Power system static state estimation using Kalman filter algorithm
State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Ne...
Saved in:
Published in | International journal for simulation and multidisciplinary design optimization Vol. 7; p. A7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1779-627X 1779-6288 1779-6288 |
DOI | 10.1051/smdo/2016007 |
Cover
Abstract | State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS) method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates. |
---|---|
AbstractList | State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS) method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates. |
Author | Saikia, Anupam Mehta, Ram Krishna |
Author_xml | – sequence: 1 givenname: Anupam surname: Saikia fullname: Saikia, Anupam email: anupam.saikia9@gmail.com organization: Electrical Department, North Eastern Regional Institute of Science and Technology (NERIST), Itanagar, Arunachal Pradesh791109, India – sequence: 2 givenname: Ram Krishna surname: Mehta fullname: Mehta, Ram Krishna organization: Electrical Department, North Eastern Regional Institute of Science and Technology (NERIST), Itanagar, Arunachal Pradesh791109, India |
BookMark | eNp1kc1O3DAUhS0EEhTY9QEiddsw99rxT5btqFDESHQxiO4sx3GmniYxtTOCeft6ZoBFpW58bes7R8fHH8jxGEZHyEeEKwSOszS0YUYBBYA8ImcoZV0KqtTx-17-PCWXKa0BAJVUHNkZ-fojPLtYpG2a3FCkyUze7ocrXJr8kM9hLDbJj6vizvSDGYvO91OWmH4Vop9-DRfkpDN9cpev85w8XH9bzr-Xi_ub2_mXRWkpB1lWzmHVcG6EaSirhXU1qNa2gjqQ0gAiWN5Yi5TaFjrFMC_YGCbQ2Ao4Oye3B982mLV-ijlc3OpgvN5fhLjSJub4vdNcNNhJqEFWdWWVqh3r0NoKedOBszuvTwevpxj-bPJL9Tps4pjjawpcyIoLJTNFD5SNIaXoOm39tG9kisb3GkHvqte76vVr9Vn0-R_RW9T_4OUB9_kHXt5ZE39rIZnkWsGjni_ZjWL1Ut-xv2exlaM |
CitedBy_id | crossref_primary_10_1007_s00202_020_01185_2 crossref_primary_10_1051_matecconf_201815001017 crossref_primary_10_1109_ACCESS_2019_2939089 crossref_primary_10_3390_en13226054 crossref_primary_10_1016_j_eswa_2025_126571 crossref_primary_10_3390_en12234457 crossref_primary_10_1109_ACCESS_2019_2922410 |
Cites_doi | 10.1109/SEDST.2015.7315181 10.1109/SECON.2007.342943 10.1201/9780203913673 10.1109/61.97705 10.1109/TPAS.1982.317574 10.1109/TPAS.1970.292822 10.1109/59.192998 10.1109/59.852124 10.1109/PES.2008.4596742 10.1109/HICSS.2001.926269 10.1115/1.3662552 10.1109/TPAS.1970.292680 |
ContentType | Journal Article |
Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | BSCLL AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1051/smdo/2016007 |
DatabaseName | Istex CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1779-6288 |
ExternalDocumentID | oai_doaj_org_article_56b1f70907494c889e3f1cc415bf0ec5 10_1051_smdo_2016007 ark_67375_80W_CT3G839T_K |
GroupedDBID | 4.4 5GY 5VS 8FE 8FG AAFWJ AAOTM ABDBF ABJCF ABUBZ ABZDU ACACO ACGFS ACIWK ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BSCLL CCPQU CS3 EBS EJD GI~ GROUPED_DOAJ HCIFZ IL9 L6V M7S M~E OK1 P62 PIMPY PROAC PTHSS RED AAOGA AAYXX ACRPL ACUHS ADMLS ADNMO AGQPQ CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c2507-4ee14b55a6ab2396ce908dcd62e077a0110c5bcc122cd0f8310f81ba361ac4053 |
IEDL.DBID | 8FG |
ISSN | 1779-627X 1779-6288 |
IngestDate | Wed Aug 27 01:24:26 EDT 2025 Fri Jul 25 12:02:19 EDT 2025 Tue Jul 01 02:10:13 EDT 2025 Thu Apr 24 23:00:38 EDT 2025 Wed Oct 30 09:47:44 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2507-4ee14b55a6ab2396ce908dcd62e077a0110c5bcc122cd0f8310f81ba361ac4053 |
Notes | dkey:10.1051/smdo/2016007 publisher-ID:smdo160004 istex:96AB2A2B378B2C364005DD23C7411F869C7F9A13 ark:/67375/80W-CT3G839T-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2056745687?pq-origsite=%requestingapplication% |
PQID | 2056745687 |
PQPubID | 2040553 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_56b1f70907494c889e3f1cc415bf0ec5 proquest_journals_2056745687 crossref_citationtrail_10_1051_smdo_2016007 crossref_primary_10_1051_smdo_2016007 istex_primary_ark_67375_80W_CT3G839T_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016 2016-00-00 20160101 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | International journal for simulation and multidisciplinary design optimization |
PublicationYear | 2016 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | R2 Schweppe (R3) 1970; 89 Beides (R9) 1991; 6 R5 Zarco (R13) 2000; 15 Kalman (R6) 1960; 82 Chen (R14) 2012; 7 R10 R12 R11 Holten (R4) 1988; 3 R15 Debs (R16) 1970; PAS-89 Girgis (R7) 1982; PAS-101 R17 Sachdev (R8) 1985; PAS-104 R1 |
References_xml | – ident: R12 doi: 10.1109/SEDST.2015.7315181 – ident: R15 doi: 10.1109/SECON.2007.342943 – ident: R1 doi: 10.1201/9780203913673 – volume: 6 start-page: 1663 issue: 4 year: 1991 ident: R9 publication-title: IEEE Transactions on Power Delivery doi: 10.1109/61.97705 – volume: PAS-101 start-page: 3471 issue: 9 year: 1982 ident: R7 publication-title: IEEE Transactions on Power Apparatus and System doi: 10.1109/TPAS.1982.317574 – volume: PAS-89 start-page: 1670 issue: 7 year: 1970 ident: R16 publication-title: IEEE Transactions on Power Apparatus and System doi: 10.1109/TPAS.1970.292822 – volume: 3 start-page: 1798 issue: 4 year: 1988 ident: R4 publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.192998 – volume: 15 start-page: 216 issue: 1 year: 2000 ident: R13 publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.852124 – volume: 7 start-page: 685 issue: 3 year: 2012 ident: R14 publication-title: Journal of Computers – ident: R11 doi: 10.1109/PES.2008.4596742 – ident: R2 doi: 10.1109/HICSS.2001.926269 – volume: 82 start-page: 35 issue: Series D year: 1960 ident: R6 publication-title: Transactions of the ASME-Journal of Basic Engineering doi: 10.1115/1.3662552 – volume: 89 start-page: 130 year: 1970 ident: R3 publication-title: IEEE Power Apparatus and Systems doi: 10.1109/TPAS.1970.292680 – ident: R10 – ident: R5 – volume: PAS-104 start-page: 4565 issue: 12 year: 1985 ident: R8 publication-title: IEEE Transactions on Power Apparatus and System – ident: R17 |
SSID | ssj0001878513 |
Score | 1.9364338 |
Snippet | State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter... |
SourceID | doaj proquest crossref istex |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | A7 |
SubjectTerms | Algorithms Computer simulation Electric power systems Kalman filter algorithm Kalman filters Newton-Raphson method Numerical stability Power system state estimation Random noise State estimation Weight least square method |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu0BQWnV5SUfgAuKcB5-5AiogECgHhaxN8ue2HTFPtCySPz8zjhhtQhVXDhFSiaRM-NkvrFnvmFsz0CIgLA-K71qMkTEZebLYLIYhWhMHUpdUHHy9Y26uK0uB3Kw1OqLcsJaeuBWcUdS-TxqQTFcXYGh22MOgH7HRxEgsZfi1aVgKq2uGGo6n7Lrta4zVehBl_WOk_DoadxMMerPiZv9jT9KtP0IU0nDL-_-zsnlnK2x1Q4r8uN2jOvsS5h8Z9-WGAQ32Mkf6nLGWz5mTtVBQ0iHwIk-o61L5JTcfs-v3GjsJjwOaYOcu9H9dDac_x3_YLdnv_unF1nXFiEDxCs6q0LIKy-lU84XZa0g1MI00KgiCK0dOXSQHiAvCmhEpE5iEcGpK1XuAPFZ-ZOtTKaT8ItxjA49AlZvvKsr1QQDMgdvahC6xtCv6LHDV-VY6DjDqXXFyKa9a5lbUqXtVNlj-wvpx5Yr4z9yJ6TnhQwxXKcTaHfb2d1-ZPceO0hWWjzFzR4oSU1La8SdPe2X54j9-vaqx7ZfzWi77_MJRyKVRuxo9OZnDGaLfaV3a5dmttnKfPYcdhCszP1umpf_AKDk5Ek priority: 102 providerName: Directory of Open Access Journals |
Title | Power system static state estimation using Kalman filter algorithm |
URI | https://api.istex.fr/ark:/67375/80W-CT3G839T-K/fulltext.pdf https://www.proquest.com/docview/2056745687 https://doaj.org/article/56b1f70907494c889e3f1cc415bf0ec5 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8RSBEvkAXNAK78Nr76kiVZNCRVWhVPRm2bN2WpFHSYLUE7-dGa-TglB72ZV2LWt3PPZ8Mx5_w9hbDT4AwvqsdHWbISIuM1d6nYUgRKsbX6qCDid_PamPzqov5_I8BdxWKa1ysybGhbpdAMXI0UmXtUJrr9X-1c-MqkbR7moqoXGf7eZoaUjP9XB0E2PRVHo-5tgr1WRUWTflvqMqflzN2gV2mxND-z9WKZL3I1glOV__t0ZHwzN8zB4lxMg_dUP8hN3z86fs4V88gs_Y4JRqnfGOlZnTGaFLiDfPiUSjO53IKcV9wo_tdGbnPFzSNjm30wn-5Ppi9pydDQ_HB0dZKo6QAaIWlVXe55WT0tbWFWVTg2-EbqGtCy-UsmTWQTqAvCigFYHqiQWEqLascwuI0soXbGe-mPuXjKOP6BC2Ou1sU9Wt1yBzcLoBoRp0AIse-7ARjoHEHE4FLKYm7mDL3JAoTRJlj73btr7qGDNuaTcgOW_bEM91fLBYTkyaNkbWLg9KkAffVKBJeUIOgKjDBeFB9tj7OErbXuzyB6WqKWm0-G4OxuUIEeDYHPfY3mYYTZqlK3OjU6_ufv2aPaCv7kIve2xnvfzl3yAYWbt-1Lg-2x0cnpx-60eXHq-jz7__AIrV36g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE-RUsAHygWt2JfX3gNCpLSkpI0qlIrejD3rDVXzKEkQ8Kf4jczsIwUhuPW00q5lyTOznm_smfkAnmn0JRKsDxKXFQEh4iRwiddBWYZhoXOfqJiLk4-GWf8kfX8qTzfgZ1sLw2mV7Z5YbdTFHPmMnIJ0mSny9lq9vvgSMGsU3662FBq1WQz8j28Usi1fHbwl_e7E8f7eaLcfNKwCAZK7V0HqfZQ6KW1mXZzkGfo81AUWWexDpSz7Q5QOMYpjLMKSibhKwnY2ySKLBG8SmvcabKZc0dqBzd7e8PjD5amOZrL7KqtfqTxgLt8m256M_-VyWsxpIRH3hP_DD1Z0AQSPWbPf__IKlavbvw23Gowq3tRGdQc2_Owu3Pytc-E96B0zu5qo-0ALrko6w-rhBbftqOshBSfVj8XATqZ2JsozvpgXdjImsa4-T-_DyZUI7gF0ZvOZfwiColJHQNlpZ_M0K7xGGaHTOYYqp5Az7sKLVjgGm17lTJkxMdWduYwMi9I0ouzCznr0Rd2j4x_jeizn9RjurF29mC_GpvlRjcxcVKqQzwzyFDWbaxkhEs5xZehRduF5paX1LHZxzslxShodfjS7o-QdYc6RGXRhu1WjafaFpbm04q3_f34K1_ujo0NzeDAcPIIbvIL64GcbOqvFV_-YoNDKPWnsT8Cnqzb5X6H4GZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+system+static+state+estimation+using+Kalman+filter+algorithm&rft.jtitle=International+journal+for+simulation+and+multidisciplinary+design+optimization&rft.au=Saikia%2C+Anupam&rft.au=Mehta%2C+Ram+Krishna&rft.date=2016&rft.issn=1779-627X&rft.eissn=1779-6288&rft.volume=7&rft.spage=A7&rft_id=info:doi/10.1051%2Fsmdo%2F2016007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_smdo_2016007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1779-627X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1779-627X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1779-627X&client=summon |