On the Wiener Index of the Dot Product Graph over Monogenic Semigroups

Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals with graphs over several algebraic structures. Topological graph indices are widely-used tools in especially molecular graph theory and mathema...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pure and applied mathematics Vol. 13; no. 5; pp. 1231 - 1240
Main Authors Aydın, Büşra, Akgüneş, Nihat, Cangül, İsmail Naci
Format Journal Article
LanguageEnglish
Published 2021
Online AccessGet full text
ISSN1307-5543
1307-5543
DOI10.29020/nybg.ejpam.v13i5.3745

Cover

Loading…
Abstract Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals with graphs over several algebraic structures. Topological graph indices are widely-used tools in especially molecular graph theory and mathematical chemistry due to their time and money saving applications. The Wiener index is one of these indices which is equal to the sum of distances between all pairs of vertices in a connected graph. The graph over the nite dot product of monogenic semigroups has recently been dened and in this paper, some results on the Wiener index of the dot product graph over monogenic semigroups are given.
AbstractList Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals with graphs over several algebraic structures. Topological graph indices are widely-used tools in especially molecular graph theory and mathematical chemistry due to their time and money saving applications. The Wiener index is one of these indices which is equal to the sum of distances between all pairs of vertices in a connected graph. The graph over the nite dot product of monogenic semigroups has recently been dened and in this paper, some results on the Wiener index of the dot product graph over monogenic semigroups are given.
Author Cangül, İsmail Naci
Akgüneş, Nihat
Aydın, Büşra
Author_xml – sequence: 1
  givenname: Büşra
  surname: Aydın
  fullname: Aydın, Büşra
– sequence: 2
  givenname: Nihat
  surname: AkgüneÅŸ
  fullname: AkgüneÅŸ, Nihat
– sequence: 3
  givenname: İsmail Naci
  surname: Cangül
  fullname: Cangül, İsmail Naci
BookMark eNpN0NFKwzAUBuAgE5xzryB5gdaTJmnWS5luDiYTVLwMSZp2HS4pSTfc26-rXnh1Doefn8N3i0bOO4vQPYE0KyCDB3fSdWp3rdqnR0IbnlLB-BUaEwoi4ZzR0b_9Bk1j3AFARmZAczJGi43D3dbir8Y6G_DKlfYH-2q4PfkOvwVfHkyHl0G1W-yPfebVO19b1xj8bvdNHfyhjXfoulLf0U7_5gR9Lp4_5i_JerNczR_Xick4dInghS5BM2NYyXMluCmgrKi2QpFMsWpWGNoneGYV1ZQbzYEJJvpvc1FBrugE5b-9JvgYg61kG5q9CidJQA4g8gIiBxA5gMgLCD0DHv1ZIw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.29020/nybg.ejpam.v13i5.3745
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1307-5543
EndPage 1240
ExternalDocumentID 10_29020_nybg_ejpam_v13i5_3745
GroupedDBID AAYXX
ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EOJEC
ESX
GIY
J9A
M~E
OBODZ
OK1
P2P
TUS
ID FETCH-LOGICAL-c250t-759bd0b4cc4d56a75c90df3be7a12a4f89c39bd52ea3b35cb50474721867f06a3
ISSN 1307-5543
IngestDate Tue Jul 01 03:03:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c250t-759bd0b4cc4d56a75c90df3be7a12a4f89c39bd52ea3b35cb50474721867f06a3
OpenAccessLink https://www.ejpam.com/index.php/ejpam/article/download/3745/964
PageCount 10
ParticipantIDs crossref_primary_10_29020_nybg_ejpam_v13i5_3745
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationTitle European journal of pure and applied mathematics
PublicationYear 2021
SSID ssj0002180361
Score 2.1387014
Snippet Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals...
SourceID crossref
SourceType Index Database
StartPage 1231
Title On the Wiener Index of the Dot Product Graph over Monogenic Semigroups
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE8xBsgP9GlKl8R20jy2Gd2ENPayib1FtuOMwJpWWzYx_kn-Je7sNPNQQYyXKD2514_7xfe7s-9MyHsdVsgKVKBLrgOuY3uQexWEnKkqSVIjIqxGPvyUHJzwj6fidDD46e1aumrVSP9YW1fyP1YFGdgVq2TvYdleKQjgHuwLV7AwXP_Jxkduj-LnGntHw6Nemu-rNf-9RYtFANjNdWcfm1Lv4F5NfIQXoK7WMEnMa1vScfnH5HxHVJerNQbZMdZ53-q1J-STmxKX3Md8mMfDaeTOgLcSZiW5vRfDXAyn44veFUy-nfmDGuMPc0D9IvuNOTnmtr3hNnvtfWx4OZf1OTgMXfvJDFcb3c282K0SuI2b7cwa2Wq6Zh4shTf3gg-OPD8OxCVc5yPiDBgyNp29UWcj83Up56PriNVixFLX2PJuU-7fnGW_hRGCJ6upQD2F1VNYPQXqeUA2Y4hbwFNsTqZ701mf9gNGBZzBpQG6H-fq1q2y3bVfyqNMHvc5fkIed0ELnTgEPiUD0zwjjw5vYfCczI4aCi-pwyK1WKSLysoAi7TDIrVYpIhF2mOR3mLxBTmZfTjOD4LujI5AA3lug1RkqgwV15qXIpGp0FlYVkyZVEax5NU40wxGiNhIppjQSoQcIlg8CS2twkSyl2SjWTTmFaEMWJQsJRBYWWLUr0yUVZEwcQz6Ki23yO7qbyiWrhVL8XcrvL73O7bJQ4Sly7G9IRvtxZV5C6yzVe86S_4CFm96uw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Wiener+Index+of+the+Dot+Product+Graph+over+Monogenic+Semigroups&rft.jtitle=European+journal+of+pure+and+applied+mathematics&rft.au=Ayd%C3%84%C2%B1n%2C+B%C3%83%C2%BC%C3%85%C5%B8ra&rft.au=Akg%C3%83%C2%BCne%C3%85%C5%B8%2C+Nihat&rft.au=Cang%C3%83%C2%BCl%2C+%C3%84%C2%B0smail+Naci&rft.date=2021&rft.issn=1307-5543&rft.eissn=1307-5543&rft.volume=13&rft.issue=5&rft.spage=1231&rft.epage=1240&rft_id=info:doi/10.29020%2Fnybg.ejpam.v13i5.3745&rft.externalDBID=n%2Fa&rft.externalDocID=10_29020_nybg_ejpam_v13i5_3745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1307-5543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1307-5543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1307-5543&client=summon