Dynamics of cavity structures and wall-pressure fluctuations associated with shedding mechanism in unsteady sheet/cloud cavitating flows

The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re  ...

Full description

Saved in:
Bibliographic Details
Published inFlow (Cambridge, England) Vol. 3
Main Authors Wang, Changchang, Zhang, Mindi
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re  = 7.8 × 10 5 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length ( L c ). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 L c reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process.
AbstractList The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re = 7.8 × 105 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length (Lc). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 Lc reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process.
The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re = 7.8 × 105 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length (Lc). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 Lc reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process.
The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number of Re  = 7.8 × 10 5 for different values of the cavitation number σ between 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length ( L c ). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65 L c reveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process.
ArticleNumber E9
Author Zhang, Mindi
Wang, Changchang
Author_xml – sequence: 1
  givenname: Changchang
  orcidid: 0000-0002-4893-9231
  surname: Wang
  fullname: Wang, Changchang
– sequence: 2
  givenname: Mindi
  orcidid: 0000-0001-8388-6035
  surname: Zhang
  fullname: Zhang, Mindi
BookMark eNpNUctKJDEUDYOCz41fEJidUG0qqbyW4uiMILhx1uF2KrHTVCc9SWqk_8DPnvS0iKv7OIdzDveeoaOYokPoqieLnvTyxk9pQQllC_oNnVLBWDdQro--9CfospQ1IYRKPXA1nKL3H7sIm2ALTh5b-BvqDpeaZ1vn7AqGOOI3mKZu26bSVthPewxqSLHBpSQboLrGCnWFy8qNY4iveOPsCmIoGxwinmOpDsbdHnb1xk5pHg9eTaaRW-63coGOPUzFXX7Uc_T74f7l7lf39Pzz8e72qbOUk9opIT0Mo7bMg1VcEq_6ZUOar3aOKa-WQAVQLTjz1KrBjcpxLUFZCswzdo4eD7pjgrXZ5rCBvDMJgvm_SPnVQK7BTs4QIYQmAgZGhkFxpXtNuFxqzqRiWrim9f2gtc3pz-xKNes059jiGyql4pwyLRvr-sCyOZWSnf907YnZP860A5j94wxl_wC4qo9G
Cites_doi 10.1017/S0022112007004934
10.1017/S0022112094000492
10.1063/1.2911039
10.1017/S0022112010001217
10.1017/S0022112010001072
10.1063/5.0052913
10.1063/5.0082741
10.1017/S0022112091001660
10.1063/1.1865692
10.1017/jfm.2021.1017
10.1063/1.869505
10.1115/1.2822206
10.1063/5.0049492
10.1007/s00348-020-2940-x
10.1063/5.0073266
10.1115/1.4042067
10.1017/jfm.2020.323
10.1016/S0376-0421(01)00014-8
10.1007/1-4020-2233-6
10.1007/s00348-015-1896-8
10.1115/1.1627835
10.1016/j.ijmultiphaseflow.2021.103700
10.1017/jfm.2016.819
10.1017/S0022112099006072
10.1007/s00348-010-0880-6
10.1016/j.ijmultiphaseflow.2020.103215
10.1016/j.ijmultiphaseflow.2018.04.020
10.1016/j.ijthermalsci.2007.11.010
10.1017/S0022112000002937
10.1063/1.870344
10.1093/oso/9780195094091.001.0001
10.1007/s003480050037
10.1016/j.expthermflusci.2022.110726
10.1063/5.0015487
10.1017/jfm.2019.212
10.1103/PhysRevE.51.R1649
10.1017/jfm.2016.425
10.1007/s00348-016-2246-1
10.1017/S0022112001005420
10.1115/FEDSM2018-83200
10.1121/1.1919132
10.1115/1.2819499
10.1007/s00348-019-2706-5
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1017/flo.2023.2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList
Advanced Technologies & Aerospace Collection
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2633-4259
ExternalDocumentID oai_doaj_org_article_0666906a43044858919057b95378396e
10_1017_flo_2023_2
GroupedDBID 09C
09E
0R~
AANRG
AASVR
AAYXX
ABVZP
ACZWT
ADDNB
ADKIL
ADVJH
AFKRA
AGABE
AGBYD
AGJUD
AHRGI
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
BLZWO
CCPQU
CCQAD
CITATION
CJCSC
GROUPED_DOAJ
HCIFZ
IKXGN
IPYYG
M~E
NQS
OK1
PCBAR
RCA
ROL
WFFJZ
8FE
8FG
DWQXO
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c250t-867fa4d9c3fac8570f81b250edd9ee38f8ba26a29653f2c84ed8e597a8c2a3f33
IEDL.DBID DOA
ISSN 2633-4259
IngestDate Tue Oct 22 15:12:45 EDT 2024
Thu Oct 10 17:36:36 EDT 2024
Fri Aug 23 03:13:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c250t-867fa4d9c3fac8570f81b250edd9ee38f8ba26a29653f2c84ed8e597a8c2a3f33
ORCID 0000-0001-8388-6035
0000-0002-4893-9231
OpenAccessLink https://doaj.org/article/0666906a43044858919057b95378396e
PQID 2778552397
PQPubID 5528236
ParticipantIDs doaj_primary_oai_doaj_org_article_0666906a43044858919057b95378396e
proquest_journals_2778552397
crossref_primary_10_1017_flo_2023_2
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Flow (Cambridge, England)
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Franc (S2633425923000028_ref11) 2005
Gopalan (S2633425923000028_ref14) 1999; 398
Gouin (S2633425923000028_ref15) 2021; 33
Chen (S2633425923000028_ref9) 2015; 56
Mendez (S2633425923000028_ref31) 2019; 870
Joseph (S2633425923000028_ref20) 1995; 51
Shamsborhan (S2633425923000028_ref39) 2010; 49
S2633425923000028_ref49
Coutier-Delgosha (S2633425923000028_ref10) 2007; 578
Leroux (S2633425923000028_ref27) 2005; 17
Callenaere (S2633425923000028_ref8) 2001; 444
Podbevšek (S2633425923000028_ref33) 2021; 142
Brennen (S2633425923000028_ref5) 1995
Zhang (S2633425923000028_ref52) 2021; 33
Wang (S2633425923000028_ref48) 2001; 37
S2633425923000028_ref2
Smith (S2633425923000028_ref40) 2019; 141
Ran (S2633425923000028_ref35) 1991; 224
S2633425923000028_ref30
Kawanami (S2633425923000028_ref22) 1997; 119
Andreas (S2633425923000028_ref1) 2006
Ran (S2633425923000028_ref36) 1994; 262
Prothin (S2633425923000028_ref34) 2016; 57
Wu (S2633425923000028_ref50) 2019; 60
Gupta (S2633425923000028_ref18) 2022; 34
Li (S2633425923000028_ref28) 2008; 47
Laberteaux (S2633425923000028_ref24) 2001; 431
Stutz (S2633425923000028_ref43) 1997b; 9
Trummler (S2633425923000028_ref45) 2020; 125
Brigham (S2633425923000028_ref6) 1988
Young (S2633425923000028_ref51) 2022; 934
Ganesh (S2633425923000028_ref12) 2016; 802
S2633425923000028_ref25
Wang (S2633425923000028_ref46) 2018; 106
S2633425923000028_ref23
Karplus (S2633425923000028_ref21) 1957; 29
Leroux (S2633425923000028_ref26) 2004; 126
Gopalan (S2633425923000028_ref13) 2000; 12
Smith (S2633425923000028_ref41) 2020; 897
de Graaf (S2633425923000028_ref17) 2017; 812
Brunhart (S2633425923000028_ref7) 2020; 32
Schmid (S2633425923000028_ref37) 2010; 656
Wang (S2633425923000028_ref47) 2022; 139
Brandner (S2633425923000028_ref4) 2010; 656
Teolis (S2633425923000028_ref44) 1998; 85
Stutz (S2633425923000028_ref42) 1997a; 22
Liu (S2633425923000028_ref29) 2021; 33
Pham (S2633425923000028_ref32) 1999; 121
Schnerr (S2633425923000028_ref38) 2008; 20
S2633425923000028_ref16
S2633425923000028_ref19
Barwey (S2633425923000028_ref3) 2020; 61
References_xml – volume: 578
  start-page: 171
  year: 2007
  ident: S2633425923000028_ref10
  article-title: Analysis of cavitating flow structure by experimental and numerical investigations
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112007004934
  contributor:
    fullname: Coutier-Delgosha
– volume: 262
  start-page: 223
  year: 1994
  ident: S2633425923000028_ref36
  article-title: Pressure fluctuations and their effect on cavitation inception within water jets
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112094000492
  contributor:
    fullname: Ran
– volume: 20
  start-page: 040703
  year: 2008
  ident: S2633425923000028_ref38
  article-title: Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock wave dynamics
  publication-title: Physics of Fluids
  doi: 10.1063/1.2911039
  contributor:
    fullname: Schnerr
– volume-title: The fast Fourier transform and its applications
  year: 1988
  ident: S2633425923000028_ref6
  contributor:
    fullname: Brigham
– volume: 656
  start-page: 5
  year: 2010
  ident: S2633425923000028_ref37
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112010001217
  contributor:
    fullname: Schmid
– volume: 656
  start-page: 147
  year: 2010
  ident: S2633425923000028_ref4
  article-title: An experimental investigation of cloud cavitation about a sphere
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112010001072
  contributor:
    fullname: Brandner
– volume: 33
  start-page: 063312
  year: 2021
  ident: S2633425923000028_ref15
  article-title: Numerical investigation of the three-dimensional partial cavitation in a Venturi geometry
  publication-title: Physics of Fluids
  doi: 10.1063/5.0052913
  contributor:
    fullname: Gouin
– volume: 34
  start-page: 033612
  year: 2022
  ident: S2633425923000028_ref18
  article-title: Three-dimensional deep learning-based reduced order model for unsteady flow dynamics with variable Reynolds number
  publication-title: Physics of Fluids
  doi: 10.1063/5.0082741
  contributor:
    fullname: Gupta
– volume: 224
  start-page: 91
  year: 1991
  ident: S2633425923000028_ref35
  article-title: The response of microscopic bubbles to sudden changes in the ambient pressure
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112091001660
  contributor:
    fullname: Ran
– volume: 17
  start-page: 052101
  year: 2005
  ident: S2633425923000028_ref27
  article-title: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil
  publication-title: Physics of Fluids
  doi: 10.1063/1.1865692
  contributor:
    fullname: Leroux
– volume: 934
  start-page: A2
  year: 2022
  ident: S2633425923000028_ref51
  article-title: The influence of fluid-structure interaction on cloud cavitation about a rigid and a flexible hydrofoil. Part 3
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2021.1017
  contributor:
    fullname: Young
– ident: S2633425923000028_ref16
– volume: 9
  start-page: 3678
  year: 1997b
  ident: S2633425923000028_ref43
  article-title: Two-phase flow structure of sheet cavitation
  publication-title: Physics of Fluids
  doi: 10.1063/1.869505
  contributor:
    fullname: Stutz
– ident: S2633425923000028_ref23
– volume: 121
  start-page: 289
  year: 1999
  ident: S2633425923000028_ref32
  article-title: Investigation of unsteady sheet cavitation and cloud cavitation mechanisms
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.2822206
  contributor:
    fullname: Pham
– volume: 33
  start-page: 053317
  year: 2021
  ident: S2633425923000028_ref52
  article-title: Spatial-temporal features of the coherent structure of sheet/cloud cavitation flows using a frequency-weighted dynamic mode decomposition approach
  publication-title: Physics of Fluids
  doi: 10.1063/5.0049492
  contributor:
    fullname: Zhang
– volume: 61
  start-page: 98
  year: 2020
  ident: S2633425923000028_ref3
  article-title: Data-based analysis of multimodal partial cavity shedding dynamics
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-020-2940-x
  contributor:
    fullname: Barwey
– volume: 33
  start-page: 113316
  year: 2021
  ident: S2633425923000028_ref29
  article-title: Data-driven modal decomposition of transient cavitating flow
  publication-title: Physics of Fluids
  doi: 10.1063/5.0073266
  contributor:
    fullname: Liu
– volume: 141
  start-page: 041105-1
  year: 2019
  ident: S2633425923000028_ref40
  article-title: Cloud cavitation behavior on a hydrofoil due to fluid-structure interaction
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4042067
  contributor:
    fullname: Smith
– volume: 897
  start-page: A28
  year: 2020
  ident: S2633425923000028_ref41
  article-title: The influence of fluid-structure interaction on cloud cavitation about a flexible hydrofoil. Part 2
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2020.323
  contributor:
    fullname: Smith
– volume: 37
  start-page: 551
  year: 2001
  ident: S2633425923000028_ref48
  article-title: Dynamics of attached turbulent cavitating flows
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(01)00014-8
  contributor:
    fullname: Wang
– volume-title: Fundamentals of cavitation
  year: 2005
  ident: S2633425923000028_ref11
  doi: 10.1007/1-4020-2233-6
  contributor:
    fullname: Franc
– volume: 56
  start-page: 32
  year: 2015
  ident: S2633425923000028_ref9
  article-title: Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-015-1896-8
  contributor:
    fullname: Chen
– volume: 126
  start-page: 94
  year: 2004
  ident: S2633425923000028_ref26
  article-title: An experimental study of unsteady partial cavitation
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1627835
  contributor:
    fullname: Leroux
– volume: 142
  start-page: 103700
  year: 2021
  ident: S2633425923000028_ref33
  article-title: Kelvin-Helmholtz instability governs the cavitation cloud shedding in venture microchannel
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2021.103700
  contributor:
    fullname: Podbevšek
– volume: 812
  start-page: R1
  year: 2017
  ident: S2633425923000028_ref17
  article-title: Spectral content of cloud cavitation about a sphere
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.819
  contributor:
    fullname: de Graaf
– volume: 398
  start-page: 1
  year: 1999
  ident: S2633425923000028_ref14
  article-title: The flow structure in the near field of jets and its effects on cavitation inception
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112099006072
  contributor:
    fullname: Gopalan
– volume: 49
  start-page: 1359
  year: 2010
  ident: S2633425923000028_ref39
  article-title: Experimental determination of the speed of sound in cavitating flows
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-010-0880-6
  contributor:
    fullname: Shamsborhan
– volume: 125
  start-page: 103215
  year: 2020
  ident: S2633425923000028_ref45
  article-title: Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by large-eddy simulation
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2020.103215
  contributor:
    fullname: Trummler
– volume: 106
  start-page: 1
  year: 2018
  ident: S2633425923000028_ref46
  article-title: Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergent-divergent channel
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.04.020
  contributor:
    fullname: Wang
– volume: 47
  start-page: 1263
  year: 2008
  ident: S2633425923000028_ref28
  article-title: Structures of supercavitating multiphase flows
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2007.11.010
  contributor:
    fullname: Li
– volume: 431
  start-page: 43
  year: 2001
  ident: S2633425923000028_ref24
  article-title: Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112000002937
  contributor:
    fullname: Laberteaux
– ident: S2633425923000028_ref30
– ident: S2633425923000028_ref2
– volume: 12
  start-page: 895
  year: 2000
  ident: S2633425923000028_ref13
  article-title: Flow structure and modeling issues in the closure region of attached cavitation
  publication-title: Physics of Fluids
  doi: 10.1063/1.870344
  contributor:
    fullname: Gopalan
– volume-title: Cavitation and bubble dynamics
  year: 1995
  ident: S2633425923000028_ref5
  doi: 10.1093/oso/9780195094091.001.0001
  contributor:
    fullname: Brennen
– volume: 22
  start-page: 191
  year: 1997a
  ident: S2633425923000028_ref42
  article-title: Experiments on unsteady cavitation
  publication-title: Experiments in Fluids
  doi: 10.1007/s003480050037
  contributor:
    fullname: Stutz
– volume: 139
  start-page: 110726
  year: 2022
  ident: S2633425923000028_ref47
  article-title: Experimental investigation of wall-pressure fluctuations in compressible turbulent cavitating flows with emphasis on non-Gaussian features
  publication-title: Experimental Thermal and Fluid Science
  doi: 10.1016/j.expthermflusci.2022.110726
  contributor:
    fullname: Wang
– volume: 32
  start-page: 083306
  year: 2020
  ident: S2633425923000028_ref7
  article-title: Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle
  publication-title: Physics of Fluids
  doi: 10.1063/5.0015487
  contributor:
    fullname: Brunhart
– volume: 870
  start-page: 988
  year: 2019
  ident: S2633425923000028_ref31
  article-title: Multi-scale proper orthogonal decomposition of complex fluid flows
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2019.212
  contributor:
    fullname: Mendez
– volume: 51
  start-page: R1649
  year: 1995
  ident: S2633425923000028_ref20
  article-title: Cavitation in a flowing liquid
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.51.R1649
  contributor:
    fullname: Joseph
– volume: 85
  start-page: 358
  year: 1998
  ident: S2633425923000028_ref44
  article-title: Computational signal processing with wavelets
  publication-title: Applied and Numerical Harmonic Analysis
  contributor:
    fullname: Teolis
– volume: 802
  start-page: 37
  year: 2016
  ident: S2633425923000028_ref12
  article-title: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.425
  contributor:
    fullname: Ganesh
– volume: 57
  start-page: 157
  year: 2016
  ident: S2633425923000028_ref34
  article-title: Image processing using proper orthogonal and dynamic mode decompositions for the study of cavitation developing on a NACA0015 foil
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-016-2246-1
  contributor:
    fullname: Prothin
– ident: S2633425923000028_ref25
– volume: 444
  start-page: 223
  year: 2001
  ident: S2633425923000028_ref8
  article-title: The cavitation instability induced by the development of a re-entrant jet
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112001005420
  contributor:
    fullname: Callenaere
– volume-title: Digital signal processing: Signals, systems and filters
  year: 2006
  ident: S2633425923000028_ref1
  contributor:
    fullname: Andreas
– ident: S2633425923000028_ref49
  doi: 10.1115/FEDSM2018-83200
– volume: 29
  start-page: 1261
  year: 1957
  ident: S2633425923000028_ref21
  article-title: Velocity of sound in a liquid containing gas bubbles
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.1919132
  contributor:
    fullname: Karplus
– ident: S2633425923000028_ref19
– volume: 119
  start-page: 788
  year: 1997
  ident: S2633425923000028_ref22
  article-title: Mechanism and control of cloud cavitation
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.2819499
  contributor:
    fullname: Kawanami
– volume: 60
  start-page: 66
  year: 2019
  ident: S2633425923000028_ref50
  article-title: Multimodal partial cavity shedding on a two-dimensional hydrofoil and its relation to the presence of bubbly shocks
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-019-2706-5
  contributor:
    fullname: Wu
SSID ssj0002794584
Score 2.2609487
Snippet The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
SubjectTerms Cavitation
Cavitation number
Clouds
Content analysis
Dynamic structural analysis
Dynamics
Flow control
Flow velocity
Fluid flow
Holes
Investigations
mPOD
Physics
Pressure
Pressure distribution
Pressure measurement
Probability density functions
Propagation
Proper Orthogonal Decomposition
Re-entrant jet
Reynolds number
Shedding
Shock waves
Shockwave
Statistical analysis
Wall-pressure fluctuations
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0iqAPRavSs1UC-rreXpJLNk_S1pYiWEQs9C1k82EPtrvVvaP0P-if7cxuriqCr5mwCZmZzMdOfgPwLsyD1vXcF96jkktpQoFG2BVayVTz5EM94Mx-PlOn5_LTxeIiJ9z6XFa5uROHizp0nnLkM651tcCoyegP1z8K6hpFf1dzC42HsMUxUignsHV4fPbl632WhaO4oYnd4JLO9Sw19OSPi_f8L0s0APb_cx8PRubkKWxn75AdjOx8Bg9iuwNP_sAM3IFHQ82m75_D3cexm3zPusS8oyYQbISDXWMMzVwb2I1rmmIodcUhlhqijSk65jJfIs5ari5ZfxkD2TF2Fekx8LK_YsuWrdtBCm6JHFcz33TrMK7lqF4aP9nd9C_g_OT429FpkRsrFB49nlVRKZ2cDMaL5Dwh3Cd0XpGC65gYRZWq2nHluFELkbivZAxVxMjDVZ47kYR4CZO2a-MuMK4VRphK61JGqaN2OpbI-irMa6REM4W3m0O21yN-hh0Ly7TFLVpiheVTOKTzv59BmNfDQPfzu80qZCnSMqVyUpQYU1I3RIPOZm0WQqOXp-IU9jfcs1kRe_tbbF79n7wHj2kvY3ZlHybIrvga_Y1V_SYL1S86i9lP
  priority: 102
  providerName: ProQuest
Title Dynamics of cavity structures and wall-pressure fluctuations associated with shedding mechanism in unsteady sheet/cloud cavitating flows
URI https://www.proquest.com/docview/2778552397
https://doaj.org/article/0666906a43044858919057b95378396e
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSysxEA8-vbx3EL8er1pLQK9r22yaj6PVVhEUEQVvIZsP7GPdCtsiXjz7ZztJtlLx4MXLHjJhE_JLMjPJ5DcIHdq-5bzom8wYWOSUSpuBEtYZZ9QXxBtbRJ7Zyyt2fkcv7gf3S6m-QkxYogdOA9cN9rXsMU3B76Yi5MCTYGIUcpBz0O3Mxd23J5ecqf_xOk2GC8AFH2mfd30ZnvqR_Ih80kCRqP_LPhyVy3gDrTdWIT5OvdlEK67aQn-WuAK30dtpyh1f46nHRoeUDziRv87BY8a6svhZl2UWA1uhCPsyyNKBHNYNCg5qTWYPuH5wNmgt_OjC099J_YgnFZ5XEfOXIHazrimnc5va0iE6Gn45fa530N14dHtynjVpFDID9s0sE4x7Ta00udcm8Nl7MFVBAu1I53LhRaEJ00SyQe6JEdRZ4cDP0MIQnfs8_4tWq2nl_iFMOAN_knHeo45yxzV3PQBa2H4BEidb6GAxtOopsWWoFEbGFXRRBQAUaaFhGPWPGoHhOhYA7qrBXX2Hewu1F5ipZtnVinAuBuBaS777E23sod-hx-nEpY1WAVS3DzbIrOigX2J81kFrw9HV9U0nTj74Xr6O3gGum94B
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEQIOFRQQCwUswTXsru214xOClmWBtqdW6s1y_GhXSpNCdlX1H_CzmXGyBYTE1WPFlmfseWTmG4C3YRq0rqa-8B4vuZQmFKiEXaGVTBVPPlQZZ_bwSC1O5NfT2ekQcOuGtMrNm5gf6tB6ipGPudblDL0mo99ffi-oaxT9XR1aaNyGO1KgrqZK8fnnmxgLR2FDBbtBJZ3qcaqp4I-Ld_wvPZTh-v95jbOKmT-E7cE2ZB96Zj6CW7HZgQd_IAbuwN2csem7x_Bzv-8l37E2Me-oBQTrwWDX6EEz1wR25eq6yImuOMRSTbQ-QMfcwJWIs5arc9adx0BajF1EKgVedhds2bB1k2XgmshxNfZ1uw79Wo6ypfGT7VX3BE7mn473FsXQVqHwaO-silLp5GQwXiTnCd8-oemKFFzHxCjKVFaOK8eNmonEfSljKCP6Ha703IkkxFPYatomPgPGtUL_Umk9kVHqqJ2OE2R8GaYVUqIZwZvNIdvLHj3D9mll2uIWLbHC8hF8pPO_mUGI13mg_XFmhwtkyc8yE-WkmKBHSb0QDZqalZkJjTaeiiPY3XDPDtews7-F5vn_ya_h3uL48MAefDn69gLu0776OMsubCHr4ku0PFbVqyxevwDxQNra
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKKxAcUCkgAqVYguuSxHb8OCGgpOVVcaBSb5bXDxppu1vYRBX_oD-7M16ngJB69Vi25Rl7Hh5_Q8irMA1K1VNfeQ-HXAgTKlDCrlJSpJolH-qMM_v1SB4ei08ns5OS_9SXtMr1nZgv6tB5jJGPmVJ6Bl6TUeNU0iK-7c_fnP-ssIIUvrSWchq3yBZoRYkSrucH1_EWBoIHynaNUDqFYRr8_Mf4a_aPTsrQ_f_dzFndzLfJ_WIn0rcDYx-QjdjukHt_oQfukNs5e9P3D8nl_lBXvqddot5hOQg6AMOuwJumrg30wjVNlZNeoYmmBmlDsI66wqEIvRbLU9qfxoAajZ5F_Ba86M_ooqWrNsvDbyTH5dg33SoMcznMnIYhu4v-ETmef_j-_rAqJRYqD7bPstJSJSeC8Tw5j1j3CcxYoMA8Jkauk64dk44ZOeOJeS1i0BF8EKc9czxx_phstl0bnxDKlARfUyo1EVGoqJyKExACHaY1UKIZkZfrTbbnA5KGHVLMlIUlWmSFZSPyDvf_ugeiX-eG7tcPWw6TRZ_LTKQTfALeJdZFNGB21mbGFdh7Mo7I7pp7thzJ3v4RoKc3k1-QOyBZ9svHo8_PyF1c1hBy2SWbwLn4HIyQZb2XpesK-n_fGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+cavity+structures+and+wall-pressure+fluctuations+associated+with+shedding+mechanism+in+unsteady+sheet%2Fcloud+cavitating+flows&rft.jtitle=Flow+%28Cambridge%2C+England%29&rft.au=Changchang+Wang&rft.au=Mindi+Zhang&rft.date=2023-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2633-4259&rft.volume=3&rft_id=info:doi/10.1017%2Fflo.2023.2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0666906a43044858919057b95378396e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-4259&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-4259&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-4259&client=summon