“Small amount for multiple times” of H2O2 feeding way in MoS2-Fex heterogeneous fenton for enhancing sulfadiazine degradation
In recent years, MoS2 catalyzed/cocatalyzed Fenton/Fenton-like systems have attracted wide attention in the field of pollution control, but there are few studies on the effect of H2O2 feeding way on the whole Fenton process. Here, we report a new type of composite catalyst (MoS2-Fex) prepared in a s...
Saved in:
Cover
Loading…
Abstract | In recent years, MoS2 catalyzed/cocatalyzed Fenton/Fenton-like systems have attracted wide attention in the field of pollution control, but there are few studies on the effect of H2O2 feeding way on the whole Fenton process. Here, we report a new type of composite catalyst (MoS2-Fex) prepared in a simple way with highly dispersed iron to provide more active sites. MoS2-Fex was proved to possess selectivity for singlet oxygen (1O2) in effectively degrading sulfadiazine with a wide pH adaptability (4.0∼10.0). Importantly, the mechanism of the interaction between H2O2 and MoS2 on the Fenton reaction activity was revealed through the combination of experiment and density functional theory (DFT) calculations. Compared to the traditional “a large amount for one time” feeding way of H2O2, the “small amount for multiple times” of H2O2 feeding way can increase the degradation rate of sulfadiazine from 36.9% to 91.1% in the MoS2-Fex heterogeneous Fenton system. It is demonstrated that the “small amount for multiple times” of H2O2 feeding way can reduce the side reaction of decomposition of H2O2 by MoS2 and effectively improve the utilization rate of H2O2 and the stability of MoS2-Fex. Compared with Fe2O3-based Fenton system, MoS2-Fex can significantly save the amount of H2O2. Compared with nano-iron powder, the formation of iron sludge in MoS2-Fex system was significantly reduced. Furthermore, long-term degradation test showed that the MoS2-Fe75/H2O2 system could maintain the effectiveness of degrading organic pollutants for 10 days (or even longer). This study has a guiding significance for the large-scale treatment of industrial wastewater by improved Fenton technology in the future.
[Display omitted] In this work, we successfully prepared highly dispersed iron on MoS2 by a simple reduction method which can effectively degrade sulfadiazine and other pollutants when the initial pH is 10. Meanwhile, we further studied the interaction between MoS2 and H2O2 and proposed "small amount for multiple times" feeding way of H2O2. |
---|---|
AbstractList | In recent years, MoS2 catalyzed/cocatalyzed Fenton/Fenton-like systems have attracted wide attention in the field of pollution control, but there are few studies on the effect of H2O2 feeding way on the whole Fenton process. Here, we report a new type of composite catalyst (MoS2-Fex) prepared in a simple way with highly dispersed iron to provide more active sites. MoS2-Fex was proved to possess selectivity for singlet oxygen (1O2) in effectively degrading sulfadiazine with a wide pH adaptability (4.0∼10.0). Importantly, the mechanism of the interaction between H2O2 and MoS2 on the Fenton reaction activity was revealed through the combination of experiment and density functional theory (DFT) calculations. Compared to the traditional “a large amount for one time” feeding way of H2O2, the “small amount for multiple times” of H2O2 feeding way can increase the degradation rate of sulfadiazine from 36.9% to 91.1% in the MoS2-Fex heterogeneous Fenton system. It is demonstrated that the “small amount for multiple times” of H2O2 feeding way can reduce the side reaction of decomposition of H2O2 by MoS2 and effectively improve the utilization rate of H2O2 and the stability of MoS2-Fex. Compared with Fe2O3-based Fenton system, MoS2-Fex can significantly save the amount of H2O2. Compared with nano-iron powder, the formation of iron sludge in MoS2-Fex system was significantly reduced. Furthermore, long-term degradation test showed that the MoS2-Fe75/H2O2 system could maintain the effectiveness of degrading organic pollutants for 10 days (or even longer). This study has a guiding significance for the large-scale treatment of industrial wastewater by improved Fenton technology in the future.
[Display omitted] In this work, we successfully prepared highly dispersed iron on MoS2 by a simple reduction method which can effectively degrade sulfadiazine and other pollutants when the initial pH is 10. Meanwhile, we further studied the interaction between MoS2 and H2O2 and proposed "small amount for multiple times" feeding way of H2O2. In recent years,MOS2 catalyzed/cocatalyzed Fenton/Fenton-like systems have attracted wide attention in the field of pollution control,but there are few studies on the effect of H2O2 feeding way on the whole Fenton process.Here,we report a new type of composite catalyst(MoS2-Fex)prepared in a simple way with highly dispersed iron to provide more active sites.MoS2-Fex was proved to possess selectivity for singlet oxygen(1O2)in effectively degrading sulfadiazine with a wide pH adaptability(4.0~10.0).Impor-tantly,the mechanism of the interaction between H2O2 and MoS2 on the Fenton reaction activity was revealed through the combination of experiment and density functional theory(DFT)calculations.Com-pared to the traditional"a large amount for one time"feeding way of H2O2,the"small amount for mul-tiple times"of H2O2 feeding way can increase the degradation rate of sulfadiazine from 36.9%to 91.1%in the MoS2-Fex heterogeneous Fenton system.It is demonstrated that the"small amount for multiple times"of H2O2 feeding way can reduce the side reaction of decomposition of H2O2 by MoS2 and effec-tively improve the utilization rate of H2O2 and the stability of MoS2-Fex.Compared with Fe2O3-based Fenton system,MoS2-Fex can significantly save the amount of H2O2.Compared with nano-iron pow-der,the formation of iron sludge in MoS2-Fex system was significantly reduced.Furthermore,long-term degradation test showed that the MoS2-Fe75/H2O2 system could maintain the effectiveness of degrading organic pollutants for 10 days(or even longer).This study has a guiding significance for the large-scale treatment of industrial wastewater by improved Fenton technology in the future. |
Author | Yan, Qingyun Zhang, Jinlong Chen, Zhuan Xing, Mingyang Lian, Cheng Huang, Kai Ji, Jiahui |
AuthorAffiliation | Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China;Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization,East China University of Science and Technology,Shanghai 200237,China%Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China |
AuthorAffiliation_xml | – name: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China;Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization,East China University of Science and Technology,Shanghai 200237,China%Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China |
Author_xml | – sequence: 1 givenname: Zhuan surname: Chen fullname: Chen, Zhuan organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 2 givenname: Cheng surname: Lian fullname: Lian, Cheng organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 3 givenname: Kai surname: Huang fullname: Huang, Kai organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 4 givenname: Jiahui surname: Ji fullname: Ji, Jiahui organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 5 givenname: Qingyun surname: Yan fullname: Yan, Qingyun organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 6 givenname: Jinlong surname: Zhang fullname: Zhang, Jinlong organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 7 givenname: Mingyang orcidid: 0000-0002-0518-2849 surname: Xing fullname: Xing, Mingyang email: mingyangxing@ecust.edu.cn organization: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China |
BookMark | eNqFkMtu1TAQhi1UJNrCE7DxjlWC7dycBQtUUYpU1EVhbU0mkxwfErtyHHpZlfeAl-uT4HMOKxawGmv0f__I3wk7ct4RY6-lyKWQ9dttjjhRzJVQMhc6T7tn7FjqRmdVW5dH6S2EzHQpmxfsZFm2Qiiti_qY_Xh6_Hk9wzRxmP3qIh984PM6RXszEY92puXp8Rf3A79QV4oPRL11I7-Fe24d_-yvVXZOd3xDkYIfyZFfl5Ry0bt9FbkNONwhyzoN0Ft4sI54T2OAHqL17iV7PsC00Ks_85R9Pf_w5ewiu7z6-Ons_WWGqhJ1hkOJoqCeEDqQqq7aolGikK3oG8QKm67VRVs2ErRChaDqtup60dUaQUBZF6fszaH3FtwAbjRbvwaXLpqHcXP3rUvuUp8odsnikMTglyXQYG6CnSHcGynMzrfZmr1vs_NthDZpl6j2Lwpt3P8wBrDTf9h3B5aSgO-WglnQksMkOxBG03v7T_43Bl-iRg |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_01_109 crossref_primary_10_1021_acsestengg_2c00287 crossref_primary_10_1007_s11164_022_04895_3 crossref_primary_10_1016_j_cej_2024_150934 crossref_primary_10_1021_acsestengg_2c00365 crossref_primary_10_1007_s40843_023_2722_y crossref_primary_10_1016_j_watres_2024_122621 crossref_primary_10_1016_j_scib_2023_04_011 crossref_primary_10_1039_D4NR05063K crossref_primary_10_1016_j_jorganchem_2024_123293 crossref_primary_10_1021_acs_energyfuels_4c00325 crossref_primary_10_1016_j_chemosphere_2024_141582 crossref_primary_10_1016_j_apsusc_2024_160181 crossref_primary_10_1016_j_seppur_2024_129198 crossref_primary_10_1016_j_cej_2024_154668 crossref_primary_10_1016_j_cclet_2025_110955 crossref_primary_10_1039_D3EN00074E crossref_primary_10_1002_adma_202403965 crossref_primary_10_1016_j_jece_2022_107867 crossref_primary_10_1016_j_cej_2023_147000 crossref_primary_10_1016_j_apsusc_2022_155495 crossref_primary_10_1021_acsanm_4c04204 crossref_primary_10_1002_ange_202421797 crossref_primary_10_1016_j_cej_2023_142466 crossref_primary_10_1016_j_jece_2024_113890 crossref_primary_10_1016_j_jhazmat_2024_136794 crossref_primary_10_1016_j_colsurfa_2024_133184 crossref_primary_10_2139_ssrn_4168539 crossref_primary_10_1016_j_apcatb_2023_122832 crossref_primary_10_1016_j_cej_2022_138624 crossref_primary_10_1002_cjoc_202400303 crossref_primary_10_1016_j_apsusc_2023_156913 crossref_primary_10_1016_j_cclet_2024_110320 crossref_primary_10_1016_j_seppur_2023_123345 crossref_primary_10_1016_j_jhazmat_2022_129672 crossref_primary_10_1073_pnas_2218813120 crossref_primary_10_1016_j_jhazmat_2022_129723 crossref_primary_10_1016_j_watres_2024_122488 crossref_primary_10_1016_j_cej_2023_143147 crossref_primary_10_1016_j_cej_2024_151126 crossref_primary_10_1021_acsestengg_3c00195 crossref_primary_10_1021_acs_langmuir_4c00057 crossref_primary_10_1002_anie_202421797 crossref_primary_10_1021_acsanm_2c05448 crossref_primary_10_1039_D2EN00045H crossref_primary_10_1016_j_efmat_2022_04_001 crossref_primary_10_1016_j_jes_2022_06_031 crossref_primary_10_1016_j_jece_2022_108411 crossref_primary_10_1016_j_seppur_2022_121978 crossref_primary_10_3390_catal14040267 crossref_primary_10_1016_j_scib_2023_02_031 crossref_primary_10_1002_adma_202202929 crossref_primary_10_1021_acscatal_2c04484 crossref_primary_10_1016_j_seppur_2023_125381 crossref_primary_10_1039_D3NJ00771E crossref_primary_10_1016_j_jece_2023_111190 crossref_primary_10_1016_j_jhazmat_2024_134835 |
Cites_doi | 10.1016/j.cclet.2019.08.055 10.1016/S0022-0728(98)00148-X 10.1021/acs.est.7b03570 10.1016/j.apcatb.2008.04.029 10.1021/acs.est.8b03882 10.1016/j.watres.2017.12.079 10.1016/0021-9517(84)90259-8 10.1021/acs.chemrev.8b00299 10.1021/es404118q 10.1021/am301829u 10.1021/acs.est.9b01676 10.1021/cr900136g 10.1016/j.radphyschem.2005.08.015 10.1016/j.cclet.2020.08.002 10.1016/j.watres.2018.08.039 10.1021/acs.est.9b03342 10.1021/acs.est.6b05906 10.1016/j.jece.2020.104125 10.1016/j.jhazmat.2008.11.043 10.1016/j.chempr.2018.03.002 10.1021/acs.est.8b02403 10.1016/j.cej.2019.04.101 10.1016/j.apcatb.2021.119930 10.1038/s41598-016-0001-8 10.1002/anie.202006059 10.1021/acs.est.8b00092 10.1039/C8QI00012C 10.1016/j.jhazmat.2020.123297 10.1016/j.cclet.2019.05.039 10.1021/acsami.7b08967 10.1016/j.saa.2016.09.053 |
ContentType | Journal Article |
Copyright | 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2021.08.016 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5964 |
EndPage | 1372 |
ExternalDocumentID | zghxkb202203036 10_1016_j_cclet_2021_08_016 S1001841721005908 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP UNMZH UZ4 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c2506-cf4c03edecaba1265937203190d7cc5c7b9839471a82c2ca2695bd0b68ca0a463 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:21 EDT 2025 Thu Apr 24 22:50:49 EDT 2025 Tue Jul 01 03:19:02 EDT 2025 Fri Feb 23 02:40:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Co-catalytic Fenton reaction Hydrogen peroxide Singlet oxygen Molybdenum sulfide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2506-cf4c03edecaba1265937203190d7cc5c7b9839471a82c2ca2695bd0b68ca0a463 |
ORCID | 0000-0002-0518-2849 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_zghxkb202203036 crossref_primary_10_1016_j_cclet_2021_08_016 crossref_citationtrail_10_1016_j_cclet_2021_08_016 elsevier_sciencedirect_doi_10_1016_j_cclet_2021_08_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization,East China University of Science and Technology,Shanghai 200237,China%Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China |
Publisher_xml | – name: Elsevier B.V – name: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China – name: Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization,East China University of Science and Technology,Shanghai 200237,China%Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering,Feringa Nobel Prize Scientist Joint Research Center,Frontiers Science Center for Materiobiology and Dynamic Chemistry,Institute of Fine Chemicals,School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China |
References | Lei, You, Pan (bib0006) 2019; 30 Yin, Shi, Li (bib0007) 2019; 53 Zhu, Zhu, Xi (bib0030) 2019; 255 Kuang, He, Li (bib0017) 2020; 417 Zeng, Deng, Zhang (bib0031) 2020; 400 Gao, Liao, Zhang (bib0022) 2020; 32 Wang, Qiu, Pang (bib0023) 2019; 371 Ji, Aleisa, Duan (bib0034) 2020; 23 Shen, Cui, Zhang (bib0018) 2020; 8 Rauf, Ashraf (bib0025) 2009; 166 Chen, Shang, Tao (bib0002) 2018; 52 Sun, Zhou, Liu (bib0024) 2012; 4 Yi, Ji, Shen (bib0027) 2019; 53 Tang, Wang (bib0008) 2018; 52 Dong, Ji, Shen (bib0011) 2018; 52 Du, Yi, Ji (bib0005) 2020; 31 Zhu, Ji, Liu (bib0033) 2020; 59 Dong, Bao, Sheng (bib0032) 2021; 286 Xing, Xu, Dong (bib0010) 2018; 4 Patel, Kumar, Kishor (bib0001) 2019; 119 Zhang, Shi, Zhu (bib0021) 2017; 9 Brillas, Sirés, Oturan (bib0013) 2009; 109 Niu, Yao, Zhou (bib0029) 1998; 455 Stencel, Makovsky, Sarkus (bib0028) 1984; 90 Zhou, Liu, Dong (bib0020) 2017; 173 Liu, Dong, Deng (bib0015) 2018; 145 Chuang, Chen, Chinn (bib0003) 2017; 51 Fang, Huang, Liu (bib0016) 2018; 5 Yang, Pignatello, Ma (bib0004) 2014; 48 Wang, Liu, Zhou (bib0009) 2019; 30 Deng, Jiang, Zhang (bib0014) 2008; 84 Yang, Sun, Zhang (bib0019) 2016; 6 Matafonova, Batoev (bib0035) 2018; 132 Hou, Huang, Jia (bib0012) 2017; 51 Wasiewicz, Chmielewski, Getoff (bib0026) 2006; 75 Zhou (10.1016/j.cclet.2021.08.016_bib0020) 2017; 173 Chen (10.1016/j.cclet.2021.08.016_bib0002) 2018; 52 Dong (10.1016/j.cclet.2021.08.016_bib0032) 2021; 286 Matafonova (10.1016/j.cclet.2021.08.016_bib0035) 2018; 132 Brillas (10.1016/j.cclet.2021.08.016_bib0013) 2009; 109 Tang (10.1016/j.cclet.2021.08.016_bib0008) 2018; 52 Xing (10.1016/j.cclet.2021.08.016_bib0010) 2018; 4 Sun (10.1016/j.cclet.2021.08.016_bib0024) 2012; 4 Lei (10.1016/j.cclet.2021.08.016_bib0006) 2019; 30 Zhang (10.1016/j.cclet.2021.08.016_bib0021) 2017; 9 Zeng (10.1016/j.cclet.2021.08.016_bib0031) 2020; 400 Gao (10.1016/j.cclet.2021.08.016_bib0022) 2020; 32 Yang (10.1016/j.cclet.2021.08.016_bib0004) 2014; 48 Chuang (10.1016/j.cclet.2021.08.016_bib0003) 2017; 51 Wang (10.1016/j.cclet.2021.08.016_bib0009) 2019; 30 Yin (10.1016/j.cclet.2021.08.016_bib0007) 2019; 53 Fang (10.1016/j.cclet.2021.08.016_bib0016) 2018; 5 Niu (10.1016/j.cclet.2021.08.016_bib0029) 1998; 455 Yi (10.1016/j.cclet.2021.08.016_bib0027) 2019; 53 Dong (10.1016/j.cclet.2021.08.016_bib0011) 2018; 52 Wasiewicz (10.1016/j.cclet.2021.08.016_bib0026) 2006; 75 Stencel (10.1016/j.cclet.2021.08.016_bib0028) 1984; 90 Du (10.1016/j.cclet.2021.08.016_bib0005) 2020; 31 Hou (10.1016/j.cclet.2021.08.016_bib0012) 2017; 51 Yang (10.1016/j.cclet.2021.08.016_bib0019) 2016; 6 Kuang (10.1016/j.cclet.2021.08.016_bib0017) 2020; 417 Zhu (10.1016/j.cclet.2021.08.016_bib0033) 2020; 59 Shen (10.1016/j.cclet.2021.08.016_bib0018) 2020; 8 Liu (10.1016/j.cclet.2021.08.016_bib0015) 2018; 145 Patel (10.1016/j.cclet.2021.08.016_bib0001) 2019; 119 Deng (10.1016/j.cclet.2021.08.016_bib0014) 2008; 84 Rauf (10.1016/j.cclet.2021.08.016_bib0025) 2009; 166 Ji (10.1016/j.cclet.2021.08.016_bib0034) 2020; 23 Wang (10.1016/j.cclet.2021.08.016_bib0023) 2019; 371 Zhu (10.1016/j.cclet.2021.08.016_bib0030) 2019; 255 |
References_xml | – volume: 4 start-page: 6235 year: 2012 end-page: 6241 ident: bib0024 publication-title: Acs Appl. Mater. Inter. – volume: 417 year: 2020 ident: bib0017 publication-title: Chem. Eng. J. – volume: 455 start-page: 205 year: 1998 end-page: 207 ident: bib0029 publication-title: J. Electroanal. Chem. – volume: 255 year: 2019 ident: bib0030 publication-title: Appl. Catal. B: Environ. – volume: 132 start-page: 177 year: 2018 end-page: 189 ident: bib0035 publication-title: Water Res. – volume: 109 start-page: 6570 year: 2009 end-page: 6631 ident: bib0013 publication-title: Chem. Rev. – volume: 90 start-page: 314 year: 1984 end-page: 322 ident: bib0028 publication-title: J. Catal. – volume: 48 start-page: 2344 year: 2014 end-page: 2351 ident: bib0004 publication-title: Environ. Sci. Technol. – volume: 145 start-page: 312 year: 2018 end-page: 320 ident: bib0015 publication-title: Water Res – volume: 400 year: 2020 ident: bib0031 publication-title: J. Hazard. Mater. – volume: 30 start-page: 2216 year: 2019 end-page: 2220 ident: bib0006 publication-title: Chin. Chem. Lett. – volume: 371 start-page: 842 year: 2019 end-page: 847 ident: bib0023 publication-title: Chem. Eng. J. – volume: 53 start-page: 9725 year: 2019 end-page: 9733 ident: bib0027 publication-title: Environ. Sci. Technol. – volume: 8 year: 2020 ident: bib0018 publication-title: J. Environ. Chem. Eng. – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: bib0010 publication-title: Chem. – volume: 30 start-page: 2231 year: 2019 end-page: 2235 ident: bib0009 publication-title: Chin. Chem. Lett. – volume: 59 start-page: 13968 year: 2020 end-page: 13976 ident: bib0033 publication-title: Angew. Chem. Int. Ed. – volume: 32 year: 2020 ident: bib0022 publication-title: Adv. Mater. – volume: 52 start-page: 12656 year: 2018 end-page: 12666 ident: bib0002 publication-title: Environ. Sci. Technol. – volume: 173 start-page: 544 year: 2017 end-page: 548 ident: bib0020 publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc. – volume: 119 start-page: 3510 year: 2019 end-page: 3673 ident: bib0001 publication-title: Chem. Rev. – volume: 84 start-page: 468 year: 2008 end-page: 473 ident: bib0014 publication-title: Appl. Catal. B: Environ. – volume: 5 start-page: 827 year: 2018 end-page: 834 ident: bib0016 publication-title: Inorg. Chem. Front. – volume: 9 start-page: 32720 year: 2017 end-page: 32726 ident: bib0021 publication-title: Acs Appl. Mater. Inter. – volume: 31 start-page: 2803 year: 2020 end-page: 2808 ident: bib0005 publication-title: Chin. Chem. Lett. – volume: 75 start-page: 201 year: 2006 end-page: 209 ident: bib0026 publication-title: Radiat. Phys. Chem. – volume: 51 start-page: 13859 year: 2017 end-page: 13868 ident: bib0003 publication-title: Environ. Sci. Technol. – volume: 6 start-page: 1 year: 2016 end-page: 12 ident: bib0019 publication-title: Sci. Rep. – volume: 52 start-page: 11297 year: 2018 end-page: 11308 ident: bib0011 publication-title: Environ. Sci. Technol. – volume: 23 year: 2020 ident: bib0034 publication-title: iScience. – volume: 166 start-page: 6 year: 2009 end-page: 16 ident: bib0025 publication-title: J. Hazard. Mater. – volume: 51 start-page: 5118 year: 2017 end-page: 5126 ident: bib0012 publication-title: Environ. Sci. Technol. – volume: 53 start-page: 11391 year: 2019 end-page: 11400 ident: bib0007 publication-title: Environ. Sci. Technol. – volume: 52 start-page: 5367 year: 2018 end-page: 5377 ident: bib0008 publication-title: Environ. Sci. Technol. – volume: 286 year: 2021 ident: bib0032 publication-title: Appl. Catal. B: Environ. – volume: 30 start-page: 2231 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0009 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.08.055 – volume: 455 start-page: 205 year: 1998 ident: 10.1016/j.cclet.2021.08.016_bib0029 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(98)00148-X – volume: 51 start-page: 13859 year: 2017 ident: 10.1016/j.cclet.2021.08.016_bib0003 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03570 – volume: 84 start-page: 468 year: 2008 ident: 10.1016/j.cclet.2021.08.016_bib0014 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2008.04.029 – volume: 255 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0030 publication-title: Appl. Catal. B: Environ. – volume: 52 start-page: 12656 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0002 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03882 – volume: 132 start-page: 177 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0035 publication-title: Water Res. doi: 10.1016/j.watres.2017.12.079 – volume: 90 start-page: 314 year: 1984 ident: 10.1016/j.cclet.2021.08.016_bib0028 publication-title: J. Catal. doi: 10.1016/0021-9517(84)90259-8 – volume: 119 start-page: 3510 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0001 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00299 – volume: 48 start-page: 2344 year: 2014 ident: 10.1016/j.cclet.2021.08.016_bib0004 publication-title: Environ. Sci. Technol. doi: 10.1021/es404118q – volume: 4 start-page: 6235 year: 2012 ident: 10.1016/j.cclet.2021.08.016_bib0024 publication-title: Acs Appl. Mater. Inter. doi: 10.1021/am301829u – volume: 53 start-page: 9725 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0027 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01676 – volume: 109 start-page: 6570 year: 2009 ident: 10.1016/j.cclet.2021.08.016_bib0013 publication-title: Chem. Rev. doi: 10.1021/cr900136g – volume: 75 start-page: 201 year: 2006 ident: 10.1016/j.cclet.2021.08.016_bib0026 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2005.08.015 – volume: 31 start-page: 2803 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0005 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.08.002 – volume: 145 start-page: 312 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0015 publication-title: Water Res doi: 10.1016/j.watres.2018.08.039 – volume: 53 start-page: 11391 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0007 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03342 – volume: 51 start-page: 5118 year: 2017 ident: 10.1016/j.cclet.2021.08.016_bib0012 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05906 – volume: 8 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0018 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104125 – volume: 166 start-page: 6 year: 2009 ident: 10.1016/j.cclet.2021.08.016_bib0025 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.11.043 – volume: 4 start-page: 1359 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0010 publication-title: Chem. doi: 10.1016/j.chempr.2018.03.002 – volume: 52 start-page: 11297 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0011 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02403 – volume: 371 start-page: 842 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0023 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.101 – volume: 286 year: 2021 ident: 10.1016/j.cclet.2021.08.016_bib0032 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.119930 – volume: 23 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0034 publication-title: iScience. – volume: 32 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0022 publication-title: Adv. Mater. – volume: 417 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0017 publication-title: Chem. Eng. J. – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.cclet.2021.08.016_bib0019 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0001-8 – volume: 59 start-page: 13968 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0033 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006059 – volume: 52 start-page: 5367 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0008 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00092 – volume: 5 start-page: 827 year: 2018 ident: 10.1016/j.cclet.2021.08.016_bib0016 publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00012C – volume: 400 year: 2020 ident: 10.1016/j.cclet.2021.08.016_bib0031 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123297 – volume: 30 start-page: 2216 year: 2019 ident: 10.1016/j.cclet.2021.08.016_bib0006 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.05.039 – volume: 9 start-page: 32720 year: 2017 ident: 10.1016/j.cclet.2021.08.016_bib0021 publication-title: Acs Appl. Mater. Inter. doi: 10.1021/acsami.7b08967 – volume: 173 start-page: 544 year: 2017 ident: 10.1016/j.cclet.2021.08.016_bib0020 publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2016.09.053 |
SSID | ssj0028836 |
Score | 2.4639084 |
Snippet | In recent years, MoS2 catalyzed/cocatalyzed Fenton/Fenton-like systems have attracted wide attention in the field of pollution control, but there are few... In recent years,MOS2 catalyzed/cocatalyzed Fenton/Fenton-like systems have attracted wide attention in the field of pollution control,but there are few studies... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1365 |
SubjectTerms | Co-catalytic Fenton reaction Hydrogen peroxide Molybdenum sulfide Singlet oxygen |
Title | “Small amount for multiple times” of H2O2 feeding way in MoS2-Fex heterogeneous fenton for enhancing sulfadiazine degradation |
URI | https://dx.doi.org/10.1016/j.cclet.2021.08.016 https://d.wanfangdata.com.cn/periodical/zghxkb202203036 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqIgQXxCrKJh84Eto4iZMcUUVVQMChIHGzbMduC2mCKBXLAcF_wM_xJXjipAIJceBq2aPIHs-MlTfvIbQbh5rGwjxTdSKF47sJ_N9NlCPMuIl-2g09aBQ-PaPdS__4KriqoXbVCwOwyjL225heROtypFnuZvN2OGz2gD0o8uEJY5W7oYPdD8HL91-mMA8Q0y06jAA6BLMr5qEC4yWNMQBUEsvjCaLnv2en2QeeaZ71v-WeziJaKItGfGC_awnVVLaM5tqVVtsKevt8fe-NeJpiPgLxB2xKUVxhBXGhH__5-oFzjbvknGBtUxZ-4E94mOHTvEecjnrEA8DG5MalVD4Zm1mgL1yYUtkAeDnMkvEk1UBnAKTUOAGmCSvKtIouO4cX7a5Tiis40lQ91JHaly1PJUpywV1Cgxj0asyFbCWhlIEMRWxqJ5O6eEQkkZzQOBBJS9BI8hb3qbeG6lmeqXWEJXcF8TQ3TymgNxQxcROXh0IpT0TGSRqIVJvKZMk8DgIYKasgZtesOAkGJ8FAFtOlDbQ3XXRriTf-nk6r02I__IeZ1PD3QlyeLStv75g99wePN4JAEzJk-I3_2t5E82DEQta2UP3-bqK2TQ1zL3YKJ91BMwdHJ92zLx0b8_s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4BVQUX1JYi_tr60N5Id-Nknc2BQwVdLYWlhwWJm2s7NrvtkiCW1QKHir5HeYq-EU_SmcRBrVRxqMTVsi3LM5kZK998H8DbNHEi1fhMdZnRQRxm9H83s4HGcYx-LkwiahTuHYjuUfzpuHU8A7_qXhiCVfrYX8X0Mlr7kYa_zcbZcNjoE3tQO6YnTKXc7ZGVe_Zqiu-28dbuDhr5Heedj4fb3cBLCwQGc74IjItNM7KZNUqrkItWSmot6I7NLDGmZRKdYuWAgVu1ueFGcZG2dNbUom1UU8Uiwn1n4UmM4YJkE95_v8eVkHpv2dJEWCU6Xk11VILKDJ6eEJy8Ig4llfV_p8OnU5U7lZ_8kew6z2DRV6nsQ3URz2HG5i9gfrsWh1uCH3c3P_unajRi6pTUJhjWvqwGJ7JSsP7u5pYVjnX5Z85clSPZVF2xYc56RZ8HHXvJBgTGKdCHbTEZ4ywSNC63svmAiEBwyXgycsSfQCzYLCNqi0oF6iUcPcqVL8NcXuR2BZhRoeaRU_h2Iz5FnfIwC1WirY10G71yFXh9qdJ4qnNS3BjJGtP2VZaWkGQJSTqcoViFzftFZxXTx8PTRW0t-ZfDSsxFDy9k3rbSh4uxvD4ZXH7TnLqeqaRY-9-938B897C3L_d3D_bWYYE2rPByGzB3cT6xr7CAutCvS4dl8OWxv5DfnjsvJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CSmall+amount+for+multiple+times%E2%80%9D+of+H2O2+feeding+way+in+MoS2-Fex+heterogeneous+fenton+for+enhancing+sulfadiazine+degradation&rft.jtitle=Chinese+chemical+letters&rft.au=Chen%2C+Zhuan&rft.au=Lian%2C+Cheng&rft.au=Huang%2C+Kai&rft.au=Ji%2C+Jiahui&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=1001-8417&rft.eissn=1878-5964&rft.volume=33&rft.issue=3&rft.spage=1365&rft.epage=1372&rft_id=info:doi/10.1016%2Fj.cclet.2021.08.016&rft.externalDocID=S1001841721005908 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |