Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments

Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management leads to accelerated soil erosion and increased sediment loads being transported downstream. Ultimately, these increased sediment loads impact th...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 17; p. 3193
Main Authors Mao, Yongjing, Turner, Ryan D. R., McMahon, Joseph M., Correa, Diego F., Chamberlain, Debbie A., Warne, Michael St. J.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management leads to accelerated soil erosion and increased sediment loads being transported downstream. Ultimately, these increased sediment loads impact the water quality of the Great Barrier Reef (GBR) lagoon. Ground cover mapping has been adopted to monitor and assess the land condition in the GBRCA. However, accurate prediction of ground cover remains a vital knowledge gap to inform proactive approaches for improving land conditions. Herein, we explored two deep learning-based spatio-temporal prediction models, including convolutional LSTM (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN), to predict future ground cover. The two models were evaluated on different spatial scales, ranging from a small site (i.e., <5 km2) to the entire GBRCA, with different quantities of training data. Following comparisons against 25% withheld testing data, we found the following: (1) both ConvLSTM and PredRNN accurately predicted the next-season ground cover for not only a single site but also the entire GBRCA. They achieved this with a Mean Absolute Error (MAE) under 5% and a Structural Similarity Index Measure (SSIM) exceeding 0.65; (2) PredRNN superseded ConvLSTM by providing more accurate next-season predictions with better training efficiency; (3) The accuracy of PredRNN varies seasonally and spatially, with lower accuracy observed for low ground cover, which is underestimated. The models assessed in this study can serve as an early-alert tool to produce high-accuracy and high-resolution ground cover prediction one season earlier than observation for the entire GBRCA, which enables local authorities and grazing property owners to take preventive measures to improve land conditions. This study also offers a new perspective on the future utilization of predictive spatio-temporal models, particularly over large spatial scales and across varying environmental sites.
AbstractList Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management leads to accelerated soil erosion and increased sediment loads being transported downstream. Ultimately, these increased sediment loads impact the water quality of the Great Barrier Reef (GBR) lagoon. Ground cover mapping has been adopted to monitor and assess the land condition in the GBRCA. However, accurate prediction of ground cover remains a vital knowledge gap to inform proactive approaches for improving land conditions. Herein, we explored two deep learning-based spatio-temporal prediction models, including convolutional LSTM (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN), to predict future ground cover. The two models were evaluated on different spatial scales, ranging from a small site (i.e., <5 km2) to the entire GBRCA, with different quantities of training data. Following comparisons against 25% withheld testing data, we found the following: (1) both ConvLSTM and PredRNN accurately predicted the next-season ground cover for not only a single site but also the entire GBRCA. They achieved this with a Mean Absolute Error (MAE) under 5% and a Structural Similarity Index Measure (SSIM) exceeding 0.65; (2) PredRNN superseded ConvLSTM by providing more accurate next-season predictions with better training efficiency; (3) The accuracy of PredRNN varies seasonally and spatially, with lower accuracy observed for low ground cover, which is underestimated. The models assessed in this study can serve as an early-alert tool to produce high-accuracy and high-resolution ground cover prediction one season earlier than observation for the entire GBRCA, which enables local authorities and grazing property owners to take preventive measures to improve land conditions. This study also offers a new perspective on the future utilization of predictive spatio-temporal models, particularly over large spatial scales and across varying environmental sites.
Author Warne, Michael St. J.
Mao, Yongjing
Chamberlain, Debbie A.
Correa, Diego F.
McMahon, Joseph M.
Turner, Ryan D. R.
Author_xml – sequence: 1
  givenname: Yongjing
  orcidid: 0000-0003-0835-6864
  surname: Mao
  fullname: Mao, Yongjing
– sequence: 2
  givenname: Ryan D. R.
  orcidid: 0000-0001-6889-8273
  surname: Turner
  fullname: Turner, Ryan D. R.
– sequence: 3
  givenname: Joseph M.
  orcidid: 0000-0001-5479-7842
  surname: McMahon
  fullname: McMahon, Joseph M.
– sequence: 4
  givenname: Diego F.
  surname: Correa
  fullname: Correa, Diego F.
– sequence: 5
  givenname: Debbie A.
  orcidid: 0000-0003-4226-4728
  surname: Chamberlain
  fullname: Chamberlain, Debbie A.
– sequence: 6
  givenname: Michael St. J.
  surname: Warne
  fullname: Warne, Michael St. J.
BookMark eNpVkU1uFDEQhVsoSISQDSewxA6pwW7b7e7lMAkh0oxAJKytcrs641GP3dieIHYcgqNwIk6Ch-G3NlXye_qq5Pe4OvHBY1U9ZfQF5z19GRNrmeKs5w-q04aqphZN35z8Mz-qzlPa0lK82Kg4rb69i2jdkJ2_I1cx7L0ly3CPkXxyeUMuEGeyQoj-oK-DxSl9__J14clinic3QHbBkzCSm_kw1re4m0OEifymFnWNeRNsIjmQG8g4TS5jfYHR3aP9f-Ua5kScJ3mDRUDI5BXE6IryHnEkS8jDZoc-pyfVwxGmhOe_-ln14fXl7fJNvXp7db1crOqhkTTX0jSgOoUAjElhLAVolaIcu85yRtFAA007sEZZ2cnetLwXI1ojOW8ljJKfVddHrg2w1XN0O4ifdQCnfz6EeKchZjdMqJVoqS2_SgdpRNej6YwU1NC2H1SBj4X17MiaY_i4x5T1NuyjL-frcougsgQiiuv50TXEkFLE8c9WRvUhZP03ZP4DPS6dQw
Cites_doi 10.1080/15324982.2022.2106323
10.1002/hyp.6334
10.1111/gcb.13262
10.1016/j.geomorph.2006.10.001
10.1109/TIP.2003.819861
10.1080/01431161.2019.1688418
10.1016/j.cosust.2014.01.003
10.1016/j.rse.2009.01.006
10.1007/s10586-020-03055-9
10.1016/j.rse.2019.111317
10.1016/S1364-8152(01)00008-1
10.3390/rs13010078
10.1071/RJ21018
10.1007/s11356-023-27826-0
10.1016/j.rse.2020.111716
10.1162/neco.1997.9.8.1735
10.1016/j.ecoinf.2024.102474
10.1111/j.1442-8903.2006.00289.x
10.1007/s40808-018-0431-3
10.1109/TPAMI.2022.3165153
10.1071/RJ06033
10.1007/s11356-024-32430-x
10.1016/j.ecoinf.2021.101325
10.1007/978-1-4612-4380-9
10.1038/nature01361
10.1016/j.marpolbul.2011.09.031
10.1016/j.marpolbul.2021.112297
10.1016/j.rse.2020.112270
10.1016/j.marpolbul.2021.112628
10.1016/j.compag.2018.05.010
10.1109/LGRS.2017.2780843
10.1007/s11042-020-09531-z
10.21236/ADA164453
10.1109/JSTARS.2021.3106481
10.1002/eco.4
10.3390/app13010272
10.1016/j.marpolbul.2004.11.028
10.3390/rs12203314
10.1109/CVPRW56347.2022.00142
10.1016/j.marpolbul.2021.112163
10.5194/isprs-archives-XLII-3-W2-15-2017
10.22499/2.5804.003
10.1016/j.rse.2012.02.021
10.3390/atmos12121626
10.1016/j.rse.2020.111886
10.1007/s10346-023-02141-4
10.1016/0169-555X(95)00028-4
10.1071/RJ9890074
10.1109/JSTARS.2024.3350053
10.1080/00049189608703167
10.1080/10962247.2018.1459956
10.1016/j.rse.2024.114070
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs16173193
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals at publisher websites
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7460d0330c5b489eb8b540b069c7585f
10_3390_rs16173193
GeographicLocations Australia
Great Barrier Reef
GeographicLocations_xml – name: Great Barrier Reef
– name: Australia
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c250t-5b2a787eaa1154bd0aa67703e88d310eba2a26c127d5859b6394fedb53365af53
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:06:13 EDT 2024
Mon Nov 04 14:28:55 EST 2024
Thu Sep 26 20:26:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c250t-5b2a787eaa1154bd0aa67703e88d310eba2a26c127d5859b6394fedb53365af53
ORCID 0000-0001-5479-7842
0000-0001-6889-8273
0000-0003-4226-4728
0000-0003-0835-6864
OpenAccessLink https://doaj.org/article/7460d0330c5b489eb8b540b069c7585f
PQID 3104053194
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7460d0330c5b489eb8b540b069c7585f
proquest_journals_3104053194
crossref_primary_10_3390_rs16173193
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kladny (ref_50) 2024; 80
Barrett (ref_27) 2020; 248
Bengio (ref_68) 2015; 1
Trimble (ref_4) 1995; 13
ref_57
ref_12
ref_56
ref_55
Jones (ref_64) 2009; 58
ref_52
Song (ref_33) 2023; 120
Kartal (ref_74) 2024; 31
ref_15
(ref_17) 1996; 27
Wang (ref_54) 2024; 21
Shi (ref_45) 2015; 1
Turnbull (ref_60) 2008; 1
Pickup (ref_16) 1989; 11
Boulila (ref_46) 2021; 64
Waterhouse (ref_10) 2012; 65
Beutel (ref_24) 2021; 43
ref_61
ref_25
Freeman (ref_40) 2018; 68
ref_69
Xie (ref_30) 2019; 232
ref_67
ref_66
ref_21
Wang (ref_36) 2023; 30
ref_65
ref_20
Yuan (ref_39) 2020; 241
ref_62
Kroon (ref_13) 2016; 22
Xie (ref_32) 2024; 305
McCulloch (ref_8) 2003; 421
ref_28
Zhang (ref_29) 2018; 150
Reddy (ref_42) 2018; 4
Bartley (ref_59) 2006; 20
ref_71
Yang (ref_41) 2018; 15
Jeffrey (ref_63) 2001; 16
Sun (ref_34) 2021; 14
Bastin (ref_72) 2012; 121
Wang (ref_51) 2023; 45
ref_35
McCloskey (ref_11) 2021; 165
Ma (ref_49) 2022; 114
Wallace (ref_18) 2006; 7
ref_37
Bartley (ref_5) 2007; 87
Mayor (ref_31) 2021; 255
Abinaya (ref_58) 2023; 37
Zhou (ref_70) 2004; 13
Risk (ref_6) 2014; 7
Jafari (ref_19) 2007; 29
ref_47
Coggan (ref_14) 2021; 170
Guerschman (ref_23) 2009; 113
Xu (ref_73) 2024; 17
ref_43
ref_1
Liu (ref_53) 2020; 23
ref_3
Barnetson (ref_22) 2017; XLII-3/W2
ref_2
ref_48
Navin (ref_26) 2020; 79
Hochreiter (ref_38) 1997; 9
Wu (ref_44) 2020; 41
Baird (ref_7) 2021; 167
Fabricius (ref_9) 2005; 50
References_xml – volume: 37
  start-page: 51
  year: 2023
  ident: ref_58
  article-title: Long-term relationships of MODIS NDVI with rainfall, land surface temperature, surface soil moisture and groundwater storage over monsoon core region of India
  publication-title: Arid Land Res. Manag.
  doi: 10.1080/15324982.2022.2106323
  contributor:
    fullname: Abinaya
– volume: 20
  start-page: 3317
  year: 2006
  ident: ref_59
  article-title: Runoff and erosion from Australia’s tropical semi-arid rangelands: Influence of ground cover for differing space and time scales
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6334
  contributor:
    fullname: Bartley
– volume: 1
  start-page: 1171
  year: 2015
  ident: ref_68
  article-title: Scheduled sampling for sequence prediction with recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Bengio
– volume: 22
  start-page: 1985
  year: 2016
  ident: ref_13
  article-title: Towards protecting the Great Barrier Reef from land-based pollution
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13262
  contributor:
    fullname: Kroon
– volume: 87
  start-page: 302
  year: 2007
  ident: ref_5
  article-title: A sediment budget for a grazed semi-arid catchment in the Burdekin basin, Australia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.001
  contributor:
    fullname: Bartley
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_70
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
  contributor:
    fullname: Zhou
– volume: 41
  start-page: 2359
  year: 2020
  ident: ref_44
  article-title: A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1688418
  contributor:
    fullname: Wu
– volume: 7
  start-page: 108
  year: 2014
  ident: ref_6
  article-title: Assessing the effects of sediments and nutrients on coral reefs
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2014.01.003
  contributor:
    fullname: Risk
– volume: 113
  start-page: 928
  year: 2009
  ident: ref_23
  article-title: Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.01.006
  contributor:
    fullname: Guerschman
– volume: 23
  start-page: 2901
  year: 2020
  ident: ref_53
  article-title: A new method of emotional analysis based on CNN–BiLSTM hybrid neural network
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03055-9
  contributor:
    fullname: Liu
– volume: 232
  start-page: 111317
  year: 2019
  ident: ref_30
  article-title: Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands—A first step towards identifying degraded lands for conservation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111317
  contributor:
    fullname: Xie
– volume: 16
  start-page: 309
  year: 2001
  ident: ref_63
  article-title: Using spatial interpolation to construct a comprehensive archive of Australian climate data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/S1364-8152(01)00008-1
  contributor:
    fullname: Jeffrey
– ident: ref_48
  doi: 10.3390/rs13010078
– volume: 43
  start-page: 55
  year: 2021
  ident: ref_24
  article-title: Is ground cover a useful indicator of grazing land condition?
  publication-title: Rangel. J.
  doi: 10.1071/RJ21018
  contributor:
    fullname: Beutel
– volume: 30
  start-page: 82780
  year: 2023
  ident: ref_36
  article-title: Spatiotemporal change and prediction of land use in Manasi region based on deep learning
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-27826-0
  contributor:
    fullname: Wang
– volume: 241
  start-page: 111716
  year: 2020
  ident: ref_39
  article-title: Deep learning in environmental remote sensing: Achievements and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
  contributor:
    fullname: Yuan
– ident: ref_61
– ident: ref_1
– ident: ref_71
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_38
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– volume: 80
  start-page: 102474
  year: 2024
  ident: ref_50
  article-title: Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2024.102474
  contributor:
    fullname: Kladny
– ident: ref_56
– volume: 7
  start-page: S31
  year: 2006
  ident: ref_18
  article-title: Vegetation condition assessment and monitoring from sequences of satellite imagery
  publication-title: Ecol. Manag. Restor.
  doi: 10.1111/j.1442-8903.2006.00289.x
  contributor:
    fullname: Wallace
– volume: 4
  start-page: 409
  year: 2018
  ident: ref_42
  article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-018-0431-3
  contributor:
    fullname: Reddy
– volume: 45
  start-page: 2208
  year: 2023
  ident: ref_51
  article-title: Predrnn: A recurrent neural network for spatiotemporal predictive learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3165153
  contributor:
    fullname: Wang
– ident: ref_52
– volume: 29
  start-page: 39
  year: 2007
  ident: ref_19
  article-title: Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia
  publication-title: Rangel. J.
  doi: 10.1071/RJ06033
  contributor:
    fullname: Jafari
– volume: 31
  start-page: 18932
  year: 2024
  ident: ref_74
  article-title: Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-024-32430-x
  contributor:
    fullname: Kartal
– volume: 64
  start-page: 101325
  year: 2021
  ident: ref_46
  article-title: A novel CNN-LSTM-based approach to predict urban expansion
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101325
  contributor:
    fullname: Boulila
– ident: ref_66
– ident: ref_62
– ident: ref_69
  doi: 10.1007/978-1-4612-4380-9
– volume: 421
  start-page: 727
  year: 2003
  ident: ref_8
  article-title: Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement
  publication-title: Nature
  doi: 10.1038/nature01361
  contributor:
    fullname: McCulloch
– volume: 65
  start-page: 394
  year: 2012
  ident: ref_10
  article-title: Quantifying the sources of pollutants in the Great Barrier Reef catchments and the relative risk to reef ecosystems
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.031
  contributor:
    fullname: Waterhouse
– ident: ref_20
– volume: 167
  start-page: 112297
  year: 2021
  ident: ref_7
  article-title: Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112297
  contributor:
    fullname: Baird
– volume: 255
  start-page: 112270
  year: 2021
  ident: ref_31
  article-title: Resilience of vegetation to drought: Studying the effect of grazing in a Mediterranean rangeland using satellite time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112270
  contributor:
    fullname: Mayor
– ident: ref_28
– volume: 170
  start-page: 112628
  year: 2021
  ident: ref_14
  article-title: Motivators and barriers to adoption of Improved Land Management Practices. A focus on practice change for water quality improvement in Great Barrier Reef catchments
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112628
  contributor:
    fullname: Coggan
– volume: 150
  start-page: 302
  year: 2018
  ident: ref_29
  article-title: FORAGE—An online system for generating and delivering property-scale decision support information for grazing land and environmental management
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.010
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 207
  year: 2018
  ident: ref_41
  article-title: A CFCC-LSTM Model for Sea Surface Temperature Prediction
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2780843
  contributor:
    fullname: Yang
– volume: 79
  start-page: 29751
  year: 2020
  ident: ref_26
  article-title: Multispectral and hyperspectral images based land use/land cover change prediction analysis: An extensive review
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09531-z
  contributor:
    fullname: Navin
– ident: ref_37
  doi: 10.21236/ADA164453
– ident: ref_3
– volume: 14
  start-page: 10189
  year: 2021
  ident: ref_34
  article-title: GAN-Based LUCC Prediction via the Combination of Prior City Planning Information and Land-Use Probability
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3106481
  contributor:
    fullname: Sun
– volume: 1
  start-page: 23
  year: 2008
  ident: ref_60
  article-title: A conceptual framework for understanding semi-arid land degradation: Ecohydrological interactions across multiple-space and time scales
  publication-title: Ecohydrology
  doi: 10.1002/eco.4
  contributor:
    fullname: Turnbull
– ident: ref_55
  doi: 10.3390/app13010272
– volume: 50
  start-page: 125
  year: 2005
  ident: ref_9
  article-title: Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2004.11.028
  contributor:
    fullname: Fabricius
– ident: ref_35
  doi: 10.3390/rs12203314
– ident: ref_47
  doi: 10.1109/CVPRW56347.2022.00142
– volume: 165
  start-page: 112163
  year: 2021
  ident: ref_11
  article-title: Modelled estimates of fine sediment and particulate nutrients delivered from the Great Barrier Reef catchments
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112163
  contributor:
    fullname: McCloskey
– volume: XLII-3/W2
  start-page: 15
  year: 2017
  ident: ref_22
  article-title: Assessing Landsat Fractional Ground-Cover Time Series across Australia’s Arid Rangelands: Separating Grazing Impacts from Climate Variability
  publication-title: ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-W2-15-2017
  contributor:
    fullname: Barnetson
– ident: ref_67
– volume: 58
  start-page: 233
  year: 2009
  ident: ref_64
  article-title: High-quality spatial climate data-sets for Australia
  publication-title: Aust. Meteorol. Oceanogr. J.
  doi: 10.22499/2.5804.003
  contributor:
    fullname: Jones
– volume: 121
  start-page: 443
  year: 2012
  ident: ref_72
  article-title: Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.021
  contributor:
    fullname: Bastin
– ident: ref_21
– ident: ref_65
  doi: 10.3390/atmos12121626
– volume: 1
  start-page: 802
  year: 2015
  ident: ref_45
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Shi
– volume: 248
  start-page: 111886
  year: 2020
  ident: ref_27
  article-title: Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111886
  contributor:
    fullname: Barrett
– volume: 21
  start-page: 17
  year: 2024
  ident: ref_54
  article-title: Landslide susceptibility prediction and mapping using the LD-BiLSTM model in seismically active mountainous regions
  publication-title: Landslides
  doi: 10.1007/s10346-023-02141-4
  contributor:
    fullname: Wang
– ident: ref_25
– volume: 13
  start-page: 233
  year: 1995
  ident: ref_4
  article-title: The cow as a geomorphic agent—A critical review
  publication-title: Geomorphology
  doi: 10.1016/0169-555X(95)00028-4
  contributor:
    fullname: Trimble
– ident: ref_2
– ident: ref_12
– volume: 114
  start-page: 103060
  year: 2022
  ident: ref_49
  article-title: Forecasting vegetation dynamics in an open ecosystem by integrating deep learning and environmental variables
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Ma
– volume: 120
  start-page: 103300
  year: 2023
  ident: ref_33
  article-title: Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Song
– volume: 11
  start-page: 74
  year: 1989
  ident: ref_16
  article-title: New land degradation survey techniques for arid Australia—Problems and prospects
  publication-title: Rangel. J.
  doi: 10.1071/RJ9890074
  contributor:
    fullname: Pickup
– volume: 17
  start-page: 3425
  year: 2024
  ident: ref_73
  article-title: Monthly NDVI Prediction Using Spatial Autocorrelation and Nonlocal Attention Networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3350053
  contributor:
    fullname: Xu
– ident: ref_15
– ident: ref_43
– volume: 27
  start-page: 185
  year: 1996
  ident: ref_17
  article-title: Satellite-derived vegetation indices applied to semi-arid shrublands in Australia
  publication-title: Aust. Geogr.
  doi: 10.1080/00049189608703167
– volume: 68
  start-page: 866
  year: 2018
  ident: ref_40
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2018.1459956
  contributor:
    fullname: Freeman
– ident: ref_57
– volume: 305
  start-page: 114070
  year: 2024
  ident: ref_32
  article-title: Seasonal dynamics of fallow and cropping lands in the broadacre cropping region of Australia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114070
  contributor:
    fullname: Xie
SSID ssj0000331904
Score 2.419005
Snippet Livestock grazing is a major land use in the Great Barrier Reef Catchment Area (GBRCA). Heightened grazing density coupled with inadequate land management...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 3193
SubjectTerms Accelerated erosion
Catchment areas
Catchments
Datasets
Deep learning
Error analysis
Grazing
Great Barrier Reef Catchments
Ground cover
Hydrology
Lagoons
Land management
Land use
Land use management
Land use planning
Livestock
Livestock grazing
Machine learning
Neural networks
Prediction models
Predictions
Recurrent neural networks
Regression analysis
Seasonal variations
Seasons
Sediments
Soil erosion
Soil water
spatio-temporal prediction
Time series
time series analysis
Trends
Vegetation
Water quality
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFB5a-2BfRGul640D7etgNpncnmRdXaWwpXgB38LcogVJtkkUfPNH-FP8Rf4Sz5nMuhWhr5mQQL4zZ75zyXcY-6FEpBJtDB_qUHGRyJznkc25UEEpdKmkdPNTpr-Skwvx8zK-9Am31rdVzn2ic9Sm1pQj30MaIpzBiP3ZX05To6i66kdofGSfhmGaUktXNjl-zbEEEd4fiF6VNMLofq9pic9Hrs78zznk5PrfeWN3xExW2YrnhjDqwVxjH2z1hS37MeXX9-vs6XdDdRXqVAZKGlUGxtSCCZRNhUNrZ-D1Uq-AhpzdtM8Pj6MKRosqNdQlnLkuan7eq1LdwPypuDp1A6Vb6Go4k06ss7P8EK30zpq3r5zKWQt_KkACCS7PAAeyofF3cGptCWN08dfu97mv7GJydD4-4X7sAtfIhzoeq1DiNrZSklSPMoGUSYqOwWaZQRSskqEME40f3GCskSvkOKK0RiFxTGJZxtEGW6rqyn5joIMhLgtDrkOIHLmBUSUSBp2mNgt1NGDf5yAUs15do8CohKAqFlAN2AHh83oHKWK7C3VzVfgNVqQiCQwCHuhYiSy3KlNIRlWQ5JpConLAtufoFn6btsXCqDb_v7zFPofIZvrmsm221DW3dgfZSKd2ncm9ACtq4ks
  priority: 102
  providerName: ProQuest
Title Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments
URI https://www.proquest.com/docview/3104053194
https://doaj.org/article/7460d0330c5b489eb8b540b069c7585f
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVYDnBBrKIs1UhwtUgTZzt2BSG1QkCl3iJvAaQqrZqAxI2P4FP4Ir6EsZPSIg5cuMZRnHjG4zf25D1CzgXzRCCVog3pCsoCHtPY0zFlwkmZTAXnVj-lPwiuhux65I-WpL5MTVhJD1wO3EXIAkc5mHVLX7Ao1iISCDKEE8TSQN3URl8nXkqmbAz20LUcVvKRepjXX8xyg-Q9e8K8tAJZov5fcdguLr1tslWhQmiWb7NDVnS2SzYqgfLH1z3ycTMzJyqmRhnMdlGmoG2KL8Hso0JH6ylUTKkPYOTNxvnn23szg-bifBomKdzZ-ml6X_JRjWH-VGztWynpHIoJ3HFL01lo2kH_fNHqZ5d9Ps3hKQOEjmB3GKDFZ0b4Dm61TqGNwf3R_ji3T4a97n37ilaCC1QiEiqoL1yOE1hzbkh6hHI4D0IMCTqKFMJALbjL3UA23FDh0McC0Q1LtRIIGQOfp753QNaySaYPCUingc1MmaDBWIyoQIkUoYIMQx250quRs7kRkmnJq5FgPmJMlSxMVSMtY5_vOwwXtr2AHpJUHpL85SE1cjK3blJN0DzBz2E2_rCj_-jjmGy6iHbK4rMTslbMnvUpopVC1Mlq1Lusk_VWd3BzW7du-gUbwexj
link.rule.ids 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtNAFB1BuiibiqcILXAl2I7q2OPXqkrSVgGaqGpTqTtrXm6RKju13Urs-Ag-hS_iS7h3PGlASGw9fizOnTvnPnwuYx-ViFSijeEjHSouEpnzPLI5FyoohS6VlG5-ynyRzC7E58v40ifcWt9WufaJzlGbWlOOfB9piHAGIw5Wt5ymRlF11Y_QeMy2SKoqG7CtydHi9OwhyxJE-EQgel3SCOP7_aYlRh-5SvMfJ5ET7P_HH7tD5vgp2_HsEMY9nM_YI1s9Z9t-UPn1txfs52lDlRXqVQZKG1UGptSECZRPhUNrV-AVU6-AxpzdtL--_xhXMN7UqaEu4dz1UfNlr0t1A-u34urcjZRuoavhXDq5zs7yQ7TTe2v-_uRcrlr4WgFSSHCZBpjIhgbgwZm1JUzRyV-7H-hesovjo-V0xv3gBa6REXU8VqHEjWylJLEeZQIpkxRdg80ygzhYJUMZJnoUpgajjVwhyxGlNQqpYxLLMo5esUFVV_Y1Ax2McFkYch5C5MgOjCqRMug0tVmooyH7sAahWPX6GgXGJQRVsYFqyCaEz8MdpIntLtTNVeG3WJGKJDAIeKBjJbLcqkwhHVVBkmsKisoh21ujW_iN2hYbs3rz_-X3bHu2nJ8UJ58WX3bZkxC5Td9qtscGXXNn3yI36dQ7b4C_AcGb5pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JatxAEG0cG5JcjJ0FT-zYBcm1GY3U2k5hFg9eMsPgBXwTvdoBI00kJZBbPiKf4i_yl6S61eNJCOSq1nKo6upXi94j5KNgkUikUnQgQ0FZwnOaRzqnTASGSSM4d_ops3lycs3ObuIbP__U-LHKVUx0gVpV0tbI-whDmHMY1jd-LGIxmX5afqVWQcp2Wr2cxjOylbIkwkRsa3Q8X1w8VVyCCJ8OWMdRGmGu368bi-4j13X-41Ry5P3_xGZ34Ex3yLZHijDsTLtLNnT5irzwouV3P16Th0Vtuyx2bhlsCalUMLYDmWBrqzDRegmePfUWrOTZffP489ewhOG6Zw2VgUs3U02vOo6qe1i9FVdnTl66gbaCS-6oO1tNJ-iz37X6-5MzvmzgSwkIJ8FVHWDEayuGBxdaGxhjwL9zP9O9IdfT46vxCfUiDFQiOmppLEKOm1pzbol7hAo4T1IMEzrLFNpECx7yMJGDMFWYeeQCEQ8zWgmEkUnMTRy9JZtlVeo9AjIY4DJTNpAwliNSUMIgfJBpqrNQRj3yYWWEYtlxbRSYo1hTFWtT9cjI2ufpDsuP7S5U9W3ht1uBHhAoNHggY8GyXItMIDQVQZJLmyCZHjlYWbfwm7Yp1i727v_LR-Q5-l7x-XR-vk9ehghzuqmzA7LZ1t_0e4QprTj0_vcbTnnq0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Ground+Cover+with+Deep+Learning+Models%E2%80%94An+Application+of+Spatio-Temporal+Prediction+Methods+to+Satellite-Derived+Ground+Cover+Maps+in+the+Great+Barrier+Reef+Catchments&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yongjing+Mao&rft.au=Ryan+D.+R.+Turner&rft.au=Joseph+M.+McMahon&rft.au=Diego+F.+Correa&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=17&rft.spage=3193&rft_id=info:doi/10.3390%2Frs16173193&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7460d0330c5b489eb8b540b069c7585f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon