Dynamics of cavity structures and wall-pressure fluctuations associated with shedding mechanism in unsteady sheet/cloud cavitating flows
The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re ...
Saved in:
Published in | Flow (Cambridge, England) Vol. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of
Re
= 7.8 × 10
5
for different values of the cavitation number
σ
between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length (
L
c
). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65
L
c
reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process. |
---|---|
AbstractList | The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re = 7.8 × 105 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length (Lc). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 Lc reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process. The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re = 7.8 × 105 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length (Lc). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 Lc reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process. The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re = 7.8 × 10 5 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length ( L c ). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 L c reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process. |
ArticleNumber | E9 |
Author | Zhang, Mindi Wang, Changchang |
Author_xml | – sequence: 1 givenname: Changchang orcidid: 0000-0002-4893-9231 surname: Wang fullname: Wang, Changchang – sequence: 2 givenname: Mindi orcidid: 0000-0001-8388-6035 surname: Zhang fullname: Zhang, Mindi |
BookMark | eNpNUctKJDEUDYOCz41fEJidUG0qqbyW4uiMILhx1uF2KrHTVCc9SWqk_8DPnvS0iKv7OIdzDveeoaOYokPoqieLnvTyxk9pQQllC_oNnVLBWDdQro--9CfospQ1IYRKPXA1nKL3H7sIm2ALTh5b-BvqDpeaZ1vn7AqGOOI3mKZu26bSVthPewxqSLHBpSQboLrGCnWFy8qNY4iveOPsCmIoGxwinmOpDsbdHnb1xk5pHg9eTaaRW-63coGOPUzFXX7Uc_T74f7l7lf39Pzz8e72qbOUk9opIT0Mo7bMg1VcEq_6ZUOar3aOKa-WQAVQLTjz1KrBjcpxLUFZCswzdo4eD7pjgrXZ5rCBvDMJgvm_SPnVQK7BTs4QIYQmAgZGhkFxpXtNuFxqzqRiWrim9f2gtc3pz-xKNes059jiGyql4pwyLRvr-sCyOZWSnf907YnZP860A5j94wxl_wC4qo9G |
Cites_doi | 10.1017/S0022112007004934 10.1017/S0022112094000492 10.1063/1.2911039 10.1017/S0022112010001217 10.1017/S0022112010001072 10.1063/5.0052913 10.1063/5.0082741 10.1017/S0022112091001660 10.1063/1.1865692 10.1017/jfm.2021.1017 10.1063/1.869505 10.1115/1.2822206 10.1063/5.0049492 10.1007/s00348-020-2940-x 10.1063/5.0073266 10.1115/1.4042067 10.1017/jfm.2020.323 10.1016/S0376-0421(01)00014-8 10.1007/1-4020-2233-6 10.1007/s00348-015-1896-8 10.1115/1.1627835 10.1016/j.ijmultiphaseflow.2021.103700 10.1017/jfm.2016.819 10.1017/S0022112099006072 10.1007/s00348-010-0880-6 10.1016/j.ijmultiphaseflow.2020.103215 10.1016/j.ijmultiphaseflow.2018.04.020 10.1016/j.ijthermalsci.2007.11.010 10.1017/S0022112000002937 10.1063/1.870344 10.1093/oso/9780195094091.001.0001 10.1007/s003480050037 10.1016/j.expthermflusci.2022.110726 10.1063/5.0015487 10.1017/jfm.2019.212 10.1103/PhysRevE.51.R1649 10.1017/jfm.2016.425 10.1007/s00348-016-2246-1 10.1017/S0022112001005420 10.1115/FEDSM2018-83200 10.1121/1.1919132 10.1115/1.2819499 10.1007/s00348-019-2706-5 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1017/flo.2023.2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2633-4259 |
ExternalDocumentID | oai_doaj_org_article_0666906a43044858919057b95378396e 10_1017_flo_2023_2 |
GroupedDBID | 09C 09E 0R~ AANRG AASVR AAYXX ABVZP ACZWT ADDNB ADKIL ADVJH AFKRA AGABE AGBYD AGJUD AHRGI ALMA_UNASSIGNED_HOLDINGS AQJOH ARAPS BENPR BGLVJ BHPHI BKSAR BLZWO CCPQU CCQAD CITATION CJCSC GROUPED_DOAJ HCIFZ IKXGN IPYYG M~E NQS OK1 PCBAR RCA ROL WFFJZ 8FE 8FG DWQXO P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c250t-867fa4d9c3fac8570f81b250edd9ee38f8ba26a29653f2c84ed8e597a8c2a3f33 |
IEDL.DBID | DOA |
ISSN | 2633-4259 |
IngestDate | Tue Oct 22 15:12:45 EDT 2024 Thu Oct 10 17:36:36 EDT 2024 Fri Aug 23 03:13:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c250t-867fa4d9c3fac8570f81b250edd9ee38f8ba26a29653f2c84ed8e597a8c2a3f33 |
ORCID | 0000-0001-8388-6035 0000-0002-4893-9231 |
OpenAccessLink | https://doaj.org/article/0666906a43044858919057b95378396e |
PQID | 2778552397 |
PQPubID | 5528236 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0666906a43044858919057b95378396e proquest_journals_2778552397 crossref_primary_10_1017_flo_2023_2 |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Flow (Cambridge, England) |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Franc (S2633425923000028_ref11) 2005 Gopalan (S2633425923000028_ref14) 1999; 398 Gouin (S2633425923000028_ref15) 2021; 33 Chen (S2633425923000028_ref9) 2015; 56 Mendez (S2633425923000028_ref31) 2019; 870 Joseph (S2633425923000028_ref20) 1995; 51 Shamsborhan (S2633425923000028_ref39) 2010; 49 S2633425923000028_ref49 Coutier-Delgosha (S2633425923000028_ref10) 2007; 578 Leroux (S2633425923000028_ref27) 2005; 17 Callenaere (S2633425923000028_ref8) 2001; 444 Podbevšek (S2633425923000028_ref33) 2021; 142 Brennen (S2633425923000028_ref5) 1995 Zhang (S2633425923000028_ref52) 2021; 33 Wang (S2633425923000028_ref48) 2001; 37 S2633425923000028_ref2 Smith (S2633425923000028_ref40) 2019; 141 Ran (S2633425923000028_ref35) 1991; 224 S2633425923000028_ref30 Kawanami (S2633425923000028_ref22) 1997; 119 Andreas (S2633425923000028_ref1) 2006 Ran (S2633425923000028_ref36) 1994; 262 Prothin (S2633425923000028_ref34) 2016; 57 Wu (S2633425923000028_ref50) 2019; 60 Gupta (S2633425923000028_ref18) 2022; 34 Li (S2633425923000028_ref28) 2008; 47 Laberteaux (S2633425923000028_ref24) 2001; 431 Stutz (S2633425923000028_ref43) 1997b; 9 Trummler (S2633425923000028_ref45) 2020; 125 Brigham (S2633425923000028_ref6) 1988 Young (S2633425923000028_ref51) 2022; 934 Ganesh (S2633425923000028_ref12) 2016; 802 S2633425923000028_ref25 Wang (S2633425923000028_ref46) 2018; 106 S2633425923000028_ref23 Karplus (S2633425923000028_ref21) 1957; 29 Leroux (S2633425923000028_ref26) 2004; 126 Gopalan (S2633425923000028_ref13) 2000; 12 Smith (S2633425923000028_ref41) 2020; 897 de Graaf (S2633425923000028_ref17) 2017; 812 Brunhart (S2633425923000028_ref7) 2020; 32 Schmid (S2633425923000028_ref37) 2010; 656 Wang (S2633425923000028_ref47) 2022; 139 Brandner (S2633425923000028_ref4) 2010; 656 Teolis (S2633425923000028_ref44) 1998; 85 Stutz (S2633425923000028_ref42) 1997a; 22 Liu (S2633425923000028_ref29) 2021; 33 Pham (S2633425923000028_ref32) 1999; 121 Schnerr (S2633425923000028_ref38) 2008; 20 S2633425923000028_ref16 S2633425923000028_ref19 Barwey (S2633425923000028_ref3) 2020; 61 |
References_xml | – volume: 578 start-page: 171 year: 2007 ident: S2633425923000028_ref10 article-title: Analysis of cavitating flow structure by experimental and numerical investigations publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112007004934 contributor: fullname: Coutier-Delgosha – volume: 262 start-page: 223 year: 1994 ident: S2633425923000028_ref36 article-title: Pressure fluctuations and their effect on cavitation inception within water jets publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112094000492 contributor: fullname: Ran – volume: 20 start-page: 040703 year: 2008 ident: S2633425923000028_ref38 article-title: Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock wave dynamics publication-title: Physics of Fluids doi: 10.1063/1.2911039 contributor: fullname: Schnerr – volume-title: The fast Fourier transform and its applications year: 1988 ident: S2633425923000028_ref6 contributor: fullname: Brigham – volume: 656 start-page: 5 year: 2010 ident: S2633425923000028_ref37 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112010001217 contributor: fullname: Schmid – volume: 656 start-page: 147 year: 2010 ident: S2633425923000028_ref4 article-title: An experimental investigation of cloud cavitation about a sphere publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112010001072 contributor: fullname: Brandner – volume: 33 start-page: 063312 year: 2021 ident: S2633425923000028_ref15 article-title: Numerical investigation of the three-dimensional partial cavitation in a Venturi geometry publication-title: Physics of Fluids doi: 10.1063/5.0052913 contributor: fullname: Gouin – volume: 34 start-page: 033612 year: 2022 ident: S2633425923000028_ref18 article-title: Three-dimensional deep learning-based reduced order model for unsteady flow dynamics with variable Reynolds number publication-title: Physics of Fluids doi: 10.1063/5.0082741 contributor: fullname: Gupta – volume: 224 start-page: 91 year: 1991 ident: S2633425923000028_ref35 article-title: The response of microscopic bubbles to sudden changes in the ambient pressure publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112091001660 contributor: fullname: Ran – volume: 17 start-page: 052101 year: 2005 ident: S2633425923000028_ref27 article-title: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil publication-title: Physics of Fluids doi: 10.1063/1.1865692 contributor: fullname: Leroux – volume: 934 start-page: A2 year: 2022 ident: S2633425923000028_ref51 article-title: The influence of fluid-structure interaction on cloud cavitation about a rigid and a flexible hydrofoil. Part 3 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2021.1017 contributor: fullname: Young – ident: S2633425923000028_ref16 – volume: 9 start-page: 3678 year: 1997b ident: S2633425923000028_ref43 article-title: Two-phase flow structure of sheet cavitation publication-title: Physics of Fluids doi: 10.1063/1.869505 contributor: fullname: Stutz – ident: S2633425923000028_ref23 – volume: 121 start-page: 289 year: 1999 ident: S2633425923000028_ref32 article-title: Investigation of unsteady sheet cavitation and cloud cavitation mechanisms publication-title: Journal of Fluids Engineering doi: 10.1115/1.2822206 contributor: fullname: Pham – volume: 33 start-page: 053317 year: 2021 ident: S2633425923000028_ref52 article-title: Spatial-temporal features of the coherent structure of sheet/cloud cavitation flows using a frequency-weighted dynamic mode decomposition approach publication-title: Physics of Fluids doi: 10.1063/5.0049492 contributor: fullname: Zhang – volume: 61 start-page: 98 year: 2020 ident: S2633425923000028_ref3 article-title: Data-based analysis of multimodal partial cavity shedding dynamics publication-title: Experiments in Fluids doi: 10.1007/s00348-020-2940-x contributor: fullname: Barwey – volume: 33 start-page: 113316 year: 2021 ident: S2633425923000028_ref29 article-title: Data-driven modal decomposition of transient cavitating flow publication-title: Physics of Fluids doi: 10.1063/5.0073266 contributor: fullname: Liu – volume: 141 start-page: 041105-1 year: 2019 ident: S2633425923000028_ref40 article-title: Cloud cavitation behavior on a hydrofoil due to fluid-structure interaction publication-title: Journal of Fluids Engineering doi: 10.1115/1.4042067 contributor: fullname: Smith – volume: 897 start-page: A28 year: 2020 ident: S2633425923000028_ref41 article-title: The influence of fluid-structure interaction on cloud cavitation about a flexible hydrofoil. Part 2 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2020.323 contributor: fullname: Smith – volume: 37 start-page: 551 year: 2001 ident: S2633425923000028_ref48 article-title: Dynamics of attached turbulent cavitating flows publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(01)00014-8 contributor: fullname: Wang – volume-title: Fundamentals of cavitation year: 2005 ident: S2633425923000028_ref11 doi: 10.1007/1-4020-2233-6 contributor: fullname: Franc – volume: 56 start-page: 32 year: 2015 ident: S2633425923000028_ref9 article-title: Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach publication-title: Experiments in Fluids doi: 10.1007/s00348-015-1896-8 contributor: fullname: Chen – volume: 126 start-page: 94 year: 2004 ident: S2633425923000028_ref26 article-title: An experimental study of unsteady partial cavitation publication-title: Journal of Fluids Engineering doi: 10.1115/1.1627835 contributor: fullname: Leroux – volume: 142 start-page: 103700 year: 2021 ident: S2633425923000028_ref33 article-title: Kelvin-Helmholtz instability governs the cavitation cloud shedding in venture microchannel publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2021.103700 contributor: fullname: Podbevšek – volume: 812 start-page: R1 year: 2017 ident: S2633425923000028_ref17 article-title: Spectral content of cloud cavitation about a sphere publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.819 contributor: fullname: de Graaf – volume: 398 start-page: 1 year: 1999 ident: S2633425923000028_ref14 article-title: The flow structure in the near field of jets and its effects on cavitation inception publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112099006072 contributor: fullname: Gopalan – volume: 49 start-page: 1359 year: 2010 ident: S2633425923000028_ref39 article-title: Experimental determination of the speed of sound in cavitating flows publication-title: Experiments in Fluids doi: 10.1007/s00348-010-0880-6 contributor: fullname: Shamsborhan – volume: 125 start-page: 103215 year: 2020 ident: S2633425923000028_ref45 article-title: Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by large-eddy simulation publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2020.103215 contributor: fullname: Trummler – volume: 106 start-page: 1 year: 2018 ident: S2633425923000028_ref46 article-title: Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergent-divergent channel publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2018.04.020 contributor: fullname: Wang – volume: 47 start-page: 1263 year: 2008 ident: S2633425923000028_ref28 article-title: Structures of supercavitating multiphase flows publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2007.11.010 contributor: fullname: Li – volume: 431 start-page: 43 year: 2001 ident: S2633425923000028_ref24 article-title: Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112000002937 contributor: fullname: Laberteaux – ident: S2633425923000028_ref30 – ident: S2633425923000028_ref2 – volume: 12 start-page: 895 year: 2000 ident: S2633425923000028_ref13 article-title: Flow structure and modeling issues in the closure region of attached cavitation publication-title: Physics of Fluids doi: 10.1063/1.870344 contributor: fullname: Gopalan – volume-title: Cavitation and bubble dynamics year: 1995 ident: S2633425923000028_ref5 doi: 10.1093/oso/9780195094091.001.0001 contributor: fullname: Brennen – volume: 22 start-page: 191 year: 1997a ident: S2633425923000028_ref42 article-title: Experiments on unsteady cavitation publication-title: Experiments in Fluids doi: 10.1007/s003480050037 contributor: fullname: Stutz – volume: 139 start-page: 110726 year: 2022 ident: S2633425923000028_ref47 article-title: Experimental investigation of wall-pressure fluctuations in compressible turbulent cavitating flows with emphasis on non-Gaussian features publication-title: Experimental Thermal and Fluid Science doi: 10.1016/j.expthermflusci.2022.110726 contributor: fullname: Wang – volume: 32 start-page: 083306 year: 2020 ident: S2633425923000028_ref7 article-title: Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle publication-title: Physics of Fluids doi: 10.1063/5.0015487 contributor: fullname: Brunhart – volume: 870 start-page: 988 year: 2019 ident: S2633425923000028_ref31 article-title: Multi-scale proper orthogonal decomposition of complex fluid flows publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2019.212 contributor: fullname: Mendez – volume: 51 start-page: R1649 year: 1995 ident: S2633425923000028_ref20 article-title: Cavitation in a flowing liquid publication-title: Physical Review E doi: 10.1103/PhysRevE.51.R1649 contributor: fullname: Joseph – volume: 85 start-page: 358 year: 1998 ident: S2633425923000028_ref44 article-title: Computational signal processing with wavelets publication-title: Applied and Numerical Harmonic Analysis contributor: fullname: Teolis – volume: 802 start-page: 37 year: 2016 ident: S2633425923000028_ref12 article-title: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.425 contributor: fullname: Ganesh – volume: 57 start-page: 157 year: 2016 ident: S2633425923000028_ref34 article-title: Image processing using proper orthogonal and dynamic mode decompositions for the study of cavitation developing on a NACA0015 foil publication-title: Experiments in Fluids doi: 10.1007/s00348-016-2246-1 contributor: fullname: Prothin – ident: S2633425923000028_ref25 – volume: 444 start-page: 223 year: 2001 ident: S2633425923000028_ref8 article-title: The cavitation instability induced by the development of a re-entrant jet publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112001005420 contributor: fullname: Callenaere – volume-title: Digital signal processing: Signals, systems and filters year: 2006 ident: S2633425923000028_ref1 contributor: fullname: Andreas – ident: S2633425923000028_ref49 doi: 10.1115/FEDSM2018-83200 – volume: 29 start-page: 1261 year: 1957 ident: S2633425923000028_ref21 article-title: Velocity of sound in a liquid containing gas bubbles publication-title: Journal of the Acoustical Society of America doi: 10.1121/1.1919132 contributor: fullname: Karplus – ident: S2633425923000028_ref19 – volume: 119 start-page: 788 year: 1997 ident: S2633425923000028_ref22 article-title: Mechanism and control of cloud cavitation publication-title: Journal of Fluids Engineering doi: 10.1115/1.2819499 contributor: fullname: Kawanami – volume: 60 start-page: 66 year: 2019 ident: S2633425923000028_ref50 article-title: Multimodal partial cavity shedding on a two-dimensional hydrofoil and its relation to the presence of bubbly shocks publication-title: Experiments in Fluids doi: 10.1007/s00348-019-2706-5 contributor: fullname: Wu |
SSID | ssj0002794584 |
Score | 2.2609487 |
Snippet | The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | Cavitation Cavitation number Clouds Content analysis Dynamic structural analysis Dynamics Flow control Flow velocity Fluid flow Holes Investigations mPOD Physics Pressure Pressure distribution Pressure measurement Probability density functions Propagation Proper Orthogonal Decomposition Re-entrant jet Reynolds number Shedding Shock waves Shockwave Statistical analysis Wall-pressure fluctuations |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0iqAPRavSs1UC-rreXpJLNk_S1pYiWEQs9C1k82EPtrvVvaP0P-if7cxuriqCr5mwCZmZzMdOfgPwLsyD1vXcF96jkktpQoFG2BVayVTz5EM94Mx-PlOn5_LTxeIiJ9z6XFa5uROHizp0nnLkM651tcCoyegP1z8K6hpFf1dzC42HsMUxUignsHV4fPbl632WhaO4oYnd4JLO9Sw19OSPi_f8L0s0APb_cx8PRubkKWxn75AdjOx8Bg9iuwNP_sAM3IFHQ82m75_D3cexm3zPusS8oyYQbISDXWMMzVwb2I1rmmIodcUhlhqijSk65jJfIs5ari5ZfxkD2TF2Fekx8LK_YsuWrdtBCm6JHFcz33TrMK7lqF4aP9nd9C_g_OT429FpkRsrFB49nlVRKZ2cDMaL5Dwh3Cd0XpGC65gYRZWq2nHluFELkbivZAxVxMjDVZ47kYR4CZO2a-MuMK4VRphK61JGqaN2OpbI-irMa6REM4W3m0O21yN-hh0Ly7TFLVpiheVTOKTzv59BmNfDQPfzu80qZCnSMqVyUpQYU1I3RIPOZm0WQqOXp-IU9jfcs1kRe_tbbF79n7wHj2kvY3ZlHybIrvga_Y1V_SYL1S86i9lP priority: 102 providerName: ProQuest |
Title | Dynamics of cavity structures and wall-pressure fluctuations associated with shedding mechanism in unsteady sheet/cloud cavitating flows |
URI | https://www.proquest.com/docview/2778552397 https://doaj.org/article/0666906a43044858919057b95378396e |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSysxEA8-vbx3EL8er1pLQK9r22yaj6PVVhEUEQVvIZsP7GPdCtsiXjz7ZztJtlLx4MXLHjJhE_JLMjPJ5DcIHdq-5bzom8wYWOSUSpuBEtYZZ9QXxBtbRJ7Zyyt2fkcv7gf3S6m-QkxYogdOA9cN9rXsMU3B76Yi5MCTYGIUcpBz0O3Mxd23J5ecqf_xOk2GC8AFH2mfd30ZnvqR_Ih80kCRqP_LPhyVy3gDrTdWIT5OvdlEK67aQn-WuAK30dtpyh1f46nHRoeUDziRv87BY8a6svhZl2UWA1uhCPsyyNKBHNYNCg5qTWYPuH5wNmgt_OjC099J_YgnFZ5XEfOXIHazrimnc5va0iE6Gn45fa530N14dHtynjVpFDID9s0sE4x7Ta00udcm8Nl7MFVBAu1I53LhRaEJ00SyQe6JEdRZ4cDP0MIQnfs8_4tWq2nl_iFMOAN_knHeo45yxzV3PQBa2H4BEidb6GAxtOopsWWoFEbGFXRRBQAUaaFhGPWPGoHhOhYA7qrBXX2Hewu1F5ipZtnVinAuBuBaS777E23sod-hx-nEpY1WAVS3DzbIrOigX2J81kFrw9HV9U0nTj74Xr6O3gGum94B |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEQIOFRQQCwUswTXsru214xOClmWBtqdW6s1y_GhXSpNCdlX1H_CzmXGyBYTE1WPFlmfseWTmG4C3YRq0rqa-8B4vuZQmFKiEXaGVTBVPPlQZZ_bwSC1O5NfT2ekQcOuGtMrNm5gf6tB6ipGPudblDL0mo99ffi-oaxT9XR1aaNyGO1KgrqZK8fnnmxgLR2FDBbtBJZ3qcaqp4I-Ld_wvPZTh-v95jbOKmT-E7cE2ZB96Zj6CW7HZgQd_IAbuwN2csem7x_Bzv-8l37E2Me-oBQTrwWDX6EEz1wR25eq6yImuOMRSTbQ-QMfcwJWIs5arc9adx0BajF1EKgVedhds2bB1k2XgmshxNfZ1uw79Wo6ypfGT7VX3BE7mn473FsXQVqHwaO-silLp5GQwXiTnCd8-oemKFFzHxCjKVFaOK8eNmonEfSljKCP6Ha703IkkxFPYatomPgPGtUL_Umk9kVHqqJ2OE2R8GaYVUqIZwZvNIdvLHj3D9mll2uIWLbHC8hF8pPO_mUGI13mg_XFmhwtkyc8yE-WkmKBHSb0QDZqalZkJjTaeiiPY3XDPDtews7-F5vn_ya_h3uL48MAefDn69gLu0776OMsubCHr4ku0PFbVqyxevwDxQNra |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKKxAcUCkgAqVYguuSxHb8OCGgpOVVcaBSb5bXDxppu1vYRBX_oD-7M16ngJB69Vi25Rl7Hh5_Q8irMA1K1VNfeQ-HXAgTKlDCrlJSpJolH-qMM_v1SB4ei08ns5OS_9SXtMr1nZgv6tB5jJGPmVJ6Bl6TUeNU0iK-7c_fnP-ssIIUvrSWchq3yBZoRYkSrucH1_EWBoIHynaNUDqFYRr8_Mf4a_aPTsrQ_f_dzFndzLfJ_WIn0rcDYx-QjdjukHt_oQfukNs5e9P3D8nl_lBXvqddot5hOQg6AMOuwJumrg30wjVNlZNeoYmmBmlDsI66wqEIvRbLU9qfxoAajZ5F_Ba86M_ooqWrNsvDbyTH5dg33SoMcznMnIYhu4v-ETmef_j-_rAqJRYqD7bPstJSJSeC8Tw5j1j3CcxYoMA8Jkauk64dk44ZOeOJeS1i0BF8EKc9czxx_phstl0bnxDKlARfUyo1EVGoqJyKExACHaY1UKIZkZfrTbbnA5KGHVLMlIUlWmSFZSPyDvf_ugeiX-eG7tcPWw6TRZ_LTKQTfALeJdZFNGB21mbGFdh7Mo7I7pp7thzJ3v4RoKc3k1-QOyBZ9svHo8_PyF1c1hBy2SWbwLn4HIyQZb2XpesK-n_fGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+cavity+structures+and+wall-pressure+fluctuations+associated+with+shedding+mechanism+in+unsteady+sheet%2Fcloud+cavitating+flows&rft.jtitle=Flow+%28Cambridge%2C+England%29&rft.au=Changchang+Wang&rft.au=Mindi+Zhang&rft.date=2023-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2633-4259&rft.volume=3&rft_id=info:doi/10.1017%2Fflo.2023.2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0666906a43044858919057b95378396e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-4259&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-4259&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-4259&client=summon |