Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors

A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors (LICs). In this contribution, the N-doped graphene synthesized by a faicle sol...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 36; no. 2; pp. 109675 - 517
Main Authors Yang, Caili, Long, Tao, Li, Ruotong, Wu, Chunyang, Ding, Yuan-Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors (LICs). In this contribution, the N-doped graphene synthesized by a faicle solid state reaction using C3N4 nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li3VO4 at the nanoscale, and simultaneously efficiently anchors each nanobuilding block inside the interlayers, thus realizing the utilizaiton of full potential of active components. The so-formed 3D hybrids not only ensure intimate electronic coupling between active materials and N-doped graphene, but also realize robust structure integrity. Owing to these unique advantages, the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90% at both low and high current rates. The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g, capacity retention of 92.7% after 1000 cycles at 2 A/g, and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs. A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a 2D nanospace confined strategy for lithium ion capacitors (LICs). Such hybrid materials efficiently combine the advantages of nanoscale Li3VO4 and highly conductive graphene, realizing high-efficiency electron/ion transport and utilization of full potential of active materials. [Display omitted]
AbstractList A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors (LICs). In this contribution, the N-doped graphene synthesized by a faicle solid state reaction using C3N4 nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li3VO4 at the nanoscale, and simultaneously efficiently anchors each nanobuilding block inside the interlayers, thus realizing the utilizaiton of full potential of active components. The so-formed 3D hybrids not only ensure intimate electronic coupling between active materials and N-doped graphene, but also realize robust structure integrity. Owing to these unique advantages, the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90% at both low and high current rates. The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g, capacity retention of 92.7% after 1000 cycles at 2 A/g, and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs. A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a 2D nanospace confined strategy for lithium ion capacitors (LICs). Such hybrid materials efficiently combine the advantages of nanoscale Li3VO4 and highly conductive graphene, realizing high-efficiency electron/ion transport and utilization of full potential of active materials. [Display omitted]
A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors(LICs).In this contribution,the N-doped graphene synthesized by a faicle solid state reaction using C3N4 nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li3VO4 at the nanoscale,and simultaneously efficiently anchors each nanobuilding block inside the interlayers,thus realizing the utilizaiton of full po-tential of active components.The so-formed 3D hybrids not only ensure intimate electronic coupling be-tween active materials and N-doped graphene,but also realize robust structure integrity.Owing to these unique advantages,the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90%at both low and high current rates.The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g,capacity retention of 92.7%after 1000 cycles at 2 A/g,and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs.
ArticleNumber 109675
Author Ding, Yuan-Li
Yang, Caili
Li, Ruotong
Long, Tao
Wu, Chunyang
AuthorAffiliation National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China;College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
AuthorAffiliation_xml – name: National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China;College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
Author_xml – sequence: 1
  givenname: Caili
  surname: Yang
  fullname: Yang, Caili
  organization: National Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 2
  givenname: Tao
  surname: Long
  fullname: Long, Tao
  organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Ruotong
  surname: Li
  fullname: Li, Ruotong
  organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China
– sequence: 4
  givenname: Chunyang
  orcidid: 0000-0002-5796-8288
  surname: Wu
  fullname: Wu, Chunyang
  email: wucy@uestc.edu.cn
  organization: National Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 5
  givenname: Yuan-Li
  surname: Ding
  fullname: Ding, Yuan-Li
  organization: College of Materials Science and Engineering, Hunan University, Changsha 410082, China
BookMark eNqFkbtu3DAQRVk4gB_xF6Rhl0obUqReRYrAeQKLOEXslhhRw93ZaEmBlOw4v-CfNtfrKkVScTC8Z4Y4PGcnPnhk7I0UKylk_W63snbEeVWKUudOVzfVCTuTQsii1bI5Zecp7YQo21bVZ-zxR8JlCBYmsDSDt8iHsCcPMw58Ter2WnP0-Tot43OPPP9eDGHK5SbCtEWP_I6Alx-5Bx9SnoPcBu_I50h68PMWEyXuQuRpmTBSLkaat7TsOQXPX1aHmF6zVw7GhJcv5wW7-fzp59XXYn395dvVh3Vhy0qoolFaSuik0FXfdyB6UA4qJztrBwegERprlSp1K2qo6r7WIJuyqqtm0A67Tl2wt8e59-Ad-I3ZhSX6vNH82Wx__-qzuUqUolU52R2TNoaUIjpzkDTnZ88RaDRSmINzszPPzs3BuTk6z6z6i50i7SE-_Id6f6QwC7gjjCZZyh-AA0W0sxkC_ZN_Als8oqo
CitedBy_id crossref_primary_10_1007_s10853_024_10586_8
crossref_primary_10_1016_j_matchemphys_2025_130450
Cites_doi 10.1038/nmat2612
10.1149/2.0141505jes
10.1016/j.jpowsour.2017.02.075
10.1039/C8TA11890F
10.1002/anie.201201429
10.1021/ja0681927
10.1016/j.nanoen.2017.04.020
10.1002/adfm.201500644
10.1016/j.cclet.2019.11.015
10.1002/celc.201701390
10.1002/adfm.201504294
10.1016/j.jechem.2023.01.031
10.1016/j.jmst.2021.02.020
10.1016/j.jelechem.2015.03.013
10.1016/j.jallcom.2018.07.151
10.1016/j.ensm.2019.02.031
10.1039/C4CC07444K
10.1021/nn9012065
10.1002/aenm.201602545
10.1007/s12598-022-02028-8
10.1016/0025-5408(80)90076-8
10.1016/j.ensm.2016.11.009
10.1039/D0EE00807A
10.1038/s41467-021-23366-8
10.1039/c3ee44164d
10.1016/j.electacta.2020.136819
10.1016/j.jpowsour.2008.09.063
10.1021/cm048249t
10.1016/j.ensm.2021.09.025
ContentType Journal Article
Copyright 2024
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2024.109675
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EndPage 517
ExternalDocumentID zghxkb202502083
10_1016_j_cclet_2024_109675
S1001841724001943
GroupedDBID --K
--M
-SB
-S~
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
5XA
5XC
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXDM
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CAJEB
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q--
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
U1G
U5L
UNMZH
UZ4
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
4A8
PSX
ID FETCH-LOGICAL-c2503-73411a91045bb9a0ba3fa5f19ccdfaa4ea7cc3324806a56b64a1725657d4fe993
IEDL.DBID .~1
ISSN 1001-8417
IngestDate Thu May 29 04:08:26 EDT 2025
Thu Apr 24 23:01:15 EDT 2025
Tue Jul 01 00:16:06 EDT 2025
Sat Jan 18 16:04:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lithium ion capacitor
Anode
Li3VO4
Graphene
Pseudocapacitance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2503-73411a91045bb9a0ba3fa5f19ccdfaa4ea7cc3324806a56b64a1725657d4fe993
ORCID 0000-0002-5796-8288
PageCount 6
ParticipantIDs wanfang_journals_zghxkb202502083
crossref_citationtrail_10_1016_j_cclet_2024_109675
crossref_primary_10_1016_j_cclet_2024_109675
elsevier_sciencedirect_doi_10_1016_j_cclet_2024_109675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2025
Publisher Elsevier B.V
College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
Publisher_xml – name: Elsevier B.V
– name: College of Materials Science and Engineering,Hunan University,Changsha 410082,China%College of Materials Science and Engineering,Hunan University,Changsha 410082,China%National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
– name: National Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 611731,China
References Park, Jae, Kim (bib0032) 2018; 767
Chen, Li, Lu (bib0022) 2018; 5
Augustyn, Simon, Dunn (bib0009) 2014; 7
Liu, Zhang, Li (bib0018) 2020; 31
Huu, Vu, Ha (bib0017) 2021; 12
Wang, Zhang, Xu (bib0006) 2021; 31
Li, Wei, Sheng (bib0025) 2015; 2
Jagadale, Zhou, Xiong (bib0001) 2019; 19
Liang, Zhao, Dong (bib0026) 2015; 745
Zhu, Li, Ding (bib0036) 2021; 89
Luo, Xia (bib0021) 2009; 186
Ding, Kopold, Hahn (bib0031) 2016; 26
Zukalová, Kalbác, Kavan, Exnar, Graetzel (bib0011) 2005; 17
Liao, Zhang, Zhai, Li, Zhou (bib0015) 2017; 7
Choi, Chen, Freunberger (bib0005) 2012; 51
Kim, Cook, Tolbert, Dunn (bib0014) 2015; 162
Wang, Lu, Zhang (bib0020) 2017; 36
Wang, Zhang, Li (bib0007) 2022; 41
Li, Zheng, Zhang (bib0008) 2018; 30
Zhang, Bai, King (bib0028) 2021; 43
Okubo, Mizuno, Yamada (bib0013) 2010; 4
Okubo, Hosono, Kim (bib0012) 2007; 129
Ren, Ai, Zhan (bib0019) 2020; 355
Hu, Liao, He (bib0029) 2019; 7
Yang, Ran, Gao, Wang, Ding (bib0030) 2022; 918
Brezesinski, Wang, Tolbert, Dunn (bib0035) 2010; 9
Liao, Wen, Shan, Zhai, Li (bib0033) 2017; 348
Liu, An, Wang (bib0003) 2023; 80
Wang, Zhang, Li (bib0004) 2023; 468
Zhu, Zou, Zhang (bib0024) 2020; 7
Yue, Liang (bib0023) 2017; 7
Jin, Shen, Shellikeri (bib0002) 2020; 13
Jian, Zheng, Liang (bib0034) 2015; 51
Cheng, Zhang, Cai (bib0027) 2023
Marchand, Brohan, Tournoux (bib0010) 1980; 15
Zhang, Song, Liu (bib0016) 2015; 25
Liao (10.1016/j.cclet.2024.109675_bib0033) 2017; 348
Cheng (10.1016/j.cclet.2024.109675_bib0027) 2023
Ren (10.1016/j.cclet.2024.109675_bib0019) 2020; 355
Zhang (10.1016/j.cclet.2024.109675_bib0016) 2015; 25
Wang (10.1016/j.cclet.2024.109675_bib0004) 2023; 468
Choi (10.1016/j.cclet.2024.109675_bib0005) 2012; 51
Hu (10.1016/j.cclet.2024.109675_bib0029) 2019; 7
Luo (10.1016/j.cclet.2024.109675_bib0021) 2009; 186
Wang (10.1016/j.cclet.2024.109675_bib0006) 2021; 31
Jian (10.1016/j.cclet.2024.109675_bib0034) 2015; 51
Liu (10.1016/j.cclet.2024.109675_bib0003) 2023; 80
Zukalová (10.1016/j.cclet.2024.109675_bib0011) 2005; 17
Jagadale (10.1016/j.cclet.2024.109675_bib0001) 2019; 19
Park (10.1016/j.cclet.2024.109675_bib0032) 2018; 767
Liu (10.1016/j.cclet.2024.109675_bib0018) 2020; 31
Augustyn (10.1016/j.cclet.2024.109675_bib0009) 2014; 7
Wang (10.1016/j.cclet.2024.109675_bib0020) 2017; 36
Chen (10.1016/j.cclet.2024.109675_bib0022) 2018; 5
Wang (10.1016/j.cclet.2024.109675_bib0007) 2022; 41
Yue (10.1016/j.cclet.2024.109675_bib0023) 2017; 7
Li (10.1016/j.cclet.2024.109675_bib0025) 2015; 2
Liang (10.1016/j.cclet.2024.109675_bib0026) 2015; 745
Brezesinski (10.1016/j.cclet.2024.109675_bib0035) 2010; 9
Zhu (10.1016/j.cclet.2024.109675_bib0036) 2021; 89
Huu (10.1016/j.cclet.2024.109675_bib0017) 2021; 12
Kim (10.1016/j.cclet.2024.109675_bib0014) 2015; 162
Marchand (10.1016/j.cclet.2024.109675_bib0010) 1980; 15
Jin (10.1016/j.cclet.2024.109675_bib0002) 2020; 13
Okubo (10.1016/j.cclet.2024.109675_bib0012) 2007; 129
Zhu (10.1016/j.cclet.2024.109675_bib0024) 2020; 7
Ding (10.1016/j.cclet.2024.109675_bib0031) 2016; 26
Okubo (10.1016/j.cclet.2024.109675_bib0013) 2010; 4
Liao (10.1016/j.cclet.2024.109675_bib0015) 2017; 7
Yang (10.1016/j.cclet.2024.109675_bib0030) 2022; 918
Zhang (10.1016/j.cclet.2024.109675_bib0028) 2021; 43
Li (10.1016/j.cclet.2024.109675_bib0008) 2018; 30
References_xml – volume: 186
  start-page: 224
  year: 2009
  end-page: 227
  ident: bib0021
  publication-title: J. Power Sources
– volume: 7
  year: 2020
  ident: bib0024
  publication-title: Adv. Mater. Interfaces
– volume: 7
  start-page: 17
  year: 2017
  end-page: 31
  ident: bib0015
  publication-title: Energy Storage Mater.
– volume: 129
  start-page: 7444
  year: 2007
  end-page: 7452
  ident: bib0012
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2971
  year: 2022
  end-page: 2984
  ident: bib0007
  publication-title: Rare Metals
– volume: 7
  start-page: 4660
  year: 2019
  end-page: 4667
  ident: bib0029
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 9994
  year: 2012
  end-page: 10024
  ident: bib0005
  publication-title: Angew. Chem. Int. Ed.
– volume: 767
  start-page: 657
  year: 2018
  end-page: 665
  ident: bib0032
  publication-title: J. Alloy Compd.
– volume: 26
  start-page: 1112
  year: 2016
  end-page: 1119
  ident: bib0031
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2341
  year: 2020
  end-page: 2362
  ident: bib0002
  publication-title: Energy Environ Sci.
– volume: 17
  start-page: 1248
  year: 2005
  end-page: 1255
  ident: bib0011
  publication-title: Chem. Mater.
– volume: 162
  start-page: A5083
  year: 2015
  ident: bib0014
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 1516
  year: 2018
  end-page: 1524
  ident: bib0022
  publication-title: ChemElectroChem
– volume: 80
  start-page: 68
  year: 2023
  end-page: 76
  ident: bib0003
  publication-title: J. Energy Chem.
– volume: 31
  year: 2021
  ident: bib0006
  publication-title: Adv. Funct. Mater.
– volume: 745
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0026
  publication-title: Electroanal. Chem.
– volume: 4
  start-page: 741
  year: 2010
  end-page: 752
  ident: bib0013
  publication-title: ACS Nano
– volume: 43
  start-page: 482
  year: 2021
  end-page: 491
  ident: bib0028
  publication-title: Energy Storage Mater.
– volume: 31
  start-page: 2225
  year: 2020
  end-page: 2229
  ident: bib0018
  publication-title: Chin. Chem. Lett.
– volume: 7
  year: 2017
  ident: bib0023
  publication-title: Adv. Energy Mater.
– volume: 348
  start-page: 48
  year: 2017
  end-page: 56
  ident: bib0033
  publication-title: J. Power Sources
– volume: 7
  start-page: 1597
  year: 2014
  end-page: 1614
  ident: bib0009
  publication-title: Energy Environ. Sci.
– volume: 2
  year: 2015
  ident: bib0025
  publication-title: Adv. Sci.
– volume: 15
  start-page: 1129
  year: 1980
  end-page: 1133
  ident: bib0010
  publication-title: Mater. Res. Bull.
– volume: 51
  start-page: 229
  year: 2015
  end-page: 231
  ident: bib0034
  publication-title: Chem. Commun.
– volume: 468
  year: 2023
  ident: bib0004
  publication-title: Chem. Eng. J.
– volume: 918
  year: 2022
  ident: bib0030
  publication-title: J. Alloy Compd.
– year: 2023
  ident: bib0027
  publication-title: Small
– volume: 9
  start-page: 146
  year: 2010
  end-page: 151
  ident: bib0035
  publication-title: Nat. Mater.
– volume: 30
  year: 2018
  ident: bib0008
  publication-title: Adv. Mater.
– volume: 12
  start-page: 3081
  year: 2021
  ident: bib0017
  publication-title: Nat. Commun.
– volume: 355
  year: 2020
  ident: bib0019
  publication-title: Electrochim. Acta
– volume: 89
  start-page: 68
  year: 2021
  end-page: 87
  ident: bib0036
  publication-title: J. Mater. Sci. Technol.
– volume: 25
  start-page: 3497
  year: 2015
  end-page: 3504
  ident: bib0016
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 314
  year: 2019
  end-page: 329
  ident: bib0001
  publication-title: Energy Storage Mater.
– volume: 36
  start-page: 46
  year: 2017
  end-page: 57
  ident: bib0020
  publication-title: Nano Energy
– volume: 9
  start-page: 146
  year: 2010
  ident: 10.1016/j.cclet.2024.109675_bib0035
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 162
  start-page: A5083
  year: 2015
  ident: 10.1016/j.cclet.2024.109675_bib0014
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0141505jes
– volume: 348
  start-page: 48
  year: 2017
  ident: 10.1016/j.cclet.2024.109675_bib0033
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.075
– volume: 7
  start-page: 4660
  year: 2019
  ident: 10.1016/j.cclet.2024.109675_bib0029
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11890F
– year: 2023
  ident: 10.1016/j.cclet.2024.109675_bib0027
  publication-title: Small
– volume: 51
  start-page: 9994
  year: 2012
  ident: 10.1016/j.cclet.2024.109675_bib0005
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201429
– volume: 129
  start-page: 7444
  year: 2007
  ident: 10.1016/j.cclet.2024.109675_bib0012
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0681927
– volume: 36
  start-page: 46
  year: 2017
  ident: 10.1016/j.cclet.2024.109675_bib0020
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.020
– volume: 25
  start-page: 3497
  year: 2015
  ident: 10.1016/j.cclet.2024.109675_bib0016
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500644
– volume: 31
  start-page: 2225
  year: 2020
  ident: 10.1016/j.cclet.2024.109675_bib0018
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.11.015
– volume: 5
  start-page: 1516
  year: 2018
  ident: 10.1016/j.cclet.2024.109675_bib0022
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701390
– volume: 31
  year: 2021
  ident: 10.1016/j.cclet.2024.109675_bib0006
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1112
  year: 2016
  ident: 10.1016/j.cclet.2024.109675_bib0031
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504294
– volume: 2
  year: 2015
  ident: 10.1016/j.cclet.2024.109675_bib0025
  publication-title: Adv. Sci.
– volume: 30
  year: 2018
  ident: 10.1016/j.cclet.2024.109675_bib0008
  publication-title: Adv. Mater.
– volume: 80
  start-page: 68
  year: 2023
  ident: 10.1016/j.cclet.2024.109675_bib0003
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.01.031
– volume: 89
  start-page: 68
  year: 2021
  ident: 10.1016/j.cclet.2024.109675_bib0036
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.02.020
– volume: 745
  start-page: 1
  year: 2015
  ident: 10.1016/j.cclet.2024.109675_bib0026
  publication-title: Electroanal. Chem.
  doi: 10.1016/j.jelechem.2015.03.013
– volume: 767
  start-page: 657
  year: 2018
  ident: 10.1016/j.cclet.2024.109675_bib0032
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2018.07.151
– volume: 19
  start-page: 314
  year: 2019
  ident: 10.1016/j.cclet.2024.109675_bib0001
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.031
– volume: 51
  start-page: 229
  year: 2015
  ident: 10.1016/j.cclet.2024.109675_bib0034
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07444K
– volume: 4
  start-page: 741
  year: 2010
  ident: 10.1016/j.cclet.2024.109675_bib0013
  publication-title: ACS Nano
  doi: 10.1021/nn9012065
– volume: 7
  year: 2017
  ident: 10.1016/j.cclet.2024.109675_bib0023
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602545
– volume: 41
  start-page: 2971
  year: 2022
  ident: 10.1016/j.cclet.2024.109675_bib0007
  publication-title: Rare Metals
  doi: 10.1007/s12598-022-02028-8
– volume: 7
  year: 2020
  ident: 10.1016/j.cclet.2024.109675_bib0024
  publication-title: Adv. Mater. Interfaces
– volume: 15
  start-page: 1129
  year: 1980
  ident: 10.1016/j.cclet.2024.109675_bib0010
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(80)90076-8
– volume: 468
  year: 2023
  ident: 10.1016/j.cclet.2024.109675_bib0004
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 17
  year: 2017
  ident: 10.1016/j.cclet.2024.109675_bib0015
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.11.009
– volume: 13
  start-page: 2341
  year: 2020
  ident: 10.1016/j.cclet.2024.109675_bib0002
  publication-title: Energy Environ Sci.
  doi: 10.1039/D0EE00807A
– volume: 12
  start-page: 3081
  year: 2021
  ident: 10.1016/j.cclet.2024.109675_bib0017
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23366-8
– volume: 7
  start-page: 1597
  year: 2014
  ident: 10.1016/j.cclet.2024.109675_bib0009
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 355
  year: 2020
  ident: 10.1016/j.cclet.2024.109675_bib0019
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136819
– volume: 186
  start-page: 224
  year: 2009
  ident: 10.1016/j.cclet.2024.109675_bib0021
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.09.063
– volume: 17
  start-page: 1248
  year: 2005
  ident: 10.1016/j.cclet.2024.109675_bib0011
  publication-title: Chem. Mater.
  doi: 10.1021/cm048249t
– volume: 918
  year: 2022
  ident: 10.1016/j.cclet.2024.109675_bib0030
  publication-title: J. Alloy Compd.
– volume: 43
  start-page: 482
  year: 2021
  ident: 10.1016/j.cclet.2024.109675_bib0028
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.09.025
SSID ssj0028836
Score 2.3687909
Snippet A pseudocapacitance dominated anode material assembled from Li3VO4 nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109675
SubjectTerms Anode
Graphene
Li3VO4
Lithium ion capacitor
Pseudocapacitance
Title Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors
URI https://dx.doi.org/10.1016/j.cclet.2024.109675
https://d.wanfangdata.com.cn/periodical/zghxkb202502083
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFWovqKVFPFrkA8emm4eTbI6rpWjbwrZSC-JmjV9LeGRXZBdKD_0D_GlmEgcVCXHozYrsceJxPN8knz8ztpthViUiqwKV0aebMHZB3yYmSIsojlSRaGdoo_DhOBsdia8n6ckSG3Z7YYhW6df-dk1vVmt_pedHszcry95PUg_CfnJiQWIqToqfQuQ0yz_9faB50GG6zQ4jog5R7U55qOF4aTRGhMpYkKxSRmTDp6PTyg1UDqrJP7Fn_zVb9aCRD9r7esOWbLXGXg67s9resrsftV0YDEuYAWOyjw_BzZRILogn-UGZHH8XHB8NMCW-aK6VFR8HZjrDYiNZjSsevy6Bx3u8ApIPBzSBqbJDEGp4fVshTqzLmiPE5fWC1JGxgAj-tFxccnQt911Pr-p37Gj_86_hKPDHLAQa8U8S5BjIIkDYIFKlCggVJA5SFxVaGwcgLORaJwi8-mEGaaYyATjo9LvUCGcR36yz5Wpa2Q3GQQtrI3BFaENh-wVYBGQmdwXkaNAmmyzuhldqr0FOR2FcyI5sdiYbn0jyiWx9ssk-PjSatRIcz1fPOr_JRzNJYpB4viH3Xpb-Pa7ln8np73MVE1CMEaxu_a_tbfaKjLR07_dseX61sB8QzczVTjNdd9iLwZdvo_E9Ktv12g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELboogouCPpQoaX40GOjzcN5HdEWtJRlqVSouFnjF6Sl2RVhC_Qv9E8zkziolSoO3CzLHscex_NNMv6GsQ8ZelUisipQGX26CWMXFDYxQVpGcaTKRDtDF4WPptn4VHw-S8-W2Ki_C0Nhlf7s78709rT2NUO_msN5VQ2_EnsQjpNTFCS64skztkzsVOmALe8eHI6nD35XUbSZAql9QB168qE2zEujPIqpjAUxK2UUb_h_A_X8BmoH9flf5md_na153Mh3u0fbYEu2fsFWRn26tpfsz5fGLgxaJnSC0d_HeXAzozgXhJR8UiXfjgXH2QF6xZdtXVXzaWBmcyy2rNV46PFfFfD4E6-BGMQBRaC37BCHGt7c1QgVm6rhiHJ5syCCZCwgiL-oFj85apf7oWdXzSt2ur93MhoHPtNCoBECJUGOtiwCRA4iVaqEUEHiIHVRqbVxAMJCrnWC2KsIM0gzlQnAdac_pkY4ixDnNRvUs9q-YRy0sDYCV4Y2FLYowSImM7krIUeBNtlkcb-8UnsacsqGcSn7eLPvstWJJJ3ITieb7ONDp3nHwvF486zXm_xnM0m0E4935F7L0r_Kjfx9fnH7Q8WEFWPEq1tPlb3DVsYnRxM5OZgevmWrJLCL_n7HBtdXC7uN4OZavfeb9x6SvviL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudocapacitance+dominated+Li3VO4+encapsulated+in+N-doped+graphene+via+2D+nanospace+confined+synthesis+for+superior+lithium+ion+capacitors&rft.jtitle=Chinese+chemical+letters&rft.au=Yang%2C+Caili&rft.au=Long%2C+Tao&rft.au=Li%2C+Ruotong&rft.au=Wu%2C+Chunyang&rft.date=2025-02-01&rft.issn=1001-8417&rft.volume=36&rft.issue=2&rft.spage=109675&rft_id=info:doi/10.1016%2Fj.cclet.2024.109675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cclet_2024_109675
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg