Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments
Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management leads to accelerated soil erosion and increased sediment loads being transported downstream. Ultimately, these increased sediment loads impact th...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 17; p. 3193 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management leads to accelerated soil erosion and increased sediment loads being transported downstream. Ultimately, these increased sediment loads impact the water quality of the Great Barrier Reef (GBR) lagoon. Ground cover mapping has been adopted to monitor and assess the land condition in the GBRCA. However, accurate prediction of ground cover remains a vital knowledge gap to inform proactive approaches for improving land conditions. Herein, we explored two deep learning-based spatio-temporal prediction models, including convolutional LSTM (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN), to predict future ground cover. The two models were evaluated on different spatial scales, ranging from a small site (i.e., <5 km2) to the entire GBRCA, with different quantities of training data. Following comparisons against 25% withheld testing data, we found the following: (1) both ConvLSTM and PredRNN accurately predicted the next-season ground cover for not only a single site but also the entire GBRCA. They achieved this with a Mean Absolute Error (MAE) under 5% and a Structural Similarity Index Measure (SSIM) exceeding 0.65; (2) PredRNN superseded ConvLSTM by providing more accurate next-season predictions with better training efficiency; (3) The accuracy of PredRNN varies seasonally and spatially, with lower accuracy observed for low ground cover, which is underestimated. The models assessed in this study can serve as an early-alert tool to produce high-accuracy and high-resolution ground cover prediction one season earlier than observation for the entire GBRCA, which enables local authorities and grazing property owners to take preventive measures to improve land conditions. This study also offers a new perspective on the future utilization of predictive spatio-temporal models, particularly over large spatial scales and across varying environmental sites. |
---|---|
AbstractList | Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management leads to accelerated soil erosion and increased sediment loads being transported downstream. Ultimately, these increased sediment loads impact the water quality of the Great Barrier Reef (GBR) lagoon. Ground cover mapping has been adopted to monitor and assess the land condition in the GBRCA. However, accurate prediction of ground cover remains a vital knowledge gap to inform proactive approaches for improving land conditions. Herein, we explored two deep learning-based spatio-temporal prediction models, including convolutional LSTM (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN), to predict future ground cover. The two models were evaluated on different spatial scales, ranging from a small site (i.e., <5 km2) to the entire GBRCA, with different quantities of training data. Following comparisons against 25% withheld testing data, we found the following: (1) both ConvLSTM and PredRNN accurately predicted the next-season ground cover for not only a single site but also the entire GBRCA. They achieved this with a Mean Absolute Error (MAE) under 5% and a Structural Similarity Index Measure (SSIM) exceeding 0.65; (2) PredRNN superseded ConvLSTM by providing more accurate next-season predictions with better training efficiency; (3) The accuracy of PredRNN varies seasonally and spatially, with lower accuracy observed for low ground cover, which is underestimated. The models assessed in this study can serve as an early-alert tool to produce high-accuracy and high-resolution ground cover prediction one season earlier than observation for the entire GBRCA, which enables local authorities and grazing property owners to take preventive measures to improve land conditions. This study also offers a new perspective on the future utilization of predictive spatio-temporal models, particularly over large spatial scales and across varying environmental sites. |
Author | Warne, Michael St. J. Mao, Yongjing Chamberlain, Debbie A. Correa, Diego F. McMahon, Joseph M. Turner, Ryan D. R. |
Author_xml | – sequence: 1 givenname: Yongjing orcidid: 0000-0003-0835-6864 surname: Mao fullname: Mao, Yongjing – sequence: 2 givenname: Ryan D. R. orcidid: 0000-0001-6889-8273 surname: Turner fullname: Turner, Ryan D. R. – sequence: 3 givenname: Joseph M. orcidid: 0000-0001-5479-7842 surname: McMahon fullname: McMahon, Joseph M. – sequence: 4 givenname: Diego F. surname: Correa fullname: Correa, Diego F. – sequence: 5 givenname: Debbie A. orcidid: 0000-0003-4226-4728 surname: Chamberlain fullname: Chamberlain, Debbie A. – sequence: 6 givenname: Michael St. J. surname: Warne fullname: Warne, Michael St. J. |
BookMark | eNpVkU1uFDEQhVsoSISQDSewxA6pwW7b7e7lMAkh0oxAJKytcrs641GP3dieIHYcgqNwIk6Ch-G3NlXye_qq5Pe4OvHBY1U9ZfQF5z19GRNrmeKs5w-q04aqphZN35z8Mz-qzlPa0lK82Kg4rb69i2jdkJ2_I1cx7L0ly3CPkXxyeUMuEGeyQoj-oK-DxSl9__J14clinic3QHbBkzCSm_kw1re4m0OEifymFnWNeRNsIjmQG8g4TS5jfYHR3aP9f-Ua5kScJ3mDRUDI5BXE6IryHnEkS8jDZoc-pyfVwxGmhOe_-ln14fXl7fJNvXp7db1crOqhkTTX0jSgOoUAjElhLAVolaIcu85yRtFAA007sEZZ2cnetLwXI1ojOW8ljJKfVddHrg2w1XN0O4ifdQCnfz6EeKchZjdMqJVoqS2_SgdpRNej6YwU1NC2H1SBj4X17MiaY_i4x5T1NuyjL-frcougsgQiiuv50TXEkFLE8c9WRvUhZP03ZP4DPS6dQw |
Cites_doi | 10.1080/15324982.2022.2106323 10.1002/hyp.6334 10.1111/gcb.13262 10.1016/j.geomorph.2006.10.001 10.1109/TIP.2003.819861 10.1080/01431161.2019.1688418 10.1016/j.cosust.2014.01.003 10.1016/j.rse.2009.01.006 10.1007/s10586-020-03055-9 10.1016/j.rse.2019.111317 10.1016/S1364-8152(01)00008-1 10.3390/rs13010078 10.1071/RJ21018 10.1007/s11356-023-27826-0 10.1016/j.rse.2020.111716 10.1162/neco.1997.9.8.1735 10.1016/j.ecoinf.2024.102474 10.1111/j.1442-8903.2006.00289.x 10.1007/s40808-018-0431-3 10.1109/TPAMI.2022.3165153 10.1071/RJ06033 10.1007/s11356-024-32430-x 10.1016/j.ecoinf.2021.101325 10.1007/978-1-4612-4380-9 10.1038/nature01361 10.1016/j.marpolbul.2011.09.031 10.1016/j.marpolbul.2021.112297 10.1016/j.rse.2020.112270 10.1016/j.marpolbul.2021.112628 10.1016/j.compag.2018.05.010 10.1109/LGRS.2017.2780843 10.1007/s11042-020-09531-z 10.21236/ADA164453 10.1109/JSTARS.2021.3106481 10.1002/eco.4 10.3390/app13010272 10.1016/j.marpolbul.2004.11.028 10.3390/rs12203314 10.1109/CVPRW56347.2022.00142 10.1016/j.marpolbul.2021.112163 10.5194/isprs-archives-XLII-3-W2-15-2017 10.22499/2.5804.003 10.1016/j.rse.2012.02.021 10.3390/atmos12121626 10.1016/j.rse.2020.111886 10.1007/s10346-023-02141-4 10.1016/0169-555X(95)00028-4 10.1071/RJ9890074 10.1109/JSTARS.2024.3350053 10.1080/00049189608703167 10.1080/10962247.2018.1459956 10.1016/j.rse.2024.114070 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16173193 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals at publisher websites |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7460d0330c5b489eb8b540b069c7585f 10_3390_rs16173193 |
GeographicLocations | Australia Great Barrier Reef |
GeographicLocations_xml | – name: Great Barrier Reef – name: Australia |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c250t-5b2a787eaa1154bd0aa67703e88d310eba2a26c127d5859b6394fedb53365af53 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:06:13 EDT 2024 Mon Nov 04 14:28:55 EST 2024 Thu Sep 26 20:26:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c250t-5b2a787eaa1154bd0aa67703e88d310eba2a26c127d5859b6394fedb53365af53 |
ORCID | 0000-0001-5479-7842 0000-0001-6889-8273 0000-0003-4226-4728 0000-0003-0835-6864 |
OpenAccessLink | https://doaj.org/article/7460d0330c5b489eb8b540b069c7585f |
PQID | 3104053194 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7460d0330c5b489eb8b540b069c7585f proquest_journals_3104053194 crossref_primary_10_3390_rs16173193 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kladny (ref_50) 2024; 80 Barrett (ref_27) 2020; 248 Bengio (ref_68) 2015; 1 Trimble (ref_4) 1995; 13 ref_57 ref_12 ref_56 ref_55 Jones (ref_64) 2009; 58 ref_52 Song (ref_33) 2023; 120 Kartal (ref_74) 2024; 31 ref_15 (ref_17) 1996; 27 Wang (ref_54) 2024; 21 Shi (ref_45) 2015; 1 Turnbull (ref_60) 2008; 1 Pickup (ref_16) 1989; 11 Boulila (ref_46) 2021; 64 Waterhouse (ref_10) 2012; 65 Beutel (ref_24) 2021; 43 ref_61 ref_25 Freeman (ref_40) 2018; 68 ref_69 Xie (ref_30) 2019; 232 ref_67 ref_66 ref_21 Wang (ref_36) 2023; 30 ref_65 ref_20 Yuan (ref_39) 2020; 241 ref_62 Kroon (ref_13) 2016; 22 Xie (ref_32) 2024; 305 McCulloch (ref_8) 2003; 421 ref_28 Zhang (ref_29) 2018; 150 Reddy (ref_42) 2018; 4 Bartley (ref_59) 2006; 20 ref_71 Yang (ref_41) 2018; 15 Jeffrey (ref_63) 2001; 16 Sun (ref_34) 2021; 14 Bastin (ref_72) 2012; 121 Wang (ref_51) 2023; 45 ref_35 McCloskey (ref_11) 2021; 165 Ma (ref_49) 2022; 114 Wallace (ref_18) 2006; 7 ref_37 Bartley (ref_5) 2007; 87 Mayor (ref_31) 2021; 255 Abinaya (ref_58) 2023; 37 Zhou (ref_70) 2004; 13 Risk (ref_6) 2014; 7 Jafari (ref_19) 2007; 29 ref_47 Coggan (ref_14) 2021; 170 Guerschman (ref_23) 2009; 113 Xu (ref_73) 2024; 17 ref_43 ref_1 Liu (ref_53) 2020; 23 ref_3 Barnetson (ref_22) 2017; XLII-3/W2 ref_2 ref_48 Navin (ref_26) 2020; 79 Hochreiter (ref_38) 1997; 9 Wu (ref_44) 2020; 41 Baird (ref_7) 2021; 167 Fabricius (ref_9) 2005; 50 |
References_xml | – volume: 37 start-page: 51 year: 2023 ident: ref_58 article-title: Long-term relationships of MODIS NDVI with rainfall, land surface temperature, surface soil moisture and groundwater storage over monsoon core region of India publication-title: Arid Land Res. Manag. doi: 10.1080/15324982.2022.2106323 contributor: fullname: Abinaya – volume: 20 start-page: 3317 year: 2006 ident: ref_59 article-title: Runoff and erosion from Australia’s tropical semi-arid rangelands: Influence of ground cover for differing space and time scales publication-title: Hydrol. Process. doi: 10.1002/hyp.6334 contributor: fullname: Bartley – volume: 1 start-page: 1171 year: 2015 ident: ref_68 article-title: Scheduled sampling for sequence prediction with recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Bengio – volume: 22 start-page: 1985 year: 2016 ident: ref_13 article-title: Towards protecting the Great Barrier Reef from land-based pollution publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13262 contributor: fullname: Kroon – volume: 87 start-page: 302 year: 2007 ident: ref_5 article-title: A sediment budget for a grazed semi-arid catchment in the Burdekin basin, Australia publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.001 contributor: fullname: Bartley – volume: 13 start-page: 600 year: 2004 ident: ref_70 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 contributor: fullname: Zhou – volume: 41 start-page: 2359 year: 2020 ident: ref_44 article-title: A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1688418 contributor: fullname: Wu – volume: 7 start-page: 108 year: 2014 ident: ref_6 article-title: Assessing the effects of sediments and nutrients on coral reefs publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2014.01.003 contributor: fullname: Risk – volume: 113 start-page: 928 year: 2009 ident: ref_23 article-title: Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.01.006 contributor: fullname: Guerschman – volume: 23 start-page: 2901 year: 2020 ident: ref_53 article-title: A new method of emotional analysis based on CNN–BiLSTM hybrid neural network publication-title: Clust. Comput. doi: 10.1007/s10586-020-03055-9 contributor: fullname: Liu – volume: 232 start-page: 111317 year: 2019 ident: ref_30 article-title: Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands—A first step towards identifying degraded lands for conservation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111317 contributor: fullname: Xie – volume: 16 start-page: 309 year: 2001 ident: ref_63 article-title: Using spatial interpolation to construct a comprehensive archive of Australian climate data publication-title: Environ. Model. Softw. doi: 10.1016/S1364-8152(01)00008-1 contributor: fullname: Jeffrey – ident: ref_48 doi: 10.3390/rs13010078 – volume: 43 start-page: 55 year: 2021 ident: ref_24 article-title: Is ground cover a useful indicator of grazing land condition? publication-title: Rangel. J. doi: 10.1071/RJ21018 contributor: fullname: Beutel – volume: 30 start-page: 82780 year: 2023 ident: ref_36 article-title: Spatiotemporal change and prediction of land use in Manasi region based on deep learning publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-27826-0 contributor: fullname: Wang – volume: 241 start-page: 111716 year: 2020 ident: ref_39 article-title: Deep learning in environmental remote sensing: Achievements and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111716 contributor: fullname: Yuan – ident: ref_61 – ident: ref_1 – ident: ref_71 – volume: 9 start-page: 1735 year: 1997 ident: ref_38 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – volume: 80 start-page: 102474 year: 2024 ident: ref_50 article-title: Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2024.102474 contributor: fullname: Kladny – ident: ref_56 – volume: 7 start-page: S31 year: 2006 ident: ref_18 article-title: Vegetation condition assessment and monitoring from sequences of satellite imagery publication-title: Ecol. Manag. Restor. doi: 10.1111/j.1442-8903.2006.00289.x contributor: fullname: Wallace – volume: 4 start-page: 409 year: 2018 ident: ref_42 article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-018-0431-3 contributor: fullname: Reddy – volume: 45 start-page: 2208 year: 2023 ident: ref_51 article-title: Predrnn: A recurrent neural network for spatiotemporal predictive learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3165153 contributor: fullname: Wang – ident: ref_52 – volume: 29 start-page: 39 year: 2007 ident: ref_19 article-title: Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia publication-title: Rangel. J. doi: 10.1071/RJ06033 contributor: fullname: Jafari – volume: 31 start-page: 18932 year: 2024 ident: ref_74 article-title: Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-024-32430-x contributor: fullname: Kartal – volume: 64 start-page: 101325 year: 2021 ident: ref_46 article-title: A novel CNN-LSTM-based approach to predict urban expansion publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101325 contributor: fullname: Boulila – ident: ref_66 – ident: ref_62 – ident: ref_69 doi: 10.1007/978-1-4612-4380-9 – volume: 421 start-page: 727 year: 2003 ident: ref_8 article-title: Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement publication-title: Nature doi: 10.1038/nature01361 contributor: fullname: McCulloch – volume: 65 start-page: 394 year: 2012 ident: ref_10 article-title: Quantifying the sources of pollutants in the Great Barrier Reef catchments and the relative risk to reef ecosystems publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.031 contributor: fullname: Waterhouse – ident: ref_20 – volume: 167 start-page: 112297 year: 2021 ident: ref_7 article-title: Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2021.112297 contributor: fullname: Baird – volume: 255 start-page: 112270 year: 2021 ident: ref_31 article-title: Resilience of vegetation to drought: Studying the effect of grazing in a Mediterranean rangeland using satellite time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112270 contributor: fullname: Mayor – ident: ref_28 – volume: 170 start-page: 112628 year: 2021 ident: ref_14 article-title: Motivators and barriers to adoption of Improved Land Management Practices. A focus on practice change for water quality improvement in Great Barrier Reef catchments publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2021.112628 contributor: fullname: Coggan – volume: 150 start-page: 302 year: 2018 ident: ref_29 article-title: FORAGE—An online system for generating and delivering property-scale decision support information for grazing land and environmental management publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.05.010 contributor: fullname: Zhang – volume: 15 start-page: 207 year: 2018 ident: ref_41 article-title: A CFCC-LSTM Model for Sea Surface Temperature Prediction publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2780843 contributor: fullname: Yang – volume: 79 start-page: 29751 year: 2020 ident: ref_26 article-title: Multispectral and hyperspectral images based land use/land cover change prediction analysis: An extensive review publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09531-z contributor: fullname: Navin – ident: ref_37 doi: 10.21236/ADA164453 – ident: ref_3 – volume: 14 start-page: 10189 year: 2021 ident: ref_34 article-title: GAN-Based LUCC Prediction via the Combination of Prior City Planning Information and Land-Use Probability publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3106481 contributor: fullname: Sun – volume: 1 start-page: 23 year: 2008 ident: ref_60 article-title: A conceptual framework for understanding semi-arid land degradation: Ecohydrological interactions across multiple-space and time scales publication-title: Ecohydrology doi: 10.1002/eco.4 contributor: fullname: Turnbull – ident: ref_55 doi: 10.3390/app13010272 – volume: 50 start-page: 125 year: 2005 ident: ref_9 article-title: Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2004.11.028 contributor: fullname: Fabricius – ident: ref_35 doi: 10.3390/rs12203314 – ident: ref_47 doi: 10.1109/CVPRW56347.2022.00142 – volume: 165 start-page: 112163 year: 2021 ident: ref_11 article-title: Modelled estimates of fine sediment and particulate nutrients delivered from the Great Barrier Reef catchments publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2021.112163 contributor: fullname: McCloskey – volume: XLII-3/W2 start-page: 15 year: 2017 ident: ref_22 article-title: Assessing Landsat Fractional Ground-Cover Time Series across Australia’s Arid Rangelands: Separating Grazing Impacts from Climate Variability publication-title: ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-3-W2-15-2017 contributor: fullname: Barnetson – ident: ref_67 – volume: 58 start-page: 233 year: 2009 ident: ref_64 article-title: High-quality spatial climate data-sets for Australia publication-title: Aust. Meteorol. Oceanogr. J. doi: 10.22499/2.5804.003 contributor: fullname: Jones – volume: 121 start-page: 443 year: 2012 ident: ref_72 article-title: Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.021 contributor: fullname: Bastin – ident: ref_21 – ident: ref_65 doi: 10.3390/atmos12121626 – volume: 1 start-page: 802 year: 2015 ident: ref_45 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Shi – volume: 248 start-page: 111886 year: 2020 ident: ref_27 article-title: Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111886 contributor: fullname: Barrett – volume: 21 start-page: 17 year: 2024 ident: ref_54 article-title: Landslide susceptibility prediction and mapping using the LD-BiLSTM model in seismically active mountainous regions publication-title: Landslides doi: 10.1007/s10346-023-02141-4 contributor: fullname: Wang – ident: ref_25 – volume: 13 start-page: 233 year: 1995 ident: ref_4 article-title: The cow as a geomorphic agent—A critical review publication-title: Geomorphology doi: 10.1016/0169-555X(95)00028-4 contributor: fullname: Trimble – ident: ref_2 – ident: ref_12 – volume: 114 start-page: 103060 year: 2022 ident: ref_49 article-title: Forecasting vegetation dynamics in an open ecosystem by integrating deep learning and environmental variables publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Ma – volume: 120 start-page: 103300 year: 2023 ident: ref_33 article-title: Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Song – volume: 11 start-page: 74 year: 1989 ident: ref_16 article-title: New land degradation survey techniques for arid Australia—Problems and prospects publication-title: Rangel. J. doi: 10.1071/RJ9890074 contributor: fullname: Pickup – volume: 17 start-page: 3425 year: 2024 ident: ref_73 article-title: Monthly NDVI Prediction Using Spatial Autocorrelation and Nonlocal Attention Networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3350053 contributor: fullname: Xu – ident: ref_15 – ident: ref_43 – volume: 27 start-page: 185 year: 1996 ident: ref_17 article-title: Satellite-derived vegetation indices applied to semi-arid shrublands in Australia publication-title: Aust. Geogr. doi: 10.1080/00049189608703167 – volume: 68 start-page: 866 year: 2018 ident: ref_40 article-title: Forecasting air quality time series using deep learning publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10962247.2018.1459956 contributor: fullname: Freeman – ident: ref_57 – volume: 305 start-page: 114070 year: 2024 ident: ref_32 article-title: Seasonal dynamics of fallow and cropping lands in the broadacre cropping region of Australia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114070 contributor: fullname: Xie |
SSID | ssj0000331904 |
Score | 2.419005 |
Snippet | Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3193 |
SubjectTerms | Accelerated erosion Catchment areas Catchments Datasets Deep learning Error analysis Grazing Great Barrier Reef Catchments Ground cover Hydrology Lagoons Land management Land use Land use management Land use planning Livestock Livestock grazing Machine learning Neural networks Prediction models Predictions Recurrent neural networks Regression analysis Seasonal variations Seasons Sediments Soil erosion Soil water spatio-temporal prediction Time series time series analysis Trends Vegetation Water quality |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFB5a-2BfRGul640D7etgNpncnmRdXaWwpXgB38LcogVJtkkUfPNH-FP8Rf4Sz5nMuhWhr5mQQL4zZ75zyXcY-6FEpBJtDB_qUHGRyJznkc25UEEpdKmkdPNTpr-Skwvx8zK-9Am31rdVzn2ic9Sm1pQj30MaIpzBiP3ZX05To6i66kdofGSfhmGaUktXNjl-zbEEEd4fiF6VNMLofq9pic9Hrs78zznk5PrfeWN3xExW2YrnhjDqwVxjH2z1hS37MeXX9-vs6XdDdRXqVAZKGlUGxtSCCZRNhUNrZ-D1Uq-AhpzdtM8Pj6MKRosqNdQlnLkuan7eq1LdwPypuDp1A6Vb6Go4k06ss7P8EK30zpq3r5zKWQt_KkACCS7PAAeyofF3cGptCWN08dfu97mv7GJydD4-4X7sAtfIhzoeq1DiNrZSklSPMoGUSYqOwWaZQRSskqEME40f3GCskSvkOKK0RiFxTGJZxtEGW6rqyn5joIMhLgtDrkOIHLmBUSUSBp2mNgt1NGDf5yAUs15do8CohKAqFlAN2AHh83oHKWK7C3VzVfgNVqQiCQwCHuhYiSy3KlNIRlWQ5JpConLAtufoFn6btsXCqDb_v7zFPofIZvrmsm221DW3dgfZSKd2ncm9ACtq4ks priority: 102 providerName: ProQuest |
Title | Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments |
URI | https://www.proquest.com/docview/3104053194 https://doaj.org/article/7460d0330c5b489eb8b540b069c7585f |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVYDnBBrKIs1UhwtUgTZzt2BSG1QkCl3iJvAaQqrZqAxI2P4FP4Ir6EsZPSIg5cuMZRnHjG4zf25D1CzgXzRCCVog3pCsoCHtPY0zFlwkmZTAXnVj-lPwiuhux65I-WpL5MTVhJD1wO3EXIAkc5mHVLX7Ao1iISCDKEE8TSQN3URl8nXkqmbAz20LUcVvKRepjXX8xyg-Q9e8K8tAJZov5fcdguLr1tslWhQmiWb7NDVnS2SzYqgfLH1z3ycTMzJyqmRhnMdlGmoG2KL8Hso0JH6ylUTKkPYOTNxvnn23szg-bifBomKdzZ-ml6X_JRjWH-VGztWynpHIoJ3HFL01lo2kH_fNHqZ5d9Ps3hKQOEjmB3GKDFZ0b4Dm61TqGNwf3R_ji3T4a97n37ilaCC1QiEiqoL1yOE1hzbkh6hHI4D0IMCTqKFMJALbjL3UA23FDh0McC0Q1LtRIIGQOfp753QNaySaYPCUingc1MmaDBWIyoQIkUoYIMQx250quRs7kRkmnJq5FgPmJMlSxMVSMtY5_vOwwXtr2AHpJUHpL85SE1cjK3blJN0DzBz2E2_rCj_-jjmGy6iHbK4rMTslbMnvUpopVC1Mlq1Lusk_VWd3BzW7du-gUbwexj |
link.rule.ids | 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtNAFB1BuiibiqcILXAl2I7q2OPXqkrSVgGaqGpTqTtrXm6RKju13Urs-Ag-hS_iS7h3PGlASGw9fizOnTvnPnwuYx-ViFSijeEjHSouEpnzPLI5FyoohS6VlG5-ynyRzC7E58v40ifcWt9WufaJzlGbWlOOfB9piHAGIw5Wt5ymRlF11Y_QeMy2SKoqG7CtydHi9OwhyxJE-EQgel3SCOP7_aYlRh-5SvMfJ5ET7P_HH7tD5vgp2_HsEMY9nM_YI1s9Z9t-UPn1txfs52lDlRXqVQZKG1UGptSECZRPhUNrV-AVU6-AxpzdtL--_xhXMN7UqaEu4dz1UfNlr0t1A-u34urcjZRuoavhXDq5zs7yQ7TTe2v-_uRcrlr4WgFSSHCZBpjIhgbgwZm1JUzRyV-7H-hesovjo-V0xv3gBa6REXU8VqHEjWylJLEeZQIpkxRdg80ygzhYJUMZJnoUpgajjVwhyxGlNQqpYxLLMo5esUFVV_Y1Ax2McFkYch5C5MgOjCqRMug0tVmooyH7sAahWPX6GgXGJQRVsYFqyCaEz8MdpIntLtTNVeG3WJGKJDAIeKBjJbLcqkwhHVVBkmsKisoh21ujW_iN2hYbs3rz_-X3bHu2nJ8UJ58WX3bZkxC5Td9qtscGXXNn3yI36dQ7b4C_AcGb5pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JatxAEG0cG5JcjJ0FT-zYBcm1GY3U2k5hFg9eMsPgBXwTvdoBI00kJZBbPiKf4i_yl6S61eNJCOSq1nKo6upXi94j5KNgkUikUnQgQ0FZwnOaRzqnTASGSSM4d_ops3lycs3ObuIbP__U-LHKVUx0gVpV0tbI-whDmHMY1jd-LGIxmX5afqVWQcp2Wr2cxjOylbIkwkRsa3Q8X1w8VVyCCJ8OWMdRGmGu368bi-4j13X-41Ry5P3_xGZ34Ex3yLZHijDsTLtLNnT5irzwouV3P16Th0Vtuyx2bhlsCalUMLYDmWBrqzDRegmePfUWrOTZffP489ewhOG6Zw2VgUs3U02vOo6qe1i9FVdnTl66gbaCS-6oO1tNJ-iz37X6-5MzvmzgSwkIJ8FVHWDEayuGBxdaGxhjwL9zP9O9IdfT46vxCfUiDFQiOmppLEKOm1pzbol7hAo4T1IMEzrLFNpECx7yMJGDMFWYeeQCEQ8zWgmEkUnMTRy9JZtlVeo9AjIY4DJTNpAwliNSUMIgfJBpqrNQRj3yYWWEYtlxbRSYo1hTFWtT9cjI2ufpDsuP7S5U9W3ht1uBHhAoNHggY8GyXItMIDQVQZJLmyCZHjlYWbfwm7Yp1i727v_LR-Q5-l7x-XR-vk9ehghzuqmzA7LZ1t_0e4QprTj0_vcbTnnq0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Ground+Cover+with+Deep+Learning+Models%E2%80%94An+Application+of+Spatio-Temporal+Prediction+Methods+to+Satellite-Derived+Ground+Cover+Maps+in+the+Great+Barrier+Reef+Catchments&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yongjing+Mao&rft.au=Ryan+D.+R.+Turner&rft.au=Joseph+M.+McMahon&rft.au=Diego+F.+Correa&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=17&rft.spage=3193&rft_id=info:doi/10.3390%2Frs16173193&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7460d0330c5b489eb8b540b069c7585f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |