |
GroupedDBID | --M 0R~ 457 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ACDAQ ACGFS ACHRH ACNTT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGUMN AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM M41 O9- OAUVE ROL SPC SPCBC SSB SSL SST SSZ T5K ~G- 4.4 AATTM AAXKI AAYWO AAYXX ABJNI ABXDB ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION EJD SSH |
ID | FETCH-LOGICAL-c251t-1ecbe2e8105254381ef225531eaa44e29afe8b1c1e19dc76d2410e66b9e418a53 |
IEDL.DBID | AIKHN |
ISSN | 2352-7102 |
IngestDate | Tue Jul 01 04:03:52 EDT 2025 Sat Jul 13 15:31:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Strengthening Progressive collapse Corner column Theoretical model HPFL-BSP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c251t-1ecbe2e8105254381ef225531eaa44e29afe8b1c1e19dc76d2410e66b9e418a53 |
ORCID | 0000-0001-9791-3591 |
ParticipantIDs | crossref_primary_10_1016_j_jobe_2023_108278 elsevier_sciencedirect_doi_10_1016_j_jobe_2023_108278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Building Engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Feng, Qiang, Ou, Qin, Yang (bib39) 2019; 23 Kim, Choi (bib14) 2015; 9 (bib5) 2005 Qiu, Lin, Wu (bib18) 2020; 34 Huang, Liu, Wu (bib23) 2012 Huang, Liu, Shi, Zhang, Lu (bib22) 2017; 48 (bib4) 2013 Makoond, Shahnazi, Buitrago, Adam (bib35) 2023; 49 Orton (bib21) 2007 Huang (bib36) 2022 Qian, Li (bib27) 2013; 29 Qian, Li (bib6) 2019; 23 Qian, Weng, Li (bib16) 2019; 145 Kiakojouri, Biagi, Chiaia, Sheidaii (bib1) 2020; 206 Xu, Lin, Xie (bib11) 2022; 190 Park (bib30) 1989; 22 Huang, Huang, Zhang, Yang (bib25) 2021; 17 Abruzzo, Matta, Panariello (bib31) 2006; 20 Qian, Li (bib41) 2012; 109 Huang, Huang, Zhang, Guo, Pospisil (bib24) 2020; 203 (bib29) 2011 Huang, Huang, Zhang, Guo, Liu (bib33) 2021; 18 Liu, Xiong, Xiong, Zhu, Li (bib17) 2023; 207 Fan, Wang, Peng (bib19) 2020; 50 Zhao, Zhang, Wang, Chen (bib40) 2016; 68 Qian, Li (bib32) 2017; 143 Huang, Huang, Zhang, Guo, Chen, Li (bib34) 2021; 43 Du, Bai, Teng, Yan, Sun (bib37) 2020; 8 Zhang, Zheng, Gu, Wei, Zhang (bib13) 2022; 266 Zhang, Li (bib43) 2020; 29 Tian, Li, Li, Li, Bai (bib7) 2023; 182 Qian, Cheng, Weng, Fu (bib28) 2021; 44 Xu, Wang, Liu, Quan, Dong (bib42) 2021; 14 Meng, Li, Zhong, Zheng, Du (bib8) 2023; 274 Huang, Liu, Wu (bib26) 2011; 42 Yao, Li, Xiong (bib44) 2023; 169 Zhang, Wei, Gu, Yang, Li, Zhao (bib12) 2022; 266 Feng, Qiang, Ou, Qin, Yang (bib20) 2019; 23 Lim, Tan, Lee (bib38) 2017; 150 Al-Salloum, Alrubaidi, Elsanadedy, Almusallam, Iqbal (bib15) 2018; 161 (bib3) 2010 Ke, Chen, Zhou, Yam, Hu (bib10) 2020; 182 Kiakojouri, Biagi, Chiaia, Sheidaii (bib9) 2022; 262 Yong, Chen, Wang (bib45) 2020; 48 Weng, Qian, Fu, Fang (bib2) 2020; 29 Zhang (10.1016/j.jobe.2023.108278_bib13) 2022; 266 Huang (10.1016/j.jobe.2023.108278_bib23) 2012 Liu (10.1016/j.jobe.2023.108278_bib17) 2023; 207 Weng (10.1016/j.jobe.2023.108278_bib2) 2020; 29 Al-Salloum (10.1016/j.jobe.2023.108278_bib15) 2018; 161 Xu (10.1016/j.jobe.2023.108278_bib42) 2021; 14 Park (10.1016/j.jobe.2023.108278_bib30) 1989; 22 Huang (10.1016/j.jobe.2023.108278_bib34) 2021; 43 Qiu (10.1016/j.jobe.2023.108278_bib18) 2020; 34 Yong (10.1016/j.jobe.2023.108278_bib45) 2020; 48 Orton (10.1016/j.jobe.2023.108278_bib21) 2007 Qian (10.1016/j.jobe.2023.108278_bib28) 2021; 44 Huang (10.1016/j.jobe.2023.108278_bib36) 2022 Lim (10.1016/j.jobe.2023.108278_bib38) 2017; 150 (10.1016/j.jobe.2023.108278_bib29) 2011 Huang (10.1016/j.jobe.2023.108278_bib33) 2021; 18 (10.1016/j.jobe.2023.108278_bib4) 2013 Makoond (10.1016/j.jobe.2023.108278_bib35) 2023; 49 Zhang (10.1016/j.jobe.2023.108278_bib43) 2020; 29 Kiakojouri (10.1016/j.jobe.2023.108278_bib9) 2022; 262 Huang (10.1016/j.jobe.2023.108278_bib24) 2020; 203 Qian (10.1016/j.jobe.2023.108278_bib32) 2017; 143 Qian (10.1016/j.jobe.2023.108278_bib6) 2019; 23 Feng (10.1016/j.jobe.2023.108278_bib20) 2019; 23 (10.1016/j.jobe.2023.108278_bib5) 2005 Huang (10.1016/j.jobe.2023.108278_bib25) 2021; 17 Ke (10.1016/j.jobe.2023.108278_bib10) 2020; 182 Meng (10.1016/j.jobe.2023.108278_bib8) 2023; 274 Tian (10.1016/j.jobe.2023.108278_bib7) 2023; 182 (10.1016/j.jobe.2023.108278_bib3) 2010 Kim (10.1016/j.jobe.2023.108278_bib14) 2015; 9 Zhao (10.1016/j.jobe.2023.108278_bib40) 2016; 68 Qian (10.1016/j.jobe.2023.108278_bib27) 2013; 29 Yao (10.1016/j.jobe.2023.108278_bib44) 2023; 169 Huang (10.1016/j.jobe.2023.108278_bib22) 2017; 48 Feng (10.1016/j.jobe.2023.108278_bib39) 2019; 23 Qian (10.1016/j.jobe.2023.108278_bib41) 2012; 109 Xu (10.1016/j.jobe.2023.108278_bib11) 2022; 190 Kiakojouri (10.1016/j.jobe.2023.108278_bib1) 2020; 206 Zhang (10.1016/j.jobe.2023.108278_bib12) 2022; 266 Qian (10.1016/j.jobe.2023.108278_bib16) 2019; 145 Huang (10.1016/j.jobe.2023.108278_bib26) 2011; 42 Abruzzo (10.1016/j.jobe.2023.108278_bib31) 2006; 20 Fan (10.1016/j.jobe.2023.108278_bib19) 2020; 50 Du (10.1016/j.jobe.2023.108278_bib37) 2020; 8 |
References_xml | – volume: 161 start-page: 146 year: 2018 end-page: 160 ident: bib15 article-title: Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates publication-title: Eng. Struct. – volume: 182 year: 2020 ident: bib10 article-title: Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism publication-title: Thin-Walled Struct. – volume: 14 start-page: 1 year: 2021 end-page: 20 ident: bib42 article-title: Study on collapse resistance of RC frame under the corner column removal scenario publication-title: Materials – volume: 34 year: 2020 ident: bib18 article-title: Improving progressive collapse resistance of RC beam–column subassemblages using external steel cables publication-title: J. Perform. Constr. Facil. – volume: 8 start-page: 1 year: 2020 end-page: 24 ident: bib37 article-title: Experimental investigation of asymmetrical reinforced concrete spatial frame substructures against progressive collapse under different column removal scenarios publication-title: Struct. Des. Tall Special Build. – volume: 18 start-page: 249 year: 2021 end-page: 265 ident: bib33 article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column publication-title: Struct. Infrastruct. E. – volume: 262 year: 2022 ident: bib9 article-title: Strengthening and retrofitting techniques to mitigate progressive collapse: a critical review and future research agenda publication-title: Eng. Struct. – year: 2010 ident: bib3 article-title: Minimum Design Loads for Buildings and Other Structures – volume: 29 year: 2020 ident: bib43 article-title: Experimental and modeling study on the progressive collapse resistance of a reinforced concrete frame structure under a middle column removal scenario publication-title: Struct. Des. Tall Special Build. – volume: 48 start-page: 1635 year: 2017 end-page: 1644 ident: bib22 article-title: Early axial compression performance of square columns strengthened with HPFL and bonded steel plates publication-title: J. Cent. S. Univ. – year: 2007 ident: bib21 article-title: Development of a CFRP System to Provide Continuity in Existing Reinforced Concrete Buildings Vulnerable to Progressive Collapse – volume: 274 year: 2023 ident: bib8 article-title: Strengthening strategies against the progressive collapse of steel frames with extended end-plate connections publication-title: Eng. Struct. – volume: 42 start-page: 2485 year: 2011 end-page: 2492 ident: bib26 article-title: Shear performance and design methods of strengthened RC beams with high strength steel wire mesh publication-title: J. Cent. S. Univ. – year: 2022 ident: bib36 article-title: Studies on Progressive-Collapse Failure Mechanisms for RC Frames Strengthened with HPFL-BSP – volume: 23 year: 2019 ident: bib39 article-title: Progressive collapse resistance of GFRP-strengthened RC beam-slab subassemblages in a corner column-removal scenario publication-title: J. Compos. Construct. – volume: 266 year: 2022 ident: bib13 article-title: Study of the confinement performance and stress-strain response of RC columns with corroded stirrups publication-title: Eng. Struct. – volume: 109 start-page: 845 year: 2012 end-page: 855 ident: bib41 article-title: Slab effects on response of reinforced concrete substructures after loss of corner column publication-title: ACI Struct. J. – volume: 44 year: 2021 ident: bib28 article-title: Effect of loading methods on progressive collapse behavior of RC beam-slab substructures under corner column removal scenario publication-title: J. Build. Eng. – volume: 22 start-page: 155 year: 1989 end-page: 166 ident: bib30 article-title: Evaluation of ductility of structures and structural assemblages from laboratory testing publication-title: Bull. N. Z. Natl. Soc. Earthq. Eng. – year: 2012 ident: bib23 article-title: Research on debonding failure at plate-end of RC beams strengthened with high strength steel wire mesh and polymer mortar publication-title: Journal of Highway and Transport – volume: 207 year: 2023 ident: bib17 article-title: Anti-progressive collapse performance of prefabricated RC column-steel beam substructure with unbounded prestressed tendons publication-title: J. Constr. Steel Res. – volume: 203 year: 2020 ident: bib24 article-title: Seismic performance of predamaged RC columns strengthened with HPFL and BSP under combined loadings publication-title: Eng. Struct. – volume: 50 start-page: 77 year: 2020 end-page: 85 ident: bib19 article-title: Research on collapse resistance performance of external prestressed concrete frame publication-title: Build. Stuct. – volume: 23 year: 2019 ident: bib6 article-title: Strengthening and retrofitting precast concrete buildings to mitigate progressive collapse using externally bonded GFRP strips publication-title: J. Compos. Construct. – volume: 169 start-page: 1 year: 2023 end-page: 14 ident: bib44 article-title: Deformation capacity of flexural-controlled SRC columns under lateral cyclic load publication-title: Soil Dynam. Earthq. Eng. – volume: 9 start-page: 401 year: 2015 end-page: 413 ident: bib14 article-title: Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse publication-title: Int. J. Concr. Struct. M. – year: 2013 ident: bib4 article-title: Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance – volume: 20 start-page: 384 year: 2006 end-page: 390 ident: bib31 article-title: Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building publication-title: J. Perform. Constr. Facil. – volume: 190 start-page: 107 year: 2022 end-page: 121 ident: bib11 article-title: Assembled self-centering energy dissipation braces and a force method-based model publication-title: J. Constr. Steel Res. – volume: 43 start-page: 1 year: 2021 end-page: 15 ident: bib34 article-title: Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP publication-title: J. Build. Eng. – volume: 29 year: 2020 ident: bib2 article-title: Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse publication-title: J. Build. Eng. – volume: 266 year: 2022 ident: bib12 article-title: Confinement behavior and stress-strain response of square concrete columns strengthened with carbon textile reinforced concrete (CTRC) composites publication-title: Eng. Struct. – volume: 29 year: 2013 ident: bib27 article-title: Analytical evaluation of the vulnerability of RC frames for progressive collapse caused by the loss of a corner column publication-title: J. Perform. Constr. Facil. – volume: 17 start-page: 1210 year: 2021 end-page: 1227 ident: bib25 article-title: Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases publication-title: Struct. Infrastruct. E. – volume: 143 start-page: 1 year: 2017 end-page: 17 ident: bib32 article-title: Effects of masonry infill wall on the performance of RC frames to resist progressive collapse publication-title: J. Struct. Eng. – volume: 206 year: 2020 ident: bib1 article-title: Progressive collapse of framed building structures: current knowledge and future prospects publication-title: Eng. Struct. – year: 2005 ident: bib5 article-title: Unified Facilities Criteria, Design of Buildings to Resist Progressive Collapse – volume: 182 year: 2023 ident: bib7 article-title: Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios publication-title: Thin-Walled Struct. – volume: 68 start-page: 435 year: 2016 end-page: 449 ident: bib40 article-title: Progressive collapse resistance of reinforced-concrete frames with specially shaped columns under loss of a corner column publication-title: Mag. Concr. Res. – volume: 145 year: 2019 ident: bib16 article-title: Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings publication-title: J. Struct. Eng. – volume: 48 start-page: 803 year: 2020 end-page: 810 ident: bib45 article-title: Experimental research on seismic behaviors of concrete columns with high-ductility stainless steel reinforcements publication-title: Journal of Tongji Univeristy – volume: 23 year: 2019 ident: bib20 article-title: Progressive collapse resistance of GFRP-strengthened RC beam-slab subassemblages in a corner column-removal scenario publication-title: J. Compos. Construct. – year: 2011 ident: bib29 article-title: Code for Design of Concrete Structures GB 50010-2010 – volume: 49 start-page: 958 year: 2023 end-page: 982 ident: bib35 article-title: Corner-column failure scenarios in building structures: current knowledge and future prospects publication-title: Structures – volume: 150 start-page: 409 year: 2017 end-page: 427 ident: bib38 article-title: Experimental studies of 3D RC substructures under exterior and corner column removal scenarios publication-title: Eng. Struct. – volume: 23 year: 2019 ident: 10.1016/j.jobe.2023.108278_bib6 article-title: Strengthening and retrofitting precast concrete buildings to mitigate progressive collapse using externally bonded GFRP strips publication-title: J. Compos. Construct. doi: 10.1061/(ASCE)CC.1943-5614.0000943 – volume: 143 start-page: 1 year: 2017 ident: 10.1016/j.jobe.2023.108278_bib32 article-title: Effects of masonry infill wall on the performance of RC frames to resist progressive collapse publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001860 – volume: 29 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib43 article-title: Experimental and modeling study on the progressive collapse resistance of a reinforced concrete frame structure under a middle column removal scenario publication-title: Struct. Des. Tall Special Build. doi: 10.1002/tal.1693 – year: 2011 ident: 10.1016/j.jobe.2023.108278_bib29 – volume: 48 start-page: 803 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib45 article-title: Experimental research on seismic behaviors of concrete columns with high-ductility stainless steel reinforcements publication-title: Journal of Tongji Univeristy – volume: 207 year: 2023 ident: 10.1016/j.jobe.2023.108278_bib17 article-title: Anti-progressive collapse performance of prefabricated RC column-steel beam substructure with unbounded prestressed tendons publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2023.107953 – volume: 29 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib2 article-title: Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse publication-title: J. Build. Eng. – year: 2012 ident: 10.1016/j.jobe.2023.108278_bib23 article-title: Research on debonding failure at plate-end of RC beams strengthened with high strength steel wire mesh and polymer mortar publication-title: Journal of Highway and Transport – volume: 49 start-page: 958 year: 2023 ident: 10.1016/j.jobe.2023.108278_bib35 article-title: Corner-column failure scenarios in building structures: current knowledge and future prospects publication-title: Structures doi: 10.1016/j.istruc.2023.01.121 – volume: 50 start-page: 77 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib19 article-title: Research on collapse resistance performance of external prestressed concrete frame publication-title: Build. Stuct. – volume: 206 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib1 article-title: Progressive collapse of framed building structures: current knowledge and future prospects publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.110061 – volume: 190 start-page: 107 year: 2022 ident: 10.1016/j.jobe.2023.108278_bib11 article-title: Assembled self-centering energy dissipation braces and a force method-based model publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2021.107121 – volume: 34 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib18 article-title: Improving progressive collapse resistance of RC beam–column subassemblages using external steel cables publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001360 – volume: 23 year: 2019 ident: 10.1016/j.jobe.2023.108278_bib20 article-title: Progressive collapse resistance of GFRP-strengthened RC beam-slab subassemblages in a corner column-removal scenario publication-title: J. Compos. Construct. doi: 10.1061/(ASCE)CC.1943-5614.0000917 – volume: 266 year: 2022 ident: 10.1016/j.jobe.2023.108278_bib12 article-title: Confinement behavior and stress-strain response of square concrete columns strengthened with carbon textile reinforced concrete (CTRC) composites publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114592 – volume: 23 year: 2019 ident: 10.1016/j.jobe.2023.108278_bib39 article-title: Progressive collapse resistance of GFRP-strengthened RC beam-slab subassemblages in a corner column-removal scenario publication-title: J. Compos. Construct. doi: 10.1061/(ASCE)CC.1943-5614.0000917 – volume: 182 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib10 article-title: Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism publication-title: Thin-Walled Struct. – volume: 22 start-page: 155 year: 1989 ident: 10.1016/j.jobe.2023.108278_bib30 article-title: Evaluation of ductility of structures and structural assemblages from laboratory testing publication-title: Bull. N. Z. Natl. Soc. Earthq. Eng. – volume: 17 start-page: 1210 year: 2021 ident: 10.1016/j.jobe.2023.108278_bib25 article-title: Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases publication-title: Struct. Infrastruct. E. doi: 10.1080/15732479.2020.1801768 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib37 article-title: Experimental investigation of asymmetrical reinforced concrete spatial frame substructures against progressive collapse under different column removal scenarios publication-title: Struct. Des. Tall Special Build. – volume: 20 start-page: 384 year: 2006 ident: 10.1016/j.jobe.2023.108278_bib31 article-title: Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)0887-3828(2006)20:4(384) – volume: 203 year: 2020 ident: 10.1016/j.jobe.2023.108278_bib24 article-title: Seismic performance of predamaged RC columns strengthened with HPFL and BSP under combined loadings publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.109871 – volume: 145 year: 2019 ident: 10.1016/j.jobe.2023.108278_bib16 article-title: Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0002263 – year: 2010 ident: 10.1016/j.jobe.2023.108278_bib3 – year: 2005 ident: 10.1016/j.jobe.2023.108278_bib5 – volume: 274 year: 2023 ident: 10.1016/j.jobe.2023.108278_bib8 article-title: Strengthening strategies against the progressive collapse of steel frames with extended end-plate connections publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115154 – volume: 266 year: 2022 ident: 10.1016/j.jobe.2023.108278_bib13 article-title: Study of the confinement performance and stress-strain response of RC columns with corroded stirrups publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114476 – volume: 44 year: 2021 ident: 10.1016/j.jobe.2023.108278_bib28 article-title: Effect of loading methods on progressive collapse behavior of RC beam-slab substructures under corner column removal scenario publication-title: J. Build. Eng. – year: 2022 ident: 10.1016/j.jobe.2023.108278_bib36 – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.jobe.2023.108278_bib42 article-title: Study on collapse resistance of RC frame under the corner column removal scenario publication-title: Materials doi: 10.3390/ma14237157 – year: 2007 ident: 10.1016/j.jobe.2023.108278_bib21 – volume: 150 start-page: 409 year: 2017 ident: 10.1016/j.jobe.2023.108278_bib38 article-title: Experimental studies of 3D RC substructures under exterior and corner column removal scenarios publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.07.041 – volume: 43 start-page: 1 year: 2021 ident: 10.1016/j.jobe.2023.108278_bib34 article-title: Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP publication-title: J. Build. Eng. – volume: 109 start-page: 845 year: 2012 ident: 10.1016/j.jobe.2023.108278_bib41 article-title: Slab effects on response of reinforced concrete substructures after loss of corner column publication-title: ACI Struct. J. – volume: 169 start-page: 1 year: 2023 ident: 10.1016/j.jobe.2023.108278_bib44 article-title: Deformation capacity of flexural-controlled SRC columns under lateral cyclic load publication-title: Soil Dynam. Earthq. Eng. doi: 10.1016/j.soildyn.2023.107902 – year: 2013 ident: 10.1016/j.jobe.2023.108278_bib4 – volume: 68 start-page: 435 year: 2016 ident: 10.1016/j.jobe.2023.108278_bib40 article-title: Progressive collapse resistance of reinforced-concrete frames with specially shaped columns under loss of a corner column publication-title: Mag. Concr. Res. doi: 10.1680/jmacr.15.00108 – volume: 48 start-page: 1635 year: 2017 ident: 10.1016/j.jobe.2023.108278_bib22 article-title: Early axial compression performance of square columns strengthened with HPFL and bonded steel plates publication-title: J. Cent. S. Univ. – volume: 42 start-page: 2485 year: 2011 ident: 10.1016/j.jobe.2023.108278_bib26 article-title: Shear performance and design methods of strengthened RC beams with high strength steel wire mesh publication-title: J. Cent. S. Univ. – volume: 182 year: 2023 ident: 10.1016/j.jobe.2023.108278_bib7 article-title: Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110219 – volume: 262 year: 2022 ident: 10.1016/j.jobe.2023.108278_bib9 article-title: Strengthening and retrofitting techniques to mitigate progressive collapse: a critical review and future research agenda publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114274 – volume: 9 start-page: 401 year: 2015 ident: 10.1016/j.jobe.2023.108278_bib14 article-title: Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse publication-title: Int. J. Concr. Struct. M. doi: 10.1007/s40069-015-0119-2 – volume: 161 start-page: 146 year: 2018 ident: 10.1016/j.jobe.2023.108278_bib15 article-title: Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.02.009 – volume: 18 start-page: 249 year: 2021 ident: 10.1016/j.jobe.2023.108278_bib33 article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column publication-title: Struct. Infrastruct. E. doi: 10.1080/15732479.2020.1841245 – volume: 29 year: 2013 ident: 10.1016/j.jobe.2023.108278_bib27 article-title: Analytical evaluation of the vulnerability of RC frames for progressive collapse caused by the loss of a corner column publication-title: J. Perform. Constr. Facil. |
SSID | ssj0002953864 |
Score | 2.2818012 |
Snippet | Few existing buildings have been constructed in accordance with progressive collapse codes, resulting in poor progressive collapse behavior. Previous studies... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 108278 |
SubjectTerms | Corner column HPFL-BSP Progressive collapse Strengthening Theoretical model |
Title | Experimental response of HPFL-BSP strengthened RC sub-assemblages subject to corner column removal |
URI | https://dx.doi.org/10.1016/j.jobe.2023.108278 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF5EL72UlrbUvthDbyVoHsbs0YqSPhCpFbyF3c1sUWoiJv7_zphNsVB66CnswoTwZXdmdvnmG8buXSFD2Q-MowNtnCAQypGuihzZN76UAN1-pfY5CeN58LzoLRpsWNfCEK3S-v7Kp--9tZ3pWDQ7m-WyM_Mwd6D4iEk0iaLhub3lYXTtNllr8PQST76vWjyBu3ovJEUmxD70bPlMxfRaUd0NtREnwp1HDdd-C1EHYWd8wo5tvsgH1SedsgZkZ0yNDnT5-baiuQLPDY-n41fncTblVAOSfZC0AaT8bciLHcJTFLBWn-hBChrTDQwvc47nzwy2-EA_leHb1jmuvnM2H4_eh7FjmyU4GlOU0nFBK_AgcqkxHel2gcGtijsMpAwC8IQ0EClXu-CKVPfDFEN3F8JQCQjcSPb8C9bM8gwuGfdDnE-FETLCGKdN5BmBeZQPGrOBSOk2e6jxSTaVJkZSk8VWCaGZEJpJhWab9WoIkx9_NkGn_Yfd1T_trtkRjiy75oY1y-0ObjFxKNWdXRhf6UTBMg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEF1ED-2ltLSl9nMPvZWg-TDJHq0oabUiVcFb2F1ni1KjGP3_nTFrsVB66Clkw4YwmZ15u7x5w9ijK2Qoo8A4OtDGCQKhHOmq2JGR8aUEqEeF2mc_TMbB66QxKbHWvhaGaJU29hcxfRet7UjNWrO2ms1qQw-xA-VHBNEkiob79gqpU6GbV5ov3aT_fdTiCVzVOyEpmkLsQ8-WzxRMrznV3VAbcSLcedRw7bcUdZB2OqfsxOJF3iw-6YyVIDtnqn2gy8_XBc0V-NLwZNDpOc_DAacakOyDpA1gyt9bPN-iefIcFuoTI0hO93QCwzdLjvvPDNZ4wTiV4dsWS_S-CzbutEetxLHNEhyNEGXjuKAVeBC71JiOdLvA4FLFFQZSBgF4QhqIlatdcMVUR-EUU3cdwlAJCNxYNvxLVs6WGVwx7oc4PhVGyBhznDaxZwTiKB80ooFY6Sp72tsnXRWaGOmeLDZPyZopWTMtrFlljb0J0x9_NsWg_ce863_Oe2BHyeitl_Ze-t0bdoxPLNPmlpU36y3cIYjYqHvrJF8jGsQh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+response+of+HPFL-BSP+strengthened+RC+sub-assemblages+subject+to+corner+column+removal&rft.jtitle=Journal+of+Building+Engineering&rft.au=Huang%2C+Min&rft.au=Huang%2C+Hua&rft.au=Qian%2C+Kai&rft.au=Li%2C+Jinru&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=2352-7102&rft.volume=82&rft_id=info:doi/10.1016%2Fj.jobe.2023.108278&rft.externalDocID=S2352710223024610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon |