Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors
A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors (LICs). In this contribution, the N-doped graphene synthesized by a faicle sol...
Saved in:
Published in | Chinese chemical letters Vol. 36; no. 2; pp. 109675 - 517 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2025
College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors (LICs). In this contribution, the N-doped graphene synthesized by a faicle solid state reaction using C3N4 nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li3VO4 at the nanoscale, and simultaneously efficiently anchors each nanobuilding block inside the interlayers, thus realizing the utilizaiton of full potential of active components. The so-formed 3D hybrids not only ensure intimate electronic coupling between active materials and N-doped graphene, but also realize robust structure integrity. Owing to these unique advantages, the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90% at both low and high current rates. The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g, capacity retention of 92.7% after 1000 cycles at 2 A/g, and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs.
A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a 2D nanospace confined strategy for lithium ion capacitors (LICs). Such hybrid materials efficiently combine the advantages of nanoscale Li3VO4 and highly conductive graphene, realizing high-efficiency electron/ion transport and utilization of full potential of active materials. [Display omitted] |
---|---|
AbstractList | A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors (LICs). In this contribution, the N-doped graphene synthesized by a faicle solid state reaction using C3N4 nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li3VO4 at the nanoscale, and simultaneously efficiently anchors each nanobuilding block inside the interlayers, thus realizing the utilizaiton of full potential of active components. The so-formed 3D hybrids not only ensure intimate electronic coupling between active materials and N-doped graphene, but also realize robust structure integrity. Owing to these unique advantages, the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90% at both low and high current rates. The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g, capacity retention of 92.7% after 1000 cycles at 2 A/g, and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs.
A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a 2D nanospace confined strategy for lithium ion capacitors (LICs). Such hybrid materials efficiently combine the advantages of nanoscale Li3VO4 and highly conductive graphene, realizing high-efficiency electron/ion transport and utilization of full potential of active materials. [Display omitted] A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors(LICs).In this contribution,the N-doped graphene synthesized by a faicle solid state reaction using C3N4 nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li3VO4 at the nanoscale,and simultaneously efficiently anchors each nanobuilding block inside the interlayers,thus realizing the utilizaiton of full po-tential of active components.The so-formed 3D hybrids not only ensure intimate electronic coupling be-tween active materials and N-doped graphene,but also realize robust structure integrity.Owing to these unique advantages,the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90%at both low and high current rates.The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g,capacity retention of 92.7%after 1000 cycles at 2 A/g,and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs. |
ArticleNumber | 109675 |
Author | Ding, Yuan-Li Yang, Caili Li, Ruotong Long, Tao Wu, Chunyang |
AuthorAffiliation | National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China;College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China |
AuthorAffiliation_xml | – name: National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China;College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China |
Author_xml | – sequence: 1 givenname: Caili surname: Yang fullname: Yang, Caili organization: National Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 2 givenname: Tao surname: Long fullname: Long, Tao organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China – sequence: 3 givenname: Ruotong surname: Li fullname: Li, Ruotong organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China – sequence: 4 givenname: Chunyang orcidid: 0000-0002-5796-8288 surname: Wu fullname: Wu, Chunyang email: wucy@uestc.edu.cn organization: National Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 5 givenname: Yuan-Li surname: Ding fullname: Ding, Yuan-Li organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
BookMark | eNqFkbtu3DAQRVk4gB_xF6Rhl0obUqReRYrAeQKLOEXslhhRw93ZaEmBlOw4v-CfNtfrKkVScTC8Z4Y4PGcnPnhk7I0UKylk_W63snbEeVWKUudOVzfVCTuTQsii1bI5Zecp7YQo21bVZ-zxR8JlCBYmsDSDt8iHsCcPMw58Ter2WnP0-Tot43OPPP9eDGHK5SbCtEWP_I6Alx-5Bx9SnoPcBu_I50h68PMWEyXuQuRpmTBSLkaat7TsOQXPX1aHmF6zVw7GhJcv5wW7-fzp59XXYn395dvVh3Vhy0qoolFaSuik0FXfdyB6UA4qJztrBwegERprlSp1K2qo6r7WIJuyqqtm0A67Tl2wt8e59-Ad-I3ZhSX6vNH82Wx__-qzuUqUolU52R2TNoaUIjpzkDTnZ88RaDRSmINzszPPzs3BuTk6z6z6i50i7SE-_Id6f6QwC7gjjCZZyh-AA0W0sxkC_ZN_Als8oqo |
CitedBy_id | crossref_primary_10_1007_s10853_024_10586_8 crossref_primary_10_1016_j_matchemphys_2025_130450 |
Cites_doi | 10.1038/nmat2612 10.1149/2.0141505jes 10.1016/j.jpowsour.2017.02.075 10.1039/C8TA11890F 10.1002/anie.201201429 10.1021/ja0681927 10.1016/j.nanoen.2017.04.020 10.1002/adfm.201500644 10.1016/j.cclet.2019.11.015 10.1002/celc.201701390 10.1002/adfm.201504294 10.1016/j.jechem.2023.01.031 10.1016/j.jmst.2021.02.020 10.1016/j.jelechem.2015.03.013 10.1016/j.jallcom.2018.07.151 10.1016/j.ensm.2019.02.031 10.1039/C4CC07444K 10.1021/nn9012065 10.1002/aenm.201602545 10.1007/s12598-022-02028-8 10.1016/0025-5408(80)90076-8 10.1016/j.ensm.2016.11.009 10.1039/D0EE00807A 10.1038/s41467-021-23366-8 10.1039/c3ee44164d 10.1016/j.electacta.2020.136819 10.1016/j.jpowsour.2008.09.063 10.1021/cm048249t 10.1016/j.ensm.2021.09.025 |
ContentType | Journal Article |
Copyright | 2024 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2024.109675 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EndPage | 517 |
ExternalDocumentID | zghxkb202502083 10_1016_j_cclet_2024_109675 S1001841724001943 |
GroupedDBID | --K --M -SB -S~ .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 5XA 5XC 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXDM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADECG ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CAJEB CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q-- Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP U1G U5L UNMZH UZ4 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 4A8 PSX |
ID | FETCH-LOGICAL-c2503-73411a91045bb9a0ba3fa5f19ccdfaa4ea7cc3324806a56b64a1725657d4fe993 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:26 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Tue Jul 01 00:16:06 EDT 2025 Sat Jan 18 16:04:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Lithium ion capacitor Anode Li3VO4 Graphene Pseudocapacitance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2503-73411a91045bb9a0ba3fa5f19ccdfaa4ea7cc3324806a56b64a1725657d4fe993 |
ORCID | 0000-0002-5796-8288 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_zghxkb202502083 crossref_citationtrail_10_1016_j_cclet_2024_109675 crossref_primary_10_1016_j_cclet_2024_109675 elsevier_sciencedirect_doi_10_1016_j_cclet_2024_109675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2025 |
Publisher | Elsevier B.V College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China |
Publisher_xml | – name: Elsevier B.V – name: College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China – name: National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China |
References | Park, Jae, Kim (bib0032) 2018; 767 Chen, Li, Lu (bib0022) 2018; 5 Augustyn, Simon, Dunn (bib0009) 2014; 7 Liu, Zhang, Li (bib0018) 2020; 31 Huu, Vu, Ha (bib0017) 2021; 12 Wang, Zhang, Xu (bib0006) 2021; 31 Li, Wei, Sheng (bib0025) 2015; 2 Jagadale, Zhou, Xiong (bib0001) 2019; 19 Liang, Zhao, Dong (bib0026) 2015; 745 Zhu, Li, Ding (bib0036) 2021; 89 Luo, Xia (bib0021) 2009; 186 Ding, Kopold, Hahn (bib0031) 2016; 26 Zukalová, Kalbác, Kavan, Exnar, Graetzel (bib0011) 2005; 17 Liao, Zhang, Zhai, Li, Zhou (bib0015) 2017; 7 Choi, Chen, Freunberger (bib0005) 2012; 51 Kim, Cook, Tolbert, Dunn (bib0014) 2015; 162 Wang, Lu, Zhang (bib0020) 2017; 36 Wang, Zhang, Li (bib0007) 2022; 41 Li, Zheng, Zhang (bib0008) 2018; 30 Zhang, Bai, King (bib0028) 2021; 43 Okubo, Mizuno, Yamada (bib0013) 2010; 4 Okubo, Hosono, Kim (bib0012) 2007; 129 Ren, Ai, Zhan (bib0019) 2020; 355 Hu, Liao, He (bib0029) 2019; 7 Yang, Ran, Gao, Wang, Ding (bib0030) 2022; 918 Brezesinski, Wang, Tolbert, Dunn (bib0035) 2010; 9 Liao, Wen, Shan, Zhai, Li (bib0033) 2017; 348 Liu, An, Wang (bib0003) 2023; 80 Wang, Zhang, Li (bib0004) 2023; 468 Zhu, Zou, Zhang (bib0024) 2020; 7 Yue, Liang (bib0023) 2017; 7 Jin, Shen, Shellikeri (bib0002) 2020; 13 Jian, Zheng, Liang (bib0034) 2015; 51 Cheng, Zhang, Cai (bib0027) 2023 Marchand, Brohan, Tournoux (bib0010) 1980; 15 Zhang, Song, Liu (bib0016) 2015; 25 Liao (10.1016/j.cclet.2024.109675_bib0033) 2017; 348 Cheng (10.1016/j.cclet.2024.109675_bib0027) 2023 Ren (10.1016/j.cclet.2024.109675_bib0019) 2020; 355 Zhang (10.1016/j.cclet.2024.109675_bib0016) 2015; 25 Wang (10.1016/j.cclet.2024.109675_bib0004) 2023; 468 Choi (10.1016/j.cclet.2024.109675_bib0005) 2012; 51 Hu (10.1016/j.cclet.2024.109675_bib0029) 2019; 7 Luo (10.1016/j.cclet.2024.109675_bib0021) 2009; 186 Wang (10.1016/j.cclet.2024.109675_bib0006) 2021; 31 Jian (10.1016/j.cclet.2024.109675_bib0034) 2015; 51 Liu (10.1016/j.cclet.2024.109675_bib0003) 2023; 80 Zukalová (10.1016/j.cclet.2024.109675_bib0011) 2005; 17 Jagadale (10.1016/j.cclet.2024.109675_bib0001) 2019; 19 Park (10.1016/j.cclet.2024.109675_bib0032) 2018; 767 Liu (10.1016/j.cclet.2024.109675_bib0018) 2020; 31 Augustyn (10.1016/j.cclet.2024.109675_bib0009) 2014; 7 Wang (10.1016/j.cclet.2024.109675_bib0020) 2017; 36 Chen (10.1016/j.cclet.2024.109675_bib0022) 2018; 5 Wang (10.1016/j.cclet.2024.109675_bib0007) 2022; 41 Yue (10.1016/j.cclet.2024.109675_bib0023) 2017; 7 Li (10.1016/j.cclet.2024.109675_bib0025) 2015; 2 Liang (10.1016/j.cclet.2024.109675_bib0026) 2015; 745 Brezesinski (10.1016/j.cclet.2024.109675_bib0035) 2010; 9 Zhu (10.1016/j.cclet.2024.109675_bib0036) 2021; 89 Huu (10.1016/j.cclet.2024.109675_bib0017) 2021; 12 Kim (10.1016/j.cclet.2024.109675_bib0014) 2015; 162 Marchand (10.1016/j.cclet.2024.109675_bib0010) 1980; 15 Jin (10.1016/j.cclet.2024.109675_bib0002) 2020; 13 Okubo (10.1016/j.cclet.2024.109675_bib0012) 2007; 129 Zhu (10.1016/j.cclet.2024.109675_bib0024) 2020; 7 Ding (10.1016/j.cclet.2024.109675_bib0031) 2016; 26 Okubo (10.1016/j.cclet.2024.109675_bib0013) 2010; 4 Liao (10.1016/j.cclet.2024.109675_bib0015) 2017; 7 Yang (10.1016/j.cclet.2024.109675_bib0030) 2022; 918 Zhang (10.1016/j.cclet.2024.109675_bib0028) 2021; 43 Li (10.1016/j.cclet.2024.109675_bib0008) 2018; 30 |
References_xml | – volume: 186 start-page: 224 year: 2009 end-page: 227 ident: bib0021 publication-title: J. Power Sources – volume: 7 year: 2020 ident: bib0024 publication-title: Adv. Mater. Interfaces – volume: 7 start-page: 17 year: 2017 end-page: 31 ident: bib0015 publication-title: Energy Storage Mater. – volume: 129 start-page: 7444 year: 2007 end-page: 7452 ident: bib0012 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2971 year: 2022 end-page: 2984 ident: bib0007 publication-title: Rare Metals – volume: 7 start-page: 4660 year: 2019 end-page: 4667 ident: bib0029 publication-title: J. Mater. Chem. A – volume: 51 start-page: 9994 year: 2012 end-page: 10024 ident: bib0005 publication-title: Angew. Chem. Int. Ed. – volume: 767 start-page: 657 year: 2018 end-page: 665 ident: bib0032 publication-title: J. Alloy Compd. – volume: 26 start-page: 1112 year: 2016 end-page: 1119 ident: bib0031 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2341 year: 2020 end-page: 2362 ident: bib0002 publication-title: Energy Environ Sci. – volume: 17 start-page: 1248 year: 2005 end-page: 1255 ident: bib0011 publication-title: Chem. Mater. – volume: 162 start-page: A5083 year: 2015 ident: bib0014 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 1516 year: 2018 end-page: 1524 ident: bib0022 publication-title: ChemElectroChem – volume: 80 start-page: 68 year: 2023 end-page: 76 ident: bib0003 publication-title: J. Energy Chem. – volume: 31 year: 2021 ident: bib0006 publication-title: Adv. Funct. Mater. – volume: 745 start-page: 1 year: 2015 end-page: 7 ident: bib0026 publication-title: Electroanal. Chem. – volume: 4 start-page: 741 year: 2010 end-page: 752 ident: bib0013 publication-title: ACS Nano – volume: 43 start-page: 482 year: 2021 end-page: 491 ident: bib0028 publication-title: Energy Storage Mater. – volume: 31 start-page: 2225 year: 2020 end-page: 2229 ident: bib0018 publication-title: Chin. Chem. Lett. – volume: 7 year: 2017 ident: bib0023 publication-title: Adv. Energy Mater. – volume: 348 start-page: 48 year: 2017 end-page: 56 ident: bib0033 publication-title: J. Power Sources – volume: 7 start-page: 1597 year: 2014 end-page: 1614 ident: bib0009 publication-title: Energy Environ. Sci. – volume: 2 year: 2015 ident: bib0025 publication-title: Adv. Sci. – volume: 15 start-page: 1129 year: 1980 end-page: 1133 ident: bib0010 publication-title: Mater. Res. Bull. – volume: 51 start-page: 229 year: 2015 end-page: 231 ident: bib0034 publication-title: Chem. Commun. – volume: 468 year: 2023 ident: bib0004 publication-title: Chem. Eng. J. – volume: 918 year: 2022 ident: bib0030 publication-title: J. Alloy Compd. – year: 2023 ident: bib0027 publication-title: Small – volume: 9 start-page: 146 year: 2010 end-page: 151 ident: bib0035 publication-title: Nat. Mater. – volume: 30 year: 2018 ident: bib0008 publication-title: Adv. Mater. – volume: 12 start-page: 3081 year: 2021 ident: bib0017 publication-title: Nat. Commun. – volume: 355 year: 2020 ident: bib0019 publication-title: Electrochim. Acta – volume: 89 start-page: 68 year: 2021 end-page: 87 ident: bib0036 publication-title: J. Mater. Sci. Technol. – volume: 25 start-page: 3497 year: 2015 end-page: 3504 ident: bib0016 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 314 year: 2019 end-page: 329 ident: bib0001 publication-title: Energy Storage Mater. – volume: 36 start-page: 46 year: 2017 end-page: 57 ident: bib0020 publication-title: Nano Energy – volume: 9 start-page: 146 year: 2010 ident: 10.1016/j.cclet.2024.109675_bib0035 publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 162 start-page: A5083 year: 2015 ident: 10.1016/j.cclet.2024.109675_bib0014 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0141505jes – volume: 348 start-page: 48 year: 2017 ident: 10.1016/j.cclet.2024.109675_bib0033 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.075 – volume: 7 start-page: 4660 year: 2019 ident: 10.1016/j.cclet.2024.109675_bib0029 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11890F – year: 2023 ident: 10.1016/j.cclet.2024.109675_bib0027 publication-title: Small – volume: 51 start-page: 9994 year: 2012 ident: 10.1016/j.cclet.2024.109675_bib0005 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201429 – volume: 129 start-page: 7444 year: 2007 ident: 10.1016/j.cclet.2024.109675_bib0012 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0681927 – volume: 36 start-page: 46 year: 2017 ident: 10.1016/j.cclet.2024.109675_bib0020 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.020 – volume: 25 start-page: 3497 year: 2015 ident: 10.1016/j.cclet.2024.109675_bib0016 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500644 – volume: 31 start-page: 2225 year: 2020 ident: 10.1016/j.cclet.2024.109675_bib0018 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.11.015 – volume: 5 start-page: 1516 year: 2018 ident: 10.1016/j.cclet.2024.109675_bib0022 publication-title: ChemElectroChem doi: 10.1002/celc.201701390 – volume: 31 year: 2021 ident: 10.1016/j.cclet.2024.109675_bib0006 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1112 year: 2016 ident: 10.1016/j.cclet.2024.109675_bib0031 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504294 – volume: 2 year: 2015 ident: 10.1016/j.cclet.2024.109675_bib0025 publication-title: Adv. Sci. – volume: 30 year: 2018 ident: 10.1016/j.cclet.2024.109675_bib0008 publication-title: Adv. Mater. – volume: 80 start-page: 68 year: 2023 ident: 10.1016/j.cclet.2024.109675_bib0003 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.01.031 – volume: 89 start-page: 68 year: 2021 ident: 10.1016/j.cclet.2024.109675_bib0036 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.02.020 – volume: 745 start-page: 1 year: 2015 ident: 10.1016/j.cclet.2024.109675_bib0026 publication-title: Electroanal. Chem. doi: 10.1016/j.jelechem.2015.03.013 – volume: 767 start-page: 657 year: 2018 ident: 10.1016/j.cclet.2024.109675_bib0032 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2018.07.151 – volume: 19 start-page: 314 year: 2019 ident: 10.1016/j.cclet.2024.109675_bib0001 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.031 – volume: 51 start-page: 229 year: 2015 ident: 10.1016/j.cclet.2024.109675_bib0034 publication-title: Chem. Commun. doi: 10.1039/C4CC07444K – volume: 4 start-page: 741 year: 2010 ident: 10.1016/j.cclet.2024.109675_bib0013 publication-title: ACS Nano doi: 10.1021/nn9012065 – volume: 7 year: 2017 ident: 10.1016/j.cclet.2024.109675_bib0023 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602545 – volume: 41 start-page: 2971 year: 2022 ident: 10.1016/j.cclet.2024.109675_bib0007 publication-title: Rare Metals doi: 10.1007/s12598-022-02028-8 – volume: 7 year: 2020 ident: 10.1016/j.cclet.2024.109675_bib0024 publication-title: Adv. Mater. Interfaces – volume: 15 start-page: 1129 year: 1980 ident: 10.1016/j.cclet.2024.109675_bib0010 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(80)90076-8 – volume: 468 year: 2023 ident: 10.1016/j.cclet.2024.109675_bib0004 publication-title: Chem. Eng. J. – volume: 7 start-page: 17 year: 2017 ident: 10.1016/j.cclet.2024.109675_bib0015 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.11.009 – volume: 13 start-page: 2341 year: 2020 ident: 10.1016/j.cclet.2024.109675_bib0002 publication-title: Energy Environ Sci. doi: 10.1039/D0EE00807A – volume: 12 start-page: 3081 year: 2021 ident: 10.1016/j.cclet.2024.109675_bib0017 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23366-8 – volume: 7 start-page: 1597 year: 2014 ident: 10.1016/j.cclet.2024.109675_bib0009 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – volume: 355 year: 2020 ident: 10.1016/j.cclet.2024.109675_bib0019 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136819 – volume: 186 start-page: 224 year: 2009 ident: 10.1016/j.cclet.2024.109675_bib0021 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.063 – volume: 17 start-page: 1248 year: 2005 ident: 10.1016/j.cclet.2024.109675_bib0011 publication-title: Chem. Mater. doi: 10.1021/cm048249t – volume: 918 year: 2022 ident: 10.1016/j.cclet.2024.109675_bib0030 publication-title: J. Alloy Compd. – volume: 43 start-page: 482 year: 2021 ident: 10.1016/j.cclet.2024.109675_bib0028 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.09.025 |
SSID | ssj0028836 |
Score | 2.3687909 |
Snippet | A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109675 |
SubjectTerms | Anode Graphene Li3VO4 Lithium ion capacitor Pseudocapacitance |
Title | Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors |
URI | https://dx.doi.org/10.1016/j.cclet.2024.109675 https://d.wanfangdata.com.cn/periodical/zghxkb202502083 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFWovqKVFPFrkA8emm4eTbI6rpWjbwrZSC-JmjV9LeGRXZBdKD_0D_GlmEgcVCXHozYrsceJxPN8knz8ztpthViUiqwKV0aebMHZB3yYmSIsojlSRaGdoo_DhOBsdia8n6ckSG3Z7YYhW6df-dk1vVmt_pedHszcry95PUg_CfnJiQWIqToqfQuQ0yz_9faB50GG6zQ4jog5R7U55qOF4aTRGhMpYkKxSRmTDp6PTyg1UDqrJP7Fn_zVb9aCRD9r7esOWbLXGXg67s9resrsftV0YDEuYAWOyjw_BzZRILogn-UGZHH8XHB8NMCW-aK6VFR8HZjrDYiNZjSsevy6Bx3u8ApIPBzSBqbJDEGp4fVshTqzLmiPE5fWC1JGxgAj-tFxccnQt911Pr-p37Gj_86_hKPDHLAQa8U8S5BjIIkDYIFKlCggVJA5SFxVaGwcgLORaJwi8-mEGaaYyATjo9LvUCGcR36yz5Wpa2Q3GQQtrI3BFaENh-wVYBGQmdwXkaNAmmyzuhldqr0FOR2FcyI5sdiYbn0jyiWx9ssk-PjSatRIcz1fPOr_JRzNJYpB4viH3Xpb-Pa7ln8np73MVE1CMEaxu_a_tbfaKjLR07_dseX61sB8QzczVTjNdd9iLwZdvo_E9Ktv12g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELboogouCPpQoaX40GOjzcN5HdEWtJRlqVSouFnjF6Sl2RVhC_Qv9E8zkziolSoO3CzLHscex_NNMv6GsQ8ZelUisipQGX26CWMXFDYxQVpGcaTKRDtDF4WPptn4VHw-S8-W2Ki_C0Nhlf7s78709rT2NUO_msN5VQ2_EnsQjpNTFCS64skztkzsVOmALe8eHI6nD35XUbSZAql9QB168qE2zEujPIqpjAUxK2UUb_h_A_X8BmoH9flf5md_na153Mh3u0fbYEu2fsFWRn26tpfsz5fGLgxaJnSC0d_HeXAzozgXhJR8UiXfjgXH2QF6xZdtXVXzaWBmcyy2rNV46PFfFfD4E6-BGMQBRaC37BCHGt7c1QgVm6rhiHJ5syCCZCwgiL-oFj85apf7oWdXzSt2ur93MhoHPtNCoBECJUGOtiwCRA4iVaqEUEHiIHVRqbVxAMJCrnWC2KsIM0gzlQnAdac_pkY4ixDnNRvUs9q-YRy0sDYCV4Y2FLYowSImM7krIUeBNtlkcb-8UnsacsqGcSn7eLPvstWJJJ3ITieb7ONDp3nHwvF486zXm_xnM0m0E4935F7L0r_Kjfx9fnH7Q8WEFWPEq1tPlb3DVsYnRxM5OZgevmWrJLCL_n7HBtdXC7uN4OZavfeb9x6SvviL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudocapacitance+dominated+Li3VO4+encapsulated+in+N-doped+graphene+via+2D+nanospace+confined+synthesis+for+superior+lithium+ion+capacitors&rft.jtitle=Chinese+chemical+letters&rft.au=Yang%2C+Caili&rft.au=Long%2C+Tao&rft.au=Li%2C+Ruotong&rft.au=Wu%2C+Chunyang&rft.date=2025-02-01&rft.issn=1001-8417&rft.volume=36&rft.issue=2&rft.spage=109675&rft_id=info:doi/10.1016%2Fj.cclet.2024.109675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cclet_2024_109675 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |