Recent advances in molten salt CO2 capture and electrochemical conversion to functional carbon materials
O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by electrolysis and forms different kinds of functional carbon materials at the cathode (CNTs, Carbon nanocoils, Hollow carbon spheres, and Carbon Nano-Oni...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 134; pp. 17 - 27 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.06.2024
한국공업화학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by electrolysis and forms different kinds of functional carbon materials at the cathode (CNTs, Carbon nanocoils, Hollow carbon spheres, and Carbon Nano-Onions), which are stripped from the cathode for use in different fields.
[Display omitted]
The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety and ecology health, and it is imperative to adopt effective methods to reduce the CO2 concentration. As an effective method of CO2 capture and electrochemical conversion into functional solid carbon materials, the molten salt method is widely used for CO2 capture and storage with its advantages of wide potential electrochemical window, high CO2 solubility, less side reactions, and simple operation. The molten salt CO2 capture and electrochemical conversion (MSCC-EC) process can efficiently capture CO2 by its high solubility in molten salt and decompose CO2 into solid carbon material at the cathode and O2 at the anode powered by electrical energy to achieve CO2 capture and green conversion in the presence of a molten salt electrolyte. This report summarizes the MSCC-EC process and the intrinsic mechanism, and makes a systematic summary of the formation mechanism and application prospects of different kinds of carbon products produced in the electrolysis process, intending to optimize the CO2 capture and green conversion process or provide new methods based on a comprehensive understanding of the MSCC-EC process. |
---|---|
AbstractList | The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety andecology health, and it is imperative to adopt effective methods to reduce the CO2 concentration. As an effectivemethod of CO2 capture and electrochemical conversion into functional solid carbon materials, the molten saltmethod is widely used for CO2 capture and storage with its advantages of wide potential electrochemical window,high CO2 solubility, less side reactions, and simple operation. The molten salt CO2 capture and electrochemicalconversion (MSCC-EC) process can efficiently capture CO2 by its high solubility in molten salt anddecompose CO2 into solid carbon material at the cathode and O2 at the anode powered by electrical energy toachieve CO2 capture and green conversion in the presence of a molten salt electrolyte. This report summarizesthe MSCC-EC process and the intrinsic mechanism, and makes a systematic summary of the formation mechanismand application prospects of different kinds of carbon products produced in the electrolysis process,intending to optimize the CO2 capture and green conversion process or provide new methods based on acomprehensive understanding of the MSCC-EC process. KCI Citation Count: 0 O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by electrolysis and forms different kinds of functional carbon materials at the cathode (CNTs, Carbon nanocoils, Hollow carbon spheres, and Carbon Nano-Onions), which are stripped from the cathode for use in different fields. [Display omitted] The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety and ecology health, and it is imperative to adopt effective methods to reduce the CO2 concentration. As an effective method of CO2 capture and electrochemical conversion into functional solid carbon materials, the molten salt method is widely used for CO2 capture and storage with its advantages of wide potential electrochemical window, high CO2 solubility, less side reactions, and simple operation. The molten salt CO2 capture and electrochemical conversion (MSCC-EC) process can efficiently capture CO2 by its high solubility in molten salt and decompose CO2 into solid carbon material at the cathode and O2 at the anode powered by electrical energy to achieve CO2 capture and green conversion in the presence of a molten salt electrolyte. This report summarizes the MSCC-EC process and the intrinsic mechanism, and makes a systematic summary of the formation mechanism and application prospects of different kinds of carbon products produced in the electrolysis process, intending to optimize the CO2 capture and green conversion process or provide new methods based on a comprehensive understanding of the MSCC-EC process. |
Author | Zhou, Zhaoyu Li, Enze Guo, Limin Chen, Donghang Jiang, Zhongyu Zhao, Long Jia, Yongsheng |
Author_xml | – sequence: 1 givenname: Yongsheng orcidid: 0000-0001-7245-0877 surname: Jia fullname: Jia, Yongsheng email: 2022506008@hust.edu.cn organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Zhaoyu surname: Zhou fullname: Zhou, Zhaoyu organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Donghang surname: Chen fullname: Chen, Donghang organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Enze surname: Li fullname: Li, Enze organization: Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China – sequence: 5 givenname: Zhongyu surname: Jiang fullname: Jiang, Zhongyu organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 6 givenname: Long surname: Zhao fullname: Zhao, Long organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 7 givenname: Limin surname: Guo fullname: Guo, Limin email: lmguo@hust.edu.cn organization: School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003090317$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1r3DAQhkVJoUnaP9CTzgW7kmzJMvQSln4EAoGQQm5iPBo32nilICsL_feVuz31kNM7jN5nQM8FO4spEmMfpWilkObzvt0HwlYJ1bVStUL3b9i5tINphrF_OKuzUqYR1jy8YxfruhfCiM6ac_Z4R0ixcPBHiEgrD5Ef0lIo8hWWwne3iiM8l5dMHKLntBCWnPCRDgFh4ZjikfIaUuQl8fklYqnz9gB5qssDFMoBlvU9ezvXoA__8pL9_Pb1fvejubn9fr27umlQaVEabQatEfxotJ9GbSe0EnqESeJAs5c0TtLrUXljlO9n2VmJsu8GtH0HQLq7ZJ9Od2Oe3RMGlyD8zV_JPWV3dXd_7aTQ1kizldWpjDmta6bZPedwgPy7Vtwm1u3dJtZtYp1UroqtkP0PwlBg-3bJEJbX0S8nlKqBY6DsVgxUvfuQq1fnU3gN_wOME5ew |
CitedBy_id | crossref_primary_10_1016_j_jiec_2024_12_077 crossref_primary_10_1016_j_fuel_2025_134620 crossref_primary_10_1016_j_jclepro_2024_142600 crossref_primary_10_1016_j_jiec_2024_10_049 crossref_primary_10_1149_1945_7111_ad9060 crossref_primary_10_1016_j_carbon_2024_119781 crossref_primary_10_1016_j_ijhydene_2025_01_368 |
Cites_doi | 10.1142/S0219581X23500023 10.1021/acs.est.6b02955 10.1016/j.electacta.2018.05.045 10.1039/D1RA03890G 10.1016/j.physe.2007.10.069 10.1016/j.jcou.2019.07.007 10.1002/celc.201402178 10.1002/celc.201402297 10.1016/j.electacta.2013.10.109 10.1016/j.jece.2021.106933 10.1149/1.3308596 10.1039/C7TA03606J 10.1016/j.elecom.2018.02.003 10.1016/j.ijhydene.2014.03.113 10.1021/jz100829s 10.1016/j.electacta.2013.02.076 10.1002/adsu.202100481 10.1023/A:1003927100308 10.1021/acscatal.2c06247 10.1039/C5FD00234F 10.1007/s12274-022-4275-9 10.1016/j.jechem.2018.06.012 10.1002/cssc.201501591 10.1016/j.solmat.2022.111631 10.1016/j.electacta.2015.01.216 10.1016/j.carbon.2020.04.037 10.1038/srep27760 10.1016/j.solener.2022.01.056 10.1002/celc.201901202 10.1039/C4RA04629C 10.1016/j.energy.2022.123893 10.1126/sciadv.abl5621 10.1007/s11581-019-03317-6 10.1016/j.energy.2019.04.059 10.1039/c3ee24132g |
ContentType | Journal Article |
Copyright | 2023 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2023 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2023.12.054 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 27 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10586165 10_1016_j_jiec_2023_12_054 S1226086X23008870 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU BNPGV CITATION EJD HZ~ MZR OK1 SSH ZY4 ZZE ACYCR |
ID | FETCH-LOGICAL-c250t-56755cad965db958bc81a4cab1c7efd1e9b1d592d662d4f1381c1437c843aae53 |
IEDL.DBID | .~1 |
ISSN | 1226-086X |
IngestDate | Sat Jun 28 03:12:45 EDT 2025 Tue Jul 01 03:34:33 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Sat Jun 29 15:31:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molten salt method CO2 capture, electrochemical conversion Functional carbon materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c250t-56755cad965db958bc81a4cab1c7efd1e9b1d592d662d4f1381c1437c843aae53 |
ORCID | 0000-0001-7245-0877 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10586165 crossref_primary_10_1016_j_jiec_2023_12_054 crossref_citationtrail_10_1016_j_jiec_2023_12_054 elsevier_sciencedirect_doi_10_1016_j_jiec_2023_12_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-25 |
PublicationDateYYYYMMDD | 2024-06-25 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2024 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Hua, Yasuda, Nohira (b0100) 2022; 221 Ijije, Lawrence, Chen (b0190) 2014; 4 Hughes, Allen, Donne (b0210) 2018; 278 Moyer, Zohair, Eaves-Rathert, Douglas, Pint (b0195) 2020; 165 Zhao, Lu, Wu (b0055) 2023 Rezaie, Smeulders, Triguero (b0335) 2023; 15 Yeon, Yeonsu, Hyun, Ahn (b0060) 2023 Ge, Hu, Wang, Jiao, Jiao (b0225) 2015; 2 Ji, Liu, Ma (b0320) 1999; 10 Yuan, He, Li, Li (b0115) 2022; 238 Liu, Li, He (b0040) 2022 Liu, Ren, Licht, Wang, Licht (b0265) 2019; 3 Otake, Kinoshita, Kikuchi, Suzuki (b0175) 2013; 100 Kawamura, Ito (b0185) 2000; 30 Wang, Ban, Su, Cheng, Geng, Wang, Shen, Jia, Zhang, Liu (b0105) 2022; 5 Chery, Lair, Cassir (b0130) 2015; 160 Zhang, Liu, Yang, Qi, Xi, Wei, Ding, Wang, Li, Liu (b0065) 2023 Sohlberg (b0030) 2023; 22 Yu (b0275) 2020; 13 Kaplan, Wachtel, Gartsman, Feldman, Lubomirsky (b0220) 2010; 157 Yang, Zhao, Li, Liu, Zhang, Bai, Wang, Li (b0325) 2022; 8 Shi, Xie, Cui (b0035) 2022; 5 Xuhui, Zhiping, Tian, Muxing, Hua (b0285) 2017; 15 Licht, Wang, Ghosh, Ayub, Jiang, Ganley (b0155) 2010; 1 Kaplan, Wachtel, Gartsman, Feldman, Lubomirsky (b0150) 2015; 157 Huayi, Xuhui, Diyong, Wei, Luru (b0160) 2013; 25 Wang, Deng, Chen, Gao, Mao (b0145) 2016; 190 Deng, Mao, Xiao, Wang (b0245) 2017; 5 Weng, Jiang, Wang, Xiao (b0255) 2020 Agarwala, Chen, Lyonnet, Johnson, Ahlquist, Ott (b0070) 2023 Anvari, Arteconi, Desideri, Rosen, Yan (b0020) 2023 Wang, Licht, Liu, Licht (b0230) 2022 Ren, Licht (b0270) 2016; 6 Xie, Tang, Shi, Wang, Yuan, Liu (b0095) 2022; 78 Wang, Liu, Licht, Licht (b0010) 2019; 34 Zhang, Xi, Chen, Feng, Qian, Xiong (b0310) 2022; 15 Huang, Qiu, Yu, Liang, Zhang (b0300) 2020; 26 Saito, Tamaki, Ishitani (b0045) 2023 Tang, Yin, Mao, Xiao, Wang (b0165) 2013; 114 Yin, Bai, Wu (b0075) 2022; 5 Weng, Jiang, Wang, Xiao (b0260) 2020 Yin, Mao, Tang, Xiao, Xing, Zhu, Wang, Sadoway (b0295) 2013; 6 Liu, Yang, Wang, Liu, Zeng (b0315) 2022; 29 Zuo, Li, Zhou (b0090) 2022; 251 Weng, Tang, Xiao (b0015) 2019; 28 Wang, Fs, Xl, Gl, Ml (b0125) 2020; 40 Gaoa, Deng, Chen, Tao, Wang (b0200) 2019; 88 Novoselova, Oliinyk, Volkov, Konchits, Yanchuk, Yefanov, Kolesnik, Karpets (b0135) 2008; 40 Tano, Rasouli, Ziev, Wu, Lamprinakos, Seo, Balhorn, Vaishnav, Rollett, Narayanan (b0085) 2022; 234 Li, Zhou, Zhou (b0050) 2023 Yu, Liu, Liang, Liu, Lai, Liu, Chen, Zhang, Li (b0080) 2022; 422 Hu, Song, Jiao, Liu, Ge, Jiao, Zhu, Wang, Zhu, Fray (b0250) 2018; 9 Bao, Zhang, Wang (b0305) 2022; 2 Chery, Albin, Lair, Cassir (b0140) 2014; 39 Ge, Hu, Wang, Jiao, Jiao (b0180) 2015; 2 Weng, Tang, Xiao (b0120) 2019; 28 Wang, Wang, Lu (b0240) 2021; 11 H. Yin Z. Liu M.B.Z. Liu D.w. Nano letter 31 (2021) 15 21 10.1021/acs.nanolett.1c03284. Hwang, Park (b0330) 2023; 6 W. Xiao X. Liang J. Xiao W. Weng Angewandte Chemie International Edition 21 (2021) 30 10.1002/adsu.202100481. Deng, Tang, Mao, Song, Zhu, Xiao, Wang (b0005) 2016; 50 Laasonen, Ruuskanen, Niemel, Koiranen, Ahola (b0235) 2022; 10 Peng, Chen, He, Wang, Dai (b0290) 2016; 22 Hughes, Allen, Donne (b0215) 2019; 7 Yu (10.1016/j.jiec.2023.12.054_b0080) 2022; 422 Wang (10.1016/j.jiec.2023.12.054_b0145) 2016; 190 Kaplan (10.1016/j.jiec.2023.12.054_b0150) 2015; 157 Liu (10.1016/j.jiec.2023.12.054_b0265) 2019; 3 Wang (10.1016/j.jiec.2023.12.054_b0105) 2022; 5 Anvari (10.1016/j.jiec.2023.12.054_b0020) 2023 10.1016/j.jiec.2023.12.054_b0205 Hughes (10.1016/j.jiec.2023.12.054_b0210) 2018; 278 Ge (10.1016/j.jiec.2023.12.054_b0225) 2015; 2 Ji (10.1016/j.jiec.2023.12.054_b0320) 1999; 10 Chery (10.1016/j.jiec.2023.12.054_b0140) 2014; 39 Wang (10.1016/j.jiec.2023.12.054_b0010) 2019; 34 Yang (10.1016/j.jiec.2023.12.054_b0325) 2022; 8 Huayi (10.1016/j.jiec.2023.12.054_b0160) 2013; 25 Wang (10.1016/j.jiec.2023.12.054_b0230) 2022 Liu (10.1016/j.jiec.2023.12.054_b0040) 2022 Peng (10.1016/j.jiec.2023.12.054_b0290) 2016; 22 Ren (10.1016/j.jiec.2023.12.054_b0270) 2016; 6 Weng (10.1016/j.jiec.2023.12.054_b0015) 2019; 28 Sohlberg (10.1016/j.jiec.2023.12.054_b0030) 2023; 22 Chery (10.1016/j.jiec.2023.12.054_b0130) 2015; 160 Agarwala (10.1016/j.jiec.2023.12.054_b0070) 2023 Li (10.1016/j.jiec.2023.12.054_b0050) 2023 Hua (10.1016/j.jiec.2023.12.054_b0100) 2022; 221 Hughes (10.1016/j.jiec.2023.12.054_b0215) 2019; 7 Huang (10.1016/j.jiec.2023.12.054_b0300) 2020; 26 Deng (10.1016/j.jiec.2023.12.054_b0245) 2017; 5 Kawamura (10.1016/j.jiec.2023.12.054_b0185) 2000; 30 Bao (10.1016/j.jiec.2023.12.054_b0305) 2022; 2 Hu (10.1016/j.jiec.2023.12.054_b0250) 2018; 9 Saito (10.1016/j.jiec.2023.12.054_b0045) 2023 Yuan (10.1016/j.jiec.2023.12.054_b0115) 2022; 238 Liu (10.1016/j.jiec.2023.12.054_b0315) 2022; 29 Ge (10.1016/j.jiec.2023.12.054_b0180) 2015; 2 Otake (10.1016/j.jiec.2023.12.054_b0175) 2013; 100 Yin (10.1016/j.jiec.2023.12.054_b0295) 2013; 6 Yin (10.1016/j.jiec.2023.12.054_b0075) 2022; 5 Ijije (10.1016/j.jiec.2023.12.054_b0190) 2014; 4 Shi (10.1016/j.jiec.2023.12.054_b0035) 2022; 5 Novoselova (10.1016/j.jiec.2023.12.054_b0135) 2008; 40 Kaplan (10.1016/j.jiec.2023.12.054_b0220) 2010; 157 Wang (10.1016/j.jiec.2023.12.054_b0240) 2021; 11 Deng (10.1016/j.jiec.2023.12.054_b0005) 2016; 50 Zhao (10.1016/j.jiec.2023.12.054_b0055) 2023 Zuo (10.1016/j.jiec.2023.12.054_b0090) 2022; 251 Weng (10.1016/j.jiec.2023.12.054_b0120) 2019; 28 Hwang (10.1016/j.jiec.2023.12.054_b0330) 2023; 6 Rezaie (10.1016/j.jiec.2023.12.054_b0335) 2023; 15 Xuhui (10.1016/j.jiec.2023.12.054_b0285) 2017; 15 Yeon (10.1016/j.jiec.2023.12.054_b0060) 2023 Tang (10.1016/j.jiec.2023.12.054_b0165) 2013; 114 Yu (10.1016/j.jiec.2023.12.054_b0275) 2020; 13 Weng (10.1016/j.jiec.2023.12.054_b0255) 2020 Weng (10.1016/j.jiec.2023.12.054_b0260) 2020 Xie (10.1016/j.jiec.2023.12.054_b0095) 2022; 78 Wang (10.1016/j.jiec.2023.12.054_b0125) 2020; 40 Laasonen (10.1016/j.jiec.2023.12.054_b0235) 2022; 10 Zhang (10.1016/j.jiec.2023.12.054_b0065) 2023 Gaoa (10.1016/j.jiec.2023.12.054_b0200) 2019; 88 Zhang (10.1016/j.jiec.2023.12.054_b0310) 2022; 15 Moyer (10.1016/j.jiec.2023.12.054_b0195) 2020; 165 Tano (10.1016/j.jiec.2023.12.054_b0085) 2022; 234 Licht (10.1016/j.jiec.2023.12.054_b0155) 2010; 1 10.1016/j.jiec.2023.12.054_b0280 |
References_xml | – volume: 15 year: 2023 ident: b0335 publication-title: Chem. Eng. J. – volume: 278 start-page: 340 year: 2018 end-page: 351 ident: b0210 publication-title: Electrochim. Acta. – volume: 6 start-page: 1538 year: 2013 end-page: 1545 ident: b0295 publication-title: Energ. Environ. Sci. – volume: 5 year: 2022 ident: b0075 publication-title: Chem. Eng. J. – volume: 190 start-page: 241 year: 2016 end-page: 258 ident: b0145 publication-title: Faraday Discuss. – year: 2023 ident: b0070 publication-title: Angew. Chem. – start-page: 1433 year: 2023 end-page: 1445 ident: b0065 publication-title: Angew. Chem. – volume: 251 start-page: 11 year: 2022 end-page: 20 ident: b0090 publication-title: Energy. – volume: 78 year: 2022 ident: b0095 publication-title: Nano Energy. – volume: 3 start-page: 25 year: 2019 end-page: 36 ident: b0265 publication-title: Adv. Sustainable Systems. – volume: 22 start-page: 1751 year: 2016 end-page: 1755 ident: b0290 publication-title: Angew. Chem. Int. Ed. – volume: 234 start-page: 152 year: 2022 end-page: 169 ident: b0085 publication-title: Sol. Energy. – volume: 50 start-page: 10588 year: 2016 end-page: 10595 ident: b0005 publication-title: Environ. Sci. & Technol. – volume: 2 start-page: 224 year: 2015 end-page: 230 ident: b0225 publication-title: ChemElectroChem. – reference: W. Xiao X. Liang J. Xiao W. Weng Angewandte Chemie International Edition 21 (2021) 30 10.1002/adsu.202100481. – volume: 160 start-page: 74 year: 2015 end-page: 81 ident: b0130 publication-title: Electrochim. Acta. – start-page: 4376 year: 2023 end-page: 4383 ident: b0045 publication-title: ACS Catal. – volume: 26 start-page: 2899 year: 2020 end-page: 2907 ident: b0300 publication-title: Ionics – volume: 29 year: 2022 ident: b0315 publication-title: J. Alloy. Compd. An Interdisciplinary J. Mater. Sci. Solid-state Chem. Phys. – year: 2022 ident: b0040 publication-title: Sep. Purif. Technol. – volume: 88 start-page: 79 year: 2019 end-page: 82 ident: b0200 publication-title: Electrochem. Commun. – volume: 8 start-page: 5621 year: 2022 end-page: 5634 ident: b0325 publication-title: Sci. Adv. – volume: 2 start-page: 445 year: 2022 end-page: 456 ident: b0305 publication-title: Chem. Eng. J. – volume: 15 start-page: 6184 year: 2022 end-page: 6191 ident: b0310 publication-title: Nano Res. – volume: 221 start-page: 10 year: 2022 end-page: 20 ident: b0100 publication-title: ACS Sustain. Chem. Eng. – volume: 5 start-page: 12822 year: 2017 ident: b0245 publication-title: J. Mater. Chem. A. – volume: 238 start-page: 111631 year: 2022 end-page: 111641 ident: b0115 publication-title: Sol. Energy Mater. Sol. Cells. – volume: 6 start-page: 27760 year: 2016 ident: b0270 publication-title: Sci. Rep. – volume: 6 year: 2023 ident: b0330 publication-title: Appl. Sci. – volume: 30 start-page: 571 year: 2000 end-page: 574 ident: b0185 publication-title: J. Appl. Electrochem. – year: 2020 ident: b0255 publication-title: Sci. Adv. – volume: 1 start-page: 2363 year: 2010 end-page: 2368 ident: b0155 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 174 year: 2015 ident: b0180 publication-title: ChemElectroChem. – volume: 25 start-page: 21 year: 2013 end-page: 30 ident: b0160 publication-title: Energ. Environ. Sci. – volume: 11 start-page: 28535 year: 2021 end-page: 28541 ident: b0240 publication-title: RSC Adv. – volume: 10 start-page: 11990 year: 1999 end-page: 11991 ident: b0320 publication-title: ACS Sustain. Chem. Eng. – reference: H. Yin Z. Liu M.B.Z. Liu D.w. Nano letter 31 (2021) 15 21 10.1021/acs.nanolett.1c03284. – volume: 157 start-page: B552 year: 2010 ident: b0220 publication-title: J. Electrochemical Society. – volume: 28 start-page: 16 year: 2019 ident: b0120 publication-title: J. Energy Chem. – volume: 9 start-page: 588 year: 2018 end-page: 594 ident: b0250 publication-title: ChemSusChem. – volume: 39 start-page: 12330 year: 2014 end-page: 12339 ident: b0140 publication-title: Int. J. Hydrogen Energy. – year: 2023 ident: b0055 publication-title: Sep. Purif. Technol. – volume: 34 start-page: 303 year: 2019 end-page: 312 ident: b0010 publication-title: J. CO – volume: 4 start-page: 35808 year: 2014 end-page: 35817 ident: b0190 publication-title: RSC Adv. – volume: 15 start-page: 15 year: 2017 end-page: 23 ident: b0285 publication-title: Carbon – volume: 5 year: 2022 ident: b0035 publication-title: Chem. Eng. J. – volume: 157 start-page: 552 year: 2015 end-page: 556 ident: b0150 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 19 year: 2020 end-page: 30 ident: b0275 publication-title: ChemSusChem – start-page: 5290 year: 2023 end-page: 5295 ident: b0060 publication-title: Green Chem. – volume: 165 start-page: 90 year: 2020 end-page: 99 ident: b0195 publication-title: Carbon. – start-page: 1 year: 2020 end-page: 9 ident: b0260 publication-title: Sci. Adv. – volume: 422 year: 2022 ident: b0080 publication-title: Electrochim. Acta. – year: 2023 ident: b0050 publication-title: Applied Catalysis, B. Environ: An Int. J. Devoted to Catalytic Sci. Its Applications. – volume: 40 start-page: 2231 year: 2008 end-page: 2237 ident: b0135 publication-title: Physica E. – volume: 28 start-page: 128 year: 2019 end-page: 143 ident: b0015 publication-title: J. Energy Chem. – year: 2023 ident: b0020 publication-title: Appl. Energy. – start-page: 2100481 year: 2022 ident: b0230 publication-title: Adv. Sustainable Systems. – volume: 7 start-page: 266 year: 2019 end-page: 282 ident: b0215 publication-title: ChemElectroChem. – volume: 22 year: 2023 ident: b0030 publication-title: Int. J. Nanosci. – volume: 5 start-page: 48 year: 2022 end-page: 57 ident: b0105 publication-title: Ceram. Int. – volume: 114 start-page: 567 year: 2013 end-page: 573 ident: b0165 publication-title: Electrochim. Acta. – volume: 10 year: 2022 ident: b0235 publication-title: J. Environ. Chem. Eng. – volume: 40 year: 2020 ident: b0125 publication-title: J. CO2 Util. – volume: 100 start-page: 293 year: 2013 end-page: 299 ident: b0175 publication-title: Electrochim. Acta. – year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0050 publication-title: Applied Catalysis, B. Environ: An Int. J. Devoted to Catalytic Sci. Its Applications. – volume: 22 year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0030 publication-title: Int. J. Nanosci. doi: 10.1142/S0219581X23500023 – volume: 15 year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0335 publication-title: Chem. Eng. J. – volume: 50 start-page: 10588 year: 2016 ident: 10.1016/j.jiec.2023.12.054_b0005 publication-title: Environ. Sci. & Technol. doi: 10.1021/acs.est.6b02955 – volume: 22 start-page: 1751 year: 2016 ident: 10.1016/j.jiec.2023.12.054_b0290 publication-title: Angew. Chem. Int. Ed. – volume: 29 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0315 publication-title: J. Alloy. Compd. An Interdisciplinary J. Mater. Sci. Solid-state Chem. Phys. – volume: 422 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0080 publication-title: Electrochim. Acta. – volume: 10 start-page: 11990 issue: 2022 year: 1999 ident: 10.1016/j.jiec.2023.12.054_b0320 publication-title: ACS Sustain. Chem. Eng. – volume: 278 start-page: 340 year: 2018 ident: 10.1016/j.jiec.2023.12.054_b0210 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2018.05.045 – ident: 10.1016/j.jiec.2023.12.054_b0280 – volume: 11 start-page: 28535 year: 2021 ident: 10.1016/j.jiec.2023.12.054_b0240 publication-title: RSC Adv. doi: 10.1039/D1RA03890G – start-page: 5290 year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0060 publication-title: Green Chem. – ident: 10.1016/j.jiec.2023.12.054_b0205 – year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0070 publication-title: Angew. Chem. – volume: 40 start-page: 2231 year: 2008 ident: 10.1016/j.jiec.2023.12.054_b0135 publication-title: Physica E. doi: 10.1016/j.physe.2007.10.069 – volume: 34 start-page: 303 year: 2019 ident: 10.1016/j.jiec.2023.12.054_b0010 publication-title: J. CO2 Utilization. doi: 10.1016/j.jcou.2019.07.007 – year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0020 publication-title: Appl. Energy. – volume: 2 start-page: 174 year: 2015 ident: 10.1016/j.jiec.2023.12.054_b0180 publication-title: ChemElectroChem. doi: 10.1002/celc.201402178 – volume: 2 start-page: 224 year: 2015 ident: 10.1016/j.jiec.2023.12.054_b0225 publication-title: ChemElectroChem. doi: 10.1002/celc.201402297 – volume: 78 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0095 publication-title: Nano Energy. – year: 2020 ident: 10.1016/j.jiec.2023.12.054_b0255 publication-title: Sci. Adv. – volume: 114 start-page: 567 year: 2013 ident: 10.1016/j.jiec.2023.12.054_b0165 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2013.10.109 – volume: 5 start-page: 48 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0105 publication-title: Ceram. Int. – year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0040 publication-title: Sep. Purif. Technol. – volume: 40 year: 2020 ident: 10.1016/j.jiec.2023.12.054_b0125 publication-title: J. CO2 Util. – volume: 10 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0235 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106933 – volume: 157 start-page: 552 year: 2015 ident: 10.1016/j.jiec.2023.12.054_b0150 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3308596 – volume: 5 start-page: 12822 year: 2017 ident: 10.1016/j.jiec.2023.12.054_b0245 publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA03606J – volume: 88 start-page: 79 year: 2019 ident: 10.1016/j.jiec.2023.12.054_b0200 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.02.003 – volume: 39 start-page: 12330 year: 2014 ident: 10.1016/j.jiec.2023.12.054_b0140 publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2014.03.113 – volume: 3 start-page: 25 year: 2019 ident: 10.1016/j.jiec.2023.12.054_b0265 publication-title: Adv. Sustainable Systems. – volume: 1 start-page: 2363 year: 2010 ident: 10.1016/j.jiec.2023.12.054_b0155 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100829s – volume: 100 start-page: 293 year: 2013 ident: 10.1016/j.jiec.2023.12.054_b0175 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2013.02.076 – volume: 221 start-page: 10 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0100 publication-title: ACS Sustain. Chem. Eng. – start-page: 2100481 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0230 publication-title: Adv. Sustainable Systems. doi: 10.1002/adsu.202100481 – volume: 30 start-page: 571 year: 2000 ident: 10.1016/j.jiec.2023.12.054_b0185 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1003927100308 – start-page: 4376 year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0045 publication-title: ACS Catal. doi: 10.1021/acscatal.2c06247 – volume: 190 start-page: 241 year: 2016 ident: 10.1016/j.jiec.2023.12.054_b0145 publication-title: Faraday Discuss. doi: 10.1039/C5FD00234F – volume: 5 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0035 publication-title: Chem. Eng. J. – start-page: 1433 year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0065 publication-title: Angew. Chem. – volume: 15 start-page: 6184 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0310 publication-title: Nano Res. doi: 10.1007/s12274-022-4275-9 – volume: 25 start-page: 21 year: 2013 ident: 10.1016/j.jiec.2023.12.054_b0160 publication-title: Energ. Environ. Sci. – volume: 5 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0075 publication-title: Chem. Eng. J. – volume: 28 start-page: 128 year: 2019 ident: 10.1016/j.jiec.2023.12.054_b0015 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.06.012 – volume: 9 start-page: 588 year: 2018 ident: 10.1016/j.jiec.2023.12.054_b0250 publication-title: ChemSusChem. doi: 10.1002/cssc.201501591 – start-page: 1 year: 2020 ident: 10.1016/j.jiec.2023.12.054_b0260 publication-title: Sci. Adv. – volume: 238 start-page: 111631 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0115 publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2022.111631 – volume: 2 start-page: 445 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0305 publication-title: Chem. Eng. J. – volume: 160 start-page: 74 year: 2015 ident: 10.1016/j.jiec.2023.12.054_b0130 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2015.01.216 – volume: 165 start-page: 90 year: 2020 ident: 10.1016/j.jiec.2023.12.054_b0195 publication-title: Carbon. doi: 10.1016/j.carbon.2020.04.037 – volume: 6 start-page: 27760 year: 2016 ident: 10.1016/j.jiec.2023.12.054_b0270 publication-title: Sci. Rep. doi: 10.1038/srep27760 – volume: 234 start-page: 152 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0085 publication-title: Sol. Energy. doi: 10.1016/j.solener.2022.01.056 – volume: 7 start-page: 266 year: 2019 ident: 10.1016/j.jiec.2023.12.054_b0215 publication-title: ChemElectroChem. doi: 10.1002/celc.201901202 – volume: 4 start-page: 35808 year: 2014 ident: 10.1016/j.jiec.2023.12.054_b0190 publication-title: RSC Adv. doi: 10.1039/C4RA04629C – volume: 15 start-page: 15 year: 2017 ident: 10.1016/j.jiec.2023.12.054_b0285 publication-title: Carbon – year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0055 publication-title: Sep. Purif. Technol. – volume: 251 start-page: 11 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0090 publication-title: Energy. doi: 10.1016/j.energy.2022.123893 – volume: 8 start-page: 5621 year: 2022 ident: 10.1016/j.jiec.2023.12.054_b0325 publication-title: Sci. Adv. doi: 10.1126/sciadv.abl5621 – volume: 13 start-page: 19 year: 2020 ident: 10.1016/j.jiec.2023.12.054_b0275 publication-title: ChemSusChem – volume: 26 start-page: 2899 year: 2020 ident: 10.1016/j.jiec.2023.12.054_b0300 publication-title: Ionics doi: 10.1007/s11581-019-03317-6 – volume: 157 start-page: B552 year: 2010 ident: 10.1016/j.jiec.2023.12.054_b0220 publication-title: J. Electrochemical Society. doi: 10.1149/1.3308596 – volume: 6 year: 2023 ident: 10.1016/j.jiec.2023.12.054_b0330 publication-title: Appl. Sci. – volume: 28 start-page: 16 year: 2019 ident: 10.1016/j.jiec.2023.12.054_b0120 publication-title: J. Energy Chem. doi: 10.1016/j.energy.2019.04.059 – volume: 6 start-page: 1538 year: 2013 ident: 10.1016/j.jiec.2023.12.054_b0295 publication-title: Energ. Environ. Sci. doi: 10.1039/c3ee24132g |
SSID | ssj0060386 ssib009049966 |
Score | 2.3723822 |
SecondaryResourceType | review_article |
Snippet | O2- in the molten salt system enables the capture of carbon dioxide and the formation of CO32-, which decomposes into O2 released from the anode by... The increasing concentration of CO2, a greenhouse gas, is seriously affecting the environmental safety andecology health, and it is imperative to adopt... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | CO2 capture, electrochemical conversion Functional carbon materials Molten salt method 화학공학 |
Title | Recent advances in molten salt CO2 capture and electrochemical conversion to functional carbon materials |
URI | https://dx.doi.org/10.1016/j.jiec.2023.12.054 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003090317 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2024, 134(0), , pp.17-27 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKLDAgnqK8ZAk2FFondh4jqkAtiDJApW6W7TiQtqRVCSu_nbvERWWgA1OUyBdF58vdd_b5O0IulcmyOGunnoXg5PEoMF7C49CLU50gd0vc1rij-9gPuwN-PxTDBukszsJgWaXz_bVPr7y1e9Jy2mzN8rz1zAA5ACAfAojGXwXzds4jtPLrr58yj7AdVN0ecbCHo93BmbrGa5RbpDH0g2pJUPC_gtNaMc-Wws7dDtl2eJHe1J-0Sxq22CNbSyyC--QNoB-EDuq28z9oXtD36QTAMP1Qk5J2nnxq1Ay3CqgqUuo63xhHFUCrwvNq1YyWU4qBrl4fBKG5hoeAaWszPSCDu9uXTtdzDRQ8A8im9ARkA8KoNAkFqF7E2sRMcaM0M5HNUmYTzVKR-GkY-inPGERvA_gpMjEPlLIiOCTrxbSwR4QiU16gLU4hErYnAHMCDegI8iGV2Ig3CVtoThrHLo5NLiZyUUY2kqhtidqWzJeg7Sa5-pGZ1dwaK0eLxYTIXxYiwfmvlLuA2ZNjk0uk0sbr61SO5xIShh4IiThkoTj-59tPyCbccSwe88UpWS_nn_YMYEqpzys7PCcbN72Hbv8baenmaA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09b9swECUcd2g6BP1EnfSDQNopUC1KpCwNHQq3hh3b6ZAE8MaSFNXKdmTDVhB06Z_qH-ydRBvu0AwFPAmgRIE4kneP5OM7Qt4pk2Vx5qeeheDk8U5ovITHkRenOkHtltjXeKI7voj61_x8IiYN8ntzFwZplc731z698taupO2s2V7mefuSAXIAQD4BEI1TxXfMyqH9eQfrtvXHwWfo5PdB0Pty1e17LrWAZyDml54AnCyMSpNIQKNErE3MFDdKM9OxWcpsolkqkiCNoiDlGYO4ZgBZdEzMQ6UspooAv_-Ag7vAtAkffm15JZEfVuklsXUeNs_d1KlJZdPcom5iEFZ7kIL_KxoeFKtsJ871HpMjB1Dpp9oGT0jDFk_Jox3ZwmfkB2BNiFXU8QfWNC_ozWIO6Juu1byk3a8BNWqJZxNUFSl1qXaM0yagFdO92qaj5YJiZK03JKHSSkMhgOh6Xjwn13sx6wvSLBaFfUkoSvOF2uKYQYX4BHBVqAGOwQJMJbbDW4RtLCeNkzPHrBpzueGtTSVaW6K1JQskWLtFzrZ1lrWYx71fi02HyL-GpIRoc2-9U-g9OTO5RO1ufH5fyNlKwgplAJVEHLFIHP_n39-Sh_2r8UiOBhfDE3IIbzgy1wLxijTL1a19DRip1G-qMUnJt31Pgj99miKd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+molten+salt+CO2+capture+and+electrochemical+conversion+to+functional+carbon+materials&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Jia%2C+Yongsheng&rft.au=Zhou%2C+Zhaoyu&rft.au=Chen%2C+Donghang&rft.au=Li%2C+Enze&rft.date=2024-06-25&rft.pub=Elsevier+B.V&rft.issn=1226-086X&rft.volume=134&rft.spage=17&rft.epage=27&rft_id=info:doi/10.1016%2Fj.jiec.2023.12.054&rft.externalDocID=S1226086X23008870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |