Power system static state estimation using Kalman filter algorithm

State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Ne...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for simulation and multidisciplinary design optimization Vol. 7; p. A7
Main Authors Saikia, Anupam, Mehta, Ram Krishna
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 2016
Subjects
Online AccessGet full text
ISSN1779-627X
1779-6288
1779-6288
DOI10.1051/smdo/2016007

Cover

Abstract State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS) method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.
AbstractList State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS) method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.
Author Saikia, Anupam
Mehta, Ram Krishna
Author_xml – sequence: 1
  givenname: Anupam
  surname: Saikia
  fullname: Saikia, Anupam
  email: anupam.saikia9@gmail.com
  organization: Electrical Department, North Eastern Regional Institute of Science and Technology (NERIST), Itanagar, Arunachal Pradesh791109, India
– sequence: 2
  givenname: Ram Krishna
  surname: Mehta
  fullname: Mehta, Ram Krishna
  organization: Electrical Department, North Eastern Regional Institute of Science and Technology (NERIST), Itanagar, Arunachal Pradesh791109, India
BookMark eNp1kc1O3DAUhS0EEhTY9QEiddsw99rxT5btqFDESHQxiO4sx3GmniYxtTOCeft6ZoBFpW58bes7R8fHH8jxGEZHyEeEKwSOszS0YUYBBYA8ImcoZV0KqtTx-17-PCWXKa0BAJVUHNkZ-fojPLtYpG2a3FCkyUze7ocrXJr8kM9hLDbJj6vizvSDGYvO91OWmH4Vop9-DRfkpDN9cpev85w8XH9bzr-Xi_ub2_mXRWkpB1lWzmHVcG6EaSirhXU1qNa2gjqQ0gAiWN5Yi5TaFjrFMC_YGCbQ2Ao4Oye3B982mLV-ijlc3OpgvN5fhLjSJub4vdNcNNhJqEFWdWWVqh3r0NoKedOBszuvTwevpxj-bPJL9Tps4pjjawpcyIoLJTNFD5SNIaXoOm39tG9kisb3GkHvqte76vVr9Vn0-R_RW9T_4OUB9_kHXt5ZE39rIZnkWsGjni_ZjWL1Ut-xv2exlaM
CitedBy_id crossref_primary_10_1007_s00202_020_01185_2
crossref_primary_10_1051_matecconf_201815001017
crossref_primary_10_1109_ACCESS_2019_2939089
crossref_primary_10_3390_en13226054
crossref_primary_10_1016_j_eswa_2025_126571
crossref_primary_10_3390_en12234457
crossref_primary_10_1109_ACCESS_2019_2922410
Cites_doi 10.1109/SEDST.2015.7315181
10.1109/SECON.2007.342943
10.1201/9780203913673
10.1109/61.97705
10.1109/TPAS.1982.317574
10.1109/TPAS.1970.292822
10.1109/59.192998
10.1109/59.852124
10.1109/PES.2008.4596742
10.1109/HICSS.2001.926269
10.1115/1.3662552
10.1109/TPAS.1970.292680
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID BSCLL
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1051/smdo/2016007
DatabaseName Istex
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1779-6288
ExternalDocumentID oai_doaj_org_article_56b1f70907494c889e3f1cc415bf0ec5
10_1051_smdo_2016007
ark_67375_80W_CT3G839T_K
GroupedDBID 4.4
5GY
5VS
8FE
8FG
AAFWJ
AAOTM
ABDBF
ABJCF
ABUBZ
ABZDU
ACACO
ACGFS
ACIWK
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BSCLL
CCPQU
CS3
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IL9
L6V
M7S
M~E
OK1
P62
PIMPY
PROAC
PTHSS
RED
AAOGA
AAYXX
ACRPL
ACUHS
ADMLS
ADNMO
AGQPQ
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c2507-4ee14b55a6ab2396ce908dcd62e077a0110c5bcc122cd0f8310f81ba361ac4053
IEDL.DBID 8FG
ISSN 1779-627X
1779-6288
IngestDate Wed Aug 27 01:24:26 EDT 2025
Fri Jul 25 12:02:19 EDT 2025
Tue Jul 01 02:10:13 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Oct 30 09:47:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2507-4ee14b55a6ab2396ce908dcd62e077a0110c5bcc122cd0f8310f81ba361ac4053
Notes dkey:10.1051/smdo/2016007
publisher-ID:smdo160004
istex:96AB2A2B378B2C364005DD23C7411F869C7F9A13
ark:/67375/80W-CT3G839T-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2056745687?pq-origsite=%requestingapplication%
PQID 2056745687
PQPubID 2040553
ParticipantIDs doaj_primary_oai_doaj_org_article_56b1f70907494c889e3f1cc415bf0ec5
proquest_journals_2056745687
crossref_citationtrail_10_1051_smdo_2016007
crossref_primary_10_1051_smdo_2016007
istex_primary_ark_67375_80W_CT3G839T_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
2016-00-00
20160101
2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle International journal for simulation and multidisciplinary design optimization
PublicationYear 2016
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R2
Schweppe (R3) 1970; 89
Beides (R9) 1991; 6
R5
Zarco (R13) 2000; 15
Kalman (R6) 1960; 82
Chen (R14) 2012; 7
R10
R12
R11
Holten (R4) 1988; 3
R15
Debs (R16) 1970; PAS-89
Girgis (R7) 1982; PAS-101
R17
Sachdev (R8) 1985; PAS-104
R1
References_xml – ident: R12
  doi: 10.1109/SEDST.2015.7315181
– ident: R15
  doi: 10.1109/SECON.2007.342943
– ident: R1
  doi: 10.1201/9780203913673
– volume: 6
  start-page: 1663
  issue: 4
  year: 1991
  ident: R9
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/61.97705
– volume: PAS-101
  start-page: 3471
  issue: 9
  year: 1982
  ident: R7
  publication-title: IEEE Transactions on Power Apparatus and System
  doi: 10.1109/TPAS.1982.317574
– volume: PAS-89
  start-page: 1670
  issue: 7
  year: 1970
  ident: R16
  publication-title: IEEE Transactions on Power Apparatus and System
  doi: 10.1109/TPAS.1970.292822
– volume: 3
  start-page: 1798
  issue: 4
  year: 1988
  ident: R4
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.192998
– volume: 15
  start-page: 216
  issue: 1
  year: 2000
  ident: R13
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.852124
– volume: 7
  start-page: 685
  issue: 3
  year: 2012
  ident: R14
  publication-title: Journal of Computers
– ident: R11
  doi: 10.1109/PES.2008.4596742
– ident: R2
  doi: 10.1109/HICSS.2001.926269
– volume: 82
  start-page: 35
  issue: Series D
  year: 1960
  ident: R6
  publication-title: Transactions of the ASME-Journal of Basic Engineering
  doi: 10.1115/1.3662552
– volume: 89
  start-page: 130
  year: 1970
  ident: R3
  publication-title: IEEE Power Apparatus and Systems
  doi: 10.1109/TPAS.1970.292680
– ident: R10
– ident: R5
– volume: PAS-104
  start-page: 4565
  issue: 12
  year: 1985
  ident: R8
  publication-title: IEEE Transactions on Power Apparatus and System
– ident: R17
SSID ssj0001878513
Score 1.9364338
Snippet State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter...
SourceID doaj
proquest
crossref
istex
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage A7
SubjectTerms Algorithms
Computer simulation
Electric power systems
Kalman filter algorithm
Kalman filters
Newton-Raphson method
Numerical stability
Power system state estimation
Random noise
State estimation
Weight least square method
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu0BQWnV5SUfgAuKcB5-5AiogECgHhaxN8ue2HTFPtCySPz8zjhhtQhVXDhFSiaRM-NkvrFnvmFsz0CIgLA-K71qMkTEZebLYLIYhWhMHUpdUHHy9Y26uK0uB3Kw1OqLcsJaeuBWcUdS-TxqQTFcXYGh22MOgH7HRxEgsZfi1aVgKq2uGGo6n7Lrta4zVehBl_WOk_DoadxMMerPiZv9jT9KtP0IU0nDL-_-zsnlnK2x1Q4r8uN2jOvsS5h8Z9-WGAQ32Mkf6nLGWz5mTtVBQ0iHwIk-o61L5JTcfs-v3GjsJjwOaYOcu9H9dDac_x3_YLdnv_unF1nXFiEDxCs6q0LIKy-lU84XZa0g1MI00KgiCK0dOXSQHiAvCmhEpE5iEcGpK1XuAPFZ-ZOtTKaT8ItxjA49AlZvvKsr1QQDMgdvahC6xtCv6LHDV-VY6DjDqXXFyKa9a5lbUqXtVNlj-wvpx5Yr4z9yJ6TnhQwxXKcTaHfb2d1-ZPceO0hWWjzFzR4oSU1La8SdPe2X54j9-vaqx7ZfzWi77_MJRyKVRuxo9OZnDGaLfaV3a5dmttnKfPYcdhCszP1umpf_AKDk5Ek
  priority: 102
  providerName: Directory of Open Access Journals
Title Power system static state estimation using Kalman filter algorithm
URI https://api.istex.fr/ark:/67375/80W-CT3G839T-K/fulltext.pdf
https://www.proquest.com/docview/2056745687
https://doaj.org/article/56b1f70907494c889e3f1cc415bf0ec5
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8RSBEvkAXNAK78Nr76kiVZNCRVWhVPRm2bN2WpFHSYLUE7-dGa-TglB72ZV2LWt3PPZ8Mx5_w9hbDT4AwvqsdHWbISIuM1d6nYUgRKsbX6qCDid_PamPzqov5_I8BdxWKa1ysybGhbpdAMXI0UmXtUJrr9X-1c-MqkbR7moqoXGf7eZoaUjP9XB0E2PRVHo-5tgr1WRUWTflvqMqflzN2gV2mxND-z9WKZL3I1glOV__t0ZHwzN8zB4lxMg_dUP8hN3z86fs4V88gs_Y4JRqnfGOlZnTGaFLiDfPiUSjO53IKcV9wo_tdGbnPFzSNjm30wn-5Ppi9pydDQ_HB0dZKo6QAaIWlVXe55WT0tbWFWVTg2-EbqGtCy-UsmTWQTqAvCigFYHqiQWEqLascwuI0soXbGe-mPuXjKOP6BC2Ou1sU9Wt1yBzcLoBoRp0AIse-7ARjoHEHE4FLKYm7mDL3JAoTRJlj73btr7qGDNuaTcgOW_bEM91fLBYTkyaNkbWLg9KkAffVKBJeUIOgKjDBeFB9tj7OErbXuzyB6WqKWm0-G4OxuUIEeDYHPfY3mYYTZqlK3OjU6_ufv2aPaCv7kIve2xnvfzl3yAYWbt-1Lg-2x0cnpx-60eXHq-jz7__AIrV36g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE-RUsAHygWt2JfX3gNCpLSkpI0qlIrejD3rDVXzKEkQ8Kf4jczsIwUhuPW00q5lyTOznm_smfkAnmn0JRKsDxKXFQEh4iRwiddBWYZhoXOfqJiLk4-GWf8kfX8qTzfgZ1sLw2mV7Z5YbdTFHPmMnIJ0mSny9lq9vvgSMGsU3662FBq1WQz8j28Usi1fHbwl_e7E8f7eaLcfNKwCAZK7V0HqfZQ6KW1mXZzkGfo81AUWWexDpSz7Q5QOMYpjLMKSibhKwnY2ySKLBG8SmvcabKZc0dqBzd7e8PjD5amOZrL7KqtfqTxgLt8m256M_-VyWsxpIRH3hP_DD1Z0AQSPWbPf__IKlavbvw23Gowq3tRGdQc2_Owu3Pytc-E96B0zu5qo-0ALrko6w-rhBbftqOshBSfVj8XATqZ2JsozvpgXdjImsa4-T-_DyZUI7gF0ZvOZfwiColJHQNlpZ_M0K7xGGaHTOYYqp5Az7sKLVjgGm17lTJkxMdWduYwMi9I0ouzCznr0Rd2j4x_jeizn9RjurF29mC_GpvlRjcxcVKqQzwzyFDWbaxkhEs5xZehRduF5paX1LHZxzslxShodfjS7o-QdYc6RGXRhu1WjafaFpbm04q3_f34K1_ujo0NzeDAcPIIbvIL64GcbOqvFV_-YoNDKPWnsT8Cnqzb5X6H4GZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+system+static+state+estimation+using+Kalman+filter+algorithm&rft.jtitle=International+journal+for+simulation+and+multidisciplinary+design+optimization&rft.au=Saikia%2C+Anupam&rft.au=Mehta%2C+Ram+Krishna&rft.date=2016&rft.issn=1779-627X&rft.eissn=1779-6288&rft.volume=7&rft.spage=A7&rft_id=info:doi/10.1051%2Fsmdo%2F2016007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_smdo_2016007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1779-627X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1779-627X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1779-627X&client=summon