Novel Radon Sub-Slab Suctioning System

A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within the zo...

Full description

Saved in:
Bibliographic Details
Published inThe open construction & building technology journal Vol. 7; no. 1; pp. 13 - 19
Main Author Rasmussen, Torben Valdbjorn
Format Journal Article
LanguageEnglish
Published 2013
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within the zone below the ground-floor construction. For this purpose a new system of prefabricated lightweight elements is introduced. The effectiveness of the system is demonstrated for the case of a ground-floor reinforced concrete slab situated on top of a rigid insulation layer (consisting of a thermal insulation layer located on top of a capillary-breaking layer) mounted in turn on stable ground. The new system of prefabricated lightweight elements consists of the capillary-breaking layer and a pressure-reduction zone which is working as the radonsuction zone. The radon-suctioning layer is formed from a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses. For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside the building must be established. The prefabricated lightweight elements were integrated into the insulation layer below the material of the ground-floor slab. The element and the insulation material were made of expanded polystyrene. The new element can be handled by one man on site.
ISSN:1874-8368
1874-8368
DOI:10.2174/1874836801307010013