Recent advances in molten salt CO2 capture and electrochemical conversion to functional carbon materials

O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by electrolysis and forms different kinds of functional carbon materials at the cathode (CNTs, Carbon nanocoils, Hollow carbon spheres, and Carbon Nano-Oni...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 134; pp. 17 - 27
Main Authors Jia, Yongsheng, Zhou, Zhaoyu, Chen, Donghang, Li, Enze, Jiang, Zhongyu, Zhao, Long, Guo, Limin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.06.2024
한국공업화학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by electrolysis and forms different kinds of functional carbon materials at the cathode (CNTs, Carbon nanocoils, Hollow carbon spheres, and Carbon Nano-Onions), which are stripped from the cathode for use in different fields. [Display omitted] The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety and ecology health, and it is imperative to adopt effective methods to reduce the CO2 concentration. As an effective method of CO2 capture and electrochemical conversion into functional solid carbon materials, the molten salt method is widely used for CO2 capture and storage with its advantages of wide potential electrochemical window, high CO2 solubility, less side reactions, and simple operation. The molten salt CO2 capture and electrochemical conversion (MSCC-EC) process can efficiently capture CO2 by its high solubility in molten salt and decompose CO2 into solid carbon material at the cathode and O2 at the anode powered by electrical energy to achieve CO2 capture and green conversion in the presence of a molten salt electrolyte. This report summarizes the MSCC-EC process and the intrinsic mechanism, and makes a systematic summary of the formation mechanism and application prospects of different kinds of carbon products produced in the electrolysis process, intending to optimize the CO2 capture and green conversion process or provide new methods based on a comprehensive understanding of the MSCC-EC process.
AbstractList The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety andecology health, and it is imperative to adopt effective methods to reduce the CO2 concentration. As an effectivemethod of CO2 capture and electrochemical conversion into functional solid carbon materials, the molten saltmethod is widely used for CO2 capture and storage with its advantages of wide potential electrochemical window,high CO2 solubility, less side reactions, and simple operation. The molten salt CO2 capture and electrochemicalconversion (MSCC-EC) process can efficiently capture CO2 by its high solubility in molten salt anddecompose CO2 into solid carbon material at the cathode and O2 at the anode powered by electrical energy toachieve CO2 capture and green conversion in the presence of a molten salt electrolyte. This report summarizesthe MSCC-EC process and the intrinsic mechanism, and makes a systematic summary of the formation mechanismand application prospects of different kinds of carbon products produced in the electrolysis process,intending to optimize the CO2 capture and green conversion process or provide new methods based on acomprehensive understanding of the MSCC-EC process. KCI Citation Count: 0
O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by electrolysis and forms different kinds of functional carbon materials at the cathode (CNTs, Carbon nanocoils, Hollow carbon spheres, and Carbon Nano-Onions), which are stripped from the cathode for use in different fields. [Display omitted] The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety and ecology health, and it is imperative to adopt effective methods to reduce the CO2 concentration. As an effective method of CO2 capture and electrochemical conversion into functional solid carbon materials, the molten salt method is widely used for CO2 capture and storage with its advantages of wide potential electrochemical window, high CO2 solubility, less side reactions, and simple operation. The molten salt CO2 capture and electrochemical conversion (MSCC-EC) process can efficiently capture CO2 by its high solubility in molten salt and decompose CO2 into solid carbon material at the cathode and O2 at the anode powered by electrical energy to achieve CO2 capture and green conversion in the presence of a molten salt electrolyte. This report summarizes the MSCC-EC process and the intrinsic mechanism, and makes a systematic summary of the formation mechanism and application prospects of different kinds of carbon products produced in the electrolysis process, intending to optimize the CO2 capture and green conversion process or provide new methods based on a comprehensive understanding of the MSCC-EC process.
Author Zhou, Zhaoyu
Li, Enze
Guo, Limin
Chen, Donghang
Jiang, Zhongyu
Zhao, Long
Jia, Yongsheng
Author_xml – sequence: 1
  givenname: Yongsheng
  orcidid: 0000-0001-7245-0877
  surname: Jia
  fullname: Jia, Yongsheng
  email: 2022506008@hust.edu.cn
  organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Zhaoyu
  surname: Zhou
  fullname: Zhou, Zhaoyu
  organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Donghang
  surname: Chen
  fullname: Chen, Donghang
  organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Enze
  surname: Li
  fullname: Li, Enze
  organization: Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
– sequence: 5
  givenname: Zhongyu
  surname: Jiang
  fullname: Jiang, Zhongyu
  organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 6
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 7
  givenname: Limin
  surname: Guo
  fullname: Guo, Limin
  email: lmguo@hust.edu.cn
  organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003090317$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1r3DAQhkVJoUnaP9CTzgW7kmzJMvQSln4EAoGQQm5iPBo32nilICsL_feVuz31kNM7jN5nQM8FO4spEmMfpWilkObzvt0HwlYJ1bVStUL3b9i5tINphrF_OKuzUqYR1jy8YxfruhfCiM6ac_Z4R0ixcPBHiEgrD5Ef0lIo8hWWwne3iiM8l5dMHKLntBCWnPCRDgFh4ZjikfIaUuQl8fklYqnz9gB5qssDFMoBlvU9ezvXoA__8pL9_Pb1fvejubn9fr27umlQaVEabQatEfxotJ9GbSe0EnqESeJAs5c0TtLrUXljlO9n2VmJsu8GtH0HQLq7ZJ9Od2Oe3RMGlyD8zV_JPWV3dXd_7aTQ1kizldWpjDmta6bZPedwgPy7Vtwm1u3dJtZtYp1UroqtkP0PwlBg-3bJEJbX0S8nlKqBY6DsVgxUvfuQq1fnU3gN_wOME5ew
CitedBy_id crossref_primary_10_1016_j_jiec_2024_12_077
crossref_primary_10_1016_j_fuel_2025_134620
crossref_primary_10_1016_j_jclepro_2024_142600
crossref_primary_10_1016_j_jiec_2024_10_049
crossref_primary_10_1149_1945_7111_ad9060
crossref_primary_10_1016_j_carbon_2024_119781
crossref_primary_10_1016_j_ijhydene_2025_01_368
Cites_doi 10.1142/S0219581X23500023
10.1021/acs.est.6b02955
10.1016/j.electacta.2018.05.045
10.1039/D1RA03890G
10.1016/j.physe.2007.10.069
10.1016/j.jcou.2019.07.007
10.1002/celc.201402178
10.1002/celc.201402297
10.1016/j.electacta.2013.10.109
10.1016/j.jece.2021.106933
10.1149/1.3308596
10.1039/C7TA03606J
10.1016/j.elecom.2018.02.003
10.1016/j.ijhydene.2014.03.113
10.1021/jz100829s
10.1016/j.electacta.2013.02.076
10.1002/adsu.202100481
10.1023/A:1003927100308
10.1021/acscatal.2c06247
10.1039/C5FD00234F
10.1007/s12274-022-4275-9
10.1016/j.jechem.2018.06.012
10.1002/cssc.201501591
10.1016/j.solmat.2022.111631
10.1016/j.electacta.2015.01.216
10.1016/j.carbon.2020.04.037
10.1038/srep27760
10.1016/j.solener.2022.01.056
10.1002/celc.201901202
10.1039/C4RA04629C
10.1016/j.energy.2022.123893
10.1126/sciadv.abl5621
10.1007/s11581-019-03317-6
10.1016/j.energy.2019.04.059
10.1039/c3ee24132g
ContentType Journal Article
Copyright 2023 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2023 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2023.12.054
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 27
ExternalDocumentID oai_kci_go_kr_ARTI_10586165
10_1016_j_jiec_2023_12_054
S1226086X23008870
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
BNPGV
CITATION
EJD
HZ~
MZR
OK1
SSH
ZY4
ZZE
ACYCR
ID FETCH-LOGICAL-c250t-56755cad965db958bc81a4cab1c7efd1e9b1d592d662d4f1381c1437c843aae53
IEDL.DBID .~1
ISSN 1226-086X
IngestDate Sat Jun 28 03:12:45 EDT 2025
Tue Jul 01 03:34:33 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Sat Jun 29 15:31:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Molten salt method
CO2 capture, electrochemical conversion
Functional carbon materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c250t-56755cad965db958bc81a4cab1c7efd1e9b1d592d662d4f1381c1437c843aae53
ORCID 0000-0001-7245-0877
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10586165
crossref_primary_10_1016_j_jiec_2023_12_054
crossref_citationtrail_10_1016_j_jiec_2023_12_054
elsevier_sciencedirect_doi_10_1016_j_jiec_2023_12_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-25
  day: 25
PublicationDecade 2020
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2024
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Hua, Yasuda, Nohira (b0100) 2022; 221
Ijije, Lawrence, Chen (b0190) 2014; 4
Hughes, Allen, Donne (b0210) 2018; 278
Moyer, Zohair, Eaves-Rathert, Douglas, Pint (b0195) 2020; 165
Zhao, Lu, Wu (b0055) 2023
Rezaie, Smeulders, Triguero (b0335) 2023; 15
Yeon, Yeonsu, Hyun, Ahn (b0060) 2023
Ge, Hu, Wang, Jiao, Jiao (b0225) 2015; 2
Ji, Liu, Ma (b0320) 1999; 10
Yuan, He, Li, Li (b0115) 2022; 238
Liu, Li, He (b0040) 2022
Liu, Ren, Licht, Wang, Licht (b0265) 2019; 3
Otake, Kinoshita, Kikuchi, Suzuki (b0175) 2013; 100
Kawamura, Ito (b0185) 2000; 30
Wang, Ban, Su, Cheng, Geng, Wang, Shen, Jia, Zhang, Liu (b0105) 2022; 5
Chery, Lair, Cassir (b0130) 2015; 160
Zhang, Liu, Yang, Qi, Xi, Wei, Ding, Wang, Li, Liu (b0065) 2023
Sohlberg (b0030) 2023; 22
Yu (b0275) 2020; 13
Kaplan, Wachtel, Gartsman, Feldman, Lubomirsky (b0220) 2010; 157
Yang, Zhao, Li, Liu, Zhang, Bai, Wang, Li (b0325) 2022; 8
Shi, Xie, Cui (b0035) 2022; 5
Xuhui, Zhiping, Tian, Muxing, Hua (b0285) 2017; 15
Licht, Wang, Ghosh, Ayub, Jiang, Ganley (b0155) 2010; 1
Kaplan, Wachtel, Gartsman, Feldman, Lubomirsky (b0150) 2015; 157
Huayi, Xuhui, Diyong, Wei, Luru (b0160) 2013; 25
Wang, Deng, Chen, Gao, Mao (b0145) 2016; 190
Deng, Mao, Xiao, Wang (b0245) 2017; 5
Weng, Jiang, Wang, Xiao (b0255) 2020
Agarwala, Chen, Lyonnet, Johnson, Ahlquist, Ott (b0070) 2023
Anvari, Arteconi, Desideri, Rosen, Yan (b0020) 2023
Wang, Licht, Liu, Licht (b0230) 2022
Ren, Licht (b0270) 2016; 6
Xie, Tang, Shi, Wang, Yuan, Liu (b0095) 2022; 78
Wang, Liu, Licht, Licht (b0010) 2019; 34
Zhang, Xi, Chen, Feng, Qian, Xiong (b0310) 2022; 15
Huang, Qiu, Yu, Liang, Zhang (b0300) 2020; 26
Saito, Tamaki, Ishitani (b0045) 2023
Tang, Yin, Mao, Xiao, Wang (b0165) 2013; 114
Yin, Bai, Wu (b0075) 2022; 5
Weng, Jiang, Wang, Xiao (b0260) 2020
Yin, Mao, Tang, Xiao, Xing, Zhu, Wang, Sadoway (b0295) 2013; 6
Liu, Yang, Wang, Liu, Zeng (b0315) 2022; 29
Zuo, Li, Zhou (b0090) 2022; 251
Weng, Tang, Xiao (b0015) 2019; 28
Wang, Fs, Xl, Gl, Ml (b0125) 2020; 40
Gaoa, Deng, Chen, Tao, Wang (b0200) 2019; 88
Novoselova, Oliinyk, Volkov, Konchits, Yanchuk, Yefanov, Kolesnik, Karpets (b0135) 2008; 40
Tano, Rasouli, Ziev, Wu, Lamprinakos, Seo, Balhorn, Vaishnav, Rollett, Narayanan (b0085) 2022; 234
Li, Zhou, Zhou (b0050) 2023
Yu, Liu, Liang, Liu, Lai, Liu, Chen, Zhang, Li (b0080) 2022; 422
Hu, Song, Jiao, Liu, Ge, Jiao, Zhu, Wang, Zhu, Fray (b0250) 2018; 9
Bao, Zhang, Wang (b0305) 2022; 2
Chery, Albin, Lair, Cassir (b0140) 2014; 39
Ge, Hu, Wang, Jiao, Jiao (b0180) 2015; 2
Weng, Tang, Xiao (b0120) 2019; 28
Wang, Wang, Lu (b0240) 2021; 11
H. Yin Z. Liu M.B.Z. Liu D.w. Nano letter 31 (2021) 15 21 10.1021/acs.nanolett.1c03284.
Hwang, Park (b0330) 2023; 6
W. Xiao X. Liang J. Xiao W. Weng Angewandte Chemie International Edition 21 (2021) 30 10.1002/adsu.202100481.
Deng, Tang, Mao, Song, Zhu, Xiao, Wang (b0005) 2016; 50
Laasonen, Ruuskanen, Niemel, Koiranen, Ahola (b0235) 2022; 10
Peng, Chen, He, Wang, Dai (b0290) 2016; 22
Hughes, Allen, Donne (b0215) 2019; 7
Yu (10.1016/j.jiec.2023.12.054_b0080) 2022; 422
Wang (10.1016/j.jiec.2023.12.054_b0145) 2016; 190
Kaplan (10.1016/j.jiec.2023.12.054_b0150) 2015; 157
Liu (10.1016/j.jiec.2023.12.054_b0265) 2019; 3
Wang (10.1016/j.jiec.2023.12.054_b0105) 2022; 5
Anvari (10.1016/j.jiec.2023.12.054_b0020) 2023
10.1016/j.jiec.2023.12.054_b0205
Hughes (10.1016/j.jiec.2023.12.054_b0210) 2018; 278
Ge (10.1016/j.jiec.2023.12.054_b0225) 2015; 2
Ji (10.1016/j.jiec.2023.12.054_b0320) 1999; 10
Chery (10.1016/j.jiec.2023.12.054_b0140) 2014; 39
Wang (10.1016/j.jiec.2023.12.054_b0010) 2019; 34
Yang (10.1016/j.jiec.2023.12.054_b0325) 2022; 8
Huayi (10.1016/j.jiec.2023.12.054_b0160) 2013; 25
Wang (10.1016/j.jiec.2023.12.054_b0230) 2022
Liu (10.1016/j.jiec.2023.12.054_b0040) 2022
Peng (10.1016/j.jiec.2023.12.054_b0290) 2016; 22
Ren (10.1016/j.jiec.2023.12.054_b0270) 2016; 6
Weng (10.1016/j.jiec.2023.12.054_b0015) 2019; 28
Sohlberg (10.1016/j.jiec.2023.12.054_b0030) 2023; 22
Chery (10.1016/j.jiec.2023.12.054_b0130) 2015; 160
Agarwala (10.1016/j.jiec.2023.12.054_b0070) 2023
Li (10.1016/j.jiec.2023.12.054_b0050) 2023
Hua (10.1016/j.jiec.2023.12.054_b0100) 2022; 221
Hughes (10.1016/j.jiec.2023.12.054_b0215) 2019; 7
Huang (10.1016/j.jiec.2023.12.054_b0300) 2020; 26
Deng (10.1016/j.jiec.2023.12.054_b0245) 2017; 5
Kawamura (10.1016/j.jiec.2023.12.054_b0185) 2000; 30
Bao (10.1016/j.jiec.2023.12.054_b0305) 2022; 2
Hu (10.1016/j.jiec.2023.12.054_b0250) 2018; 9
Saito (10.1016/j.jiec.2023.12.054_b0045) 2023
Yuan (10.1016/j.jiec.2023.12.054_b0115) 2022; 238
Liu (10.1016/j.jiec.2023.12.054_b0315) 2022; 29
Ge (10.1016/j.jiec.2023.12.054_b0180) 2015; 2
Otake (10.1016/j.jiec.2023.12.054_b0175) 2013; 100
Yin (10.1016/j.jiec.2023.12.054_b0295) 2013; 6
Yin (10.1016/j.jiec.2023.12.054_b0075) 2022; 5
Ijije (10.1016/j.jiec.2023.12.054_b0190) 2014; 4
Shi (10.1016/j.jiec.2023.12.054_b0035) 2022; 5
Novoselova (10.1016/j.jiec.2023.12.054_b0135) 2008; 40
Kaplan (10.1016/j.jiec.2023.12.054_b0220) 2010; 157
Wang (10.1016/j.jiec.2023.12.054_b0240) 2021; 11
Deng (10.1016/j.jiec.2023.12.054_b0005) 2016; 50
Zhao (10.1016/j.jiec.2023.12.054_b0055) 2023
Zuo (10.1016/j.jiec.2023.12.054_b0090) 2022; 251
Weng (10.1016/j.jiec.2023.12.054_b0120) 2019; 28
Hwang (10.1016/j.jiec.2023.12.054_b0330) 2023; 6
Rezaie (10.1016/j.jiec.2023.12.054_b0335) 2023; 15
Xuhui (10.1016/j.jiec.2023.12.054_b0285) 2017; 15
Yeon (10.1016/j.jiec.2023.12.054_b0060) 2023
Tang (10.1016/j.jiec.2023.12.054_b0165) 2013; 114
Yu (10.1016/j.jiec.2023.12.054_b0275) 2020; 13
Weng (10.1016/j.jiec.2023.12.054_b0255) 2020
Weng (10.1016/j.jiec.2023.12.054_b0260) 2020
Xie (10.1016/j.jiec.2023.12.054_b0095) 2022; 78
Wang (10.1016/j.jiec.2023.12.054_b0125) 2020; 40
Laasonen (10.1016/j.jiec.2023.12.054_b0235) 2022; 10
Zhang (10.1016/j.jiec.2023.12.054_b0065) 2023
Gaoa (10.1016/j.jiec.2023.12.054_b0200) 2019; 88
Zhang (10.1016/j.jiec.2023.12.054_b0310) 2022; 15
Moyer (10.1016/j.jiec.2023.12.054_b0195) 2020; 165
Tano (10.1016/j.jiec.2023.12.054_b0085) 2022; 234
Licht (10.1016/j.jiec.2023.12.054_b0155) 2010; 1
10.1016/j.jiec.2023.12.054_b0280
References_xml – volume: 15
  year: 2023
  ident: b0335
  publication-title: Chem. Eng. J.
– volume: 278
  start-page: 340
  year: 2018
  end-page: 351
  ident: b0210
  publication-title: Electrochim. Acta.
– volume: 6
  start-page: 1538
  year: 2013
  end-page: 1545
  ident: b0295
  publication-title: Energ. Environ. Sci.
– volume: 5
  year: 2022
  ident: b0075
  publication-title: Chem. Eng. J.
– volume: 190
  start-page: 241
  year: 2016
  end-page: 258
  ident: b0145
  publication-title: Faraday Discuss.
– year: 2023
  ident: b0070
  publication-title: Angew. Chem.
– start-page: 1433
  year: 2023
  end-page: 1445
  ident: b0065
  publication-title: Angew. Chem.
– volume: 251
  start-page: 11
  year: 2022
  end-page: 20
  ident: b0090
  publication-title: Energy.
– volume: 78
  year: 2022
  ident: b0095
  publication-title: Nano Energy.
– volume: 3
  start-page: 25
  year: 2019
  end-page: 36
  ident: b0265
  publication-title: Adv. Sustainable Systems.
– volume: 22
  start-page: 1751
  year: 2016
  end-page: 1755
  ident: b0290
  publication-title: Angew. Chem. Int. Ed.
– volume: 234
  start-page: 152
  year: 2022
  end-page: 169
  ident: b0085
  publication-title: Sol. Energy.
– volume: 50
  start-page: 10588
  year: 2016
  end-page: 10595
  ident: b0005
  publication-title: Environ. Sci. & Technol.
– volume: 2
  start-page: 224
  year: 2015
  end-page: 230
  ident: b0225
  publication-title: ChemElectroChem.
– reference: W. Xiao X. Liang J. Xiao W. Weng Angewandte Chemie International Edition 21 (2021) 30 10.1002/adsu.202100481.
– volume: 160
  start-page: 74
  year: 2015
  end-page: 81
  ident: b0130
  publication-title: Electrochim. Acta.
– start-page: 4376
  year: 2023
  end-page: 4383
  ident: b0045
  publication-title: ACS Catal.
– volume: 26
  start-page: 2899
  year: 2020
  end-page: 2907
  ident: b0300
  publication-title: Ionics
– volume: 29
  year: 2022
  ident: b0315
  publication-title: J. Alloy. Compd. An Interdisciplinary J. Mater. Sci. Solid-state Chem. Phys.
– year: 2022
  ident: b0040
  publication-title: Sep. Purif. Technol.
– volume: 88
  start-page: 79
  year: 2019
  end-page: 82
  ident: b0200
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 5621
  year: 2022
  end-page: 5634
  ident: b0325
  publication-title: Sci. Adv.
– volume: 2
  start-page: 445
  year: 2022
  end-page: 456
  ident: b0305
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 6184
  year: 2022
  end-page: 6191
  ident: b0310
  publication-title: Nano Res.
– volume: 221
  start-page: 10
  year: 2022
  end-page: 20
  ident: b0100
  publication-title: ACS Sustain. Chem. Eng.
– volume: 5
  start-page: 12822
  year: 2017
  ident: b0245
  publication-title: J. Mater. Chem. A.
– volume: 238
  start-page: 111631
  year: 2022
  end-page: 111641
  ident: b0115
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 6
  start-page: 27760
  year: 2016
  ident: b0270
  publication-title: Sci. Rep.
– volume: 6
  year: 2023
  ident: b0330
  publication-title: Appl. Sci.
– volume: 30
  start-page: 571
  year: 2000
  end-page: 574
  ident: b0185
  publication-title: J. Appl. Electrochem.
– year: 2020
  ident: b0255
  publication-title: Sci. Adv.
– volume: 1
  start-page: 2363
  year: 2010
  end-page: 2368
  ident: b0155
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 174
  year: 2015
  ident: b0180
  publication-title: ChemElectroChem.
– volume: 25
  start-page: 21
  year: 2013
  end-page: 30
  ident: b0160
  publication-title: Energ. Environ. Sci.
– volume: 11
  start-page: 28535
  year: 2021
  end-page: 28541
  ident: b0240
  publication-title: RSC Adv.
– volume: 10
  start-page: 11990
  year: 1999
  end-page: 11991
  ident: b0320
  publication-title: ACS Sustain. Chem. Eng.
– reference: H. Yin Z. Liu M.B.Z. Liu D.w. Nano letter 31 (2021) 15 21 10.1021/acs.nanolett.1c03284.
– volume: 157
  start-page: B552
  year: 2010
  ident: b0220
  publication-title: J. Electrochemical Society.
– volume: 28
  start-page: 16
  year: 2019
  ident: b0120
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 588
  year: 2018
  end-page: 594
  ident: b0250
  publication-title: ChemSusChem.
– volume: 39
  start-page: 12330
  year: 2014
  end-page: 12339
  ident: b0140
  publication-title: Int. J. Hydrogen Energy.
– year: 2023
  ident: b0055
  publication-title: Sep. Purif. Technol.
– volume: 34
  start-page: 303
  year: 2019
  end-page: 312
  ident: b0010
  publication-title: J. CO
– volume: 4
  start-page: 35808
  year: 2014
  end-page: 35817
  ident: b0190
  publication-title: RSC Adv.
– volume: 15
  start-page: 15
  year: 2017
  end-page: 23
  ident: b0285
  publication-title: Carbon
– volume: 5
  year: 2022
  ident: b0035
  publication-title: Chem. Eng. J.
– volume: 157
  start-page: 552
  year: 2015
  end-page: 556
  ident: b0150
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 19
  year: 2020
  end-page: 30
  ident: b0275
  publication-title: ChemSusChem
– start-page: 5290
  year: 2023
  end-page: 5295
  ident: b0060
  publication-title: Green Chem.
– volume: 165
  start-page: 90
  year: 2020
  end-page: 99
  ident: b0195
  publication-title: Carbon.
– start-page: 1
  year: 2020
  end-page: 9
  ident: b0260
  publication-title: Sci. Adv.
– volume: 422
  year: 2022
  ident: b0080
  publication-title: Electrochim. Acta.
– year: 2023
  ident: b0050
  publication-title: Applied Catalysis, B. Environ: An Int. J. Devoted to Catalytic Sci. Its Applications.
– volume: 40
  start-page: 2231
  year: 2008
  end-page: 2237
  ident: b0135
  publication-title: Physica E.
– volume: 28
  start-page: 128
  year: 2019
  end-page: 143
  ident: b0015
  publication-title: J. Energy Chem.
– year: 2023
  ident: b0020
  publication-title: Appl. Energy.
– start-page: 2100481
  year: 2022
  ident: b0230
  publication-title: Adv. Sustainable Systems.
– volume: 7
  start-page: 266
  year: 2019
  end-page: 282
  ident: b0215
  publication-title: ChemElectroChem.
– volume: 22
  year: 2023
  ident: b0030
  publication-title: Int. J. Nanosci.
– volume: 5
  start-page: 48
  year: 2022
  end-page: 57
  ident: b0105
  publication-title: Ceram. Int.
– volume: 114
  start-page: 567
  year: 2013
  end-page: 573
  ident: b0165
  publication-title: Electrochim. Acta.
– volume: 10
  year: 2022
  ident: b0235
  publication-title: J. Environ. Chem. Eng.
– volume: 40
  year: 2020
  ident: b0125
  publication-title: J. CO2 Util.
– volume: 100
  start-page: 293
  year: 2013
  end-page: 299
  ident: b0175
  publication-title: Electrochim. Acta.
– year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0050
  publication-title: Applied Catalysis, B. Environ: An Int. J. Devoted to Catalytic Sci. Its Applications.
– volume: 22
  year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0030
  publication-title: Int. J. Nanosci.
  doi: 10.1142/S0219581X23500023
– volume: 15
  year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0335
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 10588
  year: 2016
  ident: 10.1016/j.jiec.2023.12.054_b0005
  publication-title: Environ. Sci. & Technol.
  doi: 10.1021/acs.est.6b02955
– volume: 22
  start-page: 1751
  year: 2016
  ident: 10.1016/j.jiec.2023.12.054_b0290
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0315
  publication-title: J. Alloy. Compd. An Interdisciplinary J. Mater. Sci. Solid-state Chem. Phys.
– volume: 422
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0080
  publication-title: Electrochim. Acta.
– volume: 10
  start-page: 11990
  issue: 2022
  year: 1999
  ident: 10.1016/j.jiec.2023.12.054_b0320
  publication-title: ACS Sustain. Chem. Eng.
– volume: 278
  start-page: 340
  year: 2018
  ident: 10.1016/j.jiec.2023.12.054_b0210
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2018.05.045
– ident: 10.1016/j.jiec.2023.12.054_b0280
– volume: 11
  start-page: 28535
  year: 2021
  ident: 10.1016/j.jiec.2023.12.054_b0240
  publication-title: RSC Adv.
  doi: 10.1039/D1RA03890G
– start-page: 5290
  year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0060
  publication-title: Green Chem.
– ident: 10.1016/j.jiec.2023.12.054_b0205
– year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0070
  publication-title: Angew. Chem.
– volume: 40
  start-page: 2231
  year: 2008
  ident: 10.1016/j.jiec.2023.12.054_b0135
  publication-title: Physica E.
  doi: 10.1016/j.physe.2007.10.069
– volume: 34
  start-page: 303
  year: 2019
  ident: 10.1016/j.jiec.2023.12.054_b0010
  publication-title: J. CO2 Utilization.
  doi: 10.1016/j.jcou.2019.07.007
– year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0020
  publication-title: Appl. Energy.
– volume: 2
  start-page: 174
  year: 2015
  ident: 10.1016/j.jiec.2023.12.054_b0180
  publication-title: ChemElectroChem.
  doi: 10.1002/celc.201402178
– volume: 2
  start-page: 224
  year: 2015
  ident: 10.1016/j.jiec.2023.12.054_b0225
  publication-title: ChemElectroChem.
  doi: 10.1002/celc.201402297
– volume: 78
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0095
  publication-title: Nano Energy.
– year: 2020
  ident: 10.1016/j.jiec.2023.12.054_b0255
  publication-title: Sci. Adv.
– volume: 114
  start-page: 567
  year: 2013
  ident: 10.1016/j.jiec.2023.12.054_b0165
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2013.10.109
– volume: 5
  start-page: 48
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0105
  publication-title: Ceram. Int.
– year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0040
  publication-title: Sep. Purif. Technol.
– volume: 40
  year: 2020
  ident: 10.1016/j.jiec.2023.12.054_b0125
  publication-title: J. CO2 Util.
– volume: 10
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0235
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106933
– volume: 157
  start-page: 552
  year: 2015
  ident: 10.1016/j.jiec.2023.12.054_b0150
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3308596
– volume: 5
  start-page: 12822
  year: 2017
  ident: 10.1016/j.jiec.2023.12.054_b0245
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA03606J
– volume: 88
  start-page: 79
  year: 2019
  ident: 10.1016/j.jiec.2023.12.054_b0200
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.02.003
– volume: 39
  start-page: 12330
  year: 2014
  ident: 10.1016/j.jiec.2023.12.054_b0140
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2014.03.113
– volume: 3
  start-page: 25
  year: 2019
  ident: 10.1016/j.jiec.2023.12.054_b0265
  publication-title: Adv. Sustainable Systems.
– volume: 1
  start-page: 2363
  year: 2010
  ident: 10.1016/j.jiec.2023.12.054_b0155
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100829s
– volume: 100
  start-page: 293
  year: 2013
  ident: 10.1016/j.jiec.2023.12.054_b0175
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2013.02.076
– volume: 221
  start-page: 10
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0100
  publication-title: ACS Sustain. Chem. Eng.
– start-page: 2100481
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0230
  publication-title: Adv. Sustainable Systems.
  doi: 10.1002/adsu.202100481
– volume: 30
  start-page: 571
  year: 2000
  ident: 10.1016/j.jiec.2023.12.054_b0185
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1003927100308
– start-page: 4376
  year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0045
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c06247
– volume: 190
  start-page: 241
  year: 2016
  ident: 10.1016/j.jiec.2023.12.054_b0145
  publication-title: Faraday Discuss.
  doi: 10.1039/C5FD00234F
– volume: 5
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0035
  publication-title: Chem. Eng. J.
– start-page: 1433
  year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0065
  publication-title: Angew. Chem.
– volume: 15
  start-page: 6184
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0310
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4275-9
– volume: 25
  start-page: 21
  year: 2013
  ident: 10.1016/j.jiec.2023.12.054_b0160
  publication-title: Energ. Environ. Sci.
– volume: 5
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0075
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 128
  year: 2019
  ident: 10.1016/j.jiec.2023.12.054_b0015
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.06.012
– volume: 9
  start-page: 588
  year: 2018
  ident: 10.1016/j.jiec.2023.12.054_b0250
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201501591
– start-page: 1
  year: 2020
  ident: 10.1016/j.jiec.2023.12.054_b0260
  publication-title: Sci. Adv.
– volume: 238
  start-page: 111631
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0115
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2022.111631
– volume: 2
  start-page: 445
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0305
  publication-title: Chem. Eng. J.
– volume: 160
  start-page: 74
  year: 2015
  ident: 10.1016/j.jiec.2023.12.054_b0130
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2015.01.216
– volume: 165
  start-page: 90
  year: 2020
  ident: 10.1016/j.jiec.2023.12.054_b0195
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2020.04.037
– volume: 6
  start-page: 27760
  year: 2016
  ident: 10.1016/j.jiec.2023.12.054_b0270
  publication-title: Sci. Rep.
  doi: 10.1038/srep27760
– volume: 234
  start-page: 152
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0085
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2022.01.056
– volume: 7
  start-page: 266
  year: 2019
  ident: 10.1016/j.jiec.2023.12.054_b0215
  publication-title: ChemElectroChem.
  doi: 10.1002/celc.201901202
– volume: 4
  start-page: 35808
  year: 2014
  ident: 10.1016/j.jiec.2023.12.054_b0190
  publication-title: RSC Adv.
  doi: 10.1039/C4RA04629C
– volume: 15
  start-page: 15
  year: 2017
  ident: 10.1016/j.jiec.2023.12.054_b0285
  publication-title: Carbon
– year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0055
  publication-title: Sep. Purif. Technol.
– volume: 251
  start-page: 11
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0090
  publication-title: Energy.
  doi: 10.1016/j.energy.2022.123893
– volume: 8
  start-page: 5621
  year: 2022
  ident: 10.1016/j.jiec.2023.12.054_b0325
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abl5621
– volume: 13
  start-page: 19
  year: 2020
  ident: 10.1016/j.jiec.2023.12.054_b0275
  publication-title: ChemSusChem
– volume: 26
  start-page: 2899
  year: 2020
  ident: 10.1016/j.jiec.2023.12.054_b0300
  publication-title: Ionics
  doi: 10.1007/s11581-019-03317-6
– volume: 157
  start-page: B552
  year: 2010
  ident: 10.1016/j.jiec.2023.12.054_b0220
  publication-title: J. Electrochemical Society.
  doi: 10.1149/1.3308596
– volume: 6
  year: 2023
  ident: 10.1016/j.jiec.2023.12.054_b0330
  publication-title: Appl. Sci.
– volume: 28
  start-page: 16
  year: 2019
  ident: 10.1016/j.jiec.2023.12.054_b0120
  publication-title: J. Energy Chem.
  doi: 10.1016/j.energy.2019.04.059
– volume: 6
  start-page: 1538
  year: 2013
  ident: 10.1016/j.jiec.2023.12.054_b0295
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c3ee24132g
SSID ssj0060386
ssib009049966
Score 2.3723822
SecondaryResourceType review_article
Snippet O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by...
The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety andecology health, and it is imperative to adopt...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms CO2 capture, electrochemical conversion
Functional carbon materials
Molten salt method
화학공학
Title Recent advances in molten salt CO2 capture and electrochemical conversion to functional carbon materials
URI https://dx.doi.org/10.1016/j.jiec.2023.12.054
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003090317
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2024, 134(0), , pp.17-27
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKLDAgnqK8ZAk2FFondh4jqkAtiDJApW6W7TiQtqRVCSu_nbvERWWgA1OUyBdF58vdd_b5O0IulcmyOGunnoXg5PEoMF7C49CLU50gd0vc1rij-9gPuwN-PxTDBukszsJgWaXz_bVPr7y1e9Jy2mzN8rz1zAA5ACAfAojGXwXzds4jtPLrr58yj7AdVN0ecbCHo93BmbrGa5RbpDH0g2pJUPC_gtNaMc-Wws7dDtl2eJHe1J-0Sxq22CNbSyyC--QNoB-EDuq28z9oXtD36QTAMP1Qk5J2nnxq1Ay3CqgqUuo63xhHFUCrwvNq1YyWU4qBrl4fBKG5hoeAaWszPSCDu9uXTtdzDRQ8A8im9ARkA8KoNAkFqF7E2sRMcaM0M5HNUmYTzVKR-GkY-inPGERvA_gpMjEPlLIiOCTrxbSwR4QiU16gLU4hErYnAHMCDegI8iGV2Ig3CVtoThrHLo5NLiZyUUY2kqhtidqWzJeg7Sa5-pGZ1dwaK0eLxYTIXxYiwfmvlLuA2ZNjk0uk0sbr61SO5xIShh4IiThkoTj-59tPyCbccSwe88UpWS_nn_YMYEqpzys7PCcbN72Hbv8baenmaA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09b9swECUcd2g6BP1EnfSDQNopUC1KpCwNHQq3hh3b6ZAE8MaSFNXKdmTDVhB06Z_qH-ydRBvu0AwFPAmgRIE4kneP5OM7Qt4pk2Vx5qeeheDk8U5ovITHkRenOkHtltjXeKI7voj61_x8IiYN8ntzFwZplc731z698taupO2s2V7mefuSAXIAQD4BEI1TxXfMyqH9eQfrtvXHwWfo5PdB0Pty1e17LrWAZyDml54AnCyMSpNIQKNErE3MFDdKM9OxWcpsolkqkiCNoiDlGYO4ZgBZdEzMQ6UspooAv_-Ag7vAtAkffm15JZEfVuklsXUeNs_d1KlJZdPcom5iEFZ7kIL_KxoeFKtsJ871HpMjB1Dpp9oGT0jDFk_Jox3ZwmfkB2BNiFXU8QfWNC_ozWIO6Juu1byk3a8BNWqJZxNUFSl1qXaM0yagFdO92qaj5YJiZK03JKHSSkMhgOh6Xjwn13sx6wvSLBaFfUkoSvOF2uKYQYX4BHBVqAGOwQJMJbbDW4RtLCeNkzPHrBpzueGtTSVaW6K1JQskWLtFzrZ1lrWYx71fi02HyL-GpIRoc2-9U-g9OTO5RO1ufH5fyNlKwgplAJVEHLFIHP_n39-Sh_2r8UiOBhfDE3IIbzgy1wLxijTL1a19DRip1G-qMUnJt31Pgj99miKd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+molten+salt+CO2+capture+and+electrochemical+conversion+to+functional+carbon+materials&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Jia%2C+Yongsheng&rft.au=Zhou%2C+Zhaoyu&rft.au=Chen%2C+Donghang&rft.au=Li%2C+Enze&rft.date=2024-06-25&rft.pub=Elsevier+B.V&rft.issn=1226-086X&rft.volume=134&rft.spage=17&rft.epage=27&rft_id=info:doi/10.1016%2Fj.jiec.2023.12.054&rft.externalDocID=S1226086X23008870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon